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Abstract

To address the increasing susceptibility of commodity chip
multiprocessors (CMPs) to transient faults, we propose Chip-
level Redundantly Threaded multiprocessor with Recovery
(CRTR). CRTR extends the previously-proposed CRT for tran-
sient-fault detection in CMPs, and the previously-proposed
SRTR for transient-fault recovery in SMT. All these schemes
achieve fault tolerance by executing and comparing two copies,
called leading and trailing threads, of a given application. Pre-
vious recovery schemes for SMT do not perform well on CMPs.
In a CMP, the leading and trailing threads execute on different
processors to achieve load balancing and reduce the probability
of a fault corrupting both threads; whereas in an SMT, both
threads execute on the same processor. The inter-processor
communication required to compare the threads introduces
latency and bandwidth problems not present in an SMT.

To hide inter-processor latency, CRTR executes the leading
thread ahead of the trailing thread by maintaining a long slack,
enabled by asymmetric commit. CRTR commits the leading
thread before checking and the trailing thread after checking, so
that the trailing thread state may be used for recovery. Previous
recovery schemes commit both threads after checking, making a
long slack suboptimal. To tackle inter-processor bandwidth,
CRTR not only increases the bandwidth supply by pipelining the
communication paths, but also reduces the bandwidth demand.
By reasoning that faults propagate through dependences, previ-
ously-proposed Dependence-Based Checking Elision (DBCE)
exploits (true) register dependence chains so that only the value
of the last instruction in a chain is checked. However, instruc-
tions that mask operand bits may mask faults and limit the use
of dependence chains. We propose Death- and Dependence-
Based Checking Elision (DDBCE), which chains a masking
instruction only if the source operand of the instruction dies
after the instruction. Register deaths ensure that masked faults
do not corrupt later computation. Using SPEC2000, we show
that CRTR incurs negligible performance loss compared to CRT
for inter-processor (one-way) latency as high as 30 cycles, and
that the bandwidth requirements of CRT and CRTR with
DDBCE are 5.2 and 7.1 bytes/cycle, respectively. 

1  Introduction

Technology scaling trends that lead to smaller and faster
transistors and lower supply voltages result in increased suscep-
tibility to transient faults and degraded reliability even in com-
modity microprocessors. To utilize the high transistor counts
afforded by technology scaling, the microprocessor industry is
adopting chip multiprocessors (CMPs) (e.g., the IBM Power 4
is a four-processor CMP). CMPs are building blocks for server-

class machines for which reliability is a key concern. To address
reliability issues in CMPs, [6] briefly describes the Chip-level
Redundantly Threaded multiprocessor (CRT) for transient-fault
detection. In this paper, we propose hardware-assisted transient-
fault recovery for CMPs. 

Simultaneously and Redundantly Threaded (SRT) proces-
sors [9] and Simultaneously and Redundantly Threaded proces-
sors with Recovery (SRTR) [17] are proposals for transient-
fault detection and recovery, respectively, based on Simulta-
neous Multithreaded (SMT) processors [16]. SRT and SRTR,
and other proposals [11,14], provide fault tolerance by replicat-
ing an application into two communicating threads, one (called
the leading thread) executing ahead of the other (called the trail-
ing thread), and by comparing their values. SRT maintains a
long slack (e.g., 256 instructions) between the threads so that
the trailing thread can use memory load values and branch out-
comes of the leading thread to avoid memory latencies and
mispredicted computations. SRT commits register values before
checking for faults but guarantees fault detection and avoids
memory corruption by checking stores before commit. To
achieve recovery, SRTR commits register values (in either
thread) only after the values are checked. Consequently, a long
slack causes leading thread stalls. At the same time, a short
slack causes trailing thread stalls. SRTR solves this dilemma by
using a moderate slack (e.g., 32 instructions) and reducing trail-
ing thread stalls by exploiting leading instructions’ complete-to-
commit times. 

CRT applies SRT’s detection to CMPs. However, extending
the CMP-based CRT to provide recovery by naively repeating
the SMT-based SRTR extension of SRT does not achieve high
performance. There is a key difference between CMP- and
SMT-based schemes: In a CMP, the leading and trailing threads
execute on different processors to achieve load balancing and
reduce the probability of a fault corrupting both threads [6];
whereas in an SMT, both threads execute on the same processor.
Because of layout constraints, the processors in a CMP cannot
be physically close. The inter-processor communication
required to compare the values from the threads makes the
latency and bandwidth of the communication paths critically
important. These issues are not addressed by SRTR. 

Compared to a CMP, CRT and CRTR need extra hardware
queues (like SRT’s and SRTR’s queues) to hold the communi-
cated values, and extra inter-processor wires for the communi-
cation. The global wires are bound to impose both a substantial
latency (e.g., 20 cycles) and a limited bandwidth (e.g., 20 bytes
per cycle) on the communication. Typical complete-to-commit
times are insufficient to hide the resultant delay for every regis-
ter and memory value, rendering SRTR’s slack inadequate for
CMPs. Although [6] does not discuss this issue, this delay is not
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a problem for CRT: Because CRT is a detection scheme and
commits register values before checking, CRT can employ a
long slack without stalling the leading thread. 

We propose Chip-level Redundantly Threaded multiproces-
sor with Recovery (CRTR). Because the inter-processor delay
fundamentally requires a slack longer than that used for SRTR,
we use asymmetric commit, a departure from SRTR’s strategy
of not committing before checking. CRTR enables long slack
by allowing the leading thread to commit register updates
before checking, so that long slacks do not hold up leading
thread commits. However, CRTR allows the trailing thread to
commit register updates only after checking, so that the register
state of the trailing thread can be used for recovery. In contrast,
CRT allows both threads to commit register updates before
checking, eliminating the possibility of recovery using the trail-
ing thread. While AR-SMT [11] used asymmetric commit as a
recovery strategy in SMT without explicit latency consider-
ations, CRTR uses it to hide inter-processor latency by enabling
a long slack. As in CRT, CRTR commits memory updates (i.e.,
stores) only after checking, so that memory is guaranteed to be
correct. Because stores are less frequent than register updates,
CRTR can increase the slack without stalling leading thread
commits. Upon detecting a fault, CRTR raises an exception and
copies the trailing register state to the leading thread. 

The asymmetric commit hides inter-processor latency. To
tackle inter-processor bandwidth requirements, we pipeline the
inter-processor paths and hide the latency of the pipelining
using the asymmetric commit. While this pipelining boosts the
bandwidth supply, we reduce the bandwidth demand by
employing two techniques. First, while SRTR checks specula-
tive values, CRTR, like CRT, communicates and checks only
committed values. Second, we extend the SRTR scheme of
Dependence-Based Checking Elision (DBCE). By reasoning
that faults propagate through dependences, DBCE exploits
(true) register dependence chains so that only the last instruc-
tion in a chain is checked. Earlier instructions in the chains in
both threads completely elide communication and checking,
reducing bandwidth pressure. DBCE redundantly builds chains
in both threads and checks its own functionality. 

DBCE encounters problems with masking instructions,
which may mask a fault in its inputs by producing the correct
output even if an input is faulty (e.g., r2 := r1 & 0xff00, r1 :=
(r2 < r3)). Such masking violates the key assumption of DBCE
that faults are propagated by dependences. A later instruction in
the chain of a masking instruction cannot detect the masked
fault, and an irrecoverable error ensues if the faulty value is
committed and consumed by some later computation. Conse-
quently, SRTR suggests disallowing masking instructions from
joining DBCE chains. Because many integer and almost all
floating-point instructions (due to their finite precision) are
masking, this restriction on masking instructions limits the
DBCE chain lengths and reduces the effectiveness of DBCE. 

