Transient-Fault Recovery Using Simultaneous Multithreading

T. N. Vijaykumar, Irith Pomeranz, and Karl Cheng
School of Electrical and Computer Engineering, Purdue University, W. Lafayette, IN 47907
{vijay, pomeranz, kkcheng}@ecn.purdue.edu

Abstract which reliability has not been a concern until recently.
To address reliability issues, Simultaneously and Redun-

_ We propose a scheme for transient-fault recovery cal_ledd(,jm“y Threaded (SRT) processors are proposed in [10] based
Simultaneously and Redundantly Threaded processors with o the Simultaneous Multithreaded architecture (SMT) [17].

Recovery (SRTRhat enhances a previously proposed schemegpr getects transient faults by replicating an application into

for transient-fault detection, called Simultaneous!y and o communicating threads, one (called the leading thread)
Redundantly Threaded (SRT) processors. SRT replicates 8Byecuting ahead of the other (called the trailing thread). The

application into two communicating threads, one executing yijing thread repeats the computation performed by the lead-
ahead of the other. The trailing thread repeats the computatlonmg thread, and the values produced by the two threads are
performed by the leading thread, and the values produced bycompared.,

the two thrgads are compared. In SRT, a Ieading instruction Although SRT does not support recovery from faults, the
may commibeforethe check for faults occurs, relying on the {5)16,ying features introduced by SRT for fault detection [10]
trailing thread to trigger detection. In contrast, SRTRMSt 56 important for recovery as well: (1) Replicating cached
allow any leading instruction to commit before checking |554s js problematic because memory locations may be modi-
occurs, since a faulty instruction cannot be undone once theeq by an external agent (e.g., another processor during multi-
mstrucnor_\ commns. o) .) . processor synchronization) between the time the leading
To avoid stalling leading instructions at commit while wait- 044 |oads a value and the time the trailing thread tries to
ing for their trailing counterparts, SRTR exploits the time o, the same value. The two threads may diverge if the loads
between the completion and commit of leading instructions. ., different data. SRT allows only the leading thread to
SRTR compares the leading and trailing values as soon as thg . .ass the cache, and uses the Load Value Queue (LVQ) to
trailing instruction completes, typically before the leading g4 the leading load values. The trailing thread loads from the
instruction reaches the commit point. To avoid increasing theLVQ instead of repeating the load from the cache. (2) The

bandwidth demand on .the register file for checking register leading thread runs ahead of the trailing thread by a Klagk
values, SRTR uses ttegister value queue (RVQp holdreg- ¢ 4 556 instructions), and provides the leading branch out-

ister values for checking. To reduce the bandwidth pressure on,, as to the trailing thread through the Branch Outcome
the RVQ itself, SRTR emplogependence-based checking o ,e6e (BOQ). The slack and the use of branch outcomes hide
elision (DBCE) By reasoning that faults propagate through e |eading thread's memory latencies and branch mispredic-
dependent instructions, DBCE exploits register (true) depen-jong from the trailing thread, since by the time the trailing

dence chains so that only the last instruction in a chain usesi,ead needs a load value or a branch outcome. the leading

the RVQ, and ha; t.he leading and wrailing values Ch?‘:ked'thread has already produced it. (3) By replicating register val-
SRTR performs within 1% and 7% of SRT for SPEC95 integer s hut not memory values, SRT compacedy stores and

and floating-point programs, respectively. While SRTR without,,,cached loads, but not register values, of the two threads.
DBCE incurs about 18% performance loss when the numbergacause an incorrect value caused by a fault propagates

of RVQ ports is reduced from four (which is performance- ,4,gh computations and is eventually consumed by a store,
equivalent to an unlimited number) to two ports, with DBCE, a checkingonly stores suffices

two-ported RVQ performs within 2% of a four-ported RVQ. We proposeSimultaneously and Redundantly Threaded

1 Introduction processors with Recovery (SRT#®)extend SRT to include
recovery. Although systems using software recovery often
The downscaling of feature sizes in CMOS technologies isemploy hardware detection [3,13], software checkpointing
resulting in faster transistors and lower supply voltages. Whilejncurs considerable performance cost even when there are no
this trend contributes to improving the overall performance faults. Therefore, hardware recovery at a modest performance
and reducing per-transistor power, it also implies that micro- cost over detection is an attractive option, especially because
processors are increasingly more susceptible to transient faultiardware recovery permits the use of off-the-shelf software.
of various types. For instance, cosmic alpha particles maywe identify, for the first time, the following key issues:
charge or discharge internal nodes of logic or SRAM cells; ande problem: A fundamental implication of the SRT detection
lower supply voltages result in reduced noise margins allowingscheme is that a leading non-store instruction may commit
high-frequency crosstalk to flip bit values. The result is pefore the check for faults occurs, relying on the trailing
degraded reliability even in commodity microprocessors for thread to trigger detection. SRTR, on the other hand, moist

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

allow any leading instruction to commit before checking lastinstruction completes only a few cycles behind the leading
occurs, since a faulty instruction cannot be undone once thechain’s earlier instructions. Consequently, checking of the last
instruction commits. Unless care is taken, leading instructionsinstruction is usually done between the time the earliest lead-
will stall at commit waiting for their trailing counterparts to ing instruction completes and the time it reaches the commit
complete and undergo checking. This stalling will create pres-point. DBCE redundantly builds chains in both threads and
sure on the instruction window and physical registers, andchecks its own functionality for faults. DBCE elides 35% of
degrade performance. checks for the benchmarks we consider. SRTR performs
* Solution: To avoid stalling leading instructions, SRTR within 1% and 7% of SRT for SPEC95 integer and floating-
exploits the time between the completion and commit of lead-point programs, respectively. SRTR without DBCE incurs
ing instructions. SRTR checks the results of a leading and theabout 18% performance loss when the number of RVQ ports is
corresponding trailing instruction as soon as the trailing reduced from four (which is performance-equivalent to an
instruction completes, well before the leading instruction unlimited number) to two ports. With DBCE, a 2-ported RVQ
reaches the commit point. For the SPEC95 benchmarks, comperforms within 2% of a 4-ported RVQ.

plete to commit times average at 29 cycles. This gap provides SRTR is guaranteed to provide recovery from single tran-
sufficient time for a trailing instruction to complete before the sient faults except those that affect the register file and that fail
leading instruction reaches the commit point. To exploit the to propagate through dependence chains, in which case SRTR
complete to commit time, the slack between the leading andguarantees detection.

trailing threads in SRTR must be short. At the same time, a We review SRT in Section 2. We describe the SRTR
slack that is too short would cause the trailing thread to stallscheme in Section 3 and DBCE in Section 4. In Section 5, we
due to unavailable branch outcomes and load values from thg@resent experimental results. In Section 6, we discuss related
leading thread. To support an appropriately short slack,work, and conclude in Section 7.

