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Abstract class machines for which reliability is a key concern. To address
) . - . . reliability issues in CMPs, [6] briefly describes the Chip-level
To address the increasing susceptibility of commodity chipregundantly Threaded multiprocessor (CRT) for transient-fault
multiprocessors (CMPs) to transient faults, we propose Chip-getectionIn this paper, we propose hardware-assisted transient-
level Redundantly Threaded multiprocessor with Recoverye, i recoveryfor CMPs.
(CRTR). CRTR extends the previously-proposed CRT for tran- - gimyjtaneously and Redundantly Threaded (SRT) proces-
sient-fault detection in CMPs, and the previously-proposedgqs [9] and Simultaneously and Redundantly Threaded proces-
SRTR for transient-fault recovery in SMT. All t_hese scher‘_ne%Ors with Recovery (SRTR) [17] are proposals for transient-
achieve fault tolerance by executing and comparing two copieS¢, it detection and recovery, respectively, based on Simulta-
cglled leading and trailing threads, of a given application. Pre- aous Multithreaded (SMT) processors [16]. SRT and SRTR,
vious recovery schemes for SMT do not perform well on CMPS g ther proposals [11,14], provide fault tolerance by replicat-
In a CMP, the leading and trailing threads execute on different j,; an application into two communicating threads, one (called
processors to achieve load balancing and reduce the probabilityyhe |eading thread) executing ahead of the other (called the trail-
of a fault corrupting both threads; whereas in an SMT, both ing thread), and by comparing their values. SRT maintains a
threads execute on theame processor. The inter-processor |ong slack (e.g., 256 instructions) between the threads so that
communication required to compare the threads introducesihg trajling thread can use memory load values and branch out-
latency and bandwidth problems not presentin an SMT. o meg of the leading thread to avoid memory latencies and
To hide inter-processor latency, CRTR executes the Iead'ngnispredicted computations. SRT commits register vahessre
thread ahead of the trailing thread by maintaining a long slack, checking for faults but guarantees fault detection and avoids
enabled by asymmetric commit. CRTR commits the leadingnemory corruption by checking stores before commit. To
thread before checking and the trailing thread after checking, So4cpieve recovery, SRTR commits register values (in either
that the trailing thread state may be used for recovery. PreViO“Sthread) onlyafter the values are checked. Consequently, a long
recovery schemes commit both threads after checking, making gjack causes leading thread stalls. At the same time, a short
long slack suboptimal. To tackle inter-processor bandwidth, ¢k causes trailing thread stalls. SRTR solves this dilemma by
CRTR not only increases the bandwidth supply by pipeliningsing a moderate slack (e.g., 32 instructions) and reducing trail-
the communication paths, but also reduces the bandwidth,g thread stalls by exploiting leading instructions’ complete-
demand. By reasoning that faults propagate through depensq commit times.
dences, previously-proposed Dependence-Based Checking Eli- crT applies SRT’s detection to CMPs. However, extending
sion (DBCE) exploits (true) register dependence chains so thaine cMmp-based CRT to provide recovery by naively repeating
only the value of the last instruction in a chain is checked. HOW-hao SMT-based SRTR extension of SRT does not achieve high
ever, instructions that mask operand bits may mask faults a”qaerformance. There is a key difference between CMP- and
limit the use of dependence chains. We propose Death- andyiT.pased schemes: In a CMP, the leading and trailing threads
Dependence-Based Checking Elision (DDBCE), which chains guyecute ordifferent processors to achieve load balancing and
masking instruction only if the source operand of the instruction .oq,,ce the probability of a fault corrupting both threads [6]:
dies after the instruction. Register deaths ensure that maskeqyhereas in an SMT, both threads execute OrsHTBEProcessor.
faults do not corrupt later computation. Using SPEC2000, we gecayse of layout constraints, the processors in a CMP cannot
show that CRTR incurs negligible performance Ioss'compareq:]e physically close. The inter-processor communication
to CRT for inter-processor (one-way) latency as high as 30,equired to compare the values from the threads makes the
cycles, and that the bandwidth requirements of CRT and CRTRgtency and bandwidth of the communication paths critically
with DDBCE are 5.2 and 7.1 bytes/cycle, respectively. important. These issues are not addressed by SRTR.
1 Introduction Compgred to a CMP, CRT and CRTR need extra hardwarg
queues (like SRT’s and SRTR’s queues) to hold the communi-
Technology scaling trends that lead to smaller and fastercated values, and extra inter-processor wires for the communi-
transistors and lower supply voltages result in increased suscefation. The global wires are bound to impose both a substantial
tibility to transient faults and degraded reliability even in com- latency (e.g., 20 cycles) and a limited bandwidth (e.g., 20 bytes
modity microprocessors. To utilize the high transistor countsper cycle) on the communication. Typical complete-to-commit
afforded by technology scaling, the microprocessor industry istimes are insufficient to hide the resultant delaydueryregis-
adopting chip multiprocessors (CMPs) (e.g., the IBM Power 4ter and memory value, rendering SRTR’s slack inadequate for
is a four-processor CMP). CMPs are building blocks for server-CMPs. Although [6] does not discuss this issue, this delay is not



a problem for CRT: Because CRT is a detection scheme angource operands die after the masking instruction. The operand

commits register values before checking, CRT can employ adeath ensures that any masked fault does not corrupt later com-

long slack without stalling the leading thread. putation, allowing masking instructions to join chains without
We propose Chip-level Redundantly Threaded multiproces-loss of recovery. Because many register values are consumed by

sor with Recovery (CRTR). Because the inter-processor delayonly one or two instructions, DDBCE boosts the bandwidth

fundamentally requires a slack longer than that used for SRTRreduction of DBCE.

we useasymmetric commita departure from SRTR’s strategy The main contributions and results of this paper are:

of not committing before checking. CRTR enables long slack® To tackle inter-processor latency, we use asymmetric com-

by allowing the leading thread to commit register updatesmits.

before checking, so that long slacks do not hold up leading® To tackle inter-processor bandwidth, we not only increase

thread commits. However, CRTR allows the trailing thread to the bandwidth supply by pipelining the communication paths,

commit register updates ondfter checking, so that the register but also reduce the bandwidth demand (1) by extending the pre-

state of the trailing thread can be used for recovery. In contrastyiously-proposed DBCE to DDBCE, and (2) by checking only

CRT allows both threads to commit register updatbefore committed values and not speculative values.

checking, eliminating the possibility of recovery using the trail- ¢  Using SPEC2000, we find that CRTR incurs negligible per-

ing thread. While AR-SMT [11] used asymmetric commit as a formance loss compared to CRT for inter-processor (one-way)

recovery strategy in SMT without explicit latency consider- |atency as high as 30 cycles.

ations, CRTR uses it to hide inter-processor latency by enabling  our results show that the bandwidth requirements for CRT,

along slack. As in CRT, CRTR commits memory updates (i.e., CRTR without DBCE, CRTR with conservative DBCE, and

stores) only after checking, so that memory is guaranteed to b RTR with DDBCE are 5.2, 9.8, 7.8, and 7.1 bytes/cycle,

correct. Because stores are less frequent than register updatgggpectively.

