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Abstract – Integral balance solution to start-up problem of a second grade viscoelastic fluid 

caused by a constant surface stress at the surface has been developed by an entire-domain 

parabolic profile with an unspecified exponent. The closed form solution explicitly defines two 

dimensionless similarity variables y tξ ν=  and 
2

0D p t
βχ ν= = , responsible for the 

viscous and the elastic responses of the fluid to the step jump at the boundary. Numerical 

simulations demonstrating the effect of the various operating parameter and fluid properties on 

the developed flow filed, as well comparison with the existing exact solutions have been 

performed. Numerical test with variable exponent of the approximate profile have been performed 

as a step improving the approximate solution. Copyright © 2011 Praise Worthy Prize S.r.l. - All 

rights reserved. 
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I. Introduction 

Transient flows of viscoelastic fluids are intensively 

modeled by analytical and numerical methods 

[1],[2],[3],[4],[5],[6] with very few exact analytical 

solutions obtained. The second grade fluid is the 

common non-Newtonian viscoelastic fluid in industrial 

fields, such as polymer solution [7], emulsions [8], crude 

oils [9], extrusion masses [10],[11], blood flow [12],[13] 

and magneto-hydrodynamic flows with heat and mass 

transfer [2]. Fractional calculus allows incorporating 

memory effects in the constitutive equations [14] by the 

fractional order time Riemann-Liouville derivative. The 

start-up flows of second grade generalized fluids have 

been intensively studied toward development of exact 

analytical solutions [4],[5],[15],[16] with Caputo 

derivatives, applying mainly Laplace transforms and 

consequent expressions by the generalized Mittag-Leffler 

function. 

This article develops an approximate integral balance 

solution of a fractional generalized second fluid with a 

special emphasis on simplicity and physical adequacy, 

without significant loss of exactness and avoiding both 

the use of the Caputo derivative and the Laplace 

transforms. 

II. Problem Statement 

II.1. Constitutive Relationships 

Generally, the constitutive relationship of the second 

grade fluids,  that  is  thermodynamically  compatible,  is 

defined as [17], [18]: 
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In (1) ρ  is the density, I  is the unit vector, while 

1α and 2α are the normal stress moduli [17]. The 

coefficient 1α  2
y

β
ρ µ⎡ ⎤
⎣ ⎦ ) is the first normal stress 

modulus. The Riemann- Liouville operator tD
β denotes: 
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a model of a general second grade fluid .With 0β = and 

1 0α = we get a classical Newtonian liquid, while for 

1β =  and tD t
β → ∂ ∂1 1A A  [17], where 
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( )Tgrad grad= +1A V V  (see eq. (1)). 

In 1-D form the constitutive equation for second grade 

liquid is expressed as [19]: 

 

 ( ) ( ) ( )1 tt t D t
βτ µε α ε= + ⎡ ⎤⎣ ⎦  (3) 

 

0xx yy zz xz yzT T T T T= = = = = , where xy yxT T= . 

II.2. Start-Up Problem 

Consider a semi-infinite space filled by a generalized 

second grade viscoelastic fluid undergoing a transient 

motion due to tangential shear stress σ exerted on the 

fluid at 0y = (parallel to the x  axis). That is, the 

velocity field is ( )u y,t=V , where y  is the axis normal 

to plate surface and u is the velocity component along 

the x  axis. 

In this context, the stress tensor component relevant to 

the present problem is 1xy t

u u
D

y y

βµ α∂ ∂
= +

∂ ∂
T . In 

absence of body forces we have: 
D

Dt
ρ = ∇ ⋅

v
T  and 

0∇⋅ =V , that is [17]: 

 

 
2 2

12 2t

u u u
D

t y y

βρ µ α∂ ∂ ∂
= +

∂ ∂ ∂
 (4) 

 

with initial conditions: 

 

 ( )0 0 0u y, , y= >  (5a) 

 

 0t >  (5b) 

 

 0u , y→ →∞  (5c) 

 

and a boundary condition: 
 

 
( ) ( )1
0 0

t

u ,t u ,t
D

y y

βα σν
ρ ρ

∂ ∂
+ = −

∂ ∂
 (6) 

 

0y = ;  0t >  

III. Integral Balance Solution 

III.1. Approximate Velocity Profile and          

Penetration Depth  

Following the integral balance methodology [20] the 

velocity ( )u y,t is approximated by a general parabolic 

profile ( )0 1 1
n

u b b y δ= + − with an unspecified 

exponent n , satisfying the following boundary 

conditions: 

 ( ) 10 su ,t U b= =  (7a) 

 

 ( ) 0u ,tδ =  (7b) 

 

 0

y

u

y δ=

∂
=

∂
 (7c) 

 

The profile can be expressed as: 
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or: 

 1

n

a s

y
u U

δ
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (8b) 

 

Here 1 sb U= is a time-dependent surface velocity 

defined by the boundary condition (6).  The governing 

equations eq. (5) can be expressed as [6]  
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were 2
1p mα ρ ⎡ ⎤= ⎣ ⎦  or rp νλ=  ( rλ is the relaxation 

time [21].  