SRTR’s leading thread provides the trailing thread with branch . .
predictions instead of outcomes. Because the leading thread’g Transient-fault detection: baCkground

branch predictions are available much earlier than the branch SRT uses SMT’s multithreaded execution to replicate an

outcomes, and because a short slack is sufficient for hldlng Onappiication into two Communicating threads’ one executing
chip cache hit latencies, SRTR avoids trailing thread stallsghead of the other. Comparing the results of two redundant
evenwith a short slack. We show that high prediction accura- executions is the underlying scheme to detect transient faults
cies and low off-chip miss rates in the underlying SMT enable jn SRT. Because detection is based on replication, the extent to
SRTR, using a slack of 32, to perform within 5% of SRT, using which the application is replicated is important. SRT formal-

a slack of 256 (as in [10]), when the recovery mechanisms ofizes this notion by defining thephere of replication (SoR)
SRTR are disabled so that both schemes target only detectionf10], pointing out that (1) all computation and data within this

* Problem: By the time a leading instruction reaches the sphere are replicated such that each thread uses its own copy,
commit point, its register value often has been written back to(2) data entering the SoR is independently read by the two
the physical register file. Becaua# instructions are checked threads usingnput replication (3) data exiting the SoR from

in recovery, accessing the register file in order to perform thethe two threads are compared usimigtput comparisonand
check will add substantial bandwidth pressure. only one copy of the checked data is stored outside the SoR.
* Solution: SRTR uses a separate structure, thgister Note that the input replicator and output comparator are out-
value queue (RVQ}p store register values and other informa- sjde the SoR. The input replicator and output comparator must
tion necessary for checking of instructions, avoiding band-pe self-checked and are typically implemented using dual-rail
width pressure on the register file. logic. Because data outside the SoR is not replicated, other
* Problem: There is bandwidth pressure on the RVQ. forms of protection such as ECC are needed outside the SoR.
* Solution: We proposedependence-based checking elision Two possible SoRs defined in [10] are: processor and regis-
(DBCE)to reduce the number of checks, and thereby, the RVQters inside the SoR, with the cache hierarchy outside; and only
bandwidth demand. By reasoning that faults propagatethe processor inside the SoR, with the registers and cache hier-
through dependent instructions, DBCE exploits register (true)archy outside. In the first SoR, leading and trailing thread val-
dependence chains so thatly the last instruction in a chain yes need to be compared only for stores and uncached loads,
uses the RVQ and has leading and trailing values checked. Th@hile other instructions can commit without comparing val-
chain’s earlier instructions iboththreads completely elide the yes. SRT uses a store buffer (StB) in which the leading thread
RVQ. SRT can be viewed as taking such elision to the extremep|aces its committed store values and addresses. The trailing
by observing that stores are the last instructions in any registefhread's store values and addresses are compared against the
dependence chain, and that only stores need to be checkegtB entries to determine whether a fault has occurred. In the
However, SRT's chains are too long for SRTR because thesecond SoR, all register values need to be checked. Checking
Ieading thread cannot commit until the last instruction in the registers requires |arge buffers with h|gh bandwidth to avoid
long chain is checked. DBCE forms short chains by exploiting performance degradation.

the abundant register dependencies in near-by instructions. As explained in Section 1, to handle cached loads, SRT
Because of the short slack and short chains, the trailing chain’gises the ECC-protected Load Value Queue (LVQ) in which the

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Original

CPU SMT v * A—» I_> To D-cache
7| Il srTR Re,?iiter > I

SoR N
cache *@ By Secow Active Lis

L2 cache - Commit Vector
o I e D] > Conni
() Main memory o) *

FIGURE 1: (a) SRTR’s Sphere of Replication. (b) SRTR’s additions to SMT.

leading thread deposits its committed load values andlong. Atthe same time, a near-zero slack would cause the trail-
addresses. The trailing thread obtains the load value from théng thread to stall due to unavailable branch outcomes and load
LVQ, instead of repeating the load from the memory hierar- values from the leading thread. To support a short slack,
chy. The Active Load Address Buffer proposed in [10] is an SRTR's leading thread provides the trailing thread with branch
alternative for the LVQ that also addresses this problem. Wepredictions. In contrast, SRT’s leading thread provides branch

Y
l*

h

= |ssue Queue

Functipnal
Units

use the LVQ because it is simpler. outcomes. Accordingly, SRTR counts slack in terms of fetched
A key optimization in SRT is that the leading thread runs (speculative) instructions, while SRT counts slack in terms of
ahead of the trailing thread by an amount calledslaek(e.qg., committed instructions.

the slack may be 256 instructions). In addition, the leading SRT uses committed values for branch outcomes, load
thread provides its branch outcomes via the branch outcomaddresses and values, and store addresses and values. Conse-
queue (BOQ) to the trailing thread. The slack and the commu-quently, the StB, LVQ, and BOQ are simple queues that are
nication of branch outcomes hide the leading thread’s memorynot affected by mispredictions. Because SRTR compares spec-
latencies and avoids branch mispredictions from the trailingulative values of the leading and trailing threads, SRTR needs
thread. Due to the slack, by the time the trailing thread needs d@o handle the effects of mispredictions on these structures.
load value or branch outcome, the leading thread has already SRTR uses the SoR that includes the register file. Like SRT,
produced it. SRTR uses an out-of-order, SMT pipeline [16]. The pipeline

SRT assumes that uncached accesses are performed noplaces instructions from all threads in a singdsue queue.
speculatively. SRT synchronizes uncached accesses from thiestructions wait in this queue until source operands become
leading and trailing threads, compares the addresses, and repkvailable, enabling out-of-order issue. Apart from the issue
cates the load data. SRT assumes that code does not modifyueue, each thread’s instructions are also held in the thread’s
itself, although self-modifying code in regular SMTs already private active list (AL) When an instruction is issued and
requires thread synchronization and cache coherence whichemoved from the issue queue, the instruction stays in its AL.
can be extended to keep the leading and trailing threads coninstructions commit from the AL in program order, enabling
sistent. For input replication of external interrupts, SRT sug- precise interrupts.We illustrate SRTR’s SoR and SRTR'’s addi-
gests forcing the threads to the same execution point and thetions to SMT in Figure 1.

delivering the interrupt synchronously to both threads. 3.1 Synchronizing leading and trailing threads

3 Transient-fault recovery For every branch prediction, the leading thread places the

We proposeSimultaneously and Redundantly Threaded predicted PC value in therediction queue (predQ)This
processors with Recovery (SRTR)at enhances SRT to queue is similar to the BOQ except that it holds predictions
include transient-fault recovery. A natural way to extend SRT instead of outcomes. The predQ is emptied in queue-order by
to achieve recovery is to use the rollback ability of modern the trailing thread. Using the predQ, the two threads fetch
pipelines, which is provided to support precise interrupts andessentially the same instructions without diverging.
speculative execution [9]. Because transient faults do not per- Because the ALs hold the instructions in predicted program
sist, rolling back to the offending instruction and re-executing order and because the two threads communicate via the predQ,
guarantees forward progress. corresponding leading and trailing instructions occupy the

In SRT, a leading non-store instruction may combfore same positions in their respective ALs. Thus, they can be eas-
the check for faults occurs. SRTR, on the other hand, maoist ily located for checking. Note that corresponding leading and
allow anyinstruction to commit before it is checked for faults. trailing instructions may enter their ALs at different times, and
Trailing instructions must complete and results must be com-become ready to commit at different times. However, we use
pared as much before the leading instructions reach the comthe fact that the instructions occupy the same position in their
mit point as possible, so that leading instructions do not stall atALS to keep the implementation simple.
commit. Therefore, the slack between the threads cannot be Due to the slack, the leading and trailing threads resolve