CRTR can increase the slack without stalling leading thread cRTR is guaranteed to provide recovery from single tran-

commits. Upon detecting a fault, CRTR raises an exception and;ient faults except those that affect the (non-ECC-protected)

copies the trailing register state to the leading thread. register file, in which case CRTR guarantees detection.
The asymmetric commit hides inter-processor latency. To In Section 2, we discuss related work. We review CRT in

tackle inter-processor bandwidth requirements, we pipeline theggction 3. We describe CRTR in Section 4 and DDBCE in

inter-processor paths and hide the latency of the pipelininggection 5. In Section 6, we present experimental results, and
using the asymmetric commit. While this pipelining boosts the -ynclude in Section 7.

bandwidth supply, we reduce the bandwidth demand by
employing two techniques. First, while SRTR checks specula-2 Related work

tive values, CRTR, like CRT, communicates and checks only Watchd the k t behind fault
committed values. Second, we extend the SRTR scheme of alchdog processors are the k€y concept behind many fau

tolerance schemes [5]. The AR-SMT processor is the first to use

Dependence-Based Checking Elision (DBCE). By reasoning .
that faults propagate through dependences, DBCE exploitsswrrt0 execute two copies of the same program [11]. AR-SMT

(true) register dependence chains so thrdy the last instruc- 32:1 |tssfo£gm;:i% ;Oiéi:';]ﬂrishzz”teod ;:fjtgﬂﬂtﬂ;ﬂﬁgnpgpg;ea
tion in a chain is checked. Earlier instructions in the chains invalutgas gnd branch outcc?mes between the leading and trailin
both threads completely elide communication and checking, 9 9

: : . ~'threads to accelerate execution. SRT improves on AR-SMT via
reducing bandwidth pressure. DBCE redundantly builds chalnsthe two optimizations of slack fetch andpchecking only stores
in both threads and checks its own functionality.

DBCE encounters problems with masking instructions, [9]. SRTR extends SRT '.[O prov]de recovery for SMT [1.7]' Thg
. A ; CRT paper explores design options for fault detection via multi-
which may mask a fault in its inputs by producing the correct threading, and briefly discusses detection on CMPs [6]
output even if an input is faulty (e.g2 := rl & 0xff00, r1 := 9. Y )

(r2 <r3)). Such masking violates the key assumption of DBCE AR-SMT and Slipstream briefly mention recovery using

that faults are propagated by dependences. A later instruction irtlhe'r equivalent of the trailing thread in SMT and_ CMP, respec-
the chain of a masking instruction cannot detect the maske Ively. However, even though bOth CRTR_and Sl|pstre_am target
fault, and an irrecoverable error ensues if the faulty value is MPs, they are fundamentally different in the following three

committed and consumed by some later computation. Conser&Ys: (1) Slipstream may not recover from some faults. (2)

quently, SRTR suggests disallowing masking instructions fromShpstr.eam does not. address a Ce””."’?' correctness issue for
A . . CMPs: memory locations may be modified by another proces-
joining DBCE chains. Because many integer and almost all

floating-point instructions (due to their finite precision) are E(r;re(fl.qgeqled;(;ilzg tngf;ggr%c:;sg \/Sézzh;?]g'ztﬂgot%setmeﬁ;"trr:e
masking, this restriction on masking instructions limits the thread tries to Igad the same value. CRTR uses the reviouslg-
DBCE chain lengths and reduces the effectiveness of DBCE. : P Y

We extend DBCE to exploit the death of register values andprOpOSEd Load Value Queue [9] to communicate the leading

propose Death- and Dependence-Based Checking Elisior!1oadvalues'[othetrallmg'[hread. (3) Slipstream allows the lead-

(DDBCE). The problem with a masking instruction occurs if a ing thread to commit to memory before checking, requiring two

source operand is faulty, and some later instructiather than copies of .memory. Doubling the memory size may stress the
A - memory hierarchy and degrade performance. In contrast, CRTR
the masking instruction, also consumes the faulty value. By

tracking register death, we identify those masking instructionsgggﬁigﬂ%lonsngogé g tgm%:}(l)rbe?%s'el? I:af:rll?;sl,(ihzt?;inind
that are thdast consumers of their source operands—i.e., the y Y y



inter-processor fault-tolerance Because detection is based on replication, the extent to
communication path which the application is replicated is important. CRT replicates
register values (in the register file of each processor) but not
memory values. CRT’s leading thread commits stores only after
EI;U\ checking, so that memory is guaranteed to be correct. CRT
2 comparenly stores and uncached loads, but not register val-
Leading-1 Leading-2 Leading-3 Leading-4 ues, of the two threads. Because an incorrect value caused by a
Trailing-4 Trailing-1 Trailing-2 Trailing-3 fault propagates through computations and is eventually con-
. = . 1] sume(_i by a _store, checklr_ugwly stores _sufflces for detection;
other instructions commitvithout checking. CRT uses a store
| | | buffer (StB) in which the leading thread places its committed
L L2 | L L2 | (2] [L2] store values and addresses. The store values and addresses of
| | Bus | | the trailing thread are compared against the StB entries to deter-
mine whether a fault has occurred. Only one copy of the

FIGURE 1: CRT and CRTR. checked store reaches the cache hierarchy. Because data in the

. . . cache hierarchy is not replicated, other forms of protection such
and bandwidth problems that are ignored by Slipstream: the;q Ecc are needed for the cache hierarchy.

communication of load values and store check confirmations. Replicating cached loads is problematic because memory
Software recovery schemes such as [3,12], which use hardg,4tions may be modified by an external agent (e.g., another
ware detection, need (hardware or software) checkpointing oty cessor during multiprocessor synchronization) between the
program state (memory and registers), incurring considerablg;e the leading thread loads a value and the time the trailing
performance cost even when there are no faults. In contrasty o tries to load the same value. The two threads may
,CRTR does n.ot require any checkpo?nting, and it involves raiS'diverge if the loads return different data. CRT allows only the
Ing an exception a.n'd copying the register state (but not MEMONYoading thread to access the cache and uses the Load Value
state) from the trailing thread only when faults are _detected. Queue (LVQ) to hold the leading load values and addresses.
Another paper proposes hardware recovery using SUPErscayg yrajling thread loads from the LVQ instead of repeating the
lar hardware without any SMT support [8]. DIVAis a fault-tol- 54 from the cache, after comparing load addresses to ensure
erant superscalar processor that uses a simple, in-order checkgyy g tauit has occurred. The Active Load Address Buffer pro-
processor to check the execution of the complex out-of-orderIOOSed in [9] is an alternative for the LVQ that also addresses
processor [1]. DIVA can recover from permanent faults and ;¢ problem. CRT uses the simpler LVQ.
design errors in the ag.gressive processor but assumes that no p key optimization in the SMT-based SRT is that the leading
transient faults occur in the checker' processor itself. Othefy, ead runs ahead of the trailing thread by an amount called the
works on fault tolerance focus_, on functional units [10, 7, 4, 13]. slack(e.g., the slack may be 256 instructions). In addition, the
The Compag NonStop Himalaya [3] and IBM 2900 (for- o,ing thread provides its branch outcomes via the branch out-
mgrly S/390) [12] pr_owo!e fault tolerar_me. The z900 uses the_GSCome queue (BOQ) to the trailing thread. In [6], the authors use
microprocessor which includes replicated, lock-stepped pipe- jing predictor queue, instead of the BOQ, to allow the leading
lines. The NonStop Himalaya uses off-the-shelf, lock-stepped, a5 tg control the trailing thread's fetch in the case of SMT.
microprocessors and compares the external pins on every CyCl&,q gjack and the communication of branch outcomes hide the
In both systems, when the components disagree, execution igiemory latencies of the leading thread and avoid branch
stppped to prevent propagation of faults. The z900 uses Spec,'%ispredictions from the trailing thread. Due to the slack, by the
microcode to restore program state from a hardwa_lre checkpoifime the trailing thread needs a load value or branch outcome,
module. The NonStop Himalaya does not provide hardwaréy,s |eading thread has already produced it. However, this
support for recovery. SRT has shown that avoiding lock-step-gcheme works only in an SMT where both threads fetch from
ping achieves better performance. the same i-cache, but it is not applicable to a CMP. [6] does not
3 Transient-fault detection in CMPs explain how to extend the scheme to CMPs.
_ _ CRT assumes that uncached accesses are performed non-
The Chip-level Redundantly Threaded multiprocessorspeculatively. CRT synchronizes uncached accesses from the
(CRT) provides transient-fault detection using a chip multipro- eading and trailing threads, compares the addresses, and repli-
cessor (CMP). CRT borrows the detection scheme from thecates the load data. CRT assumes that code does not modify
SMT-based Simultaneously and Redundantly Threaded (SRTitself, although self-modifying code in regular CMPs already
processors and applies the scheme to CMPs. CRT replicates a@quires thread synchronization and cache coherence which can
application into two communicating threads, one executingbe extended to keep the leading and trailing threads consistent.
ahead of the other. Comparing the results of two redundant exefor input replication of external interrupts, CRT suggests forc-
cutions is the underlying scheme to detect transient faults ining the threads to the same execution point and then delivering
CRT. As mentioned in Section 1, CRT executes the leading andhe interrupt synchronously to both threads.
trailing threads on different processors to achieve load balanc- CRT communicates values from the processor running the
ing and to reduce the probability of a fault corrupting both |eading thread to the one running the trailing thread. Compared
threads. In Figure 1, we show a 4-CPU CRT running leadingto a CMP, CRT needs extra hardware queues (LVQ and BOQ)
thread i on CPU i, and trailing thread i on CPU i+1 (modulo 4). to hold the communicated values, and it needs extra inter-pro-