We extend DBCE to exploit the death of register values, and
propose Death- and Dependence-Based Checking Elision
(DDBCE). The problem with a masking instruction occurs if a
source operand is faulty, and some later instruction, other than
the masking instruction, also consumes the faulty value. By
tracking register death, we identify those masking instructions
that are the last consumers of their source operands—i.e., the

source operands die after the masking instruction. The operand
death ensures that any masked fault does not corrupt later com-
putation, allowing masking instructions to join chains without
loss of recovery. Because many register values are consumed by
only one or two instructions, DDBCE boosts the bandwidth
reduction of DBCE. 

The main contributions and results of this paper are: 
• To tackle inter-processor latency, we use asymmetric com-

mits.

• To tackle inter-processor bandwidth, we not only increase

the bandwidth supply by pipelining the communication paths,

but also reduce the bandwidth demand (1) by extending the pre-

viously-proposed DBCE to DDBCE, and (2) by checking only

committed values and not speculative values. 

• Using SPEC2000, we find that CRTR incurs negligible per-

formance loss compared to CRT for inter-processor (one-way)

latency as high as 30 cycles. 

• Our results show that the bandwidth requirements for CRT,

CRTR without DBCE, CRTR with conservative DBCE, and

CRTR with DDBCE are 5.2, 9.8, 7.8, and 7.1 bytes/cycle,

respectively. 

CRTR is guaranteed to provide recovery from single tran-
sient faults except those that affect the (non-ECC-protected)
register file, in which case CRTR guarantees detection. 

In Section 2, we discuss related work. We review CRT in
Section 3. We describe CRTR in Section 4 and DDBCE in
Section 5. In Section 6, we present experimental results, and
conclude in Section 7. 

2  Related work
Watchdog processors are the key concept behind many fault

tolerance schemes [5]. The AR-SMT processor is the first to use
SMT to execute two copies of the same program [11]. AR-SMT
and its follow-up for CMPs, called Slipstream[14], also propose
using speculation techniques to allow communication of data
values and branch outcomes between the leading and trailing
threads to accelerate execution. SRT improves on AR-SMT via
the two optimizations of slack fetch and checking only stores
[9]. SRTR extends SRT to provide recovery for SMT [17]. The
CRT paper explores design options for fault detection via multi-
threading, and briefly discusses detection on CMPs [6]. 

AR-SMT and Slipstream briefly mention recovery using
their equivalent of the trailing thread in SMT and CMP, respec-
tively. However, even though both CRTR and Slipstream target
CMPs, they are fundamentally different in the following three
ways: (1) Slipstream may not recover from some faults. (2)
Slipstream does not address a central correctness issue for
CMPs: memory locations may be modified by another proces-
sor (e.g., during multiprocessor synchronization) between the
time the leading thread loads a value and the time the trailing
thread tries to load the same value. CRTR uses the previously-
proposed Load Value Queue [9] to communicate the leading
load values to the trailing thread. (3) Slipstream allows the lead-
ing thread to commit to memory before checking, requiring two
copies of memory. Doubling the memory size may stress the
memory hierarchy and degrade performance. In contrast, CRTR
needs only one copy of memory because it checks stores and
commits only one store to memory. CRTR tackles the latency
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and bandwidth problems that are ignored by Slipstream: the
communication of load values and store check confirmations.

Software recovery schemes such as [3,12], which use hard-
ware detection, need (hardware or software) checkpointing of
program state (memory and registers), incurring considerable
performance cost even when there are no faults. In contrast,
CRTR does not require any checkpointing, and it involves rais-
ing an exception and copying the register state (but not memory
state) from the trailing thread only when faults are detected. 

Another paper proposes hardware recovery using supersca-
lar hardware without any SMT support [8]. DIVA is a fault-tol-
erant superscalar processor that uses a simple, in-order checker
processor to check the execution of the complex out-of-order
processor [1]. DIVA can recover from permanent faults and
design errors in the aggressive processor but assumes that no
transient faults occur in the checker processor itself. Other
works on fault tolerance focus on functional units [10, 7, 4, 13]. 

The Compaq NonStop Himalaya [3] and IBM z900 (for-
merly S/390) [12] provide fault tolerance. The z900 uses the G5
microprocessor which includes replicated, lock-stepped pipe-
lines. The NonStop Himalaya uses off-the-shelf, lock-stepped
microprocessors and compares the external pins on every cycle.
In both systems, when the components disagree, execution is
stopped to prevent propagation of faults. The z900 uses special
microcode to restore program state from a hardware checkpoint
module. The NonStop Himalaya does not provide hardware
support for recovery. SRT has shown that avoiding lock-step-
ping achieves better performance. 

3  Transient-fault detection in CMPs

The Chip-level Redundantly Threaded multiprocessor
(CRT) provides transient-fault detection using a chip multipro-
cessor (CMP). CRT borrows the detection scheme from the
SMT-based Simultaneously and Redundantly Threaded (SRT)
processors and applies the scheme to CMPs. CRT replicates an
application into two communicating threads, one executing
ahead of the other. Comparing the results of two redundant exe-
cutions is the underlying scheme to detect transient faults in
CRT. As mentioned in Section 1, CRT executes the leading and
trailing threads on different processors to achieve load balanc-
ing and to reduce the probability of a fault corrupting both
threads. In Figure 1, we show a 4-CPU CRT running leading
thread i on CPU i, and trailing thread i on CPU i+1 (modulo 4). 

Because detection is based on replication, the extent to
which the application is replicated is important. CRT replicates
register values (in the register file of each processor) but not
memory values. CRT’s leading thread commits stores only after
checking, so that memory is guaranteed to be correct. CRT
compares only stores and uncached loads, but not register val-
ues, of the two threads. Because an incorrect value caused by a
fault propagates through computations and is eventually con-
sumed by a store, checking only stores suffices for detection;
other instructions commit without checking. CRT uses a store
buffer (StB) in which the leading thread places its committed
store values and addresses. The store values and addresses of
the trailing thread are compared against the StB entries to deter-
mine whether a fault has occurred. Only one copy of the
checked store reaches the cache hierarchy. Because data in the
cache hierarchy is not replicated, other forms of protection such
as ECC are needed for the cache hierarchy. 

Replicating cached loads is problematic because memory
locations may be modified by an external agent (e.g., another
processor during multiprocessor synchronization) between the
time the leading thread loads a value and the time the trailing
thread tries to load the same value. The two threads may diverge
if the loads return different data. CRT allows only the leading
thread to access the cache and uses the Load Value Queue
(LVQ) to hold the leading load values and addresses. The trail-
ing thread loads from the LVQ instead of repeating the load
from the cache, after comparing load addresses to ensure that
no fault has occurred. The Active Load Address Buffer pro-
posed in [9] is an alternative for the LVQ that also addresses
this problem. CRT uses the simpler LVQ. 

A key optimization in the SMT-based SRT is that the leading
thread runs ahead of the trailing thread by an amount called the
slack (e.g., the slack may be 256 instructions). In addition, the
leading thread provides its branch outcomes via the branch out-
come queue (BOQ) to the trailing thread. In [6], the authors use
a line predictor queue, instead of the BOQ, to allow the leading
thread to control the trailing thread’s fetch in the case of SMT.
The slack and the communication of branch outcomes hide the
memory latencies of the leading thread and avoid branch
mispredictions from the trailing thread. Due to the slack, by the
time the trailing thread needs a load value or branch outcome,
the leading thread has already produced it. However, this
scheme works only in an SMT where both threads fetch from
the same i-cache, but it is not applicable to a CMP. [6] does not
explain how to extend the scheme to CMPs.