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

their branches at different times. Upon detecting a mispredic-obtains the leading load value from the LVQ. A mismatch of
tion in the leading thread, the leading thread cleans up thehe addresses flags a rollback (as explained in Section 3.3)
predQ, preventing the trailing thread from using mispredictedwith three possibilities: (1) the address value produced by a
entries placed earlier in the predQ. There are two possibilitiesprevious instruction is faulty and the faulty instruction will ini-
for the timing of events related to a misprediction: (1) The tiate a rollback upon being checked; (2) the address computa-
leading branch resolves after the trailing thread has alreadyion of the load is faulty and the load instruction will cause
used the corresponding predQ entry, or (2) the leading branchollback to be initiated; (3) the previous instruction was
resolves before the entry is used by the trailing thread. checked and committed and the address register has been cor-
The first possibility implies that the trailing AL position rupted since. Because the register file is inside the SoR, SRTR
which mirrors the leading branch’s AL position is valid and flags a fault but cannot recover in the third case without pro-
contains the trailing branch. There are mispredicted trailingtecting the register file with ECC.
instructions in the trailing AL. The leading thread then Even though leading instructions are fetched and placed
squashes the mispredicted instructions in the trailing AL, andahead of the corresponding trailing instructions in the issue
the existing predQ entries which contain fetch PCs from thequeue, it is possible that a trailing load is issued before the
incorrect path. Because the leading and trailing ALs are identi-leading load. A possible solution is to place the premature
cal, the leading branch can use its own AL pointer to squashtrailing load’s address in the empty LVQ entry. When the lead-
the trailing AL. The second possibility implies that the trailing ing load arrives at the LVQ, the addresses are compared and
AL position which mirrors the leading branch’s AL position is the pending trailing load is satisfied. This solution naturally
beyond the tail of the trailing AL. In this case, the leading extends to the case where a trailing load issues after the lead-
branch squashes all predQ entries later than its own predQng load, but finds the LVQ entry empty due to the leading
entry, and places the branch outcome in the predQ to be usebbad missing in the cache. Note that the LVQ is ECC-protected
by the trailing thread later. To prevent faults from causing and so values stored in it are not vulnerable to faults.
incorrect squashing, AL pointers are protected by ECC. An LVQ entry is relinquished in queue order after the trail-
Although the leading thread rolls back the predQ and theing instruction reads the entry. Upon a leading branch mispre-
ALs of both threads upon a misprediction, the leading diction, the SAL is rolled back in parallel with the clean-up of
branch’s outcome is still checked against the trailing branch’sthe AL. To facilitate the rollback of the LVQ, branches place
outcome. The rollback is an optimistic action to reduce thethe LVQ tail pointer in the SAL at the time they enter the AL.
number of mispredicted trailing instructions, assuming that theBecause the LVQ is in (speculative) program order, the LVQ
leading thread is fault-free. If the leading thread’s mispredic- tail pointer points to the LVQ entry to which the LVQ needs to
tion is incorrectly flagged due to a fault, the trailing branch’s be rolled back, if the branch mispredicts. A mispredicted
check triggers a rollback. We discuss the details of checking inbranch’s AL pointer locates the LVQ tail pointer in the SAL,
Section 3.3. and the LVQ is rolled back to the pointer. Like the predQ’s
o rollback, the LVQ’s rollback is also an optimistic action and
3.2 Modifying LVQ the leading branch is checked to confirm the misprediction.
SRT uses a strict queue-ordering for the LVQ, i.e., the Iead-3
ing thread inserts committed load values and addresses at the’
tail, and the trailing thread empties the load values and SRTR checks the leading and trailing instructions as soon
addresses from the head of the queue. SRTR modifies SRT’'as the trailing instruction completes. Register values often
LVQ to operate on speculative cached loads, and thereforehave been written back to the physical register file by the time
cannot maintain the strict queue order of SRT. To keep thethe check is performed. To address this issue, SRTR uses a
LVQ as compact as possible, we use a table, calledlihdow separate structure, thegister value queue (RV@) store reg-
active list (SAL)to hold pointers to LVQ entries (Figure 1(b)). ister values for checking, avoiding bandwidth pressure on the
The SAL mirrors the AL in length but is much narrower than register file (Figure 1(b)). In this section, we assume that all
the LVQ, and instructions can use the AL pointer to accessthe instructions including branches, but excluding loads and
their information in the SAL. The SAL is also helpful in stores use the RVQ to be checked. We assume that the RVQ
checking register values as explained in Section 3.3. can provide the required bandwidth. We address the band-
A leading load allocates an LVQ entry when the load enterswidth pressure on the RVQ in Section 4.
the AL, and places a pointer to the entry in the SAL. Because Because the trailing instructions need to locate the leading
loads enter the AL in (speculative) program order, LVQ entries counterpart's value in the RVQ, the leading instruction allo-
are allocated in the same order, simplifying misprediction han-cates an RVQ entry at the time of entering the AL, and places a
dling, as explained at the end of the section. Upon issue, thepointer to the entry in the SAL for the trailing instruction.
leading load obtains its LVQ pointer from the SAL and places After the leading instruction writes its result back, it enters the
its load value and address in the LVQ. The trailing load alsofault-checkstage, as shown in Figure 2. In the fault-check
obtains the LVQ pointer from the SAL, and the trailing load’s stage, the leading instruction puts its value (for branches, the
address and the leading load address stored in the LVQ araeext PC, the prediction and the outcome are all part of the
compared, as done in SRT. On a match, the trailing loadvalue) in the RVQ using the pointer from the SAL. The

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

3 Checking leading and trailing instructions

fact that leading and trailing instructions use different physical
registers will allow us to detect the fault on the next use of the
register value. However, SRTR cannot recover from this fault.
To avoid this loss of recovery, one solution is to provide ECC
on the register file.

4 Reducing bandwidth demand on RVQ

fetch
decode
rename
issue
read
execute
memory
writeback
fault-check

FIGURE 2: SRTR pipeline with fault-check stage.
instruction then waits in the AL to commit or squash due to

faults or mispredictions. Because the fault-check stagétés The RVQ needs to allow as many writes or reads of register
writeback, the stage does not affect branch misprediction penvalues per cycle as the number of leading and trailing non-
alty, or the number of bypass paths. memory instructions completing in one cycle. Because the

The trailing instructions also use the SAL to obtain their RYQ has as many entries as in-flight leading instructions
RVQ pointers and find their leading counterparts’ values. (around 120 64-bit values, totaling to 1KB), providing multi-
While it is likely that the leading instruction reaches the fault- Ple ports to support high bandwidth (e.g., four 64-bit values
check stage before the trailing instruction, out-of-order pipe- Per cycle) may be hard.
lines may reverse the order. To handle such reversals, if the We proposelependence-based checking elision (DBEE)
trailing instruction finds the RVQ entry of its leading counter- reduce the number of instructions accessing the RVQ. To keep
part to be empty, it places its own value. When the leadingthe implementation simple, we use only simple dependence
instruction reaches the fault-check stage, it finds the value anghains such that each instruction in a chain has at most one
the check is performed. A full/empty bit in the RVQ is used to Parent and one child (instead of maintaining the full depen-
indicate whether or not the RVQ entry contains leading ordence graph). By reasoning that faults propagate through
trailing values. The full/empty bits need to be ECC-protected dependent instructions, DBCE exploits register (true) depen-
to prevent corrupted full/lempty bits from causing leading and dence chains so thahlythe last instruction in a chain uses the
trailing instruction pairs to wait forever. An RVQ entry is RVQ, and has the leading and trailing values checked. We
relinquished in queue order after the checking is done. Branctshow an example of a five-instruction sequence in Figure 3(a).
misprediction clean-up of the RVQ uses the SAL in the sameThe chain’s earlier instructions iboth threads completely
way as the clean-up of the LVQ. elide the RVQ. If the last instruction check succeeds, it signals

SRTR places completed leading store values and addressége previous instructions in the chain that they may commit; if
in the StB. When a trailing store completes, its value andthe check fails, all the instructions in the chain are marked as
address are compared to the leading store’s value and addre§8Ving failed and the earliest instruction in the chain triggers a
in the StB, similar to the checking of load addresses in thefollback. A key feature of DBCE is that both leading and trail-
LVQ. ing instructions redundantly go through the same dependence