cessor wires for the communication. To minimize the numberthreads on the processor, if the slack of one is such that it
of wires, we place the trailing threads on the processor adjacerghould fetch (i.e., the slack of the leading thread with respect to
to that running the leading thread, as shown in Figure 1. its trailing thread is below the threshold, and the reverse condi-
Although [6] does not mention this issue, the inter-processortion for the trailing thread) and the slack of the other is such that
communication in CRT does not pose a problem, as mentioned should not fetch, then there is no conflict and the first thread
in Section 1. The inter-processor latency is mostly absorbed byfetches. If neither thread should fetch (i.e., the slack of the lead-
the long slack, and the bandwidth pressure is tolerable becauseg thread is above the threshold with respect to its trailing
CRT communicates only branch outcomes, load values andhread, and the reverse for the trailing thread), or both threads
store values, but not register values. should fetch, then CRTR breaks the tie by using ICOUNT.
. The implementation of the CRTR policy needs to address
4 Transient-fault recovery for CMPs the following point. Because the leading and trailing threads

We proposeChip-level Redundantly Threaded multiproces- €xecute on different processors, accurately estimating the cur-
sor with Recovery (CRTRyhich enhances CRT to include tran- 'ent slack is difficult. The main issue is that every cycle CRTR
sient-fault recovery. Like CRT, CRTR assumes SMT processordl€€ds to know the separation between the leading and trailing
in the CMP and uses the configuration illustrated in Figure 1.threads, which are on different processors. To address this issue,
Unlike CRT, CRTR must not allovany trailing instruction to ~ CRTR counts the leading thread slack in terms of the number of
commit before it is checked for faults, so that the register statewaiting stores that have not been confirmed to commit by the
of the trailing thread may be used for recovery. However, thechecker and the number of values (branch outcomes, load val-
leading thread in CRTR may commit register state beforeues and register values) queued due to limited inter-processor
checking, as in CRT. This asymmetric commit strategy allowsPandwidth. For the trailing thread slack, CRTR counts the num-
CRTR to employ a long slack to absorb inter-processor latener of values (branch outcomes, load values, store values, and
cies. As in CRT, CRTR commits stores only after checking. register values) waiting to be consumed. Thus, CRTR approxi-
Because stores are re|ative|y infrequent’ the slack can bénates the Separation in committed instructions (Wh|Ch cannot
increased without stalling leading thread commits. be determined locally in one processor) by the number of wait-

CRTR uses the long slack to hide the inter-processor coming instructions and values (which can be determined within
munication latency between the leading and trailing threads. Infach processor). Interestingly, our scheme performs better than
addition to communicating branch outcomes, load addresseg;ounting slack in terms of number of instructions separating the
load values, store addresses, and store values like CRT, CRT#eading and trailing threads, as we show in Section 6.1.
also c_ommunic_ates registgr_\{alues. CRTR empl_oys sender-initiz 2 Sending leading values: Need for SRTR's RVQ
ated (i.e., leading-thread initiated) communication and queues
up the values at the processor running the trailing thread. Thus, Like CRT, the leading thread in CRTR communicates com-
if the slack is appropriately long, the values of the leading Mitted values to the trailing thread for branch outcomes, load
thread reach the trailing thread before it needs the valuesaddresses, load values, store addresses, and store values. CRTR
despite incurring the communication delay. additionally communicates committed register values. Conse-

quently, the values are not affected by mispredictions. The lead-
4.1 Slack fetch ing thread sends its values in commit (i.e., program) order, and

We modify the instruction fetch in CMP to check whether the trailing thread consumes the values in commit order.
the leading and trailing threads are separated by at least the Sending values at commit eliminates the need for the values
amount of a pre-specified threshold; if they are, the trailing 0 be cleaned up on mispredictions, which is needed in SRTR
thread is allowed to fetch, otherwise the leading thread is(SRTR stores values and checks at completion to exploit com-
allowed to fetch. SRT and SRTR implement this scheme byPlete-to-commit times [17]). However, there is an implementa-
modifying the SMT ICOUNT [15]. ICOUNT maximizes the tion difficulty raised by sending values at commit: register
number of independent instructions in the pipeline by fetching values are written back to the register file at instruction comple-
from the thread that has fewer instructions waiting for their tion, and the instruction does not have the value at commit.
source operands, implying more independence. SRT and SRTRherefore, a leading instruction has to retrieve the register value
skew the count of waiting instructions by the difference from the register file to send the value to the trailing thread.
between the current slack and the threshold, so that the leadingimilarly, the trailing thread has to retrieve the value from the
(trailing) thread is allowed to fetch if the current slack is less register file to perform the check at instruction commit. Such
(more) than the threshold. retrievals would add significantly to the bandwidth pressure on
Unlike SRT and SRTR where the leading and trailing the already-belabored register file [17].
threads of thSameprogram execute on a processor, in CRTR SRTR avoids extra bandwidth pressure on the regiSteI’ file by
two unrelated threads—the leading threacbnéprogram and ~ using the register value queue (RVQ) to hold register values for
the trailing thread ofinotherprogram—execute on one proces- checking. CRTR borrows the idea to place register values in the
sor, as shown in Figure 1. Consequently, maintaining slackRVQ at writeback. Both leading and trailing threads deposit
between the threads on a processor is meaningless. Recall froff€ir values in their respective RVQs at writeback, and the lead-
Section 3 that using a line predictor queue to control fetching,ing thread RVQ entries are communicated to the trailing thread.
as proposed in [6], is not applicable to CMPs. SRTR then retrieves leading thread register values from the

Instead, CRTR employs the following policy: of the two RVQ when the trailing instruction completes, whereas CRTR
retrieves values for checking at trailing thread commit. See the
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FIGURE 2: A CRTR CPU.

RVQ and LVQ shown in Figure 2. mismatch due to a fault, the mismatch causes the affected

SRTR proposes Dependence-Based Checking Elisiorinstructions to fail their check, and a transient-fault exception is
(DBCE) to reduce the bandwidth pressure on the RVQ itself.raised.

