
Transient-Fault Recovery Using Simultaneous Multithreading

T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng
School of Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907

{vijay, pomeranz, kkcheng}@ecn.purdue.edu

Abstract

We propose a scheme for transient-fault recovery called
Simultaneously and Redundantly Threaded processors with
Recovery (SRTR)that enhances a previously proposed scheme
for transient-fault detection, called Simultaneously and
Redundantly Threaded (SRT) processors. SRT replicates an
application into two communicating threads, one executing
ahead of the other. The trailing thread repeats the computation
performed by the leading thread, and the values produced by
the two threads are compared. In SRT, a leading instruction
may commitbeforethe check for faults occurs, relying on the
trailing thread to trigger detection. In contrast, SRTR mustnot
allow any leading instruction to commit before checking
occurs, since a faulty instruction cannot be undone once the
instruction commits.

To avoid stalling leading instructions at commit while wait-
ing for their trailing counterparts, SRTR exploits the time
between the completion and commit of leading instructions.
SRTR compares the leading and trailing values as soon as the
trailing instruction completes, typically before the leading
instruction reaches the commit point. To avoid increasing the
bandwidth demand on the register file for checking register
values, SRTR uses theregister value queue (RVQ)to hold reg-
ister values for checking. To reduce the bandwidth pressure on
the RVQ itself, SRTR employsdependence-based checking
elision (DBCE). By reasoning that faults propagate through
dependent instructions, DBCE exploits register (true) depen-
dence chains so that only the last instruction in a chain uses
the RVQ, and has the leading and trailing values checked.
SRTR performs within 1% and 7% of SRT for SPEC95 integer
and floating-point programs, respectively. While SRTR without
DBCE incurs about 18% performance loss when the number
of RVQ ports is reduced from four (which is performance-
equivalent to an unlimited number) to two ports, with DBCE, a
two-ported RVQ performs within 2% of a four-ported RVQ.

1 Introduction

The downscaling of feature sizes in CMOS technologies is
resulting in faster transistors and lower supply voltages. While
this trend contributes to improving the overall performance
and reducing per-transistor power, it also implies that micro-
processors are increasingly more susceptible to transient faults
of various types. For instance, cosmic alpha particles may
charge or discharge internal nodes of logic or SRAM cells; and
lower supply voltages result in reduced noise margins allowing
high-frequency crosstalk to flip bit values. The result is
degraded reliability even in commodity microprocessors for

which reliability has not been a concern until recently.
To address reliability issues, Simultaneously and Redun-

dantly Threaded (SRT) processors are proposed in [10] based
on the Simultaneous Multithreaded architecture (SMT) [17].
SRT detects transient faults by replicating an application into
two communicating threads, one (called the leading thread)
executing ahead of the other (called the trailing thread). The
trailing thread repeats the computation performed by the lead-
ing thread, and the values produced by the two threads are
compared.

Although SRT does not support recovery from faults, the
following features introduced by SRT for fault detection [10]
are important for recovery as well: (1) Replicating cached
loads is problematic because memory locations may be modi-
fied by an external agent (e.g., another processor during multi-
processor synchronization) between the time the leading
thread loads a value and the time the trailing thread tries to
load the same value. The two threads may diverge if the loads
return different data. SRT allows only the leading thread to
access the cache, and uses the Load Value Queue (LVQ) to
hold the leading load values. The trailing thread loads from the
LVQ instead of repeating the load from the cache. (2) The
leading thread runs ahead of the trailing thread by a longslack
(e.g., 256 instructions), and provides the leading branch out-
comes to the trailing thread through the Branch Outcome
Queue (BOQ). The slack and the use of branch outcomes hide
the leading thread’s memory latencies and branch mispredic-
tions from the trailing thread, since by the time the trailing
thread needs a load value or a branch outcome, the leading
thread has already produced it. (3) By replicating register val-
ues but not memory values, SRT comparesonly stores and
uncached loads, but not register values, of the two threads.
Because an incorrect value caused by a fault propagates
through computations and is eventually consumed by a store,
checkingonly stores suffices.

We proposeSimultaneously and Redundantly Threaded
processors with Recovery (SRTR)to extend SRT to include
recovery. Although systems using software recovery often
employ hardware detection [3,13], software checkpointing
incurs considerable performance cost even when there are no
faults. Therefore, hardware recovery at a modest performance
cost over detection is an attractive option, especially because
hardware recovery permits the use of off-the-shelf software.
We identify, for the first time, the following key issues:
• Problem: A fundamental implication of the SRT detection
scheme is that a leading non-store instruction may commit
before the check for faults occurs, relying on the trailing
thread to trigger detection. SRTR, on the other hand, mustnot

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

allow any leading instruction to commit before checking
occurs, since a faulty instruction cannot be undone once the
instruction commits. Unless care is taken, leading instructions
will stall at commit waiting for their trailing counterparts to
complete and undergo checking. This stalling will create pres-
sure on the instruction window and physical registers, and
degrade performance.
• Solution: To avoid stalling leading instructions, SRTR
exploits the time between the completion and commit of lead-
ing instructions. SRTR checks the results of a leading and the
corresponding trailing instruction as soon as the trailing
instruction completes, well before the leading instruction
reaches the commit point. For the SPEC95 benchmarks, com-
plete to commit times average at 29 cycles. This gap provides
sufficient time for a trailing instruction to complete before the
leading instruction reaches the commit point. To exploit the
complete to commit time, the slack between the leading and
trailing threads in SRTR must be short. At the same time, a
slack that is too short would cause the trailing thread to stall
due to unavailable branch outcomes and load values from the
leading thread. To support an appropriately short slack,
SRTR’s leading thread provides the trailing thread with branch
predictions instead of outcomes. Because the leading thread’s
branch predictions are available much earlier than the branch
outcomes, and because a short slack is sufficient for hiding on-
chip cache hit latencies, SRTR avoids trailing thread stalls
evenwith a short slack. We show that high prediction accura-
cies and low off-chip miss rates in the underlying SMT enable
SRTR, using a slack of 32, to perform within 5% of SRT, using
a slack of 256 (as in [10]), when the recovery mechanisms of
SRTR are disabled so that both schemes target only detection.
• Problem: By the time a leading instruction reaches the
commit point, its register value often has been written back to
the physical register file. Becauseall instructions are checked
in recovery, accessing the register file in order to perform the
check will add substantial bandwidth pressure.
• Solution: SRTR uses a separate structure, theregister
value queue (RVQ),to store register values and other informa-
tion necessary for checking of instructions, avoiding band-
width pressure on the register file.
• Problem: There is bandwidth pressure on the RVQ.
• Solution: We proposedependence-based checking elision
(DBCE)to reduce the number of checks, and thereby, the RVQ
bandwidth demand. By reasoning that faults propagate
through dependent instructions, DBCE exploits register (true)
dependence chains so thatonly the last instruction in a chain
uses the RVQ and has leading and trailing values checked. The
chain’s earlier instructions inboththreads completely elide the
RVQ. SRT can be viewed as taking such elision to the extreme
by observing that stores are the last instructions in any register
dependence chain, and that only stores need to be checked.
However, SRT’s chains are too long for SRTR because the
leading thread cannot commit until the last instruction in the
long chain is checked. DBCE forms short chains by exploiting
the abundant register dependencies in near-by instructions.
Because of the short slack and short chains, the trailing chain’s

last instruction completes only a few cycles behind the leading
chain’s earlier instructions. Consequently, checking of the last
instruction is usually done between the time the earliest lead-
ing instruction completes and the time it reaches the commit
point. DBCE redundantly builds chains in both threads and
checks its own functionality for faults. DBCE elides 35% of
checks for the benchmarks we consider. SRTR performs
within 1% and 7% of SRT for SPEC95 integer and floating-
point programs, respectively. SRTR without DBCE incurs
about 18% performance loss when the number of RVQ ports is
reduced from four (which is performance-equivalent to an
unlimited number) to two ports. With DBCE, a 2-ported RVQ
performs within 2% of a 4-ported RVQ.