Register values, store addresses and values, and logghain formation and checking-elision decisions, allowing
addresses are checked in the RVQ, StB, and LVQ, respecDBCE to check its own functionality for faults.
tively. If a check succeeds, tremmit vector (CVintries cor- If the last instruction of a chain is further in the instruction
responding to the leading and trailing instructions are set to theStream and completes much later than the other instructions,
checked-olstate. Indexed by AL pointers, the CVs are parallel the chain’s earlier instructions will stall at commit. To avoid
to the ALs (Figure 1(b)). As instructions are placed in the AL, this situation, DBCE forms short dependence chains (e.g., 3-4
their CV entries are set to thet-checked-yettate. A leading ~ instructions) by exploiting the abundant register dependencies
instruction commits only if its CV entry and its trailing coun- in near-by instructions. If DBCE's chains ane instructions
terpart's CV entry are in the checked-ok state. If the state islOng, DBCE checks only one out af instructions, reducing
not-checked-yet, the instruction is stalled at commit until it is the bandwidth by a factor ah. Because of short slack and
checked. Due to the slack, leading instructions may commitshort chains, the trailing chain’s last instruction completes just
ahead of their trailing counterparts. a few cycles behind the leading chain’s earlier instructions.

If a check fa“sl the CV entries of the |eading and trai"ng Consequently, CheCking of the last instructions is USUa”y done
instructions are set to thiailed-checkstate. When a failed- between the time the earliest leading instruction completes and
check entry reaches the head of the leading AL, all laterthe time it reaches the commit point. .
instructions are squashed. The leading thread waits until the Because leading loads deposit their values in the LVQ for
trailing thread's corresponding entry reaches the head of théhe trailing loads, there is no notion of eliding of checking for
trailing AL before restarting both threads at the offending load values, and he_nce loads are not included in the chains.
instruction. Because there is a time gap between the settin@tores are checked in the StB and do not use the RVQ. There-
and the reading of the CV and between the committing offore, stores are not included in the chains as well. Because
leading and trailing counterparts, the CV is protected by Eccbranches do not produce register values, branches cannot be in
to prevent faults from corrupting it in the time gap. the middle of a chain. A branch may be at the end of a chain

There are faults from which SRTR cannot recover: After a @nd in that case it itself cannot elide checking but it helps elide
register value is written back and the instruction producing thechecking for the instructions preceding it in its chain. If chains
value has committed, if a fault corrupts the register, then theare allowed to cross branches, mispredictions will require

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

laddrl=r2 +r3 dependent independent __ _ true register .
% SH'?‘trZA,O = r1212 r22 instruction Q instruction € dependence phy reg| AL ptr | chain tag| flag
shift r4 =r1,

4 sub r24 =25 - r26 X Y ¢ I leading thread 101 1 1 1

5addr5=r4 + 20 5 o 3 e 1 120 5 5 o

if 5 checks ok, allow 1,3,5 to commit 104 3 1 1

v
124 4 4 0
D (-0--€
(@) * x trailing thread (b) |105 |5 1 0

FIGURE 3: (a) DBCE concept. (b) DCQ entries showing only leading instructions.

clean-up of chains whose later instructions have beendence chain. The AL pointer of the first instruction in a chain
squashed due to an intervening branch misprediction. To avoids used as the chain’s tag. Figure 3(b) shows the DCQ entries
such clean-ups, DBCE disallows chains from crossingfor only the leading instructions in the example of Figure 3(a),
branches. assuming that logical register x maps to physical register 100
Care must be taken in forming chains with instructions that + x.
mask a subset of bits (e.g., r2 :=rl1 & Oxff00), or that compare Upon entering the DCQ, an instruction associatively
two values (e.g., rl := (r2 < r3)). If a masking (or comparing) searches the DCQ using its source physical register numbers,
instruction is in a chain, then the instruction may mask a fault matching them against destination physical register numbers
in its source operands. Such masking violates the key assumpsf instructions in the DCQ. If there is no match on any source
tion behind DBCE, that faults are propagated by dependencesggister, or if all the matching instructions already have their
and a later instruction included in the masking instruction’s flags set indicating that those instructions already have chil-
chain cannot detect the masked fault. For instance, in a chaimren, there is no live chain to which the current instruction can
containing rl :=r2 +r3, r2 := rl & Oxff00, and r4 ;= r2 + r3, belong; then the instruction uses its own AL pointer as its tag,
the check done on the value of r4 does not cover all the bits ofand clears its own flag to start a new chain. Branches cannot
rl. If the first instruction produces a faulty value for rl, and rl start a chain, and are removed from the DCQ if they cannot
is used by instructions other than the one shown above, recovjoin a live chain. If there is a matching entry with a clear flag,
ery will not be possible. This issue can be resolved by disal-the current instruction adds itself to the matching entry’s chain
lowing masking instructions in the middle of a chain. A by setting the matching entry’s flag and obtaining the match-
masking instruction may, however, start a chain because théng entry’s AL pointer and tag. It clears its flag to allow addi-
instruction’s source operands will be checked in previoustional instructions to join the chain. If two sources of an
chains, without allowing any faults to be masked. If an instruc- instruction match entries with clear flags, the current instruc-
tion masks some bits for specific inputs (e.g., multiply maskstion adds itself to the chain corresponding to the first source.
all the bits if one of its source operands is zero), a pessimistic Leading and trailing instructions form chains indepen-
approach would be to disallow the instruction in the middle of dently. Because there are no dependencies between the two
a chain. Since the likelihood of such input-specific masking isthreads, the DCQ can hold the two threads simultaneously.
low, it may be acceptable to ignore the masking and treat theHowever, because fetching of leading and trailing instructions
instruction as a non-masking instruction. is interleaved, care must be taken to ensure that the DCQ will
Exploiting dependence chains consists of (1) forming form identical dependence chains in the leading and trailing
dependence chains in the leading thread and the correspondirtgreads. The chains formed may be different if fetch brings a
chains in the trailing thread, and tagging each chain with anumber of leading instructions, switches and brings a smaller
unigue tag, (2) identifying the instructions in the leading and number of trailing instructions before switching back to the
trailing threads requiring the check, (3) preventing the rest ofleading thread. The larger number of leading instructions may
the instructions (leading and trailing) in the chains from cause longer chains to be formed than the fewer trailing
accessing the RVQ and from checking, and (4) notifying theinstructions.
non-checking instructions in the chains after the check is per- A simple solution is to have the leading and trailing threads
formed. each occupy half the DCQ, as shown in Figure 4(a). Every
cycle either leading or trailing thread instructions reach the
DCQ. The DCQ evicts the oldest entries of the same thread to
To form dependence chains, DBCE uses the dependencmake room for the new instructions. Upon evicting the oldest
chain queue (DCQ), which holds information about renamedentries, the DCQ terminates the chains originating at the
instructions that were fetched in the last few cycles (e.g., 1-2entries, ensuring that the chains stay short and span at most as
cycles). The instructions are kept in the instruction fetch order.many cycles as the DCQ depth. The instructions in the termi-
Each DCQ entry holds the destination physical register and thenated chains are recorded in ttieeck tablefor later use. The
AL pointer of an instruction, a tag which identifies the chain to AL pointer of each of the oldest entries is used to search the
which the instruction belongs, and a flag to indicate if the DCQ tags, and the matching entries are all the instructions in
instruction already has a dependent instruction in its depenthe chain originating at the oldest entry. Although the number

YF]',F.