By reasoning that faults propagate through dependences, DBCE Unfortunately, load values are more difficult to match with
exploits (true) register dependence chains so onét the last  the correct trailing loads. Unlike branch, store, and register val-
instruction in a chain is checked. Earlier instructions in the ues, which are needed at commit, load values are needed at exe-
chains inboth threads completely elide checking, reducing cution. Because execution is out of order, trailing loads may
RVQ bandwidth pressure. While CRTR can also use DBCE, weissue out-of-order with respect to each other. This problem also
do not pursue the topic of RVQ bandwidth reduction further exists for CRT and SRT. SRT advocates restricting issue of
because SRTR covers the topic in detail [17]. In Section 5, wetrailing loads to be in program order, which requires special
address the communication bandwidth pressure between leadases in the instruction scheduler. In order to tackle this issue,
ing and trailing threads by extending the DBCE. we propose a different approach which allows out-of-order

Sending or checking at commit is not a problem for branchissue of trailing loads. This approach relies on the fact that the
outcomes and store values because these are available at comnailing thread—in the absence of faults—does not mispredict
mit. Branches hold their outcomes to update the branch predicand commits all of the dispatched instructions. Therefore, by
tor counters at commit (even if the history register is updatedusing a counter, each load can know its corresponding load CB
speculatively, the counters are updated at commit); and storesntry numberat dispatch The counter matches thé trailing
are sent from the store buffer to the cache at commit. See théoad with the ' load CB entry (modulo load CB size).

StB and BOQ shown in Figure 2. If a fault occurs, a trailing load could possibly access an
incorrect entry in the load CB, yet the load addresses could
match and retrieve an incorrect value. This situation could

The committed leading values, load addresses, load valueyccur in two ways: (1) If a branch outcome from the leading
store addresses, store values, and branch outcomes need to theead is corrupted, then a subsequent trailing load could match
gueued at the trailing thread because the trailing thread may nancorrectly. However, the fault that corrupted the outcome will
be ready to consume the values as soon as they arrive. They ate detected, causing the incorrectly-matched load to squash. (2)
gueued in separate queues of theck buffer (CBJi.e., regis- A fault could corrupt the load-matching counter, resulting in an
ter, load, store, and branch values are held separately). See tliecorrect load match. Because loads are not checked, such an
CB shown in Figure 2. Upon reaching commit, the trailing incorrectly-matched load would commit, leading to an irrecov-
instructions check their values against the head of the approprierable fault. To avoid this problem, we use a self-correcting
ate CB, in a strict queue order. counter (which uses ECC-like encoding).

As in CRT, the branch outcomes of the leading thread are Upon reaching the load CB, each trailing thread load checks
used by the trailing thread as predictions. If there are no faultsjts address against that of its corresponding load CB entry. If
the trailing thread would never encounter a branch mispredic-this entry is valid and the addresses match, the load retrieves the
tion. If the outcome of the leading thread is incorrect due to avalue and completes. If the load CB entry is invalid, the load
fault, the resolution of the trailing branch flags a misprediction CB signals a “miss” to the pipeline and the load stays pending
which triggers a transient-fault exception. in the issue queue to be reissued later, similar to an L1 miss.

Checking in commit order raises the issue of matching lead-The only difference is that a load missing in L1 completes
ing thread values to the correct trailing instruction. Branch out-whenever the miss is satisfied. Here, hitting an invalid entry
comes, store values and register values are straightforwardmplies that the CB entry has not yet arrived from the leading
Trailing thread fetch is sequential and empties the branch CB irthread, as long as there are no faults. Accordingly, the pending
gueue order, and therefore, the correct trailing branch matchelad may be reissued if any new load entries arrive from the
the branch outcome. Similarly, stores and register values ardeading thread. If a fault has corrupted the address of the pend-
checked at trailing commit, and they can be emptied in queueng load in either thread, the load will not match its correspond-
order and matched to the correct trailing instruction. If there is aing valid load CB entry. In that case, such a load would

4.3 Matching leading value to trailing instruction



(@) (b)
check (il1) addr6 =rl1 +r8 no checkQ(il) addr6 =rl1 +1r8

check (i2) and r4 = r6 & 0x2 (masking: not chained up) check (i2) and r4 = r6 & 0x2 (r6 not last use, not chained)
no check (i3) or r24 =r6 | r26 (masking: not chained up)  no check (i3) or r24 =r6 | r26 (r6 last use, chained up)
check (i4) add r17 =r24 + 20 check (i4) add r17 =r24 + 20

check (i5) add r6 =r18 +r19 check (i5) add r6 = r18 + r19 (r6 dies here)

FIGURE 3: An example of (a) conservative DBCE, and (b) DDBCE

eventually reach the commit point in the active list, and a tran-5 Tackling inter-processor bandwidth
sient-fault exception would be raised. The load CB is ECC-pro-

tected, so its contents are not vulnerable to faults. The asymmetric commit hides inter-processor latency. To

o ) tackle inter-processor bandwidth requirements, we pipeline the

4.4 Committing leading stores inter-processor paths and hide the latency of the pipelining
In CRTR, just as in CRT, the only communication from the ysing the asymme.tri.c commit. The inter-progessor wires shown
trailing thread back to the leading thread is the result of check-" Figure 1 are split into several segments with latches between
ing stores, so that leading stores may commit. The trailingthe segments. While this plpellnlng boosts the ba_ndW|dth sup-
thread commits its store as soon as the check is performedP!y: We reduce the bandwidth demand by employing two tech-

avoiding the overhead of any acknowledgment of receipt fromnidues. First, unlike SRTR which checks speculative values,

the leading thread. Therefore, it is important to ensure that théRTR, like CRT, communicates and checks only committed

check result is not corrupted on its way to the leading thread.yalues' Second, we extend SRTR’s Dependence-Based Check-

Consequently, CRTR sends the check results to the leadin g Elision (,DBCE)' While SRTR uses DBCE FO reduce the
thread under ECC protection. VQ bandwidth, we extend DBCE to reduce the inter-processor

Because of the inter-processor communication delay and th&89iSter communication bandwidth of CRTR. It is important to

slack, leading stores wait for trailing stores to be completed and0t¢ that DBCE reduces only register bandwidth and dwés
the checking to be performed. In modern processors, becausd'Pact communication due to loads, stores, and branches.

the StB is searched by loads to honor memory dependences, ti& 1 Applying SRTR’s DBCE to CRTR
StB cannot be made large. Consequently, there is some pressure )
on the StB of the leading thread, as pointed out in [6]. On one_BY reasoning that faults propagate through dependences,

hand, a long slack helps hide inter-processor delays and brancHBCE exploits (true) register dependence chains so ahat

and memory delays; on the other hand, the pressure on the Stif€ last instruction in a chain is checked. For example, in
increases with a long slack. We set the slack to balance hiding '9ure 3(2)i3 andi4 form a chain, and4 is checked. To keep
of latencies and pressure on the StB. he implementation simple, we follow SRTR and use only sim-

] -~ ple dependence chains such that each instruction in a chain has
4.5 Recovery using the trailing thread state at most one parent and one child (instead of maintaining the full

The trailing processor preserves the faulting instruction pcdépendence graph). Earlier instructions in the chainbaith
so that execution can restart from that PC value. The exceptiofi"é@ds completely elide communication and checking, reduc-
handler saves the trailing register state and PC to the CMPNY bandwidth pressure. I the_last Instruction c_:heck succeeds, it
shared memory and launches a “restoring thread” on the IeadS'gn""l.S the previous Instructions in the_chal_n that they may
ing processor to load the saved register state and PC value froffl®MMit; if the check fails, all the instructions in the chain are
memory. To ensure that faults do not corrupt the saving Orm.arked as having failed and the'earllest |nstruct|'on in thg chain
restoring processes themselves, the restoring thread redurfi99ers arollback. Then, a transient-fault exception is raised. A
dantly saves the register and PC state loaded in the leading pr¢€Y feature of DBCE is that both leading and trailing instruc-
cessor to a different set of memory locations. The handler theriONS redundantly go through the same dependence chain for-

compares those locations with the trailing processor state. If thdn@tion and checking-elision decisions, allowing DBCE to

comparison fails, the saving and restoring are redone. check its own functionality .for fault§. . .
The cost of the exception and register copying is low enough The SRTR paper explains the implementation of DBCE in

to allow acceptable recovery times (e.g., less than 10-40ms O.pletail. Thergfore, we give an abstrac'ted description of the
network round-trip delays so that recovery time is impercepti-mPlementation and point out the key differences. DBCE con-
ble for networked clients). sists of (1) forming dependence chains in the leading thread and