SRTR is guaranteed to provide recovery from single tran-
sient faults except those that affect the register file and that fail
to propagate through dependence chains, in which case SRTR
guarantees detection.

We review SRT in Section 2. We describe the SRTR
scheme in Section 3 and DBCE in Section 4. In Section 5, we
present experimental results. In Section 6, we discuss related
work, and conclude in Section 7.

2 Transient-fault detection: background

SRT uses SMT’s multithreaded execution to replicate an
application into two communicating threads, one executing
ahead of the other. Comparing the results of two redundant
executions is the underlying scheme to detect transient faults
in SRT. Because detection is based on replication, the extent to
which the application is replicated is important. SRT formal-
izes this notion by defining thesphere of replication (SoR)
[10], pointing out that (1) all computation and data within this
sphere are replicated such that each thread uses its own copy,
(2) data entering the SoR is independently read by the two
threads usinginput replication, (3) data exiting the SoR from
the two threads are compared usingoutput comparison, and
only one copy of the checked data is stored outside the SoR.
Note that the input replicator and output comparator are out-
side the SoR. The input replicator and output comparator must
be self-checked and are typically implemented using dual-rail
logic. Because data outside the SoR is not replicated, other
forms of protection such as ECC are needed outside the SoR.

Two possible SoRs defined in [10] are: processor and regis-
ters inside the SoR, with the cache hierarchy outside; and only
the processor inside the SoR, with the registers and cache hier-
archy outside. In the first SoR, leading and trailing thread val-
ues need to be compared only for stores and uncached loads,
while other instructions can commit without comparing val-
ues. SRT uses a store buffer (StB) in which the leading thread
places its committed store values and addresses. The trailing
thread’s store values and addresses are compared against the
StB entries to determine whether a fault has occurred. In the
second SoR, all register values need to be checked. Checking
registers requires large buffers with high bandwidth to avoid
performance degradation.

As explained in Section 1, to handle cached loads, SRT
uses the ECC-protected Load Value Queue (LVQ) in which the

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

leading thread deposits its committed load values and
addresses. The trailing thread obtains the load value from the
LVQ, instead of repeating the load from the memory hierar-
chy. The Active Load Address Buffer proposed in [10] is an
alternative for the LVQ that also addresses this problem. We
use the LVQ because it is simpler.

A key optimization in SRT is that the leading thread runs
ahead of the trailing thread by an amount called theslack(e.g.,
the slack may be 256 instructions). In addition, the leading
thread provides its branch outcomes via the branch outcome
queue (BOQ) to the trailing thread. The slack and the commu-
nication of branch outcomes hide the leading thread’s memory
latencies and avoids branch mispredictions from the trailing
thread. Due to the slack, by the time the trailing thread needs a
load value or branch outcome, the leading thread has already
produced it.

SRT assumes that uncached accesses are performed non-
speculatively. SRT synchronizes uncached accesses from the
leading and trailing threads, compares the addresses, and repli-
cates the load data. SRT assumes that code does not modify
itself, although self-modifying code in regular SMTs already
requires thread synchronization and cache coherence which
can be extended to keep the leading and trailing threads con-
sistent. For input replication of external interrupts, SRT sug-
gests forcing the threads to the same execution point and then
delivering the interrupt synchronously to both threads.

3 Transient-fault recovery

We proposeSimultaneously and Redundantly Threaded
processors with Recovery (SRTR)that enhances SRT to
include transient-fault recovery. A natural way to extend SRT
to achieve recovery is to use the rollback ability of modern
pipelines, which is provided to support precise interrupts and
speculative execution [9]. Because transient faults do not per-
sist, rolling back to the offending instruction and re-executing
guarantees forward progress.

In SRT, a leading non-store instruction may commitbefore
the check for faults occurs. SRTR, on the other hand, mustnot
allow any instruction to commit before it is checked for faults.
Trailing instructions must complete and results must be com-
pared as much before the leading instructions reach the com-
mit point as possible, so that leading instructions do not stall at
commit. Therefore, the slack between the threads cannot be

long. At the same time, a near-zero slack would cause the trail-
ing thread to stall due to unavailable branch outcomes and load
values from the leading thread. To support a short slack,
SRTR’s leading thread provides the trailing thread with branch
predictions. In contrast, SRT’s leading thread provides branch
outcomes. Accordingly, SRTR counts slack in terms of fetched
(speculative) instructions, while SRT counts slack in terms of
committed instructions.

SRT uses committed values for branch outcomes, load
addresses and values, and store addresses and values. Conse-
quently, the StB, LVQ, and BOQ are simple queues that are
not affected by mispredictions. Because SRTR compares spec-
ulative values of the leading and trailing threads, SRTR needs
to handle the effects of mispredictions on these structures.

SRTR uses the SoR that includes the register file. Like SRT,
SRTR uses an out-of-order, SMT pipeline [16]. The pipeline
places instructions from all threads in a singleissue queue.
Instructions wait in this queue until source operands become
available, enabling out-of-order issue. Apart from the issue
queue, each thread’s instructions are also held in the thread’s
private active list (AL). When an instruction is issued and
removed from the issue queue, the instruction stays in its AL.
Instructions commit from the AL in program order, enabling
precise interrupts.We illustrate SRTR’s SoR and SRTR’s addi-
tions to SMT in Figure 1.

3.1 Synchronizing leading and trailing threads

For every branch prediction, the leading thread places the
predicted PC value in theprediction queue (predQ).This
queue is similar to the BOQ except that it holds predictions
instead of outcomes. The predQ is emptied in queue-order by
the trailing thread. Using the predQ, the two threads fetch
essentially the same instructions without diverging.

Because the ALs hold the instructions in predicted program
order and because the two threads communicate via the predQ,
corresponding leading and trailing instructions occupy the
same positions in their respective ALs. Thus, they can be eas-
ily located for checking. Note that corresponding leading and
trailing instructions may enter their ALs at different times, and
become ready to commit at different times. However, we use
the fact that the instructions occupy the same position in their
ALs to keep the implementation simple.

Due to the slack, the leading and trailing threads resolve

FIGURE 1: (a) SRTR’s Sphere of Replication. (b) SRTR’s additions to SMT.

To D-cache
Registers

CPU

L1 caches

L2 cache

Main memory

SoR

Bus

(a) (b) predQ

LVQ
RVQ

Fetch
Rename

I-cache
Decode

Register
File

Original

SRTR

SMT LdQ/StB

Commit Vector

Active List CommitIs
su

e
Q

ue
ue

Fu
nc

tio
na

l
U

ni
ts

Shadow Active List

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

their branches at different times. Upon detecting a mispredic-
tion in the leading thread, the leading thread cleans up the
predQ, preventing the trailing thread from using mispredicted
entries placed earlier in the predQ. There are two possibilities
for the timing of events related to a misprediction: (1) The
leading branch resolves after the trailing thread has already
used the corresponding predQ entry, or (2) the leading branch
resolves before the entry is used by the trailing thread.