CRT assumes that uncached accesses are performed non-
speculatively. CRT synchronizes uncached accesses from the
leading and trailing threads, compares the addresses, and repli-
cates the load data. CRT assumes that code does not modify
itself, although self-modifying code in regular CMPs already
requires thread synchronization and cache coherence which can
be extended to keep the leading and trailing threads consistent.
For input replication of external interrupts, CRT suggests forc-
ing the threads to the same execution point and then delivering
the interrupt synchronously to both threads. 

CRT communicates values from the processor running the
leading thread to the one running the trailing thread. Compared
to a CMP, CRT needs extra hardware queues (LVQ and BOQ)
to hold the communicated values, and it needs extra inter-pro-

FIGURE 1: CRT and CRTR.
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cessor wires for the communication. To minimize the number of
wires, we place the trailing threads on the processor adjacent to
that running the leading thread, as shown in Figure 1. 

Although [6] does not mention this issue, the inter-processor
communication in CRT does not pose a problem, as mentioned
in Section 1. The inter-processor latency is mostly absorbed by
the long slack, and the bandwidth pressure is tolerable because
CRT communicates only branch outcomes, load values and
store values, but not register values. 

4  Transient-fault recovery for CMPs

We propose Chip-level Redundantly Threaded multiproces-
sor with Recovery (CRTR) which enhances CRT to include tran-
sient-fault recovery. Like CRT, CRTR assumes SMT processors
in the CMP and uses the configuration illustrated in Figure 1.
Unlike CRT, CRTR must not allow any trailing instruction to
commit before it is checked for faults, so that the register state
of the trailing thread may be used for recovery. However, the
leading thread in CRTR may commit register state before
checking, as in CRT. This asymmetric commit strategy allows
CRTR to employ a long slack to absorb inter-processor laten-
cies. As in CRT, CRTR commits stores only after checking.
Because stores are relatively infrequent, the slack can be
increased without stalling leading thread commits. 

CRTR uses the long slack to hide the inter-processor com-
munication latency between the leading and trailing threads. In
addition to communicating branch outcomes, load addresses,
load values, store addresses, and store values like CRT, CRTR
also communicates register values. CRTR employs sender-initi-
ated (i.e., leading-thread initiated) communication and queues
up the values at the processor running the trailing thread. Thus,
if the slack is appropriately long, the values of the leading
thread reach the trailing thread before it needs the values,
despite incurring the communication delay. 

4.1  Slack fetch

We modify the instruction fetch in CMP to check whether
the leading and trailing threads are separated by at least the
amount of a pre-specified threshold; if they are, the trailing
thread is allowed to fetch, otherwise the leading thread is
allowed to fetch. SRT and SRTR implement this scheme by
modifying the SMT ICOUNT [15]. ICOUNT maximizes the
number of independent instructions in the pipeline by fetching
from the thread that has fewer instructions waiting for their
source operands, implying more independence. SRT and SRTR
skew the count of waiting instructions by the difference
between the current slack and the threshold, so that the leading
(trailing) thread is allowed to fetch if the current slack is less
(more) than the threshold. 

Unlike SRT and SRTR where the leading and trailing
threads of the same program execute on a processor, in CRTR
two unrelated threads—the leading thread of one program and
the trailing thread of another program—execute on one proces-
sor, as shown in Figure 1. Consequently, maintaining slack
between the threads on a processor is meaningless. Recall from
Section 3 that using a line predictor queue to control fetching,
as proposed in [6], is not applicable to CMPs. 

Instead, CRTR employs the following policy: of the two

threads on the processor, if the slack of one is such that it should
fetch (i.e., the slack of the leading thread with respect to its
trailing thread is below the threshold, and the reverse condition
for the trailing thread) and the slack of the other is such that it
should not fetch, then there is no conflict and the first thread
fetches. If neither thread should fetch (i.e., the slack of the lead-
ing thread is above the threshold with respect to its trailing
thread, and the reverse for the trailing thread), or both threads
should fetch, then CRTR breaks the tie by using ICOUNT. 

The implementation of the CRTR policy needs to address
the following point. Because the leading and trailing threads
execute on different processors, accurately estimating the cur-
rent slack is difficult. The main issue is that every cycle CRTR
needs to know the separation between the leading and trailing
threads, which are on different processors. To address this issue,
CRTR counts the leading thread slack in terms of the number of
waiting stores that have not been confirmed to commit by the
checker and the number of values (branch outcomes, load val-
ues and register values) queued due to limited inter-processor
bandwidth. For the trailing thread slack, CRTR counts the num-
ber of values (branch outcomes, load values, store values, and
register values) waiting to be consumed. Thus, CRTR approxi-
mates the separation in committed instructions (which cannot
be determined locally in one processor) by the number of wait-
ing instructions and values (which can be determined within
each processor). Interestingly, our scheme performs better than
counting slack in terms of number of instructions separating the
leading and trailing threads, as we show in Section 6.1. 

4.2  Sending leading values: Need for SRTR’s RVQ

Like CRT, the leading thread in CRTR communicates com-
mitted values to the trailing thread for branch outcomes, load
addresses, load values, store addresses, and store values. CRTR
additionally communicates committed register values. Conse-
quently, the values are not affected by mispredictions. The lead-
ing thread sends its values in commit (i.e., program) order, and
the trailing thread consumes the values in commit order. 

Sending values at commit eliminates the need for the values
to be cleaned up on mispredictions, which is needed in SRTR
(SRTR stores values and checks at completion to exploit com-
plete-to-commit times [17]). However, there is an implementa-
tion difficulty raised by sending values at commit: register
values are written back to the register file at instruction comple-
tion, and the instruction does not have the value at commit.
Therefore, a leading instruction has to retrieve the register value
from the register file to send the value to the trailing thread.
Similarly, the trailing thread has to retrieve the value from the
register file to perform the check at instruction commit. Such
retrievals would add significantly to the bandwidth pressure on
the already-belabored register file [17].

SRTR avoids extra bandwidth pressure on the register file by
using the register value queue (RVQ) to hold register values for
checking. CRTR borrows the idea to place register values in the
RVQ at writeback. Both leading and trailing threads deposit
their values in their respective RVQs at writeback, and the lead-
ing thread RVQ entries are communicated to the trailing thread.
SRTR then retrieves leading thread register values from the
RVQ when the trailing instruction completes, whereas CRTR
retrieves values for checking at trailing thread commit. See the
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RVQ and LVQ shown in Figure 2. 
SRTR proposes Dependence-Based Checking Elision

(DBCE) to reduce the bandwidth pressure on the RVQ itself. By
reasoning that faults propagate through dependences, DBCE
exploits (true) register dependence chains so that only the last
instruction in a chain is checked. Earlier instructions in the
chains in both threads completely elide checking, reducing
RVQ bandwidth pressure. While CRTR can also use DBCE, we
do not pursue the topic of RVQ bandwidth reduction further
because SRTR covers the topic in detail [17]. In Section 5, we
address the communication bandwidth pressure between lead-
ing and trailing threads by extending the DBCE. 

Sending or checking at commit is not a problem for branch
outcomes and store values because these are available at com-
mit. Branches hold their outcomes to update the branch predic-
tor counters at commit (even if the history register is updated
speculatively, the counters are updated at commit); and stores
are sent from the store buffer to the cache at commit. See the
StB and BOQ shown in Figure 2. 