There are faults from which CRTR cannot recover: after a (€ corresponding chains in the trailing thread, (2) identifying
register value is written back and the instruction producing theth€ instructions in the leading and trailing threads requiring the
value has committed, if a fault corrupts the register, then thecheCks (3) preventing the rest of the instructions (leading and
fact that leading and trailing instructions use different physical .tra|I|ng) in the cha.un.s from accessing the R\,/Q and.from .check-
registers will allow us to detect the fault on the next use of the'"9: and (4) notifying the non-checking instructions in the

register value. However, CRTR cannot recover from this fault. chains after the check is performed. ,
To avoid this loss of recovery, one solution is to provide ECC  DBCE uses a hardware queue called the dependence chain
on the register file, as suggested for SRTR [17]. gueue (DCQ) to hold instructions and determine dependences



by matching appropriate register operands. DCQ forms the5.2 DDBCE
chains (identical chains in both threads), and records the chain . L . .
information in the Check Table for later use. The chain forma- DBCE must consider m_asklng _mstructlons, which produce
tion occurs at rename, and upon completion, instructions Iooléhe same output value for(_jlfferenF input values (a4:= 16 &

up the Check Table to determine whether they need to check. AX2in F|gur(_a 3(a)). _Some Instructions produce the same output
non-last instruction waits at commit for the last instruction of value for different input values only if one of their inputs

its chain to check. When the checking occurs, the last instruc2SSuUmes a specific value (e.p4 := r6 | 126 whenr26 is all

tion uses the Check Table to signal the other instructions in thel s). We conservatively consider all such instructions as mask-

chain. At commit, each instruction ensures that the last instruc!"9- A masklng instruction may ma;k a f‘.”‘”" on its inputs by
tion in its chain is identical to the last instruction in the chain of produpmg .the correct output even if an input is faulty. Such
its counterpart instruction; otherwise a fault is signaled. masking violates the key assumption (.)f DBCE that faults_ are

There are many differences between SRTR's DBCE imple_!oropagated by dgpendence_s. The last instruction in a chain that
mentation and CRTR's. First, because SRTR’s leading instrucincludes a masking instruction cannot detect the masked fault,

tion can commit only after checking, SRTR's chains need to beand an irrecoverable error ensues if the faulty value is commit-
short (e.g., 3-4 instructions) so that the first instruction in ateOI and consumed later. For instance] iandi2 of Figure 3(a)

leading chain does not unduly wait for the last instruction in the are chained, the check done on the valustafoes not cover all

trailing chain. Because CRTR’s leading thread commits beforethe bits ofr6. If i1 produces a faulty value @6 so that only the

checking and because CRTR’s slack is long, CRTR's chains Carpits masked by2 are faulty,r4’s check will not detect the fault
be longer. If a DBCE chain isn instructio;ws long, DBCE and will cause the chain to commit.r6 is used by instructions

checks only one of then instructions, reducing register value Iat_er tha_m t_hos_e shown, r(_ecovery_vwll nc_)t be pO.SS'b_If' Moreover,
bandwidth. Therefore, longer chains are better. prior toil in Figure 3(a), if there is an instructiol :=r16 +

Second, because SRTR checks speculative instructions177 and this instruction produces a faulty value far the fault

DBCE forms chains using speculative instructions. If chains areCOUId propagate througk and be masked ird. If a chain con-

allowed to cross branches, branch mispredictions will require.talns th's |nstructhn, andl é’md 12 are commlttsld, a later
clean-up. To avoid such clean-ups, SRTR disallows chains frorﬂnsglécggndgorlllsumlngl ”;?‘y .et?ct a:n |rret(:0\f/era ie.rror. ith
crossing branches, resulting in short chains. In contrast, CRTR ISallows masking Instructions to form chains, wi

communicates committed values and applies DBCE to non_the exception that a masking instruction may start a chain. A

speculative instructions which do not include mispredictions.maSkmg t|rr]13truct|on IS aIIovc\j/ed fa;th the t)egltnmng_"oll; a ﬁha'l(nd
Hence, CRTR allows chains to cross branches, encouragin ecause the source operands of the Instruction will be checke

longer chains. That is, an instruction producing a value before previous chains, without allowing any faults to be masked. In

branch and an instruction consuming the value after the bran(:_liggre_3(a)’i2 andir? are m;s"‘”g? and neither is chained up to
may participate in a chain. i1, buti3 ;tarts a chain witk. . o .

Third, because SRTR’s DBCE reduces RVQ bandwidth Ma.ny. ”.“eger a.m.d almost all flpatlng-pplnt |nstru.ct|ons (due
demand, and loads and stores do not use the RVQ in SRT ot.he|rf|n|te precision) are masking. For instanceflin= f2 + .
these instructions do not participate in SRTR chains. In CRTR, > if 13 has a small valge arfd has a Igrge value,_then the ad.d"
however, we want to reduce the bandwidth demand, which is'°" M&y mask faults irf3. We consider all Io_glcal a_md_ shift
partly due to loads and stores. Therefore, CRTR's chain ma)pperatmns except xor, xnor, and not; all floating-point instruc-
end in a load or a store. Because load valu,eahmaysneeded tions; all direct and indirect jumps (calls and returns); and all

by the trailing thread, and stores do not produce any registepranches as masking instructions. We consider loads and stores

values, a load or store can only be the last instruction of a chain®S non-masking (but they need to be communicated). Integer

Any such chain ending in a load or a store does not require anymullgféé:rndagglidis anrsnr_nnizlslzgé because of the following:

register value bandwidth (as opposed to a chain that ends in aR h : db dded. and h
ALU instruction and needs to communicate the last instruc- ssume that two integera,andb, are added, and assume there

tion’s register value) because load and store values are commu® @ fault in one of them (single fault assumption). Without loss
nicatedanyway of generality assume thathas a fault and we denote the faulty

Fourth, while SRTR forms both leading and trailing chains basb’. From the prope_rties .Of additioa;+b anda+b’ cannot

at rename, CRTR forms leading chains at commit and trailingbe equql. The only way in W_h'Ch a fault can produce a fault-ree
chains at rename. Because the trailing thread does not mie‘,preg-u.m 's ifa andb are stored in theamereglster .(anda =b).In .
dict in the absence of faults, the leading and trailing chains arethIS case, one OT the (faulty or fault-free) additions may result in
guaranteed to be identical, even though the chains are formed &" of\l/erflow while the ﬁther does So;c]. Beca;ljse AL%S, .detec';
different points in the pipeline. Any faulty branch outcome will of:/erl 0\3’_’ we Cgmpf?‘lfe t edzums an 'dt ﬁ over E.W CO? |t|orf13 (I)
cause the leading and trailing chains to mismatch and triggeré € leading anddt_r§| Ing adds to avoid the masking of any fault
fault exception. While the sending of leading values occurs ath @n integer addition.