The first possibility implies that the trailing AL position
which mirrors the leading branch’s AL position is valid and
contains the trailing branch. There are mispredicted trailing
instructions in the trailing AL. The leading thread then
squashes the mispredicted instructions in the trailing AL, and
the existing predQ entries which contain fetch PCs from the
incorrect path. Because the leading and trailing ALs are identi-
cal, the leading branch can use its own AL pointer to squash
the trailing AL. The second possibility implies that the trailing
AL position which mirrors the leading branch’s AL position is
beyond the tail of the trailing AL. In this case, the leading
branch squashes all predQ entries later than its own predQ
entry, and places the branch outcome in the predQ to be used
by the trailing thread later. To prevent faults from causing
incorrect squashing, AL pointers are protected by ECC.

Although the leading thread rolls back the predQ and the
ALs of both threads upon a misprediction, the leading
branch’s outcome is still checked against the trailing branch’s
outcome. The rollback is an optimistic action to reduce the
number of mispredicted trailing instructions, assuming that the
leading thread is fault-free. If the leading thread’s mispredic-
tion is incorrectly flagged due to a fault, the trailing branch’s
check triggers a rollback. We discuss the details of checking in
Section 3.3.

3.2 Modifying LVQ

SRT uses a strict queue-ordering for the LVQ, i.e., the lead-
ing thread inserts committed load values and addresses at the
tail, and the trailing thread empties the load values and
addresses from the head of the queue. SRTR modifies SRT’s
LVQ to operate on speculative cached loads, and therefore,
cannot maintain the strict queue order of SRT. To keep the
LVQ as compact as possible, we use a table, called theshadow
active list (SAL), to hold pointers to LVQ entries (Figure 1(b)).
The SAL mirrors the AL in length but is much narrower than
the LVQ, and instructions can use the AL pointer to access
their information in the SAL. The SAL is also helpful in
checking register values as explained in Section 3.3.

A leading load allocates an LVQ entry when the load enters
the AL, and places a pointer to the entry in the SAL. Because
loads enter the AL in (speculative) program order, LVQ entries
are allocated in the same order, simplifying misprediction han-
dling, as explained at the end of the section. Upon issue, the
leading load obtains its LVQ pointer from the SAL and places
its load value and address in the LVQ. The trailing load also
obtains the LVQ pointer from the SAL, and the trailing load’s
address and the leading load address stored in the LVQ are
compared, as done in SRT. On a match, the trailing load

obtains the leading load value from the LVQ. A mismatch of
the addresses flags a rollback (as explained in Section 3.3)
with three possibilities: (1) the address value produced by a
previous instruction is faulty and the faulty instruction will ini-
tiate a rollback upon being checked; (2) the address computa-
tion of the load is faulty and the load instruction will cause
rollback to be initiated; (3) the previous instruction was
checked and committed and the address register has been cor-
rupted since. Because the register file is inside the SoR, SRTR
flags a fault but cannot recover in the third case without pro-
tecting the register file with ECC.

Even though leading instructions are fetched and placed
ahead of the corresponding trailing instructions in the issue
queue, it is possible that a trailing load is issued before the
leading load. A possible solution is to place the premature
trailing load’s address in the empty LVQ entry. When the lead-
ing load arrives at the LVQ, the addresses are compared and
the pending trailing load is satisfied. This solution naturally
extends to the case where a trailing load issues after the lead-
ing load, but finds the LVQ entry empty due to the leading
load missing in the cache. Note that the LVQ is ECC-protected
and so values stored in it are not vulnerable to faults.

An LVQ entry is relinquished in queue order after the trail-
ing instruction reads the entry. Upon a leading branch mispre-
diction, the SAL is rolled back in parallel with the clean-up of
the AL. To facilitate the rollback of the LVQ, branches place
the LVQ tail pointer in the SAL at the time they enter the AL.
Because the LVQ is in (speculative) program order, the LVQ
tail pointer points to the LVQ entry to which the LVQ needs to
be rolled back, if the branch mispredicts. A mispredicted
branch’s AL pointer locates the LVQ tail pointer in the SAL,
and the LVQ is rolled back to the pointer. Like the predQ’s
rollback, the LVQ’s rollback is also an optimistic action and
the leading branch is checked to confirm the misprediction.

3.3 Checking leading and trailing instructions

SRTR checks the leading and trailing instructions as soon
as the trailing instruction completes. Register values often
have been written back to the physical register file by the time
the check is performed. To address this issue, SRTR uses a
separate structure, theregister value queue (RVQ)to store reg-
ister values for checking, avoiding bandwidth pressure on the
register file (Figure 1(b)). In this section, we assume that all
the instructions including branches, but excluding loads and
stores use the RVQ to be checked. We assume that the RVQ
can provide the required bandwidth. We address the band-
width pressure on the RVQ in Section 4.

Because the trailing instructions need to locate the leading
counterpart’s value in the RVQ, the leading instruction allo-
cates an RVQ entry at the time of entering the AL, and places a
pointer to the entry in the SAL for the trailing instruction.
After the leading instruction writes its result back, it enters the
fault-checkstage, as shown in Figure 2. In the fault-check
stage, the leading instruction puts its value (for branches, the
next PC, the prediction and the outcome are all part of the
value) in the RVQ using the pointer from the SAL. The

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

instruction then waits in the AL to commit or squash due to
faults or mispredictions. Because the fault-check stage isafter
writeback, the stage does not affect branch misprediction pen-
alty, or the number of bypass paths.

The trailing instructions also use the SAL to obtain their
RVQ pointers and find their leading counterparts’ values.
While it is likely that the leading instruction reaches the fault-
check stage before the trailing instruction, out-of-order pipe-
lines may reverse the order. To handle such reversals, if the
trailing instruction finds the RVQ entry of its leading counter-
part to be empty, it places its own value. When the leading
instruction reaches the fault-check stage, it finds the value and
the check is performed. A full/empty bit in the RVQ is used to
indicate whether or not the RVQ entry contains leading or
trailing values. The full/empty bits need to be ECC-protected
to prevent corrupted full/empty bits from causing leading and
trailing instruction pairs to wait forever. An RVQ entry is
relinquished in queue order after the checking is done. Branch
misprediction clean-up of the RVQ uses the SAL in the same
way as the clean-up of the LVQ.

SRTR places completed leading store values and addresses
in the StB. When a trailing store completes, its value and
address are compared to the leading store’s value and address
in the StB, similar to the checking of load addresses in the
LVQ.

Register values, store addresses and values, and load
addresses are checked in the RVQ, StB, and LVQ, respec-
tively. If a check succeeds, thecommit vector (CV)entries cor-
responding to the leading and trailing instructions are set to the
checked-okstate. Indexed by AL pointers, the CVs are parallel
to the ALs (Figure 1(b)). As instructions are placed in the AL,
their CV entries are set to thenot-checked-yetstate. A leading
instruction commits only if its CV entry and its trailing coun-
terpart’s CV entry are in the checked-ok state. If the state is
not-checked-yet, the instruction is stalled at commit until it is
checked. Due to the slack, leading instructions may commit
ahead of their trailing counterparts.

If a check fails, the CV entries of the leading and trailing
instructions are set to thefailed-checkstate. When a failed-
check entry reaches the head of the leading AL, all later
instructions are squashed. The leading thread waits until the
trailing thread’s corresponding entry reaches the head of the
trailing AL before restarting both threads at the offending
instruction. Because there is a time gap between the setting
and the reading of the CV and between the committing of
leading and trailing counterparts, the CV is protected by ECC
to prevent faults from corrupting it in the time gap.

There are faults from which SRTR cannot recover: After a
register value is written back and the instruction producing the
value has committed, if a fault corrupts the register, then the

fact that leading and trailing instructions use different physical
registers will allow us to detect the fault on the next use of the
register value. However, SRTR cannot recover from this fault.
To avoid this loss of recovery, one solution is to provide ECC
on the register file.