4.1 Forming dependence chains

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

ing and trailing not-check bits are clear, the leading instruc-

DCQ - leadin : . . ; f
R g not- | last tion's value is obtained from the RVQ. The leading and

index i
e @ e @ e_|> ihe?l_k I:Str T trailing instructions’. values are thep compared. If the check
succeeds, the trailing AL pointer is used to mark the CV
1115 > entries of both leading and trailing instructions as checked-ok.
2|010] 2 2 If the check fails, the CV entries are marked as failed-check.
e @ e @ 0 —= 3[1]1)5 S In a chain, only the last-instruction’s CV entries are marked,
5 4/0]0] 4| 4 and the rest of the instructions’ CV entries remain in the not-
(@) DCQ - trailing | (p) 5{0 0| 5 [& checked-yet state. If the trailing instructions reach the RVQ

FIGURE 4: (a) DCQ. (b) Check Table. first, then the role of the leading and trailing instructions
. . . reverse in the above.
of oldest entries may be as large as the fetch width requiring as \yhen a leading instruction reaches the head of the AL, its

many parallel searches of the DCQ, the DCQ's small size |yt instruction’s AL pointer is compared to that of its trailing
keeps this parallel search manageable (e.g., 8-way search of 1&nterpart. On a match, the leading instruction uses its last-
entries). .) instruction’s AL pointer to probe the leading and trailing CV

. The _mat_chmg DCQ entry that ha_s a clear fla}g is the IalStentries. Depending on the CV entries, the instruction waits (if
instruction in the oldest entry’s chain. The chain’s non-last ine cv entries are not-checked-yet), commits (if the CV
instructions use their AL pointers to index into the check table. o hiries are checked-ok), or squashes (if the CV entries are
In the table, the non-last instructions set tiw-checkbits 10 ¢yjjed.check); squashing also occurs on a mismatch. When a
indicate that they elide checking, and they update thest- 4iling instruction reaches the head of its AL, if the leading
instruction fields with the last instruction’s AL pointer. The i4read has already committed, the CV entry of the trailing

chain’s Ia}St instruction .keep.s its .not-.check bit clea_r andhread is guaranteed to be checked-ok and the trailing instruc-
updates its last-instruction field with its own AL pointer. isn will commit.

Figure 4(b) shows the fields for the example in Figure 3(2), ypon instruction commit, the check table entry corre-
using “L" to denote leading instructions and “T” to denote ghonging to the committing instruction’s AL pointer are
trailing instructions. Thus, the check table records the chain,jeared. On an instruction squash, the check table entries cor-
identifying the chain’s last instruction as needing to check andresponding to the squashed AL pointers are invalidated.
the rest of the instructions as eliding checking. The check tableggcause the DCQ holds later instructions down the stream
also associates the eliding instructions with the last instructions.om the squashing instruction, all the DCQ entries from the
whose Ch?Ck covers them._ . squashing thread are discarded on a squash.

Operating on renamed instructions guarantees that match- ' hgcE needs to guarantee that a dependence chain is fully
ing source registers with previous destinations without checktqmeq pefore any of the instructions in the chain enter the
ing for multiple matches in the DCQ is correct. Also, the DCQ \yritehack stage. Otherwise, when earlier instructions need to
implements a subset of the functionality of renaming and nq\ the identity of the last instruction to update the CV and
bypass. While it may be possible to use the existing renamingy| | the Jast instruction will not yet have been identified. We
and bypass logic, we describe the DCQ separately for clarityqyoid this situation by ensuring that the number of cycles the
avoiding implementation details of rename and bypass. DCQ spans (1-2 cycles) is smaller than the number of pipeline
4.2 Using dependence chains stages between issue and writeback (usually more than two).

) o)) If an interrupt/exception occurs in the middle of a chain,

When a leading or trailing instruction reaches writeback, o exception delivery (which is the same as in SRT, as
the instruction uses its AL pointer to index into the check table yaqcribed at the end of Section 2) places the exception at the
and obtain the AL pointer of the last instruction in its chain. gyme execution point in both threads. The excepting instruc-
Then the leading and trailing not-check bits in the check tableqjqn ang all the previous instructions in the chain wait in the
entry are compared. If the bits do not match (indicating & mis-5¢tive |ist for the last instruction in the chain to complete and

match between the leading and trailing chains caused by g checked. Even though the last instruction may be after the
fault), the CV entries of the last instructions in both chains areeycepting instruction in program order, it is acceptable to

set to failed-check. Otherwise, if the not-check bit is set, theallow the last instruction to complete but not commit. Only

instryctiqn e|idgs chec.king and yvaits in the AL to commit, after the checking occurs, is the excepting instruction (and all
holding its Iast. |ns"[ruct|on.AL pomter: If the nqt-check bit is the previous instructions in the chain) deemed ready to com-
clear, the leading instruction places its value in the RVQ for it * ynder this condition, when the excepting instruction

later checking. Note that the AL pointers carried by the ygaches the commit point in both threads, an exception is
instructions are ECC-protected. This allows the leading andqagged. The rest of the instructions in both threads are now
trailing instructions to access the check table independentlysq ashed. After the interrupt is handled, execution restarts at
without checking against each other's AL pointers. the same point for both threads, and new chains are formed

Later, the trailing instruction indexes into the check table 4¢aqh Thus, instructions are committed one by one, exactly as
and the not-check bits are compared as above. If both the leady, ~onventional SMT.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Table 1: Hardware parameters for base system. Table 2: Benchmarks and inputs.

Component Description Benchmark Input #instrs x 16 | single thread
Processor 8-Way Out-of-order iSSug, 1Z8-entrny IPC

issue queue go train 600 .17
Branch hybrid 8K-entry bimodal, 8K-entry lisp test 1000 1.63
prediction gshare, 8K 2-bit selector gcc test 1000 1.28
16-entry RAS, 4-way1lK BTB (10- perl jumble 1000 1.90
cycle misprediction penalty) ijpeg vigo 1000 2.58
L1 I- and D-cache 64KB, 32-byte blocks, 4-way, 2-cydle vortex train 1000 2.12
hit, lock-up free m88ksim test 500 2.84
L2 unified cache 1 Mbyte,64-byte blocks, 4-way, 12} compress train 40 2.16
cycle hit, pipelined swim test 780 2.53
Main memory Infinite capacity, 100 cycle latency applu train 680 2.93
To allow several accesses every cycle, the DCQ has to pro-{ fpppp train 510 0.59
vide high bandwidth. Because the DCQ holds a small number| su2cor test 100(2.18
of instructions, it can be implemented to support high band- | hydro2d test 1000 1.94
width (e.g., 8-16 instructions each requiring one 8-bit destina- | tomcatv test 1009 2.69