commit after chains are formed, the delay due to chain forma- Conservatively restricting masking instructions to the start
tion is absorbed by CRTR's long slack. The checking of trailing of chains exposes the bandwidth pressure. To address this prob-

values occurs at commit after trailing chains are completelylerz’ we exten[()j DtiCE tg Sxplondthe degth O(I ?g'sﬁir vaIIEljlgs,
formed. Because trailing chains are formed at rename, an)?n propose Lealh- and Uependence-base ecking Elision

delay in trailing chain formation is absorbed by the time gap (DDBC.E)' The problem W't.h a masking instruction .occursllf
between rename and commit. one of its source operands is faulty, and some later instruction,



other thanthe masking instruction, also consumes the faulty the DCQ to see if the instruction is dependent on some previous
value. By tracking register death, we identify those maskinginstruction. DDBCE uses the same scheme as DBCE for non-
instructions that are thkast (in program order) consumers of masking instructions. For masking instructions, death must be
their source operands—i.e., the source operands die after corestablished. An incoming instruction writing to an architectural
sumption by the masking instruction. The operand deathregister kills the previous value bound to the register. In conven-
ensures that any masked fault does not corrupt later computaional renaming, the previous physical register mapped to an
tion, allowing masking instructions to join chains without loss instruction’s architectural destination register is known to the
of recovery. In Figure 3(b), masking instructithis the last use  instruction, so that the previous register may be freed upon the
of r6 (beforer6 dies ini5). i3 can be chained up td because instruction’s commit. Accordingly, the incoming instruction
any fault inr6 is not visible beyond3. The resulting chain  searches the DCQ and marks the last instruction which uses the
includesil, i3, andi4. Masking instruction2 is not the last use  previous physical register as a source.
of r6 and cannot guarantee that fauté/will not be used later, When a register which is a source of a masking instruction
and therefore it is not chained. Because many register values ama dies, DDBCE checks whether it is valid to link a chain C1,
consumed by only one or two instructions, DDBCE boosts that ends with an instructionproducingr, with a chain C2 that
DBCE’s bandwidth reduction. starts withm. For the linking to be valid, the resulting chain

The extent of the reduction in bandwidth by using DDBCE must be legal, and the chain is checked as follows: every non-
is affected by the last instruction of each chain. For instance, anasking instruction that attaches itself to a chain accepts a flag
DDBCE chain can end in a branch. Such a chain does noindicating the number of instructions already in the chain. The
require any register value bandwidth, because the branch oufilag indicates one instruction, or more than one instruction (as
come is sent anyway. This point is similar to that of DBCE per DBCE rules, only the first instruction may be masking). If
chains ending in loads or stores, as described in Section 5.1. C1 includes two or more instructions, then C1 is not linked with
C2; otherwise, every linking is allowed.

Implementing linking of two chains has two additional com-

Chaining of masking instructions introduces a subtle imple-ponents. The first component is the chaining @nd m, and
mentation difficulty. Consider an instruction sequede a2, marking i as a non-last instruction. The second component
anda3in program order (withal being the earliest). 183 is a involves the chain starting witin. While in formation in the
masking instruction that writes into a registe® and a3 is DCQ, chains are tagged by the first instruction in the chain. In
chained witha2 throughr?2 (i.e., a2 writes tor2 anda3 reads the Check Table, however, after the chains are completely
r2), thenr2 must die ata3 (i.e., a3 is the last use 0f2). r2's formed, chains are tagged by the last instruction so that the non-
death guarantees that any faulrtlhmasked bya3is not visible last instructions can know to commit when the last instruction is
to later computation. In addition, &2 is chained tal through checked. The linking of the two previously-formed chains
r1, thenrl must die aften3. r1’s death is needed because faults needs retagging of the entire second chain by the first instruc-
in rl propagating ta2 may be masked bw3, resulting in a  tion of the first chain. This retagging amounts to parallel writing
fault-free r3 value. However, later uses afl will result in of the tags of the second chain.
detectable but irrecoverable errors oradecommits the faulty DDBCE relies on searches through the DCQ to form legal
rl. Therefore, in order for a masking instruction to join a chain, chains and establish death. To keep DDBCE implementable,
all destination registers in the chain must die after the maskingPCQ’s size needs to be restricted.Section 6.4we show that
instruction. This observation is true whether or adtand a2 a DCQ with 20 or 30 entries suffices.

are masking instructions. 6 E . tal It
The above observation implies the need to check every Xperimental results

instruction in a chain for register death in order to add a mask-  Wwe modify the Simplescalar out-of-order simulator [2] to
ing instruction. For implementation simplicity, we prefer to model a CMP environment. Each core in the CMP is an SMT
avoid the need to check for deaths of mUltIp'e regiSterS when aprocessor_ Each core has its own private L1 and L2 caches.
single instruction is added to a chain. Therefore, we allow aTaple 1 shows the configuration parameters used for each core.
masking instruction to chain only to an unchained, non-mask-Because the StB in real systems is typically 20-30 entries, we
ing preceding instruction or to any (chained or unchained)assume an StB of 20 entries in order to model pressure on the
masking preceding instruction. A preceding masking instruc-stB as discussed in [6] and in Section 4.4. We model the system
tion need not be unchained because all of the destinations of thgus which is a sp"t-transaction’ p|pe||ned bus Connecting the
preceding chain must be dead for the preceding chain to includgyrivate L2 caches to memory. We model the details of request
a masking instruction. Therefore, lengthening the chain by anand response phases of the transactions.
additional masking instruction requires checking the death of |y most cases, we show results for a 2-CPU CMP. However,
only one register. Following a masking instruction, we allow e show 4-CPU runs for our most important result: comparison
any number of non-masking instructions to be chained becausgf CRTR to CRT. Because neither CRT nor CRTR uses any
non-masking instructions propagate faults and do not requireshared resource for fault-tolerance support, 2-CPU and 4-CPU
register deaths. Using regular expressions and denoting a maskehavior should be similar. The results for CRT and CRTR
ing instruction bym and a non-masking instruction by we  comparison show that 2-CPU and 4-CPU behavior are nearly
allow chains of the formmn ormn'. identical. We do not show 4-CPU results anywhere else in the
DDBCE extends the DCQ to identify register death. In interest of simulation time and because of this similarity. We do
DBCE, a non-masking instruction entering the DCQ searchesot show runs with one thread per CPU because such a run is

5.2.1 Implementation simplification



Table 1: Hardware parameters for base system. Table 2: Benchmarks.

Component Description Benchmark set | set# IPC pairing 2-CPU IPC
[ssue bltvlT,Rtvljay out-of-order 1ssue, 128- ammp+gaigel 1 FPIFP Tow/higH 220
entry
Branch 8k hybrid of bimodal and gshare, 16- fma3d+.equake 2 FPIFP _lOW/|9W 1.62
prediction entry RAS, 4-way 1K BTB (10-cycle gap+sixtrack 3 Int/FP high/high 2.27
misprediction penalty) gcc+vortex 4 Int/Int low/low 1.46
L11- and D-cache 64KB, 32-byte blocks, 4-way, 2-cycle gzip+parser 5 Int/Int high/low 1901
(private per CPU) | hit, lock-up free rkeswi 6 InUEP Towii 189
L2 unified cache | 1 Mbyte,64-byte blocks, 4-way, 12- perbm SV_V'm n .OW ?W :
(private per CPU) Cyc|e hit tW0|f+mngd 7 Int/FP hlghh|gh 2.45
Main memory Infinite capacity, 100 cycle latency vpr+crafty 8 Int/Int high/high 2.26
System bus Split transaction, bus clock speed to wupwise+mesa 9 FP/FP high/high 234
CPU clock speed ratio = 1:2 T 0 nUint low/hiah 551
BOQILVQ/SIE | 967128120 entries mcf+eon nt/int low/hig :

not representative of a CMP workload and does not stress per6.1 CRT versus SRTR
CPU resources. . . S

Based on Section 4.1, CRTR’s slack is defined by two In Figure 4, we compare CRT W'Fh SRTR.’ which is a recov-
thresholds—the leading threshold (x) and the trailing threshold®™Y scheme for SMT. Because the line-predictor queue for con-

(y) —and denoted as “x/y”. On the leading thread side, Whentrolling fetch in [6] does not apply to CMPs (as mentioned in

the total number of unconfirmed stores in the StB and valuessection 4.1), we assume a fixed slack for CRT. In addition, we