4 Reducing bandwidth demand on RVQ

The RVQ needs to allow as many writes or reads of register
values per cycle as the number of leading and trailing non-
memory instructions completing in one cycle. Because the
RVQ has as many entries as in-flight leading instructions
(around 120 64-bit values, totaling to 1KB), providing multi-
ple ports to support high bandwidth (e.g., four 64-bit values
per cycle) may be hard.

We proposedependence-based checking elision (DBCE)to
reduce the number of instructions accessing the RVQ. To keep
the implementation simple, we use only simple dependence
chains such that each instruction in a chain has at most one
parent and one child (instead of maintaining the full depen-
dence graph). By reasoning that faults propagate through
dependent instructions, DBCE exploits register (true) depen-
dence chains so thatonly the last instruction in a chain uses the
RVQ, and has the leading and trailing values checked. We
show an example of a five-instruction sequence in Figure 3(a).
The chain’s earlier instructions inboth threads completely
elide the RVQ. If the last instruction check succeeds, it signals
the previous instructions in the chain that they may commit; if
the check fails, all the instructions in the chain are marked as
having failed and the earliest instruction in the chain triggers a
rollback. A key feature of DBCE is that both leading and trail-
ing instructions redundantly go through the same dependence
chain formation and checking-elision decisions, allowing
DBCE to check its own functionality for faults.

If the last instruction of a chain is further in the instruction
stream and completes much later than the other instructions,
the chain’s earlier instructions will stall at commit. To avoid
this situation, DBCE forms short dependence chains (e.g., 3-4
instructions) by exploiting the abundant register dependencies
in near-by instructions. If DBCE’s chains arem instructions
long, DBCE checks only one out ofm instructions, reducing
the bandwidth by a factor ofm. Because of short slack and
short chains, the trailing chain’s last instruction completes just
a few cycles behind the leading chain’s earlier instructions.
Consequently, checking of the last instructions is usually done
between the time the earliest leading instruction completes and
the time it reaches the commit point.

Because leading loads deposit their values in the LVQ for
the trailing loads, there is no notion of eliding of checking for
load values, and hence loads are not included in the chains.
Stores are checked in the StB and do not use the RVQ. There-
fore, stores are not included in the chains as well. Because
branches do not produce register values, branches cannot be in
the middle of a chain. A branch may be at the end of a chain
and in that case it itself cannot elide checking but it helps elide
checking for the instructions preceding it in its chain. If chains
are allowed to cross branches, mispredictions will require

ex
ec

ut
e

fe
tc

h

de
co

de

re
na

m
e

is
su

e

re
ad

m
em

or
y

w
rit

eb
ac

k

fa
ul

t-
ch

ec
k

FIGURE 2: SRTR pipeline with fault-check stage.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

clean-up of chains whose later instructions have been
squashed due to an intervening branch misprediction. To avoid
such clean-ups, DBCE disallows chains from crossing
branches.

Care must be taken in forming chains with instructions that
mask a subset of bits (e.g., r2 := r1 & 0xff00), or that compare
two values (e.g., r1 := (r2 < r3)). If a masking (or comparing)
instruction is in a chain, then the instruction may mask a fault
in its source operands. Such masking violates the key assump-
tion behind DBCE, that faults are propagated by dependences,
and a later instruction included in the masking instruction’s
chain cannot detect the masked fault. For instance, in a chain
containing r1 := r2 + r3, r2 := r1 & 0xff00, and r4 := r2 + r3,
the check done on the value of r4 does not cover all the bits of
r1. If the first instruction produces a faulty value for r1, and r1
is used by instructions other than the one shown above, recov-
ery will not be possible. This issue can be resolved by disal-
lowing masking instructions in the middle of a chain. A
masking instruction may, however, start a chain because the
instruction’s source operands will be checked in previous
chains, without allowing any faults to be masked. If an instruc-
tion masks some bits for specific inputs (e.g., multiply masks
all the bits if one of its source operands is zero), a pessimistic
approach would be to disallow the instruction in the middle of
a chain. Since the likelihood of such input-specific masking is
low, it may be acceptable to ignore the masking and treat the
instruction as a non-masking instruction.

Exploiting dependence chains consists of (1) forming
dependence chains in the leading thread and the corresponding
chains in the trailing thread, and tagging each chain with a
unique tag, (2) identifying the instructions in the leading and
trailing threads requiring the check, (3) preventing the rest of
the instructions (leading and trailing) in the chains from
accessing the RVQ and from checking, and (4) notifying the
non-checking instructions in the chains after the check is per-
formed.

4.1 Forming dependence chains

To form dependence chains, DBCE uses the dependence
chain queue (DCQ), which holds information about renamed
instructions that were fetched in the last few cycles (e.g., 1-2
cycles). The instructions are kept in the instruction fetch order.
Each DCQ entry holds the destination physical register and the
AL pointer of an instruction, a tag which identifies the chain to
which the instruction belongs, and a flag to indicate if the
instruction already has a dependent instruction in its depen-

dence chain. The AL pointer of the first instruction in a chain
is used as the chain’s tag. Figure 3(b) shows the DCQ entries
for only the leading instructions in the example of Figure 3(a),
assuming that logical register x maps to physical register 100
+ x.

Upon entering the DCQ, an instruction associatively
searches the DCQ using its source physical register numbers,
matching them against destination physical register numbers
of instructions in the DCQ. If there is no match on any source
register, or if all the matching instructions already have their
flags set indicating that those instructions already have chil-
dren, there is no live chain to which the current instruction can
belong; then the instruction uses its own AL pointer as its tag,
and clears its own flag to start a new chain. Branches cannot
start a chain, and are removed from the DCQ if they cannot
join a live chain. If there is a matching entry with a clear flag,
the current instruction adds itself to the matching entry’s chain
by setting the matching entry’s flag and obtaining the match-
ing entry’s AL pointer and tag. It clears its flag to allow addi-
tional instructions to join the chain. If two sources of an
instruction match entries with clear flags, the current instruc-
tion adds itself to the chain corresponding to the first source.

Leading and trailing instructions form chains indepen-
dently. Because there are no dependencies between the two
threads, the DCQ can hold the two threads simultaneously.
However, because fetching of leading and trailing instructions
is interleaved, care must be taken to ensure that the DCQ will
form identical dependence chains in the leading and trailing
threads. The chains formed may be different if fetch brings a
number of leading instructions, switches and brings a smaller
number of trailing instructions before switching back to the
leading thread. The larger number of leading instructions may
cause longer chains to be formed than the fewer trailing
instructions.

A simple solution is to have the leading and trailing threads
each occupy half the DCQ, as shown in Figure 4(a). Every
cycle either leading or trailing thread instructions reach the
DCQ. The DCQ evicts the oldest entries of the same thread to
make room for the new instructions. Upon evicting the oldest
entries, the DCQ terminates the chains originating at the
entries, ensuring that the chains stay short and span at most as
many cycles as the DCQ depth. The instructions in the termi-
nated chains are recorded in thecheck tablefor later use. The
AL pointer of each of the oldest entries is used to search the
DCQ tags, and the matching entries are all the instructions in
the chain originating at the oldest entry. Although the number

FIGURE 3: (a) DBCE concept. (b) DCQ entries showing only leading instructions.

leading thread

trailing thread

if 5 checks ok, allow 1,3,5 to commit
program
order
earlier

program
order
later

(a) (b)

12345

dependent
instruction

independent
instruction

true register

23

1 add r1 = r2 + r3
2 sub r20 = r21 - r22
3 shift r4 = r1, 2
4 sub r24 = r25 - r26
5 add r5 = r4 + 20

45 1

dependence phy reg AL ptr chain tag flag

101 1 1 1

120 2 2 0

104 3 1 1

124 4 4 0

105 5 1 0

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

of oldest entries may be as large as the fetch width requiring as
many parallel searches of the DCQ, the DCQ’s small size
keeps this parallel search manageable (e.g., 8-way search of 16
entries).