Integrating (9) from 0 toδ  we get (see detailed 

explanation of this technique in [22],[23],[24],[25]: 
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A substitution of au in (6) defines sU  through the 

equation: 
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or  
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At this point, δ is assumed as a constant, since the 

problem is about the surface velocity. The equation about 

δ has to be defined through the integral balance (10a). 

Further, we denote: 
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 ( )( )sU n B Fδ=  (12b) 

 

 B σ µ=  (12c) 

 

 ( )1F p j t
β

βν −= +  (12d) 

 

 ( ) ( ) 1
1 1jβ β β −

= − Γ −⎡ ⎤⎣ ⎦  (12e) 

 

The group ( )( )nδ σ µ  has a dimension [ ]m s  (see 

also eq. (18)). Taking into account the expression for 

sU B nFδ =  and ( )2
sU B nFδ δ=  we get from (10a) 

(details are available elsewhere [6]) an equation 

definingδ , namely: 
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 ( ) ( ) ( )2 1
11 1t n n n n pj t C

β
βδ ν −= + + + +  (14) 

 

with 1 0C = , because ( )0 0tδ = = , we get: 

 

 ( ) 01 1 1
p

t n n j t j D
β

β βδ ν
ν

−= + + ≡ +  (15) 

 

The Deborah number 0D p t
βν=  (15) in its general 

definition is a ratio of two time scales 

ev ev 0p t t t D
βν = ⇒ = . Moreover, the process has two 

characteristic length scales, namely: 

• Nl tν=  is the length scale in the Newtonian case 

• l t
β

β ν=  is the fractional length scale (see [6] and 

[25]). 

Therefore, the ratio p t
βν is dimensionless and the 

Deborah number ( )20D p t
βν=  can be considered 

as a similarity variable [6]. Further, the approximate 

velocity profile will expressed as function of two 

similarity variables [6]: y tξ ν=  and p t
βχ ν= , 

(
2

0Dχ = ), defined through the characteristic length 

scales Nl  and lβ , respectively. 

It is obvious that when ( )p j t
β

βν − becomes 

negligible ( 3
0 10j Dβ

−≈  could be assumed as 

negligible), the flow becomes Newtonian and the 

penetration depth reduces to ( )2 1t n nδ ν= +  [6], 

[26], [27]. 

III.2. Dimensionless Velocity Profile 

Therefore, with the expression (15) ofδ  the velocity 

profile is: 

 

 

( )2

1
1 1

1

n
n

s n
n

u

U F RF j ββ

ξξ
χ

⎛ ⎞
⎛ ⎞⎜ ⎟= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠+⎜ ⎟

⎝ ⎠

 (16) 

 

where y tξ ν=  is the Boltzmann similarity variable, 

and: 

( )1nF n n= + , 01R j Dβ β= + , 

( 21R jβ β χ= + ) 

(17

) 

 

Further, with ntF Rβδ ν=  and B σ µ= , the surface 

velocity ca be expressed as: 
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Then the approximate profile becomes: 
 

 1

n

s

n

u U
F Rβ

ξ⎛ ⎞
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⎝ ⎠
 (19) 

 

In the Newtonian problem the exact solution is 

( )1 2su U erf ξ= −  with 0 ξ≤ ≤ ∞ . However, in the 

integral-balance solution of the Newtonian problem, we 

have 0 nFξ≤ ≤ , while for the viscoelastic flow the range 

is 0 nF Rβξ≤ ≤ . Moreover, from the terms of (12a), 

(12b) we have ( )( )sU n B Fδ= . Then with 

1F pj t
β

β
−= +  we get ( ) ( )201F D j Rβ βν= + =  (see eq. 

(12a)). 