tion register number, three 8-bit AL pointers, and a few bits for slack. Then, we report the average time gap between complete
a flag, totaling to about 80 bytes). Building a high-bandwidth to commit, and average memory latencies in the base SMT.
RVQ, which is kilobytes in size, is harder, for the same reasonThese parameters determine the constraints on SRTR'’s slack
that rename tables are widely multiported but D-caches arevhich needs to be shorter than the average complete to commit
only dual-ported. The check table is also a high-bandwidthtimes to avoid leading thread stalls at commit, but long enough
structure because every leading and trailing instructionto avoid trailing thread stalls due to empty LVQ. We then com-
accesses it. Because the check table holds only two AL pointpare SRTR (providing recovery) using a high-bandwidth RVQ,
ers and two flags per entry, multi-porting it is easier than to SRTRd and SRT. This comparison gives the performance
multi-porting the much-larger RVQ. cost of recovery over detection. We show the impact of the
. RVQ size on SRTR’s performance. Finally, we show the band-
5 Experimental results width reduction achieved by DBCE while maintaining the
We modify the Simplescalar out-of-order simulator [2] to S@Me performance as the high-bandwidth RVQ.
model SMT and SRT. Table 1 shows the base system configus 1 SRT versus SRTRd
ration parameters used throughout the experiments. The front-)
end of our base pipeline is long to account for SMT and deep !N Figure 5, we compare SRTRd and SRT. We show the
pipelines corresponding to high clock speeds. Like SRT, weberformance normalized to the base SMT executing only the
approximate a high-bandwidth trace cache by fetching pasgtandard program. We use a slack of 256 and a 256-entry
three branches, and at most eight instructions, per cycle [10]BOQ, 256-entry LVQ and 256-entry StB for SRT, exceeding
Table 2 presents the SPEC95 benchmarks and their inputf€ Sizes for the best performance reported by SRT [10]. For
used in this study. In the interest of space, we show results foSRTRd, we use predQ/LVQ/StB sizes of 128/128/128 for a
a subset of the SPEC95 applications, which are representativél@ck of 128, 80/96/80 for a slack of 64, 48/96/48 for a slack of
of our results over the entire SPEC95 suite. We run the bench32, and 18/96/18 for a slack of 2. The purpose of this experi-
marks to completion, or stop at 1 billion instructions in the Ment is to compare using a short slack and communicating
interest of simulation time. branch predictions between the leading and trailing threads,
We present results in the absence of faults in order to study9@inst using a long slack and communicating branch out-
the performance cost of SRTR over SRT. In the presence ofomes. We do not want the queues to fill up and interfere with
faults, SRTR can recover but SRT will stop as soon as it!hiS comparison. Therefore, we keep the sizes of SRTRd's
detects a fault. Therefore, a comparison of performance is nofluUeUes appropriately large for each slack value. Itis important
possible when faults occur. In addition, faults are expected tof® Note that SRTR needs a short slack to avoid leading instruc-
be rare enough that the overall performance will be determinedions stalling at commit while waiting for trailing instructions
by fault-free behavior. to complete and be checked. This effect does not exist in
Because the basic scheme used in SRTR for detection i$RTRd, which performs well with higher values of slack.
different from that used in SRT, we start by comparing the _From Figure 5, the performance of SRT is between 2% to
SRTR detection scheme (without recovery) against SRT. web5% worse than the base SM_T. These numbers are in line with
refer to the detection scheme implemented in SRTBRERd ~ SRT [10]. On average, SRT is 21% worse than SMT for the
SRTRd uses a short slack and it communicates branch predidNt€ger programsgo throughcompres} and 27% worse than
tions between the leading and trailing threads, while SRT uses>MT for the floating point (FP) programsyimthroughtom-
a long slack and communicates branch outcomes. In the sameAt- In general, programs which exhibit enough ILP to satu-
experiment, we also show the performance impact of near-zerdate the processor resources in the base SMT incur higher

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

a: SRT 256 b: SRTRd 128 c: SRTRd 64 d: SRTRd 32 e: SRTRd 2

abcde

to 1-thread SMT

Performance relative

go lisp gce perl ijpeg vortex m88ksimcompress swim applu fpppp su2cor hydro2d tomcatv
FIGURE 5: SRT vs. SRTR detection.

performance loss due to replication in SRT (and SRTRd). may be and still not impact performance. For SRT, SRTRd,
While a short slack of 64 or 32 performs close to a slack of and SRTR (providing recovery), the slack needs to be long
256, a near-zero slack of 2 incurs greater performance loss foenough to hide the leading thread’s average memory latency
many programs. For the integer programs, SRTRd on averagéom the trailing thread. However, SRTR’s slack needs to be
performs as well as SRT for slacks of 128 and 64, and withinshort enough so that trailing instructions can complete and be
1% of SRT for a slack of 32, showing that communicating checked before the leading counterparts reach the commit
branch predictions works as well as outcomes. For a slack opoint. Hence, SRTR'’s slack needs to be longer than the mem-
2, STRTd performs about 5%, on average, worse than SRTory latency but shorter than the complete to commit time.
with lisp incurring a 10% performance loss. This loss is In Table 3, we tabulate the average number of cycles
mainly due to unavailable load values in the LVQ (explained between complete and commit and the average memory
in Section 5.2). For the FP programs, SRTRd performs as wellatency for the base SMT. We compute the average memory
as SRT for a slack of 128, and within 3% and 5% of SRT for a latency as L1 hit time + L1 miss rate * L1 miss penalty + L2
slack of 64 and 32, respectively. For a slack of 2, SRTRd per-miss rate * L2 miss penalty. This latency is the impact of the
forms about 8%, on average, worse than SRT, wiigdro2d leading thread’s load latency on the trailing thread assuming
incurring a 26% performance loss. the worst case where the latency is completely exposed in the
In a few cases such g®, tomcaty andsu2cor SRTRd per- trailing thread. We see that due to good cache performance,
forms slightly better than SRT due to the interaction betweenthe average memory latency is close to the hit time suggesting
branch mispredictions and slack. Branch mispredictions caus¢hat the slack primarily needs to hide on-chip cache hit laten-
the actual slack to reduce temporarily. In SRT, this reductioncies. In general, the FP progranss\imthroughtomcaty have
results in the trailing thread stalling for branch outcomes, a higher memory latency explaining their worse performance
whereas SRTRd is not affected by this reduction becausewith shorter slacks. For instandeydro2dhas a long average
SRTRd's trailing thread uses branch predictions which arememory latency, and performs poorly with a slack of 2.
available earlier than branch outcomes. Long delays in branch For all the programs, the gap between the average complete
resolution intomcatvandsu2cor,andgo's frequent mispredic- to commit time and the average memory latency is large
tions make these programs vulnerable to this effect. enough to allow a slack longer than the average memory
5.2 Constraints on SRTR’s slack Ié\tency but shorter t.han the average c.omplete.to commit time.
ven for memory-intensive applications which may have
While SRTRd performs well with a large slack, recovery higher miss rates than our benchmarks, the gap is likely to be
will require a shorter slack as discussed earlier. In this sectionjarge enough to allow a reasonable slack. Note that slack is
we explain why a short slack suffices, and how short the slackcounted in number of instructions by which the leading thread

Table 3: Slack constraints. is ahead, and the numbers in Table 3 are numbers of cycles.

Benchmark Ave. memory | #Ave. complete to Because fetch can obtain up to 8 instructions per cycle, a slack
latency commit time of 32 is equivalent to 4 cycles.

go 202 55
fisp >0 555 5.3 SRTR recovery
gcc 2.15 20.5 The average complete to commit times in Table 3 suggest a
perl 2.22 27.3 range for appropriate slack values. To select an acceptable
ijpeg 2.15 27.4 value for the slack, it is important to note that the complete to
vortex 2.15 39.4 commit time of individual instructions vary quite widely. For
m88ksim 2.01 254 instance,lisp, compressand tomcatv have 40%, 50%, and
compress 2.89 26.5 40%, respectively, instructions whose complete to commit
swim 3.36 39.5 times are fewer than 10 cycles. Therefore, a long slack may
applu 3.64 343 cause many leading instructions to stall at commit waiting for
fpppp 2.0 20.6 their trailing counterparts to complete and be checked. It is
su2cor 3.83 40.1 thus important to select a slack value which accommodates the
hydro2d 5.80 45.4 majority of the instructions.
tomcatv 2.01 313 In Figure 6, we compare SRT using a slack of 256 to SRTR