The matching DCQ entry that has a clear flag is the last
instruction in the oldest entry’s chain. The chain’s non-last
instructions use their AL pointers to index into the check table.
In the table, the non-last instructions set thenot-checkbits to
indicate that they elide checking, and they update theirlast-
instruction fields with the last instruction’s AL pointer. The
chain’s last instruction keeps its not-check bit clear and
updates its last-instruction field with its own AL pointer.
Figure 4(b) shows the fields for the example in Figure 3(a),
using “L” to denote leading instructions and “T” to denote
trailing instructions. Thus, the check table records the chain,
identifying the chain’s last instruction as needing to check and
the rest of the instructions as eliding checking. The check table
also associates the eliding instructions with the last instruction
whose check covers them.

Operating on renamed instructions guarantees that match-
ing source registers with previous destinations without check-
ing for multiple matches in the DCQ is correct. Also, the DCQ
implements a subset of the functionality of renaming and
bypass. While it may be possible to use the existing renaming
and bypass logic, we describe the DCQ separately for clarity,
avoiding implementation details of rename and bypass.

4.2 Using dependence chains

When a leading or trailing instruction reaches writeback,
the instruction uses its AL pointer to index into the check table
and obtain the AL pointer of the last instruction in its chain.
Then the leading and trailing not-check bits in the check table
entry are compared. If the bits do not match (indicating a mis-
match between the leading and trailing chains caused by a
fault), the CV entries of the last instructions in both chains are
set to failed-check. Otherwise, if the not-check bit is set, the
instruction elides checking and waits in the AL to commit,
holding its last instruction AL pointer. If the not-check bit is
clear, the leading instruction places its value in the RVQ for
later checking. Note that the AL pointers carried by the
instructions are ECC-protected. This allows the leading and
trailing instructions to access the check table independently
without checking against each other’s AL pointers.

Later, the trailing instruction indexes into the check table
and the not-check bits are compared as above. If both the lead-

ing and trailing not-check bits are clear, the leading instruc-
tion’s value is obtained from the RVQ. The leading and
trailing instructions’ values are then compared. If the check
succeeds, the trailing AL pointer is used to mark the CV
entries of both leading and trailing instructions as checked-ok.
If the check fails, the CV entries are marked as failed-check.
In a chain, only the last-instruction’s CV entries are marked,
and the rest of the instructions’ CV entries remain in the not-
checked-yet state. If the trailing instructions reach the RVQ
first, then the role of the leading and trailing instructions
reverse in the above.

When a leading instruction reaches the head of the AL, its
last-instruction’s AL pointer is compared to that of its trailing
counterpart. On a match, the leading instruction uses its last-
instruction’s AL pointer to probe the leading and trailing CV
entries. Depending on the CV entries, the instruction waits (if
the CV entries are not-checked-yet), commits (if the CV
entries are checked-ok), or squashes (if the CV entries are
failed-check); squashing also occurs on a mismatch. When a
trailing instruction reaches the head of its AL, if the leading
thread has already committed, the CV entry of the trailing
thread is guaranteed to be checked-ok and the trailing instruc-
tion will commit.

Upon instruction commit, the check table entry corre-
sponding to the committing instruction’s AL pointer are
cleared. On an instruction squash, the check table entries cor-
responding to the squashed AL pointers are invalidated.
Because the DCQ holds later instructions down the stream
from the squashing instruction, all the DCQ entries from the
squashing thread are discarded on a squash.

DBCE needs to guarantee that a dependence chain is fully
formed before any of the instructions in the chain enter the
writeback stage. Otherwise, when earlier instructions need to
know the identity of the last instruction to update the CV and
AL, the last instruction will not yet have been identified. We
avoid this situation by ensuring that the number of cycles the
DCQ spans (1-2 cycles) is smaller than the number of pipeline
stages between issue and writeback (usually more than two).

If an interrupt/exception occurs in the middle of a chain,
the exception delivery (which is the same as in SRT, as
described at the end of Section 2) places the exception at the
same execution point in both threads. The excepting instruc-
tion and all the previous instructions in the chain wait in the
active list for the last instruction in the chain to complete and
be checked. Even though the last instruction may be after the
excepting instruction in program order, it is acceptable to
allow the last instruction to complete but not commit. Only
after the checking occurs, is the excepting instruction (and all
the previous instructions in the chain) deemed ready to com-
mit. Under this condition, when the excepting instruction
reaches the commit point in both threads, an exception is
flagged. The rest of the instructions in both threads are now
squashed. After the interrupt is handled, execution restarts at
the same point for both threads, and new chains are formed
afresh. Thus, instructions are committed one by one, exactly as
in conventional SMT.

FIGURE 4: (a) DCQ. (b) Check Table.

DCQ - leading

DCQ - trailing

12345

12345

(b)(a)

not-
check

last-
instr

1
2
3
4
5

index

L T L T
1 1 5 5
0 0 2 2
1 1 5 5
0 0 4 4
0 0 5 5

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

To allow several accesses every cycle, the DCQ has to pro-
vide high bandwidth. Because the DCQ holds a small number
of instructions, it can be implemented to support high band-
width (e.g., 8-16 instructions each requiring one 8-bit destina-
tion register number, three 8-bit AL pointers, and a few bits for
a flag, totaling to about 80 bytes). Building a high-bandwidth
RVQ, which is kilobytes in size, is harder, for the same reason
that rename tables are widely multiported but D-caches are
only dual-ported. The check table is also a high-bandwidth
structure because every leading and trailing instruction
accesses it. Because the check table holds only two AL point-
ers and two flags per entry, multi-porting it is easier than
multi-porting the much-larger RVQ.

5 Experimental results

We modify the Simplescalar out-of-order simulator [2] to
model SMT and SRT. Table 1 shows the base system configu-
ration parameters used throughout the experiments. The front-
end of our base pipeline is long to account for SMT and deep
pipelines corresponding to high clock speeds. Like SRT, we
approximate a high-bandwidth trace cache by fetching past
three branches, and at most eight instructions, per cycle [10].
Table 2 presents the SPEC95 benchmarks and their inputs
used in this study. In the interest of space, we show results for
a subset of the SPEC95 applications, which are representative
of our results over the entire SPEC95 suite. We run the bench-
marks to completion, or stop at 1 billion instructions in the
interest of simulation time.

We present results in the absence of faults in order to study
the performance cost of SRTR over SRT. In the presence of
faults, SRTR can recover but SRT will stop as soon as it
detects a fault. Therefore, a comparison of performance is not
possible when faults occur. In addition, faults are expected to
be rare enough that the overall performance will be determined
by fault-free behavior.

Because the basic scheme used in SRTR for detection is
different from that used in SRT, we start by comparing the
SRTR detection scheme (without recovery) against SRT. We
refer to the detection scheme implemented in SRTR asSRTRd.
SRTRd uses a short slack and it communicates branch predic-
tions between the leading and trailing threads, while SRT uses
a long slack and communicates branch outcomes. In the same
experiment, we also show the performance impact of near-zero

slack. Then, we report the average time gap between complete
to commit, and average memory latencies in the base SMT.
These parameters determine the constraints on SRTR’s slack
which needs to be shorter than the average complete to commit
times to avoid leading thread stalls at commit, but long enough
to avoid trailing thread stalls due to empty LVQ. We then com-
pare SRTR (providing recovery) using a high-bandwidth RVQ,
to SRTRd and SRT. This comparison gives the performance
cost of recovery over detection. We show the impact of the
RVQ size on SRTR’s performance. Finally, we show the band-
width reduction achieved by DBCE while maintaining the
same performance as the high-bandwidth RVQ.