The group tσ ν µ  in (18) has a dimension of 

velocity [ ]m s . The problem solved here, to some 

extent, is an analogue of the Newman problem in the 

diffusion (heat or mass) where under imposed constant 

surface flux, the surface temperature increases in time. 

Moreover, the problem has no characteristic time and 

length scales. The term tν  [m] is like a length scale, as 

in any other semi-infinite diffusion problems, while 

σ µ [s] can be used as a time scale. 

III.3. Approximate vs. Exact Solution: a       

Preliminary Analysis 

The exact solution of the problem has been developed 

by Hayat et al. [17] and can be expressed as (A-2) (see 

the Appendix): 
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The terms 1Φ  and 2Φ  are commented in the 

Appendix. In general 1Φ  represents the time variations 

of the surface velocity sU , while the flow field in the 

fluid depth is depicted by 2Φ . Moreover, in the 

Appendix some terms are re-arranged in order to express 

the exact solution through the similarity variables 

y tξ ν=  and p t
βχ ν= , because it is hard the 

original version [17] to be used for a physical analysis. 

In contrast, the integral balance solution yields an entire 

domain approximate profile allowing the physical effects 

to be represented by separate terms through ξ  and χ  , 

and the fractional-order correction factor jβ . As to the 

errors in solutions, the exact solution also can be 

considered as an approximate one when the infinite sums 

in 1Φ  and 2Φ  are truncated in practical calculations. 

The common term ( )tσ ν µ in both the exact and 

the approximate solutions only confirms the physical 

adequacy of the approach developed here, while the 

time-dependent and the flow-field terms differ and are 

strongly affected by the approach to solve the problem. 

At the free surface ( 0y = ), for instance, we have: 

  

 ( ) ( ) ( )10u ,t t ,t , p,σ ν µ β ν= Φ  (20b) 

 

and: 

 

 ( ) ( )( )0a s nu ,t U t F nRβσ ν µ= =  (20c) 

 

The numerical experiments reported further in this 

article will illustrate the differences in both solutions.  

III.4. Calibration of the Exponent 

First we can consider the limiting case with 0 0D = , 

which has been analyzed thoroughly in its heat-diffusion 

version [22],[23],[28]. With calibration at 0y =  [26], 

we have 1 675n .= , while the minimization of the 2L  

norm in the domain 0 y δ≤ ≤  results in 2 35n .≈ [28] 

and 1 507n .≈  applying a similarity transform of eq. (93) 

at 0p = [29]. 

The general approach in estimation of the optimal 

exponent is to minimize the 2L  norm in the 

domain 0 y δ≤ ≤ , [6],[22],[25], namely: 
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δ
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After integration in (21) we get 

( ) ( )
( )

( )
3 2 3

n ne y,t , e y,t ,
E y,t ,

t

β β
β

δν
= ≡ . 

Taking into account that the entire function 

( )E y,t ,β decays in time with a speed 3δ≡ , the 

minimization refers to an optimal value of n  minimizing 

the function ( )ne y,t ,β . Setting all time-dependent terms 

(increasing in time only) of ( )ne y,t ,β  equal to zero (see 

[22], [24],[25] and [28] ), we get: 

 

 ( ) ( ) ( )2 21
0 1

2
n

n p
e y, ,t n n

t
β

νβ ν
−

= = − −  (22a) 

 

 

0

1 1

2
n

D
≈  (22b) 

 

The result is just the same as that developed in [6]. 

Numerical experiments [6] with 2n =  and 3n =  

provide 0 0 125D .≈  and 0 0 055D .≈ , respectively. In 

this context, the optimal Newtonian profile with 

exponents we get: 2 35n .≈  corresponds to 0 0 100D .≈ , 

while that 1 507n .≈  provides 0 0 220D .≈ . Therefore, 

within the range defined by ( )0 1O D ∼ , that is the 

viscoelastic flow [21], the exponent of the parabolic 

profile oscillates around 2n =  as the value of 0D  varies. 