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

a: SRT 256 b: SRTR 80 c: SRTR 64 d: SRTR 32 e: SRTR 2

0.8
0.6
0.4
0.2

0.0 go IS gcc pem fjpeg _ voriex MBBKSIM compress Swim — appiu |

FIGURE 6: SRTR recovery.
(providing recovery) varying the slack for SRTR as 80, 64, 32, It can be seen that an RVQ size of 80 entries works as well
and 2. Because SRTRd using a slack of 128 performs as welas 128 entries for all the programs. With 64 entries, while most
as SRT, we do not show SRTRd in this graph. To isolate theprograms experience no degradation, a few programgtike
effect of the slack, we use a bandwidth-unlimited (i.e., 8 compressand su2corincur a small performance loss while
ports), 128-entry RVQ (we vary the RVQ size later). We use aijpeg, applu hydr2dandtomcatvslow down considerably. For
256-entry BOQ, 256-entry LVQ and 256-entry StB for SRT. these benchmarks, an RVQ size of 80 entries seems appropri-
For SRTR, we use predQ/LVQ/StB sizes of 128/128/128 for aate and achieves the same performance as a 128-entry RVQ.
slack of 80, 80/96/80 for a slack of 64, 48/96/48 for a slack of
32, and 18/96/18 for a slack of 2. As in Section 5.1, we show>-2> DBCE
performance normalized to the base SMT executing only the |y this section, we show the effectiveness of DBCE in
standard program. reducing the bandwidth demand on the RVQ. We measure the

It can be seen that SRTR's average performance peaks atigpact of RVQ bandwidth on SRTR without and with DBCE.
slack of 32. For the integer programgo(throughcompresk Loads and stores do not use the RVQ and hence the RVQ
SRTR using a slack of 64 and 32 on average performs 3% angandwidth demand comes solely from the ALU/FPU and
1% worse than SRT. For the FP programwifnthroughtom- pranch instructions. Both with and without DBCE, SRTR uses
caty), SRTR on average performs 7% worse than SRT for bothg slack of 32, predQ/LVQ/StB sizes of 48/96/48 entries, and an
a slack of 64 and 32. As expected, decreasing the slack to 30-entry RVQ (which was identified as the best size in the last
causes performance degradation. Increasing the slack to 88ection). We use a DCQ size of 16 (8 for each thread). We var-
also causes performance degradation. SRTR using a slack géd the DCQ size but did not find much difference mainly
80 on average performs 5% and 9% worse than SRT for thegecause the chains are broken at branches, and branch fre-
integer and FP programs, respectively. A slack of 80 makes theuency impacts the chain length more than the DCQ size.
leading thread stall at commit, putting pressure on the instrucBecause four RVQ ports are as good as five or more for SRTR
tion window. Thus, using a slack of 32 seems to be the bestyithout DBCE, we vary the number of RVQ ports as 2, 3, and
choice for these benchmarks. 4. We use SRT with a slack of 256 as the reference, and show
5.4 RVQ size performance normalized to the base SMT executing only the

standard program.

In this experiment, we measure the impact of varying the \we show the results in Figure 8. In our implementation, we
RVQ size on the performance of SRTR. RVQ entries are allo-agssume that faults propagate through all instructions, including
cated as Ieading instructions enter the AL and freed in gueuethose that may mask faults. Because the percentage of mask-
order as the trailing counterparts obtain the RVQ values.ing instructions is usually low [10], this assumption will not
Hence, the RVQ size depends on the issue queue size and thgfect our results significantly.
slack. In Figure 7, we compare SRT using a slack of 256 to |n Table 4, we show the number of RVQ accesses elided by
SRTR using a slack of 32 (which was identified as the bestpBCE as a percentage of all RVQ accesses made without
value in the last section) and predQ/LVQ/StB sizes of 48/96/ DBCE. On average, DBCE elides 35.3% of all RVQ accesses
48, but varying the RVQ size as 128, 96, 80, and 64 entries. ASn hoth leading and trailing threads. For most programs, the
before, we show performance normalized to the base SMTpercentage of elided instructions is high using a DCQ of just
executing only the standard program. 16 entries because the programs have an abundance of register

a: SRT b: SRTR 128 c: SRTR 96 d: SRTR 80 e: SRTR 64

to 1-thread SMT

Performance relative

1.0
0.8
0.6
0.4
0.2

0.0 go Isp gce perl ijpeg ~ vortex m83ksimcompress swim su2cor
FIGURE 7: Impact of RVQ size.

to 1-thread SMT

Performance relative

YFF.F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

Table 4: Percent RVQ accesses elided. communication of data values and branch outcomes between

Benchmark Percent Benchmark || Percent the leading and trailing threads to accelerate execution. A later
elided elided paper applies the concepts from AR-SMT to CMPs [15]. SRT
go 531 Swim 437 improves on AR-SMT via the two optimizations of slack fetch
lisp 24.7 applu 50.1 and checking only stores for an SoR that includes the register
gcc 41.3 fpppp 18.4 file [10]. A recent paper explores design options for fault
perl 335 su2cor 40.8 detection via multithreading [6].
ijpeg 49.4 hydro2d 39.5 The AR-SMT paper mentions recovery stating that the
vortex 15.7 tomcatv 35.1 state of the R-stream (which corresponds to our trailing
m88ksim 38.4 ERAGE || 35.3 thread) is the checkpointed state and can be used for recovery.
compress 38.5 SRTR and AR-SMT are fundamentally different ways of per-

dependences in nearby instructions. The exceptiongatex forming recovery, with different costs. SRTR disallows the
and fpppy both programs have a high fraction (52.8% and leading thread from committing until the trailing thread com-
53.2%, respectively) of memory instructions. Because loadspletes and is checked, and uses instruction squash to rollback
and stores are not included in the DBCE chains, the programso a committed state before the fault. AR-SMT allows the
cannot elide as many instructions as the others. leading thread to commit potentially faulty state, and let the
Let us first analyze SRTR performance without DBCE. trailing thread be checked upon completion of each instruc-
From Figure 8, we see that for all the programs, a 4-portedtion; upon detecting a fault, AR-SMT uses the trailing thread’s
RVQ (third bar) performs as well as an 8-ported RVQ (secondcommitted state (up to but not including the fault) to restore
bar). As the number of RVQ ports decreases from 3 to 2, mosthe leading thread’s state for recovery. SRTR delays the lead-
programs incur significant performance loss. For the integering thread from committing and our paper shows the perfor-
programs @o thoroughcompresy performance drops by 2% mance impact of this choice. AR-SMT doubles the bandwidth
and 18%, on average, with 3 and 2 RVQ ports, respectively,pressure on the data cache by requiring both threads to access
compared to 4 RVQ ports. For the FP prograswinthrough the cache, while SRTR (and SRT) uses the LVQ for the trailing
tomcaty, performance degrades by 1% and 20%, on averagethread accesses. Furthermore, AR-SMT requires memory to
with 3 and 2 RVQ ports, respectivelyortexandfppppare the be doubled (two copies of memory, one for each thread)
two exceptions that perform as well with 2 RVQ ports as with because committing faulty state of the leading thread will cor-
4 RVQ ports, because more than half of the instructions arerupts memory. Doubling the memory size may stress the mem-
loads and stores, and do not access the RVQ. ory hierarchy and degrade performance. Because faults are not
On the other hand, SRTR with DBCE incurs little perfor- allowed to reach memory in SRTR, there is only one copy of
mance loss even with two RVQ ports. Comparing four ports to memory in SRTR (and SRT).
two ports, performance degrades by 1% and 2% for the integer DIVA is another fault-tolerant superscalar processor that
and FP programs, respectively. Note that in the case of 4 portsises a simple, in-order checker processor to check the execu-
where DBCE is not needed, using DBCE does not degraddion of the complex out-of-order processor [1]. DIVA can
performance. This point implies that by exploiting complete to recover from permanent faults and design errors in the aggres-
commit time, DBCE avoids stalling the early instructions in sive processor but assumes that no transient faults occur in the
the chains waiting for the last instruction in the chain to com- checker processor itself. Other works on fault tolerance focus
plete. Looking at SRTR using 2 RVQ ports with and without on functional units [11, 7, 4, 14].
DBCE, DBCE boosts SRTR’s performance by 17% and 18% A recent paper [9] proposes hardware recovery using
for the integer and FP programs, respectively. superscalar hardware without any SMT support. The paper
advocates the natural way to achieve recovery by using super-
6 Related work scalar’s rollback ability. The paper does not use the LVQ, does
Watchdog processors are the key concept behind manyot address the issues related to cached loads, and claims that
fault tolerance schemes [5]. The AR-SMT processor is the firstthere is no need for any slack.
to use SMT to execute two copies of the same program [12]. The Compaqg NonStop Himalaya [3] and IBM z900 (for-
AR-SMT also proposes using speculation techniques to allowmerly S/390) [13] employ redundant hardware to achieve fault