(branch outcomes, load values, and register values) queued dd@fpleme}r:t CRT using our fetc“tz:%(?rli;:.y cg"sla((:jligg_ars’h\(/)\;ds.hWe
to limited inter-processor bandwidth exceeds the Ieadingre er o these two systems as -lixed an - Vve show

threshold, the leading threadopsfetching because the slack performance normalized to the base CMP without any fault tol-
has grown to its limit. On the trailing thread side, when the total €anCe- The benchmark set numbers used by the X-axis labels

re from Table 2. In this experiment, we assume a 10-cycle
atency and infinite bandwidth for the inter-processor communi-
cation. CRT-fixed uses a slack of 256 instructions as per [6],
slack is too low. and CRT uses a slack threshold of 16/32. CRT-fixed and CRT

For our 2-CPU runs, we pair up two SPEC2000 benchmarks!S€ the same sizes for BOQ/LVQ/StB shown in Table 1. SRTR

to generate the CMP workload. We choose pairs from combina Us€s & slack of 40 instructions, and a predQ/LVQ/StB of 128/

. : 128/20 entries, comparable to or larger than CRT-fixed and
tions of low-IPC and high-IPC programs. Table 2 presents the -
pairings used in our simulation. For each experiment, we fast-CRT The slack for CRT-fixed, CRT, and SRTR are the best-per-

i ; . forming values.
forward 2 billion instructions per benchmark. We then run until .
all the programs complete at least 400 million instructions. Al CRT-fixed and CRT are on average 19% and 15% worse

benchmarks use ref inputs. We show results for 20 out of the zéhan the b_ase CM_P’ respectively. We see that CRT, WhiCh uses
SPEC2000 applications. We do not show the other 6 benCh_only local mformatlon to implement slack, performs a little bet-
marks because they take a long time to simulate. Our metric fOII.er than CRT-fixed. Compared to the base CMP, CRT's degrada-

performance is instruction throughput measured in instructiond O comes from tV.V.O factors: StB fill-ups and the instruction
committed per cycle by all the CPUs in the CMP overhead of the trailing thread (the base CMP executes only one

We present results in the absence of faults in order to studyCOpy of a program) competing for the CPU resources. Some

the performance cost of CRTR versus CRT. Faults are expecteBro%rfmS inCL]I([ I?rg(]je slow:c:zlowns (e%?ﬁ“t 7“t¥vc;]If+g1%rio_ll’_’hand
to be rare enough that the overall performance will be deter-Set 8"vpr+cra Y ) due to reque_nt Hing o the StB. The rest
of the degradation is due to the instruction overhead.

mined by fault-free behavior. In addition, our simulator does
not support exception handling required for CRTR.

We begin by comparing CRT with SRTR to show that SRTR Q1.0
performs poorly on CMPs because the inter-processor commu-,, = -
nication latency is too high to be hidden by complete-to-com- 2908l 01 fl A _ = _
mit times. We then compare CRTR to CRT under varying slack g E

thresholds. This comparison shows that CRTR incurs negligible éi’ 0.6t 1

number of values (branch outcomes, load values, store value
and register values) waiting to be consumed in the CB queue
exceeds the trailing threshold, starts fetching because the

O CRT-fixed O CRT m SRTR

performance loss compared to CRT. Next, we vary the commu- %;c" 04l |
nication latency to show that CRTR’s performance does not £ 3

degrade for a wide range of expected latencies. Finally, weg“é 02t _
show the communication bandwidth reduction achieved by & g

DBCE with conservative chaining and by DDBCE. We also £ 0.0 N

show the impact of bandwidth on CRTR performance using Qv;’ Q,;\/ Q,;” g é;o éﬁ° Q.;\ Q;o Qv)f’ ,§
conservative DBCE and using DDBCE. @ 9 9 9 9 9 9 »



SRTR’s performance on a CMP is on average 58% worse OCRT mCRTR a: CRTR 16/8 b: CRTR 32/16
than the base CMP. SRTR'’s leading thread does not commit any c: CRTR 64/32
instruction until it is checked by the trailing thread. SRTR & 1.0 ' ' ' ' '

exploits complete-to-commit times of leading instructions such £G | abc
that by the time the leading instruction commits, the trailing & % 08
instruction has completed and the check has been performed%@ 06t
The complete-to-commit times already hide SRTR's slack. 2 2

Because typical complete-to-commit times are 20-30 cycles E% 04r
[17], the 10-cycle latency omveryload, store, branch and regis- & o ozl
ter value, and another 10 cycles for check confirmation, cannot g 2 ™
be hidden by the remainder of the complete-to-commit times. 20.0
Like CRT, extra instructions due to running two copies of a pro- N > o Q.;’,io 2.2
gram also contribute to SRTR'’s degradation. & ¢ g8 oF £
From these results, we can see that SRTR is not suitable for * * * * ¥
a CMP even at inter-processor latencies of 10 cycles and infinite  FIGURE 6: CRT vs. CRTR: 4 CPUs
bandwidth. With wire delays getting relatively worse with every
generation, SRTR’s performance is bound to worsen. Therefore, CRTR incurs negllglble performance degradation
compared to CRT.
6.2 CRT versus CRTR We also see that the shorter slack threshold of 16/8 slows

In Figure 5, we compare CRTR with CRT. As before, we down CRTR in many cases. With the shorter slack threshold,
show performance normalized to the base CMP without anythe leading thread prematurely stops fetching because the
fault tolerance. CRT’s slack threshold is 16/32, which is its thread frequently hits the threshold. This stopping causes the
best-performing threshold. We vary CRTR’s slack threshold ascommunication latency to be exposed. When the slack thresh-
16/8, 32/16, and 64/32. In this experiment, we assume a 200ld is 64/32,set 7 (twolf+mgrid) degrades in performance
cycle latency (one-way) and infinite bandwidth for the inter- because the trailing thread does not fetch until it accumulates
processor communication. In the previous section, we used &he large threshold, slowing down the rate of checking. This
latency of 10 cycles to show that even at 10 cycles SRTR doe§lowdown causes the leading thread's StB to fill up, stopping
not perform well, but we believe that a 20-cycle latency for glo- COmmits.
bal inter-processor wires is more appropriate. In Figure 6, we compare CRTR with CRT using a 4-CPU
performs close to CRT. The reasons for this similarity are: (1) hication. As in the 2-CPU case, CRTR using a threshold of 32/
In terms of the overhead of StB fill-ups and extra instructions, 16 performs close to CRT. The performance of the programs is
CRT and CRTR are similar. (2) Both CRT and CRTR communi- similar to that in the 2-CPU case, confirming our claim in the
cate branch and memory values. The inter-processor latency d?eginning of Section 6 that two and four CPUs behave simi-
20 cycles is seen by this communication in both CRT andarly.