5.1 SRT versus SRTRd

In Figure 5, we compare SRTRd and SRT. We show the
performance normalized to the base SMT executing only the
standard program. We use a slack of 256 and a 256-entry
BOQ, 256-entry LVQ and 256-entry StB for SRT, exceeding
the sizes for the best performance reported by SRT [10]. For
SRTRd, we use predQ/LVQ/StB sizes of 128/128/128 for a
slack of 128, 80/96/80 for a slack of 64, 48/96/48 for a slack of
32, and 18/96/18 for a slack of 2. The purpose of this experi-
ment is to compare using a short slack and communicating
branch predictions between the leading and trailing threads,
against using a long slack and communicating branch out-
comes. We do not want the queues to fill up and interfere with
this comparison. Therefore, we keep the sizes of SRTRd’s
queues appropriately large for each slack value. It is important
to note that SRTR needs a short slack to avoid leading instruc-
tions stalling at commit while waiting for trailing instructions
to complete and be checked. This effect does not exist in
SRTRd, which performs well with higher values of slack.

From Figure 5, the performance of SRT is between 2% to
45% worse than the base SMT. These numbers are in line with
SRT [10]. On average, SRT is 21% worse than SMT for the
integer programs (go throughcompress), and 27% worse than
SMT for the floating point (FP) programs (swimthroughtom-
catv). In general, programs which exhibit enough ILP to satu-
rate the processor resources in the base SMT incur higher

Table 1: Hardware parameters for base system.
Component Description
Processor 8-way out-of-order issue,128-entry

issue queue
Branch
prediction

hybrid 8K-entry bimodal, 8K-entry
gshare, 8K 2-bit selector
16-entry RAS, 4-way1K BTB (10-
cycle misprediction penalty)

L1 I- and D-cache 64KB, 32-byte blocks, 4-way, 2-cycle
hit, lock-up free

L2 unified cache 1 Mbyte,64-byte blocks, 4-way, 12-
cycle hit, pipelined

Main memory Infinite capacity, 100 cycle latency

Table 2: Benchmarks and inputs.
Benchmark Input #instrs x 106 single thread

IPC
go train 600 1.17
lisp test 1000 1.63
gcc test 1000 1.28
perl jumble 1000 1.90
ijpeg vigo 1000 2.58
vortex train 1000 2.12
m88ksim test 500 2.89
compress train 40 2.16
swim test 780 2.53
applu train 680 2.93
fpppp train 510 0.59
su2cor test 1000 2.18
hydro2d test 1000 1.94
tomcatv test 1000 2.69

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

performance loss due to replication in SRT (and SRTRd).
While a short slack of 64 or 32 performs close to a slack of

256, a near-zero slack of 2 incurs greater performance loss for
many programs. For the integer programs, SRTRd on average
performs as well as SRT for slacks of 128 and 64, and within
1% of SRT for a slack of 32, showing that communicating
branch predictions works as well as outcomes. For a slack of
2, STRTd performs about 5%, on average, worse than SRT,
with lisp incurring a 10% performance loss. This loss is
mainly due to unavailable load values in the LVQ (explained
in Section 5.2). For the FP programs, SRTRd performs as well
as SRT for a slack of 128, and within 3% and 5% of SRT for a
slack of 64 and 32, respectively. For a slack of 2, SRTRd per-
forms about 8%, on average, worse than SRT, withhydro2d
incurring a 26% performance loss.

In a few cases such asgo, tomcatv, andsu2cor, SRTRd per-
forms slightly better than SRT due to the interaction between
branch mispredictions and slack. Branch mispredictions cause
the actual slack to reduce temporarily. In SRT, this reduction
results in the trailing thread stalling for branch outcomes,
whereas SRTRd is not affected by this reduction because
SRTRd’s trailing thread uses branch predictions which are
available earlier than branch outcomes. Long delays in branch
resolution intomcatvandsu2cor,andgo’s frequent mispredic-
tions make these programs vulnerable to this effect.

5.2 Constraints on SRTR’s slack

While SRTRd performs well with a large slack, recovery
will require a shorter slack as discussed earlier. In this section,
we explain why a short slack suffices, and how short the slack

may be and still not impact performance. For SRT, SRTRd,
and SRTR (providing recovery), the slack needs to be long
enough to hide the leading thread’s average memory latency
from the trailing thread. However, SRTR’s slack needs to be
short enough so that trailing instructions can complete and be
checked before the leading counterparts reach the commit
point. Hence, SRTR’s slack needs to be longer than the mem-
ory latency but shorter than the complete to commit time.

In Table 3, we tabulate the average number of cycles
between complete and commit and the average memory
latency for the base SMT. We compute the average memory
latency as L1 hit time + L1 miss rate * L1 miss penalty + L2
miss rate * L2 miss penalty. This latency is the impact of the
leading thread’s load latency on the trailing thread assuming
the worst case where the latency is completely exposed in the
trailing thread. We see that due to good cache performance,
the average memory latency is close to the hit time suggesting
that the slack primarily needs to hide on-chip cache hit laten-
cies. In general, the FP programs (swimthroughtomcatv) have
a higher memory latency explaining their worse performance
with shorter slacks. For instance,hydro2dhas a long average
memory latency, and performs poorly with a slack of 2.

For all the programs, the gap between the average complete
to commit time and the average memory latency is large
enough to allow a slack longer than the average memory
latency but shorter than the average complete to commit time.
Even for memory-intensive applications which may have
higher miss rates than our benchmarks, the gap is likely to be
large enough to allow a reasonable slack. Note that slack is
counted in number of instructions by which the leading thread
is ahead, and the numbers in Table 3 are numbers of cycles.
Because fetch can obtain up to 8 instructions per cycle, a slack
of 32 is equivalent to 4 cycles.

5.3 SRTR recovery

The average complete to commit times in Table 3 suggest a
range for appropriate slack values. To select an acceptable
value for the slack, it is important to note that the complete to
commit time of individual instructions vary quite widely. For
instance,lisp, compressand tomcatv have 40%, 50%, and
40%, respectively, instructions whose complete to commit
times are fewer than 10 cycles. Therefore, a long slack may
cause many leading instructions to stall at commit waiting for
their trailing counterparts to complete and be checked. It is
thus important to select a slack value which accommodates the
majority of the instructions.

In Figure 6, we compare SRT using a slack of 256 to SRTR

Table 3: Slack constraints.
Benchmark Ave. memory

latency
#Ave. complete to
commit time

go 2.02 15.5
lisp 2.0 22.8
gcc 2.15 20.5
perl 2.22 27.3
ijpeg 2.15 27.4
vortex 2.15 39.4
m88ksim 2.01 25.4
compress 2.89 26.5
swim 3.36 39.5
applu 3.64 34.3
fpppp 2.0 20.6
su2cor 3.83 40.1
hydro2d 5.80 45.4
tomcatv 2.01 31.3

FIGURE 5: SRT vs. SRTR detection.