4.3  Matching leading value to trailing instruction 

The committed leading values, load addresses, load values,
store addresses, store values, and branch outcomes need to be
queued at the trailing thread because the trailing thread may not
be ready to consume the values as soon as they arrive. They are
queued in separate queues of the check buffer (CB) (i.e., regis-
ter, load, store, and branch values are held separately). See the
CB shown in Figure 2. Upon reaching commit, the trailing
instructions check their values against the head of the appropri-
ate CB, in a strict queue order. 

As in CRT, the branch outcomes of the leading thread are
used by the trailing thread as predictions. If there are no faults,
the trailing thread would never encounter a branch mispredic-
tion. If the outcome of the leading thread is incorrect due to a
fault, the resolution of the trailing branch flags a misprediction
which triggers a transient-fault exception. 

Checking in commit order raises the issue of matching lead-
ing thread values to the correct trailing instruction. Branch out-
comes, store values and register values are straightforward.
Trailing thread fetch is sequential and empties the branch CB in
queue order, and therefore, the correct trailing branch matches
the branch outcome. Similarly, stores and register values are
checked at trailing commit, and they can be emptied in queue
order and matched to the correct trailing instruction. If there is a

mismatch due to a fault, the mismatch causes the affected
instructions to fail their check, and a transient-fault exception is
raised. 

Unfortunately, load values are more difficult to match with
the correct trailing loads. Unlike branch, store, and register val-
ues, which are needed at commit, load values are needed at exe-
cution. Because execution is out of order, trailing loads may
issue out-of-order with respect to each other. This problem also
exists for CRT and SRT. SRT advocates restricting issue of
trailing loads to be in program order, which requires special
cases in the instruction scheduler. In order to tackle this issue,
we propose a different approach which allows out-of-order
issue of trailing loads. This approach relies on the fact that the
trailing thread—in the absence of faults—does not mispredict
and commits all of the dispatched instructions. Therefore, by
using a counter, each load can know its corresponding load CB
entry number at dispatch. The counter matches the ith trailing
load with the ith load CB entry (modulo load CB size).

If a fault occurs, a trailing load could possibly access an
incorrect entry in the load CB, yet the load addresses could
match and retrieve an incorrect value. This situation could
occur in two ways: (1) If a branch outcome from the leading
thread is corrupted, then a subsequent trailing load could match
incorrectly. However, the fault that corrupted the outcome will
be detected, causing the incorrectly-matched load to squash. (2)
A fault could corrupt the load-matching counter, resulting in an
incorrect load match. Because loads are not checked, such an
incorrectly-matched load would commit, leading to an irrecov-
erable fault. To avoid this problem, we use a self-correcting
counter (which uses ECC-like encoding).

Upon reaching the load CB, each trailing thread load checks
its address against that of its corresponding load CB entry. If
this entry is valid and the addresses match, the load retrieves the
value and completes. If the load CB entry is invalid, the load
CB signals a “miss” to the pipeline and the load stays pending
in the issue queue to be reissued later, similar to an L1 miss.
The only difference is that a load missing in L1 completes
whenever the miss is satisfied. Here, hitting an invalid entry
implies that the CB entry has not yet arrived from the leading
thread, as long as there are no faults. Accordingly, the pending
load may be reissued if any new load entries arrive from the
leading thread. If a fault has corrupted the address of the pend-
ing load in either thread, the load will not match its correspond-
ing valid load CB entry. In that case, such a load would

FIGURE 2: A CRTR CPU.
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eventually reach the commit point in the active list, and a tran-
sient-fault exception would be raised. The load CB is ECC-pro-
tected, so its contents are not vulnerable to faults.

4.4  Committing leading stores

In CRTR, just as in CRT, the only communication from the
trailing thread back to the leading thread is the result of check-
ing stores, so that leading stores may commit. The trailing
thread commits its store as soon as the check is performed,
avoiding the overhead of any acknowledgment of receipt from
the leading thread. Therefore, it is important to ensure that the
check result is not corrupted on its way to the leading thread.
Consequently, CRTR sends the check results to the leading
thread under ECC protection. 

Because of the inter-processor communication delay and the
slack, leading stores wait for trailing stores to be completed and
the checking to be performed. In modern processors, because
the StB is searched by loads to honor memory dependences, the
StB cannot be made large. Consequently, there is some pressure
on the StB of the leading thread, as pointed out in [6]. On one
hand, a long slack helps hide inter-processor delays and branch
and memory delays; on the other hand, the pressure on the StB
increases with a long slack. We set the slack to balance hiding
of latencies and pressure on the StB.

4.5  Recovery using the trailing thread state

The trailing processor preserves the faulting instruction PC
so that execution can restart from that PC value. The exception
handler saves the trailing register state and PC to the CMP
shared memory and launches a “restoring thread” on the leading
processor to load the saved register state and PC value from
memory. To ensure that faults do not corrupt the saving or
restoring processes themselves, the restoring thread redundantly
saves the register and PC state loaded in the leading processor
to a different set of memory locations. The handler then com-
pares those locations with the trailing processor state. If the
comparison fails, the saving and restoring are redone.

The cost of the exception and register copying is low enough
to allow acceptable recovery times (e.g., less than 10-40ms of
network round-trip delays so that recovery time is impercepti-
ble for networked clients). 

There are faults from which CRTR cannot recover: after a
register value is written back and the instruction producing the
value has committed, if a fault corrupts the register, then the
fact that leading and trailing instructions use different physical
registers will allow us to detect the fault on the next use of the
register value. However, CRTR cannot recover from this fault.
To avoid this loss of recovery, one solution is to provide ECC
on the register file, as suggested for SRTR [17]. 

5  Tackling inter-processor bandwidth

The asymmetric commit hides inter-processor latency. To
tackle inter-processor bandwidth requirements, we pipeline the
inter-processor paths and hide the latency of the pipelining
using the asymmetric commit. The inter-processor wires shown
in Figure 1 are split into several segments with latches between
the segments. While this pipelining boosts the bandwidth sup-
ply, we reduce the bandwidth demand by employing two tech-
niques. First, unlike SRTR which checks speculative values,
CRTR, like CRT, communicates and checks only committed
values. Second, we extend SRTR’s Dependence-Based Check-
ing Elision (DBCE). While SRTR uses DBCE to reduce the
RVQ bandwidth, we extend DBCE to reduce the inter-processor
register communication bandwidth of CRTR. It is important to
note that DBCE reduces only register bandwidth and does not
impact communication due to loads, stores, and branches. 

5.1  Applying SRTR’s DBCE to CRTR

By reasoning that faults propagate through dependences,
DBCE exploits (true) register dependence chains so that only
the last instruction in a chain is checked. For example, in
Figure 3(a), i3 and i4 form a chain, and i4 is checked. To keep
the implementation simple, we follow SRTR and use only sim-
ple dependence chains such that each instruction in a chain has
at most one parent and one child (instead of maintaining the full
dependence graph). Earlier instructions in the chains in both
threads completely elide communication and checking, reduc-
ing bandwidth pressure. If the last instruction check succeeds, it
signals the previous instructions in the chain that they may
commit; if the check fails, all the instructions in the chain are
marked as having failed and the earliest instruction in the chain
triggers a rollback. Then, a transient-fault exception is raised. A
key feature of DBCE is that both leading and trailing instruc-
tions redundantly go through the same dependence chain for-
mation and checking-elision decisions, allowing DBCE to
check its own functionality for faults. 