CRTR. CRTR’S long slaclf, t_enabled by asymmetric commits, g 3 Inter-processor latency

absorbs this latency to a similar extent as CRT's long slack. (3)

Although CRTR additionally communicates register values, In this section, we study the effect of the communication
CRTR performance is not degraded because we assume infinit@tency on CRTR and CRT performance. The CRT paper uses
inter-processor bandwidth in this experiment (we show finite 4-Cycle inter-processor latency in its study, and our evaluation
bandwidth in Section 6.4). Because loads and stores togethegxtends that study. As before, we show performance normalized
are frequent (e.g., loads and stores are 30-50% of all instructo the base CMP without any fault tolerance. We vary the
tions), the communication latency of register values is hiddenlatency as 20, 30, and 60 cycles (one-way) for both CRT and

under those of load values and store check confirmationsCRTR. We still assume infinite inter-processor bandwidth.
Figure 7 shows that increasing the inter-processor latency

OCRT BCRTR a: CRTR 16/8 b: CRTR 32/16 from 20 cycles (“a” bars) to 30 cycles (“b” bars) has little
Q10 ' c: CRTR 64/32 impact on CRT and CRTR, with the average degradation with
2(2) abc respect to the base CMP increasing from 15% to 16% for both.
T 08¢ CRTR continues to perform as well as CRT even at 30-cycle
s latency. As explained in Section 6.2, load and store communi-
8% 0.6 cation present in both CRT and CRTR impacts their perfor-
S= 04l mances more than register value communication impacts
EEU CRTR. CRTR'’s register communication is hidden under load
‘% g 0.2t value and store check confirmations.
ol g 0.0 At 60-cycle latency (“c” bars), both CRT and CRTR incur an

average performance degradation of 22% compared to the base

CMP. In this case, the StB fills up frequently due to the 60-cycle
@ 9 delay for the store values to be sent and another 60-cycle delay

FIGURE 5: CRT vs. CRTR. for the confirmation to return to the leading thread. Because
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FIGURE 7: Effect of inter-processor latency FIGURE 8: Effect of inter-processor bandwidth
such fill-ups occur for both CRT and CRTR, CRTR falls only and DDBCE. A 60-entry DCQ provides only an additional 3%
slightly (< 1%) behind CRT, even at 60-cycle latency. reduction. These numbers show that a DCQ size as small as 20

The |0ng slack enabled by asymmetric commit makes CRTRentl'ieS captures most of the benefit of DBCE and DDBCE. This
tolerant to inter-processor communication |atency of even SOSma“ size makes the issues discussed in Section 5.2 tractable in
cycles. This tolerance is important for CRTR to be effective in & real DCQ implementation.
future technologies in which global wire delays pose a serious In Table 4, we show average chain length—using a DCQ of

problem for microprocessor and CMP performance. size 30 instructions—for DBCE ignoring masking, conservative
. DBCE which does not chain masking instructions, and
6.4 Inter-processor bandwidth DDBCE. The numbers in Table 3 and Table 4 do not correlate

Finally, we study the effect of inter-processor bandwidth on linearly because of the following observations: (1) The total
CRTR. First, we present the bandwidth required by CRT and bybandwidth is due to load/store/branch values and register val-
CRTR using DBCE and using DDBCE. Then, we present theUes. DBCE and DDBCE target only the register value band-
impact of finite bandwidth on CRTR performance. The SRTR Width component. Therefore, a chain length of m does not
paper [17] allows optimistic chaining of masking instructions in imply a reduction in total bandwidth by a factor of m. More-
its study, and our evaluation with conservative DBCE (i.e., OVel, an increase in average chain length by a factor of x%
without chaining masking instructions) extends that study.  (9oing from DBCE to DDBCE) does not imply a reduction in

In Table 3, we compare CRT, CRTR with no DBCE, CRTR total bandwidth of x%. (2) The last instruction of each chain
with conservative DBCE, and CRTR with DDBCE. We com- further affects the extent to which the register value bandwidth
pute the bandwidth requirements for each technique by averagS reduced. For instance, a DBCE chain may end in a load
ing across the bandwidth requirements of the individual (Section 5.1). Such a chain does not contribute anything to the
programs. We also show the minimum and maximum valuesregister value bandwidth because the load value is sent anyway,
across the programs. The table also shows the impact of Varyin@/hereas a chain ending ina register ALU Operation contributes
the DCQ size as 20, 30, and 60 entries for DBCE and DDBCE°ne register value to the register value bandwidth. Similarly, a

From the table, we see that while CRT communicates abouP?PBCE chain may end in a branch (Section 5.2). Such a chain
5.2 bytes/cycle, CRTR with no DBCE almost doubles the band-does not require any register value bandwidth, because the
width at 9.8 bytes/cycle. DBCE using a 30-entry DCQ cuts Pranch outcome is sent anyway.
down CRTR’s bandwidth requirement to 7.8 bytes/cycle, a !n Figure 8, we plot CRT, CRTR with DDBCE and conser-
reduction of about 20%. DDBCE, also using a 30-entry DCQ, Vative DBCE using a restricted bandwidth of 7 bytes/cycle (“a”
further reduces the requirement to 7.1 bytes/cycle, which is &ars), and 6 bytes/cycle (“b” bars). We pick these bandwidth
reduction of 9% over DBCE. Note that although we consider all POints based on Table 3. We want to show the performance pen-
floating-point instructions as masking, floating-point programsalty of using DBCE at DDBCE's required bandwidth of 7
have non-masking integer instructions (e.g., address calculabytes/cycle; and the penalties of using DBCE and DDBCE at a
tors, loop indices) which chain and reduce bandwidth evenPandwidth of 6 bytes/cycle, which is lower than DDBCE's
under DBCE. required bandwidth. We do not show CRTR with no DBCE

Looking at the figures for DCQ size variation, we see that asince its bandwidth requirements are even higher. We use a

20-entry DCQ is within 95% of a 30-entry DCQ for both DBCE latency of 20 cycles, and as before, we show performance nor-
malized to the base CMP without any fault tolerance.

CRTR with DDBCE using 7 bytes/cycle performs as well as

Table 3: Bandwidth requirements in bytes/cycle
w qul In oy y CRT, which needs only 5 bytes/cycle. However, CRTR with

CRT | CRTR DBCE DDBCE
20 | 30| 60| 20| 30| 60 Table 4: Average chain length

Max 6.1 12.2 96| 81 8Q 86 74 T4 Benchmarks | Ignore Masking DBCE DDBCE
Min 4.2 7.4 71| 68| 6.8 6.7 6.6 6.5 INT 231 1.55 1.62
Avg 5.2 9.8 82| 78/ 76 74 7.1 6. FP 2.17 1.35 1.43




DBCE using 7 bytes/cycle incurs a degradation of 25% com-References

pared to CRTR with DDBCE. This substantial degradation jus-
tifies extending DBCE with DDBCE for improved filtering of
fault-tolerance traffic. This degradation occurs because DBCE
is unable to filter traffic to this restricted bandwidth, causing the
queues (LVQ, BOQ, and StB) to fill up. At a bandwidth of 6 [2]
bytes/cycle, which is below the level to which DDBCE can fil-

ter traffic, both DDBCE and DBCE incur large performance
degradations. This graph shows that for CRTR to perform ag3]
well as CRT, the net cost is the higher inter-processor band-
width requirement of CRTR. 4]

7 Conclusion

We proposed Chip-level Redundantly Threaded multipro- [5]
cessor with Recovery (CRTR) for chip multiprocessors
(CMPs). CRTR extends the previously-proposed CRT for tran-
sient-fault detection in CMPs, and the previously-proposedI€]
SRTR for transient-fault recovery in SMT. To hide inter-proces-
sor latency, CRTR uses a long slack enabled by asymmetric
commit and uses the trailing thread state for recovery. To tacklg7]
inter-processor bandwidth, CRTR both increases the bandwidth
supply by pipelining the communication paths, and reduces th%]
bandwidth demand (1) by extending the previously-proposed
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checking only committed values and not speculative values. By[9]
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corrupt later computation. [12]

Using SPEC2000, we found the following: (1) Because both [13]
CRT and CRTR communicate load and store values, the latency
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den under the load and store value communication, allowing
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with DDBCE needs a higher 7.1 bytes/cycle. (2) The long slack
enabled by asymmetric commit makes CRTR tolerant to inter-
processor latency of even 30 cycles. This tolerance is important
for CRTR to be effective in future technologies in which global [15]
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CMP performance. (3) The bandwidth requirements for CRT,
CRTR without DBCE, CRTR with conservative DBCE, and
CRTR with DDBCE are 5.2, 9.8, 7.8, and 7.1 bytes/cycle,
respectively. Because inter-processor bandwidth is a keyl16]
resource in present-day and future CMPs, the traffic reductions
achieved by DBCE and DDBCE are important.
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