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 1
-th

re
ad

 S
M

T

abcd e

a: SRT 256 b: SRTRd 128 c: SRTRd 64 d: SRTRd 32 e: SRTRd 2

go lisp gcc perl ijpeg m88ksimvortex compress swim applu fpppp su2cor hydro2d tomcatv
0.0
0.2
0.4
0.6
0.8
1.0

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

(providing recovery) varying the slack for SRTR as 80, 64, 32,
and 2. Because SRTRd using a slack of 128 performs as well
as SRT, we do not show SRTRd in this graph. To isolate the
effect of the slack, we use a bandwidth-unlimited (i.e., 8
ports), 128-entry RVQ (we vary the RVQ size later). We use a
256-entry BOQ, 256-entry LVQ and 256-entry StB for SRT.
For SRTR, we use predQ/LVQ/StB sizes of 128/128/128 for a
slack of 80, 80/96/80 for a slack of 64, 48/96/48 for a slack of
32, and 18/96/18 for a slack of 2. As in Section 5.1, we show
performance normalized to the base SMT executing only the
standard program.

It can be seen that SRTR’s average performance peaks at a
slack of 32. For the integer programs (go throughcompress),
SRTR using a slack of 64 and 32 on average performs 3% and
1% worse than SRT. For the FP programs (swimthroughtom-
catv), SRTR on average performs 7% worse than SRT for both
a slack of 64 and 32. As expected, decreasing the slack to 2
causes performance degradation. Increasing the slack to 80
also causes performance degradation. SRTR using a slack of
80 on average performs 5% and 9% worse than SRT for the
integer and FP programs, respectively. A slack of 80 makes the
leading thread stall at commit, putting pressure on the instruc-
tion window. Thus, using a slack of 32 seems to be the best
choice for these benchmarks.

5.4 RVQ size

In this experiment, we measure the impact of varying the
RVQ size on the performance of SRTR. RVQ entries are allo-
cated as leading instructions enter the AL and freed in queue-
order as the trailing counterparts obtain the RVQ values.
Hence, the RVQ size depends on the issue queue size and the
slack. In Figure 7, we compare SRT using a slack of 256 to
SRTR using a slack of 32 (which was identified as the best
value in the last section) and predQ/LVQ/StB sizes of 48/96/
48, but varying the RVQ size as 128, 96, 80, and 64 entries. As
before, we show performance normalized to the base SMT
executing only the standard program.

It can be seen that an RVQ size of 80 entries works as well
as 128 entries for all the programs. With 64 entries, while most
programs experience no degradation, a few programs likegcc,
compressand su2cor incur a small performance loss while
ijpeg, applu, hydr2dandtomcatvslow down considerably. For
these benchmarks, an RVQ size of 80 entries seems appropri-
ate and achieves the same performance as a 128-entry RVQ.

5.5 DBCE

In this section, we show the effectiveness of DBCE in
reducing the bandwidth demand on the RVQ. We measure the
impact of RVQ bandwidth on SRTR without and with DBCE.
Loads and stores do not use the RVQ and hence the RVQ
bandwidth demand comes solely from the ALU/FPU and
branch instructions. Both with and without DBCE, SRTR uses
a slack of 32, predQ/LVQ/StB sizes of 48/96/48 entries, and an
80-entry RVQ (which was identified as the best size in the last
section). We use a DCQ size of 16 (8 for each thread). We var-
ied the DCQ size but did not find much difference mainly
because the chains are broken at branches, and branch fre-
quency impacts the chain length more than the DCQ size.
Because four RVQ ports are as good as five or more for SRTR
without DBCE, we vary the number of RVQ ports as 2, 3, and
4. We use SRT with a slack of 256 as the reference, and show
performance normalized to the base SMT executing only the
standard program.

We show the results in Figure 8. In our implementation, we
assume that faults propagate through all instructions, including
those that may mask faults. Because the percentage of mask-
ing instructions is usually low [10], this assumption will not
affect our results significantly.

In Table 4, we show the number of RVQ accesses elided by
DBCE as a percentage of all RVQ accesses made without
DBCE. On average, DBCE elides 35.3% of all RVQ accesses
in both leading and trailing threads. For most programs, the
percentage of elided instructions is high using a DCQ of just
16 entries because the programs have an abundance of register

FIGURE 6: SRTR recovery.

P
er

fo
rm

an
ce

 r
el

at
iv

e a: SRT 256 b: SRTR 80 c: SRTR 64 d: SRTR 32 e: SRTR 2
to

 1
-t

hr
ea

d
S

M
T

abcd e

go lisp gcc perl ijpeg m88ksimvortex compress swim applu fpppp su2cor hydro2d tomcatv0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 7: Impact of RVQ size.

P
er

fo
rm

an
ce

 r
el

at
iv

e a: SRT b: SRTR 128 c: SRTR 96 d: SRTR 80 e: SRTR 64

to
 1

-t
hr

ea
d

S
M

T

abcd e

go lisp gcc perl ijpeg m88ksimvortex compress swim applu fpppp su2cor hydro2d tomcatv0.0

0.2

0.4

0.6

0.8

1.0

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

dependences in nearby instructions. The exceptions arevortex
and fpppp; both programs have a high fraction (52.8% and
53.2%, respectively) of memory instructions. Because loads
and stores are not included in the DBCE chains, the programs
cannot elide as many instructions as the others.

Let us first analyze SRTR performance without DBCE.
From Figure 8, we see that for all the programs, a 4-ported
RVQ (third bar) performs as well as an 8-ported RVQ (second
bar). As the number of RVQ ports decreases from 3 to 2, most
programs incur significant performance loss. For the integer
programs (go thoroughcompress), performance drops by 2%
and 18%, on average, with 3 and 2 RVQ ports, respectively,
compared to 4 RVQ ports. For the FP programs (swimthrough
tomcatv), performance degrades by 1% and 20%, on average,
with 3 and 2 RVQ ports, respectively.vortexandfppppare the
two exceptions that perform as well with 2 RVQ ports as with
4 RVQ ports, because more than half of the instructions are
loads and stores, and do not access the RVQ.

On the other hand, SRTR with DBCE incurs little perfor-
mance loss even with two RVQ ports. Comparing four ports to
two ports, performance degrades by 1% and 2% for the integer
and FP programs, respectively. Note that in the case of 4 ports
where DBCE is not needed, using DBCE does not degrade
performance. This point implies that by exploiting complete to
commit time, DBCE avoids stalling the early instructions in
the chains waiting for the last instruction in the chain to com-
plete. Looking at SRTR using 2 RVQ ports with and without
DBCE, DBCE boosts SRTR’s performance by 17% and 18%
for the integer and FP programs, respectively.

6 Related work

Watchdog processors are the key concept behind many
fault tolerance schemes [5]. The AR-SMT processor is the first
to use SMT to execute two copies of the same program [12].
AR-SMT also proposes using speculation techniques to allow

communication of data values and branch outcomes between
the leading and trailing threads to accelerate execution. A later
paper applies the concepts from AR-SMT to CMPs [15]. SRT
improves on AR-SMT via the two optimizations of slack fetch
and checking only stores for an SoR that includes the register
file [10]. A recent paper explores design options for fault
detection via multithreading [6].

The AR-SMT paper mentions recovery stating that the
state of the R-stream (which corresponds to our trailing
thread) is the checkpointed state and can be used for recovery.
SRTR and AR-SMT are fundamentally different ways of per-
forming recovery, with different costs. SRTR disallows the
leading thread from committing until the trailing thread com-
pletes and is checked, and uses instruction squash to rollback
to a committed state before the fault. AR-SMT allows the
leading thread to commit potentially faulty state, and let the
trailing thread be checked upon completion of each instruc-
tion; upon detecting a fault, AR-SMT uses the trailing thread’s
committed state (up to but not including the fault) to restore
the leading thread’s state for recovery. SRTR delays the lead-
ing thread from committing and our paper shows the perfor-
mance impact of this choice. AR-SMT doubles the bandwidth
pressure on the data cache by requiring both threads to access
the cache, while SRTR (and SRT) uses the LVQ for the trailing
thread accesses. Furthermore, AR-SMT requires memory to
be doubled (two copies of memory, one for each thread)
because committing faulty state of the leading thread will cor-
rupts memory. Doubling the memory size may stress the mem-
ory hierarchy and degrade performance. Because faults are not
allowed to reach memory in SRTR, there is only one copy of
memory in SRTR (and SRT).