Taking into account, the inverse time dependence of 0D , 

it is reasonably to expect and increase in the value of the 

exponent 2
n t

β∼  (see (22b)).That is, the shorter 

relaxation times (the larger observation times), the larger 

exponents of the approximate profile and vice versa. For 

2n = , for instance, we get: 
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1
3 464 1s

u y

U . t j Dβν
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⎜ ⎟≈ −
⎜ ⎟+⎝ ⎠

 (23a) 

 

 

2

2
1

3 464 1s

u

U . jβ

ξ

χ

⎛ ⎞
⎜ ⎟≈ −⎜ ⎟⎜ ⎟+⎝ ⎠

 (23b) 

IV. Numerical Experiments and Analyses 

IV.1. Approximate vs. Exact Solution 

A) Fixed exponent 

Some numerical experiment was performed to 

compare the developed approximated solution with the 
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exact one [17] in case of affixed value of 2n = . In fact, 

the exact solution [17] never have been plotted, or at 

least tested numerically, so far. The sums in (A-1) were 

truncated to 50maxm =  and 50maxk = . Then, the 

solutions were performed by Maple 13. In general, both 

the approximate and the exact solution almost match for 

0 2ξ≤ ≤  (see Figs. 1(a), (b)) and p ν  ratios close to 1 . 

The plots are for 0 5.β =  as a frequently used fractional 

order in numerical experiments. 

The tests with the exact solution with 0 1 0 5. .β≤ ≤ , 

in fact below 0 4.β ≈ , are disappointing because the 

exact solution becomes unstable. These results (not 

shown here) focus on a new problem beyond the scope 

of the present work. 

 

 

 
 

Figs. 1. Numerical tests with the exact solution and the approximate one 

with a fixed exponent 

 

Besides, with increase in the range of variations of ξ  

beyond 1 5.ξ ≈ , precisely with 2 7ξ≤ ≤  the difference 

between the exact and the approximate solutions 

becomes enormous. Even with 100maxm =  and 

100maxk =  does not approach zero. This an inherent 

problem of the integral balance solution for the classical 

diffusion equations ( 0p = ) when a fixed exponents for 

the entire domain is used [TS-2010], i.e. with the 

increase in ξ  the approximate solution goes faster to 

zero than the exact one. This can be fixed, to some 

extent, by a self-adaptive exponent varying with increase 

in ξ . This problem will be commented further in this 

work. 

At this moment, we refer to impossibility to express 

the exact solution completely by the similarity variables 

ξ and χ  because the time-dependent sums in both 

1Φ and 2Φ  (see A-5 and A-6) cannot be converted 

easily into dimensionless groups. Hence, there are 

inherent problems, coming from the approaches used to 

develop the solutions at issue, hindering the direct 

comparison of the final results. 

In the calculations demonstrated by the plots, the time 

was chosen 1t = . This means that the variations in ξ  are 

due to variations in the space co-ordinate y , at given 

physical proprieties of the fluid, of course. Therefore, for 

1 5.ξ < , i.e. at short distances from the surface, where 

the shear is exerted, the approximate solution with a 

fixed exponent provides adequate and acceptable results. 

B) Variable exponent: some approximations   

The variable exponent approach has been tested 

successfully to classical parabolic equations [29]. Some 

attempts based on empirical relationships ( )n n ξ=  and 

to fractional-time subdiffusion equations ere reported in 

[24]. The main idea comes from the estimates (22b) and 

the fact that n t
β∼  (see the earlier comments about eqs. 

22). From this point of view, with a fixed value of p ν , 

as fractional time scale and with variations in time (i.e. 

variations in ξ ) we get from (22b): 

 

• Large times 

 

 
( ) ( )( )1

t

p t p t n
β β

ξ

ν ν− −

↑ ↓

⇒ ↓⇒ ↑⇒ ↑

∼
 (24a) 

 

• Short times  

 

 
( ) ( )( )1

t

p t p t n
β β

ξ

ν ν− −

↓ ↑

⇒ ↑⇒ ↓⇒ ↓

∼
 (24b) 

 

Here, the symbols ↑ and ↓ mean that the value 

increase or decrease.  

Therefore, with large a time, which is with small ξ  

for a fixed y , the exponent should decrease in time, and 

vice versa. However, this estimate is based only on the 

analysis of the fractional correction Rβ . When at large 

time 1Rβ →  the Newtonian behaviour dominates, the 

estimate established in [29] teaches that n should 

increase as ξ  increases, behaviour just opposite to that 

established above. From this point of view, the choice of 

adequate exponent should be separated in two, namely: 

a) short-time solutions with dominating visco-elastic 

effects and approximate profiles and exponent 

n controlled by a relationship based on the estimates 

(24a),(24b). 
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b) Large time solutions, with a Newtonian behaviour, 

where n  increases with the increase in ξ  and can be 

modeled as ( ) ( )0 jn n k LambertWζ ξ= + [29], 

where 0 5jk .≈  and ( )LambertW ξ  is the Lambert 

function. 