The SRTR paper explains the implementation of DBCE in
detail. Therefore, we give an abstracted description of the
implementation and point out the key differences. DBCE con-
sists of (1) forming dependence chains in the leading thread and
the corresponding chains in the trailing thread, (2) identifying
the instructions in the leading and trailing threads requiring the
check, (3) preventing the rest of the instructions (leading and
trailing) in the chains from accessing the RVQ and from check-
ing, and (4) notifying the non-checking instructions in the
chains after the check is performed. 

DBCE uses a hardware queue called the dependence chain
queue (DCQ) to hold instructions and determine dependences

FIGURE 3:  An example of (a) conservative DBCE, and (b) DDBCE

(i1) add r6 = r1 + r8

(i2) and r4 = r6 & 0x2 (masking: not chained up)

(i3) or r24 = r6 | r26 (masking: not chained up)

(i4) add r17 = r24 + 20

check

check

no check

check

(a) (b)

(i1) add r6 = r1 + r8

(i2) and r4 = r6 & 0x2 (r6 not last use, not chained)

(i3) or r24 = r6 | r26 (r6 last use, chained up)

(i4) add r17 = r24 + 20

no check

check

no check

check

(i5) add r6 = r18 + r19 (r6 dies here)check(i5) add r6 = r18 + r19check
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by matching appropriate register operands. DCQ forms the
chains (identical chains in both threads), and records the chain
information in the Check Table for later use. The chain forma-
tion occurs at rename, and upon completion, instructions look
up the Check Table to determine whether they need to check. A
non-last instruction waits at commit for the last instruction of its
chain to check. When the checking occurs, the last instruction
uses the Check Table to signal the other instructions in the
chain. At commit, each instruction ensures that the last instruc-
tion in its chain is identical to the last instruction in the chain of
its counterpart instruction; otherwise a fault is signaled. 

There are many differences between SRTR’s DBCE imple-
mentation and CRTR’s. First, because SRTR’s leading instruc-
tion can commit only after checking, SRTR’s chains need to be
short (e.g., 3-4 instructions) so that the first instruction in a
leading chain does not unduly wait for the last instruction in the
trailing chain. Because CRTR’s leading thread commits before
checking and because CRTR’s slack is long, CRTR’s chains can
be longer. If a DBCE chain is m instructions long, DBCE
checks only one of the m instructions, reducing register value
bandwidth. Therefore, longer chains are better. 

Second, because SRTR checks speculative instructions,
DBCE forms chains using speculative instructions. If chains are
allowed to cross branches, branch mispredictions will require
clean-up. To avoid such clean-ups, SRTR disallows chains from
crossing branches, resulting in short chains. In contrast, CRTR
communicates committed values and applies DBCE to non-
speculative instructions which do not include mispredictions.
Hence, CRTR allows chains to cross branches, encouraging
longer chains. That is, an instruction producing a value before a
branch and an instruction consuming the value after the branch
may participate in a chain.

Third, because SRTR’s DBCE reduces RVQ bandwidth
demand, and loads and stores do not use the RVQ in SRTR,
these instructions do not participate in SRTR chains. In CRTR,
however, we want to reduce the bandwidth demand, which is
partly due to loads and stores. Therefore, CRTR’s chain may
end in a load or a store. Because load values are always needed
by the trailing thread, and stores do not produce any register
values, a load or store can only be the last instruction of a chain.
Any such chain ending in a load or a store does not require any
register value bandwidth (as opposed to a chain that ends in an
ALU instruction and needs to communicate the last instruc-
tion’s register value) because load and store values are commu-
nicated anyway.

Fourth, while SRTR forms both leading and trailing chains
at rename, CRTR forms leading chains at commit and trailing
chains at rename. Because the trailing thread does not mispre-
dict in the absence of faults, the leading and trailing chains are
guaranteed to be identical, even though the chains are formed at
different points in the pipeline. Any faulty branch outcome will
cause the leading and trailing chains to mismatch and trigger a
fault exception. While the sending of leading values occurs at
commit after chains are formed, the delay due to chain forma-
tion is absorbed by CRTR’s long slack. The checking of trailing
values occurs at commit after trailing chains are completely
formed. Because trailing chains are formed at rename, any
delay in trailing chain formation is absorbed by the time gap
between rename and commit. 

5.2  DDBCE

DBCE must consider masking instructions, which produce
the same output value for different input values (e.g., r4 := r6 &
0x2 in Figure 3(a)). Some instructions produce the same output
value for different input values only if one of their inputs
assumes a specific value (e.g., r24 := r6 | r26 when r26 is all
1’s). We conservatively consider all such instructions as mask-
ing. A masking instruction may mask a fault on its inputs by
producing the correct output even if an input is faulty. Such
masking violates the key assumption of DBCE that faults are
propagated by dependences. The last instruction in a chain that
includes a masking instruction cannot detect the masked fault,
and an irrecoverable error ensues if the faulty value is commit-
ted and consumed later. For instance, if i1 and i2 of Figure 3(a)
are chained, the check done on the value of r4 does not cover all
the bits of r6. If i1 produces a faulty value of r6 so that only the
bits masked by i2 are faulty, r4’s check will not detect the fault
and will cause the chain to commit. If r6 is used by instructions
later than those shown, recovery will not be possible. Moreover,
prior to i1 in Figure 3(a), if there is an instruction r1 := r16 +
17 and this instruction produces a faulty value for r1, the fault
could propagate through r6 and be masked in r4. If a chain con-
tains this instruction, and i1 and i2 are committed, a later
instruction consuming r1 may detect an irrecoverable error. 

DBCE disallows masking instructions to form chains, with
the exception that a masking instruction may start a chain. A
masking instruction is allowed at the beginning of a chain
because the source operands of the instruction will be checked
in previous chains, without allowing any faults to be masked. In
Figure 3(a), i2 and i3 are masking; and neither is chained up to
i1, but i3 starts a chain with i4.

Many integer and almost all floating-point instructions (due
to their finite precision) are masking. For instance, in f1 := f2 +
f3, if f3 has a small value and f2 has a large value, then the addi-
tion may mask faults in f3. We consider all logical and shift
operations except xor, xnor, and not; all floating-point instruc-
tions; all direct and indirect jumps (calls and returns); and all
branches as masking instructions. We consider loads and stores
as non-masking (but they need to be communicated). Integer
multiply and divide are masking. 

Integer add is non-masking because of the following:
Assume that two integers, a and b, are added, and assume there
is a fault in one of them (single fault assumption). Without loss
of generality assume that b has a fault and we denote the faulty
b as b’. From the properties of addition, a+b and a+b’ cannot
be equal. The only way in which a fault can produce a fault-free
sum is if a and b are stored in the same register (and a = b). In
this case, one of the (faulty or fault-free) additions may result in
an overflow while the other does not. Because ALUs detect
overflow, we compare the sums and the overflow conditions of
the leading and trailing adds to avoid the masking of any fault in
an integer addition. 

Conservatively restricting masking instructions to the start
of chains exposes the bandwidth pressure. To address this prob-
lem, we extend DBCE to exploit the death of register values,
and propose Death- and Dependence-Based Checking Elision
(DDBCE). The problem with a masking instruction occurs if
one of its source operands is faulty, and some later instruction,
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other than the masking instruction, also consumes the faulty
value. By tracking register death, we identify those masking
instructions that are the last (in program order) consumers of
their source operands—i.e., the source operands die after con-
sumption by the masking instruction. The operand death
ensures that any masked fault does not corrupt later computa-
tion, allowing masking instructions to join chains without loss
of recovery. In Figure 3(b), masking instruction i3 is the last use
of r6 (before r6 dies in i5). i3 can be chained up to i1 because
any fault in r6 is not visible beyond i3. The resulting chain
includes i1, i3, and i4. Masking instruction i2 is not the last use
of r6 and cannot guarantee that faulty r6 will not be used later,
and therefore it is not chained. Because many register values are
consumed by only one or two instructions, DDBCE boosts
DBCE’s bandwidth reduction. 