DIVA is another fault-tolerant superscalar processor that
uses a simple, in-order checker processor to check the execu-
tion of the complex out-of-order processor [1]. DIVA can
recover from permanent faults and design errors in the aggres-
sive processor but assumes that no transient faults occur in the
checker processor itself. Other works on fault tolerance focus
on functional units [11, 7, 4, 14].

A recent paper [9] proposes hardware recovery using
superscalar hardware without any SMT support. The paper
advocates the natural way to achieve recovery by using super-
scalar’s rollback ability. The paper does not use the LVQ, does
not address the issues related to cached loads, and claims that
there is no need for any slack.

The Compaq NonStop Himalaya [3] and IBM z900 (for-
merly S/390) [13] employ redundant hardware to achieve fault

Table 4: Percent RVQ accesses elided.
Benchmark Percent

elided
Benchmark Percent

elided
go 53.1 swim 43.7
lisp 24.7 applu 50.1
gcc 41.3 fpppp 18.4
perl 33.5 su2cor 40.8
ijpeg 49.4 hydro2d 39.5
vortex 15.7 tomcatv 35.1
m88ksim 38.4 AVERAGE 35.3
compress 38.5

FIGURE 8: Effectiveness of DBCE in reducing RVQ bandwidth demand.

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

 r
el

at
iv

e

a: SRT b: SRTR 8 c: SRTR 4 d: DBCE 4 e: SRTR 3 f: DBCE 3 g: SRTR 2 h: DBCE 2

to
 1

-t
hr

ea
d

S
M

T

go lisp gcc perl ijpeg m88ksimvortex compress swim applu fpppp su2cor hydro2d tomcatv

abc e g
 d f fh

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

tolerance. The z900 uses the G5 microprocessor which
includes replicated, lock-stepped pipelines. The NonStop
Himalaya uses off-the-shelf, lock-stepped microprocessors
and compares the external pins on every cycle. In both sys-
tems, when the lock-stepped components disagree, the compo-
nents are stopped to prevent propagation of faults. The z900
uses special microcode to restore program state from a hard-
ware checkpoint module. The NonStop Himalaya does not
provide hardware support for recovery. SRT has shown that
avoiding lock-stepping achieves better performance.

7 Conclusions

We proposedSimultaneously and Redundantly Threaded
processors with Recovery (SRTR)that enhances SRT to
include transient-fault recovery. In SRT, a leading instruction
may commitbeforethe check for faults occurs, relying on the
trailing thread to trigger detection. SRTR, on the other hand,
must not allow any leading instruction to commit before
checking occurs, since a faulty instruction cannot be undone
once the instruction commits. To avoid leading instructions
stalling at commit waiting for their trailing counterparts,
SRTR exploits the time between completion and commit of a
leading instruction. SRTR checks as soon as the trailing
instruction completes, well before the leading instruction
reaches commit. To avoid increasing the bandwidth demand
on the register file, SRTR uses theregister value queue (RVQ)
to hold register values for checking. To reduce the bandwidth
pressure on the RVQ itself, SRTR employsdependence-based
checking elision (DBCE).By reasoning that faults propagate
through dependent instructions, DBCE exploits register (true)
dependence chains so thatonly the last instruction in a chain
uses the RVQ, and has the leading and trailing values checked.
DBCE redundantly builds chains in both the leading and trail-
ing threads and checks its own functionality for faults.

We evaluated SRTR using the SPEC95 benchmarks. SRTR
on average performs within 1% and 7% of SRT for integer and
floating-point programs, respectively. We showed that high
prediction accuracies and low off-chip miss rates in the under-
lying SMT enable SRTR detection using a slack of 32 to per-
form on average within 5% of SRT using a slack of 256. For
our benchmarks, the gap between the average complete to
commit time and average memory latency is large enough to
allow a slack longer than the average memory latency but
shorter than the average complete to commit time. DBCE
elides about 35% of RVQ accesses. SRTR without DBCE on
average incurs 18% performance loss on reducing from four
(which is performance-equivalent to an unlimited number) to
two RVQ ports. With DBCE, a two-ported RVQ on average
performs within 2% of a four-ported RVQ.

Acknowledgements

We thank Shubu Mukherjee and the anonymous reviewers
for their comments. The work of I. Pomeranz and K. Cheng
was supported in part by NSF Grant No. CCR-0049081. The
work of T. N. Vijaykumar was supported in part by NSF Grant
No. CCR-9875960.

References
[1] T. M. Austin. DIVA: A reliable substrate for deep-submi-

cron microarchitecture design. InProceedings of the 32nd
Annual International Symposium on Microarchitecture,
pages 196–207, Nov. 1999.

[2] D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the simplescalar tool set. Technical Re-
port CS TR-1308, University of Wisconsin, Madison, July
1996.

[3] Compaq Computer Corporation.Data integrity for Com-
paq Non-Stop Himalaya servers. http://nonstop.com-
paq.com, 1999.

[4] J. G. Holm and P. Banerjee. Low cost concurrent error de-
tection in a VLIW architecture using replicated instruc-
tions. InProceedings of the International Conference on
Parallel Processing, 1992.

[5] A. Mahmood and E. J. McCluskey. Concurrent error de-
tection using watchdog processors–A survey.IEEE Trans.
on Computers, 37(2):160–174, Feb. 1988.

[6] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading alterna-
tives. In Proceedings of the 29th Annual International
Symposium on Computer Architecture, May 2002.

[7] J. H. Patel and L. Y. Fung. Concurrent error detection on
ALU’s by recomputing with shifted operands.IEEE
Trans. on Computers, 31(7):589–595, July 1982.

[8] D. A. Patterson and J. L. Hennessy.Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann Pub-
lishers, 1998.

[9] J. Ray, J. C. Hoe, and B. Falsafi. Dual use of superscalar
datapath for transient-fault detection and recovery. InPro-
ceedings of the 34th annual IEEE/ACM international sym-
posium o n Microarchitecture, Dec. 2001.

[10] S. K. Reinhardt and S. S. Mukherjee. Transient-fault de-
tection via simultaneous multithreading. InProceedings of
the 27th Annual International Symposium on Computer
Architecture, pages 25–36, June 2000.

[11] D. A. Reynolds and G. Metze. Fault detection capabilities
of alternating logic. IEEE Trans. on Computers,
27(12):1093–1098, Dec. 1978.

[12] E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. InProceedings of
Fault-Tolerant Computing Systems, 1999.

[13] T. J. Slegel, et al. IBM’s S/390 G5 microprocessor design.
IEEE Micro, 19(2):12–23, 1999.

[14] G. S. Sohi, M. Franklin, and K. K. Saluja. A study of time-
redundant fault tolerance techniques for high-perfor-
mance, pipelined computers. InDigest of papers, 19th In-
ternational Symposium on Fault-Tolerant Computing,
pages 436–443, 1989.

[15] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slip-
stream processors: Improving both performance and fault-
tolerance. InProceedings of the Ninth International Sym-
posium on Architectural Support for Programming Lan-
guages and Operating Systems, pages 257–268.
Association for Computing Machinery, Nov. 2000.

[16] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithread-
ing processor. InProceedings of the 23rd Annual Interna-
tional Symposium on Computer Architecture, pages 191–
202, May 1996.

[17] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. InPro-
ceedings of the 22th Annual International Symposium on
Computer Architecture, pages 392–403, June 1995.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