a: SRT b: SRTR 8 c: SRTR4 d: DBCE4 e:SRTR3 f DBCE3 g: SRTR2 h: DBCE 2

()

2~ 1.0

©

E’% 08 abcdefgh
3R 06

gg

gf 0.4

‘89 0.2

S 0.0

go lisp gce perl jpeg vortex m88ksimcompress swim applu fpppp su2cor hydro2d tomcatv
FIGURE 8: Effectiveness of DBCE in reducing RVQ bandwidth demand.

YF]',F.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02) COMPUTER
1063-6897/02 $17.00 © 2002 IEEE SOCIETY

tolerance. The z900 uses the G5 microprocessor whichReferences

includes replicated, lock-stepped pipelines. The NonStop
Himalaya uses off-the-shelf, lock-stepped microprocessorsll]
and compares the external pins on every cycle. In both sys-
tems, when the lock-stepped components disagree, the compo-
nents are stopped to prevent propagation of faults. The z900¢]
uses special microcode to restore program state from a hard-
ware checkpoint module. The NonStop Himalaya does not
provide hardware support for recovery. SRT has shown thaf3]
avoiding lock-stepping achieves better performance.

7 Conclusions [4]

We proposedSimultaneously and Redundantly Threaded
processors with Recovery (SRTR)at enhances SRT to |5
include transient-fault recovery. In SRT, a leading instruction
may commitbeforethe check for faults occurs, relying on the
trailing thread to trigger detection. SRTR, on the other hand,
must not allow any leading instruction to commit before
checking occurs, since a faulty instruction cannot be undone
once the instruction commits. To avoid leading instructions 7
stalling at commit waiting for their trailing counterparts,
SRTR exploits the time between completion and commit of a[8]
leading instruction. SRTR checks as soon as the trailing
instruction completes, well before the leading instruction 9]
reaches commit. To avoid increasing the bandwidth demancl
on the register file, SRTR uses ttegjister value queue (RVQ)
to hold register values for checking. To reduce the bandwidth
pressure on the RVQ itself, SRTR emplajependence-based
checking elision (DBCE)By reasoning that faults propagate
through dependent instructions, DBCE exploits register (true)
dependence chains so thatly the last instruction in a chain [11]
uses the RVQ, and has the leading and trailing values checked.
DBCE redundantly builds chains in both the leading and trail- [12]
ing threads and checks its own functionality for faults.

We evaluated SRTR using the SPEC95 benchmarks. SRT 13]
on average performs within 1% and 7% of SRT for integer and
floating-point programs, respectively. We showed that high[14]
prediction accuracies and low off-chip miss rates in the under-
lying SMT enable SRTR detection using a slack of 32 to per-
form on average within 5% of SRT using a slack of 256. For
our benchmarks, the gap between the average complete t85]
commit time and average memory latency is large enough to
allow a slack longer than the average memory latency but
shorter than the average complete to commit time. DBCE
elides about 35% of RVQ accesses. SRTR without DBCE on
average incurs 18% performance loss on reducing from four[16]
(which is performance-equivalent to an unlimited number) to
two RVQ ports. With DBCE, a two-ported RVQ on average
performs within 2% of a four-ported RVQ.

(6]

[10]

Acknowledgements (17
We thank Shubu Mukherjee and the anonymous reviewers

for their comments. The work of I. Pomeranz and K. Cheng

was supported in part by NSF Grant No. CCR-0049081. The

work of T. N. Vijaykumar was supported in part by NSF Grant

No. CCR-9875960.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA’02)
1063-6897/02 $17.00 © 2002 IEEE

T. M. Austin. DIVA: A reliable substrate for deep-submi-
cron microarchitecture design. Rroceedings of the 32nd
Annual International Symposium on Microarchitecture
pages 196-207, Nov. 1999.

D. Burger, T. M. Austin, and S. Bennett. Evaluating future
microprocessors: the simplescalar tool set. Technical Re-
port CS TR-1308, University of Wisconsin, Madison, July
1996.

Compag Computer CorporatioBata integrity for Com-
pag Non-Stop Himalaya servershttp://nonstop.com-
pag.com, 1999.

J. G. Holm and P. Banerjee. Low cost concurrent error de-
tection in a VLIW architecture using replicated instruc-
tions. InProceedings of the International Conference on
Parallel Processing1992.

A. Mahmood and E. J. McCluskey. Concurrent error de-
tection using watchdog processors—A sunt&gE Trans.

on Computers37(2):160-174, Feb. 1988.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading alterna-
tives. In Proceedings of the 29th Annual International
Symposium on Computer Architectulkéay 2002.

J. H. Patel and L. Y. Fung. Concurrent error detection on
ALU’s by recomputing with shifted operanddEEE
Trans. on Computer81(7):589-595, July 1982.

D. A. Patterson and J. L. Hennessyomputer Architec-
ture: A Quantitative ApproachMorgan Kaufmann Pub-
lishers, 1998.

J. Ray, J. C. Hoe, and B. Falsafi. Dual use of superscalar
datapath for transient-fault detection and recoverpro-
ceedings of the 34th annual IEEE/ACM international sym-
posium o n Microarchitecturéddec. 2001.

S. K. Reinhardt and S. S. Mukherjee. Transient-fault de-
tection via simultaneous multithreading.Pnoceedings of
the 27th Annual International Symposium on Computer
Architecture pages 25-36, June 2000.

D. A. Reynolds and G. Metze. Fault detection capabilities
of alternating logic. IEEE Trans. on Computers
27(12):1093-1098, Dec. 1978.

E. Rotenberg. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. Rroceedings of
Fault-Tolerant Computing Systeni999.

T. J. Slegel, etal. IBM’s S/390 G5 microprocessor design.
IEEE Micro, 19(2):12-23, 1999.

G. S. Sohi, M. Franklin, and K. K. Saluja. A study of time-
redundant fault tolerance techniques for high-perfor-
mance, pipelined computers. Digest of papers, 19th In-
ternational Symposium on Fault-Tolerant Computing
pages 436-443, 1989.

K. Sundaramoorthy, Z.Purser, and E. Rotenberg. Slip-
stream processors: Improving both performance and fault-
tolerance. InProceedings of the Ninth International Sym-
posium on Architectural Support for Programming Lan-
guages and Operating Systemgages 257-268.
Association for Computing Machinery, Nov. 2000.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithread-
ing processor. IfProceedings of the 23rd Annual Interna-
tional Symposium on Computer Architectupages 191—
202, May 1996.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. Pro-
ceedings of the 22th Annual International Symposium on
Computer Architecturgpages 392-403, June 1995.

YF]',F.

COMPUTER
SOCIETY