The extent of the reduction in bandwidth by using DDBCE
is affected by the last instruction of each chain. For instance, a
DDBCE chain can end in a branch. Such a chain does not
require any register value bandwidth, because the branch out-
come is sent anyway. This point is similar to that of DBCE
chains ending in loads or stores, as described in Section 5.1. 

5.2.1  Implementation simplification

Chaining of masking instructions introduces a subtle imple-
mentation difficulty. Consider an instruction sequence a1, a2,
and a3 in program order (with a1 being the earliest). If a3 is a
masking instruction that writes into a register r3 and a3 is
chained with a2 through r2 (i.e., a2 writes to r2 and a3 reads
r2), then r2 must die at a3 (i.e., a3 is the last use of r2). r2’s
death guarantees that any fault in r2 masked by a3 is not visible
to later computation. In addition, if a2 is chained to a1 through
r1, then r1 must die after a3. r1’s death is needed because faults
in r1 propagating to r2 may be masked by a3, resulting in a
fault-free r3 value. However, later uses of r1 will result in
detectable but irrecoverable errors once a1 commits the faulty
r1. Therefore, in order for a masking instruction to join a chain,
all destination registers in the chain must die after the masking
instruction. This observation is true whether or not a1 and a2
are masking instructions.

The above observation implies the need to check every
instruction in a chain for register death in order to add a mask-
ing instruction. For implementation simplicity, we prefer to
avoid the need to check for deaths of multiple registers when a
single instruction is added to a chain. Therefore, we allow a
masking instruction to chain only to an unchained, non-mask-
ing preceding instruction or to any (chained or unchained)
masking preceding instruction. A preceding masking instruc-
tion need not be unchained because all of the destinations of the
preceding chain must be dead for the preceding chain to include
a masking instruction. Therefore, lengthening the chain by an
additional masking instruction requires checking the death of
only one register. Following a masking instruction, we allow
any number of non-masking instructions to be chained because
non-masking instructions propagate faults and do not require
register deaths. Using regular expressions and denoting a mask-
ing instruction by m and a non-masking instruction by n, we
allow chains of the form nm*n* or m*n*.

DDBCE extends the DCQ to identify register death. In
DBCE, a non-masking instruction entering the DCQ searches

the DCQ to see if the instruction is dependent on some previous
instruction. DDBCE uses the same scheme as DBCE for non-
masking instructions. For masking instructions, death must be
established. An incoming instruction writing to an architectural
register kills the previous value bound to the register. In conven-
tional renaming, the previous physical register mapped to an
instruction’s architectural destination register is known to the
instruction, so that the previous register may be freed upon the
instruction’s commit. Accordingly, the incoming instruction
searches the DCQ and marks the last instruction which uses the
previous physical register as a source. 

When a register r which is a source of a masking instruction
m dies, DDBCE checks whether it is valid to link a chain C1,
that ends with an instruction i producing r, with a chain C2 that
starts with m. For the linking to be valid, the resulting chain
must be legal, and the chain is checked as follows: every non-
masking instruction that attaches itself to a chain accepts a flag
indicating the number of instructions already in the chain. The
flag indicates one instruction, or more than one instruction (as
per DBCE rules, only the first instruction may be masking). If
C1 includes two or more instructions, then C1 is not linked with
C2; otherwise, every linking is allowed.

Implementing linking of two chains has two additional com-
ponents. The first component is the chaining of i and m, and
marking i as a non-last instruction. The second component
involves the chain starting with m. While in formation in the
DCQ, chains are tagged by the first instruction in the chain. In
the Check Table, however, after the chains are completely
formed, chains are tagged by the last instruction so that the non-
last instructions can know to commit when the last instruction is
checked. The linking of the two previously-formed chains
needs retagging of the entire second chain by the first instruc-
tion of the first chain. This retagging amounts to parallel writ-
ing of the tags of the second chain.

DDBCE relies on searches through the DCQ to form legal
chains and establish death. To keep DDBCE implementable,
DCQ’s size needs to be restricted. In Section 6.4, we show that
a DCQ with 20 or 30 entries suffices. 

6  Experimental results 

We modify the Simplescalar out-of-order simulator [2] to
model a CMP environment. Each core in the CMP is an SMT
processor. Each core has its own private L1 and L2 caches.
Table 1 shows the configuration parameters used for each core.
Because the StB in real systems is typically 20-30 entries, we
assume an StB of 20 entries in order to model pressure on the
StB as discussed in [6] and in Section 4.4. We model the system
bus which is a split-transaction, pipelined bus connecting the
private L2 caches to memory. We model the details of request
and response phases of the transactions. 

In most cases, we show results for a 2-CPU CMP. However,
we show 4-CPU runs for our most important result: comparison
of CRTR to CRT. Because neither CRT nor CRTR uses any
shared resource for fault-tolerance support, 2-CPU and 4-CPU
behavior should be similar. The results for CRT and CRTR
comparison show that 2-CPU and 4-CPU behavior are nearly
identical. We do not show 4-CPU results anywhere else in the
interest of simulation time and because of this similarity. We do
not show runs with one thread per CPU because such a run is
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not representative of a CMP workload and does not stress per-
CPU resources. 

Based on Section 4.1, CRTR’s slack is defined by two
thresholds—the leading threshold (x) and the trailing threshold
(y)Þ— and denoted as “x/y”. On the leading thread side, when
the total number of unconfirmed stores in the StB and values
(branch outcomes, load values, and register values) queued due
to limited inter-processor bandwidth exceeds the leading
threshold, the leading thread stops fetching because the slack
has grown to its limit. On the trailing thread side, when the total
number of values (branch outcomes, load values, store values,
and register values) waiting to be consumed in the CB queues
exceeds the trailing threshold, it starts fetching because the
slack is too low. 

For our 2-CPU runs, we pair up two SPEC2000 benchmarks
to generate the CMP workload. We choose pairs from combina-
tions of low-IPC and high-IPC programs. Table 2 presents the
pairings used in our simulation. For each experiment, we fast-
forward 2 billion instructions per benchmark. We then run until
all the programs complete at least 400 million instructions. All
benchmarks use ref inputs. We show results for 20 out of the 26
SPEC2000 applications. We do not show the other 6 bench-
marks because they take a long time to simulate. Our metric for
performance is instruction throughput measured in instructions
committed per cycle by all the CPUs in the CMP. 

We present results in the absence of faults in order to study
the performance cost of CRTR versus CRT. Faults are expected
to be rare enough that the overall performance will be deter-
mined by fault-free behavior. In addition, our simulator does
not support exception handling required for CRTR. 

We begin by comparing CRT with SRTR to show that SRTR
performs poorly on CMPs because the inter-processor commu-
nication latency is too high to be hidden by complete-to-commit
times. We then compare CRTR to CRT under varying slack
thresholds. This comparison shows that CRTR incurs negligible
performance loss compared to CRT. Next, we vary the commu-
nication latency to show that CRTR’s performance does not
degrade for a wide range of expected latencies. Finally, we
show the communication bandwidth reduction achieved by
DBCE with conservative chaining and by DDBCE. We also
show the impact of bandwidth on CRTR performance using
conservative DBCE and using DDBCE. 