In this context, the variable exponent can be suggested 

as: 

 ( ) ( ) ( )0

01 1
1

j

b
b

n k LambertWn
n ,

k D p
k

t
β

ξζ
ζ χ

ν

⎡ ⎤+⎣ ⎦= =
+ ⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 (25) 

 

The value of 0n  come from the calibration of the 

Newtonian profile at 0y =  [29] and for the problem 

solved here it is 0 3 65n .≈ .  

The numerical tests reveal some features of both the 

approximate and the exact solutions, among them: 

a) The best results were developed for ( ) ( )1p Oν ∼  

and 0 5 1. β≤ < . The weighting coefficients 0 5bk .=  

and 0 5jk .= are the best chosen for the numerical 

calculations. Plots are shown in Fig. 2. 

b) The exact solution is quite sensitive with respect to 

the number of terms in the time-dependent sums; 

Worst results were obtained 5maxm =  and 5maxk = . 

Increase in the number of the terms beyond 

50maxm =  and 50maxk =  and best results does not 

affect the solution. Numerical examples are shown in 

Figs. 3 (see also Fig. 1(b) and Fig. 2)  

c) The exact solution is very sensitive with respect to 

the value of the fractional order 0 5.β < . The best and 

physically adequate results were obtained for 

0 5 1. β≤ < . The approximate solution does no show 

instabilities. The illustrations of these effects are 

shown in Fig. 4. 

d) The exact solution is very sensitive with respect to 

the ratio p ν . Large variations in p ν (beyond  1 25.  

and below 0 8. ) result in instable behaviour of the 

exact solution while the approximate one is 

insensitive. Illustrative plots are shown in Fig. 5. 

 

 
 

Fig. 2. The best matching solutions for ( ) ( )1p Oν ∼  and 0 5 1. β≤ <  

 

 
 

Figs. 3 Effect of the number of the terms in the sums of the exact 

solution, i.e. effects of the truncations on the solutions. Additionally on 

Fig. 3(b), it is seen the effect of fractional order β . See also Fig.  4 

 

 
 

Fig. 4. Effect of fractional order 0.5β <  on the exact solutions. The 

calculation conditions are the same as those used for 0.5β ≥  

 

 
 

Fig. 5. Effect of the magnitude of the ratio p ν  on the behavior of the 

exact solution 
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V. Conclusion 

This is an attempt to apply a classical integral method 

which is a moment method from weighted-residuals’ 

family with a weighting function equal to 1. 

The approximate solution has well disguised terms 

repressing the effects of both the Newtonian viscosity 

and the visco-elasticity. The solution clearly indentifies 

two similarity variables controlling fluid flow and 

corresponding separately to these effects. 

The entire domain approximation is simple but with 

some restrictions imposed by the fixed exponent of the 

parabolic profile and the short range (with respect toξ ) 

approximation. 

The minimization of 2L  avoids some of these 

drawbacks and yields an explicit result that the exponent 

is time-dependent. This confirms the relationship 

developed in [29] where similar problem with 0p = is 

developed. Moreover, combining the results from [29] 

and the present estimate (22b), the concept of a variable 

(self-adaptive) exponent (25) was conceived. 

The developed approximate solution was compared to 

the exact one [17], but many questions rose mainly 

concerning the numerical simulations of the exact 

solution.  

Appendix 

The exact solution developed by Hayat et al. [17] (represented by the variables used in the present work): 
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 (A-1) 

 

From the point of view of the approximate solution developed (A-1) can be presented as: 
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σ ν σ νβ ν β ν
µ µ
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⎝ ⎠ ⎝ ⎠

 (A-2) 
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 (A-4) 

 

The term 1Φ  represents only the variations in the surface velocity sU  in time. The second term 2Φ describes the 

flow field in depth of the liquid. In this context, for 20 0y = →Φ = . Furthermore, in 2Φ  we have y tξ ν=  and 

( ) 2
01 1t p D t p

βν χ ν→ = =  for 1β = . Moreover: 
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∑  (A-5) 

 

and: 
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( ) ( ) ( )

2
1 1 2 2 3 2

2

1 0

1
k

m
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k m

t p
p t in

k !pt

β β βν
ν

∞ ∞
− − − + + + +

= =

⎛ ⎞ ⎡ ⎤× − Φ⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠
∑ ∑  (A-6) 

 

correspond  to decaying elastic effects (the fractional order term in the governing equation) represented in the 

approximate solution by the term 01R j Dβ β= +  (see eq.(18) and eq.(19)).  
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