6.1  CRT versus SRTR 

In Figure 4, we compare CRT with SRTR, which is a recov-
ery scheme for SMT. Because the line-predictor queue for con-
trolling fetch in [6] does not apply to CMPs (as mentioned in
Section 4.1), we assume a fixed slack for CRT. In addition, we
implement CRT using our fetch policy of slack thresholds. We
refer to these two systems as “CRT-fixed” and “CRT.” We show
performance normalized to the base CMP without any fault tol-
erance. The benchmark set numbers used by the X-axis labels
are from Table 2. In this experiment, we assume a 10-cycle
latency and infinite bandwidth for the inter-processor communi-
cation. CRT-fixed uses a slack of 256 instructions as per [6],
and CRT uses a slack threshold of 16/32. CRT-fixed and CRT
use the same sizes for BOQ/LVQ/StB shown in Table 1. SRTR
uses a slack of 40 instructions, and a predQ/LVQ/StB of 128/
128/20 entries, comparable to or larger than CRT-fixed and
CRT. The slack for CRT-fixed, CRT, and SRTR are the best-per-
forming values.

CRT-fixed and CRT are on average 19% and 15% worse
than the base CMP, respectively. We see that CRT, which uses
only local information to implement slack, performs a little bet-
ter than CRT-fixed. Compared to the base CMP, CRT’s degrada-
tion comes from two factors: StB fill-ups and the instruction
overhead of the trailing thread (the base CMP executes only one
copy of a program) competing for the CPU resources. Some
programs incur large slowdowns (e.g., set 7 “twolf+mgrid” and
set 8 “vpr+crafty”) due to frequent filling of the StB. The rest
of the degradation is due to the instruction overhead.

Table 1: Hardware parameters for base system.

Component Description

Issue SMT, 4-way out-of-order issue, 128-

entry RUU

Branch 

prediction

8k hybrid of bimodal and gshare, 16-

entry RAS, 4-way 1K BTB (10-cycle 

misprediction penalty)

L1 I- and D-cache 

(private per CPU)

64KB, 32-byte blocks, 4-way, 2-cycle 

hit, lock-up free

L2 unified cache 

(private per CPU)

1 Mbyte,64-byte blocks, 4-way, 12-

cycle hit 

Main memory Infinite capacity, 100 cycle latency

System bus Split transaction, bus clock speed to 

CPU clock speed ratio = 1:2

BOQ/LVQ/StB 96/128/20 entries 

Table 2: Benchmarks.

Benchmark set set # IPC pairing 2-CPU IPC

ammp+galgel 1 FP/FP low/high 2.20

fma3d+equake 2 FP/FP low/low 1.62

gap+sixtrack 3 Int/FP high/high 2.27

gcc+vortex 4 Int/Int low/low 1.46

gzip+parser 5 Int/Int high/low 1.91

perlbmk+swim 6 Int/FP low/low 1.89

twolf+mgrid 7 Int/FP high.high 2.45

vpr+crafty 8 Int/Int high/high 2.26

wupwise+mesa 9 FP/FP high/high 2.34

mcf+eon 10 Int/Int low/high 2.51

FIGURE 4: CRT vs. SRTR.
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SRTR’s performance on a CMP is on average 58% worse
than the base CMP. SRTR’s leading thread does not commit any
instruction until it is checked by the trailing thread. SRTR
exploits complete-to-commit times of leading instructions such
that by the time the leading instruction commits, the trailing
instruction has completed and the check has been performed.
The complete-to-commit times already hide SRTR’s slack.
Because typical complete-to-commit times are 20-30 cycles
[17], the l0-cycle latency on every load, store, branch and regis-
ter value, and another 10 cycles for check confirmation, cannot
be hidden by the remainder of the complete-to-commit times.
Like CRT, extra instructions due to running two copies of a pro-
gram also contribute to SRTR’s degradation. 

From these results, we can see that SRTR is not suitable for
a CMP even at inter-processor latencies of 10 cycles and infi-
nite bandwidth. With wire delays getting relatively worse with
every generation, SRTR’s performance is bound to worsen. 

6.2  CRT versus CRTR

In Figure 5, we compare CRTR with CRT. As before, we
show performance normalized to the base CMP without any
fault tolerance. CRT’s slack threshold is 16/32, which is its
best-performing threshold. We vary CRTR’s slack threshold as
16/8, 32/16, and 64/32. In this experiment, we assume a 20-
cycle latency (one-way) and infinite bandwidth for the inter-
processor communication. In the previous section, we used a
latency of 10 cycles to show that even at 10 cycles SRTR does
not perform well, but we believe that a 20-cycle latency for glo-
bal inter-processor wires is more appropriate. 

From Figure 5, we see that CRTR using a threshold of 32/16
performs close to CRT. The reasons for this similarity are: (1) In
terms of the overhead of StB fill-ups and extra instructions,
CRT and CRTR are similar. (2) Both CRT and CRTR communi-
cate branch and memory values. The inter-processor latency of
20 cycles is seen by this communication in both CRT and
CRTR. CRTR’s long slack, enabled by asymmetric commits,
absorbs this latency to a similar extent as CRT’s long slack. (3)
Although CRTR additionally communicates register values,
CRTR performance is not degraded because we assume infinite
inter-processor bandwidth in this experiment (we show finite
bandwidth in Section 6.4). Because loads and stores together
are frequent (e.g., loads and stores are 30-50% of all instruc-
tions), the communication latency of register values is hidden
under those of load values and store check confirmations.

Therefore, CRTR incurs negligible performance degradation
compared to CRT. 

We also see that the shorter slack threshold of 16/8 slows
down CRTR in many cases. With the shorter slack threshold,
the leading thread prematurely stops fetching because the
thread frequently hits the threshold. This stopping causes the
communication latency to be exposed. When the slack thresh-
old is 64/32, set 7 (twolf+mgrid) degrades in performance
because the trailing thread does not fetch until it accumulates
the large threshold, slowing down the rate of checking. This
slowdown causes the leading thread’s StB to fill up, stopping
commits. 

In Figure 6, we compare CRTR with CRT using a 4-CPU
CMP with 20-cycle latency and infinite bandwidth for commu-
nication. As in the 2-CPU case, CRTR using a threshold of 32/
16 performs close to CRT. The performance of the programs is
similar to that in the 2-CPU case, confirming our claim in the
beginning of Section 6 that two and four CPUs behave simi-
larly. 

6.3  Inter-processor latency

In this section, we study the effect of the communication
latency on CRTR and CRT performance. The CRT paper uses
4-cycle inter-processor latency in its study, and our evaluation
extends that study. As before, we show performance normalized
to the base CMP without any fault tolerance. We vary the
latency as 20, 30, and 60 cycles (one-way) for both CRT and
CRTR. We still assume infinite inter-processor bandwidth. 

Figure 7 shows that increasing the inter-processor latency
from 20 cycles (“a” bars) to 30 cycles (“b” bars) has little
impact on CRT and CRTR, with the average degradation with
respect to the base CMP increasing from 15% to 16% for both.
CRTR continues to perform as well as CRT even at 30-cycle
latency. As explained in Section 6.2, load and store communi-
cation present in both CRT and CRTR impacts their perfor-
mances more than register value communication impacts
CRTR. CRTR’s register communication is hidden under load
value and store check confirmations. 

At 60-cycle latency (“c” bars), both CRT and CRTR incur an
average performance degradation of 22% compared to the base
CMP. In this case, the StB fills up frequently due to the 60-cycle
delay for the store values to be sent and another 60-cycle delay
for the confirmation to return to the leading thread. BecauseFIGURE 5: CRT vs. CRTR.
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such fill-ups occur for both CRT and CRTR, CRTR falls only
slightly (< 1%) behind CRT, even at 60-cycle latency. 

The long slack enabled by asymmetric commit makes CRTR
tolerant to inter-processor communication latency of even 30
cycles. This tolerance is important for CRTR to be effective in
future technologies in which global wire delays pose a serious
problem for microprocessor and CMP performance. 

6.4  Inter-processor bandwidth

Finally, we study the effect of inter-processor bandwidth on
CRTR. First, we present the bandwidth required by CRT and by
CRTR using DBCE and using DDBCE. Then, we present the
impact of finite bandwidth on CRTR performance. The SRTR
paper [17] allows optimistic chaining of masking instructions in
its study, and our evaluation with conservative DBCE (i.e.,
without chaining masking instructions) extends that study. 

In Table 3, we compare CRT, CRTR with no DBCE, CRTR
with conservative DBCE, and CRTR with DDBCE. We com-
pute the bandwidth requirements for each technique by averag-
ing across the bandwidth requirements of the individual
programs. We also show the minimum and maximum values
across the programs. The table also shows the impact of varying
the DCQ size as 20, 30, and 60 entries for DBCE and DDBCE.

From the table, we see that while CRT communicates about
5.2 bytes/cycle, CRTR with no DBCE almost doubles the band-
width at 9.8 bytes/cycle. DBCE using a 30-entry DCQ cuts
down CRTR’s bandwidth requirement to 7.8 bytes/cycle, a
reduction of about 20%. DDBCE, also using a 30-entry DCQ,
further reduces the requirement to 7.1 bytes/cycle, which is a
reduction of 9% over DBCE. Note that although we consider all
floating-point instructions as masking, floating-point programs
have non-masking integer instructions (e.g., address calculators,
loop indices) which chain and reduce bandwidth even under
DBCE. 

Looking at the figures for DCQ size variation, we see that a
20-entry DCQ is within 95% of a 30-entry DCQ for both DBCE

and DDBCE. A 60-entry DCQ provides only an additional 3%
reduction. These numbers show that a DCQ size as small as 20
entries captures most of the benefit of DBCE and DDBCE. This
small size makes the issues discussed in Section 5.2 tractable in
a real DCQ implementation.

In Table 4, we show average chain length—using a DCQ of

size 30 instructions—for DBCE ignoring masking, conservative
DBCE which does not chain masking instructions, and
DDBCE. The numbers in Table 3 and Table 4 do not correlate
linearly because of the following observations: (1) The total
bandwidth is due to load/store/branch values and register val-
ues. DBCE and DDBCE target only the register value band-
width component. Therefore, a chain length of m does not
imply a reduction in total bandwidth by a factor of m. More-
over, an increase in average chain length by a factor of x%
(going from DBCE to DDBCE) does not imply a reduction in
total bandwidth of x%. (2) The last instruction of each chain
further affects the extent to which the register value bandwidth
is reduced. For instance, a DBCE chain may end in a load
(Section 5.1). Such a chain does not contribute anything to the
register value bandwidth because the load value is sent anyway,
whereas a chain ending in a register ALU operation contributes
one register value to the register value bandwidth. Similarly, a
DDBCE chain may end in a branch (Section 5.2). Such a chain
does not require any register value bandwidth, because the
branch outcome is sent anyway.

In Figure 8, we plot CRT, CRTR with DDBCE and conser-
vative DBCE using a restricted bandwidth of 7 bytes/cycle (“a”
bars), and 6 bytes/cycle (“b” bars). We pick these bandwidth
points based on Table 3. We want to show the performance pen-
alty of using DBCE at DDBCE’s required bandwidth of 7 bytes/
cycle; and the penalties of using DBCE and DDBCE at a band-
width of 6 bytes/cycle, which is lower than DDBCE’s required
bandwidth. We do not show CRTR with no DBCE since its
bandwidth requirements are even higher. We use a latency of 20
cycles, and as before, we show performance normalized to the
base CMP without any fault tolerance. 

CRTR with DDBCE using 7 bytes/cycle performs as well as
CRT, which needs only 5 bytes/cycle. However, CRTR with

FIGURE 7: Effect of inter-processor latency
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Table 3: Bandwidth requirements in bytes/cycle

CRT CRTR DBCE DDBCE

20 30 60 20 30 60

Max 6.1 12.2 9.6 8.1 8.0 8.6 7.4 7.4

Min 4.2 7.4 7.1 6.8 6.8 6.7 6.6 6.5

Avg 5.2 9.8 8.2 7.8 7.6 7.4 7.1 6.9

FIGURE 8: Effect of inter-processor bandwidth
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Table 4: Average chain length

Benchmarks Ignore Masking DBCE DDBCE

INT 2.31 1.55 1.62

FP 2.17 1.35 1.43
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DBCE using 7 bytes/cycle incurs a degradation of 25% com-
pared to CRTR with DDBCE. This substantial degradation jus-
tifies extending DBCE with DDBCE for improved filtering of
fault-tolerance traffic. This degradation occurs because DBCE
is unable to filter traffic to this restricted bandwidth, causing the
queues (LVQ, BOQ, and StB) to fill up. At a bandwidth of 6
bytes/cycle, which is below the level to which DDBCE can fil-
ter traffic, both DDBCE and DBCE incur large performance
degradations. This graph shows that for CRTR to perform as
well as CRT, the net cost is the higher inter-processor band-
width requirement of CRTR. 

7  Conclusion

We proposed Chip-level Redundantly Threaded multipro-
cessor with Recovery (CRTR) for chip multiprocessors
(CMPs). CRTR extends the previously-proposed CRT for tran-
sient-fault detection in CMPs, and the previously-proposed
SRTR for transient-fault recovery in SMT. To hide inter-proces-
sor latency, CRTR uses a long slack enabled by asymmetric
commit and uses the trailing thread state for recovery. To tackle
inter-processor bandwidth, CRTR both increases the bandwidth
supply by pipelining the communication paths, and reduces the
bandwidth demand (1) by extending the previously-proposed
Dependence-Based Checking Elision (DBCE) to Death- and
Dependence-Based Checking Elision (DDBCE), and (2) by
checking only committed values and not speculative values. By
reasoning that faults propagate through dependences, DBCE
exploits (true) register dependence chains so that only the value
of the last instruction in a chain is checked. However, instruc-
tions that mask operand bits may mask faults and limit the use
of dependence chains. DDBCE chains a masking instruction
only if the source operand of the instruction dies after the
instruction. Register deaths ensure that masked faults do not
corrupt later computation.

Using SPEC2000, we found the following: (1) Because both
CRT and CRTR communicate load and store values, the latency
of the additional register value communication in CRTR is hid-
den under the load and store value communication, allowing
CRTR to perform as well as CRT. However, the additional com-
munication has a cost: while CRT needs 5.2 bytes/cycle, CRTR
with DDBCE needs a higher 7.1 bytes/cycle. (2) The long slack
enabled by asymmetric commit makes CRTR tolerant to inter-
processor latency of even 30 cycles. This tolerance is important
for CRTR to be effective in future technologies in which global
wire delays will pose a serious problem for microprocessor and
CMP performance. (3) The bandwidth requirements for CRT,
CRTR without DBCE, CRTR with conservative DBCE, and
CRTR with DDBCE are 5.2, 9.8, 7.8, and 7.1 bytes/cycle,
respectively. Because inter-processor bandwidth is a key
resource in present-day and future CMPs, the traffic reductions
achieved by DBCE and DDBCE are important. 
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