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We study the transient �ow of a Newtonian �uid in rectangular microchannels taking into account boundary slip. An exact solu-
tion is derived by using the separation of variables in space and Fourier series expansion in time. It is found that, for di	erent forms
of driving pressure 
eld, the e	ect of boundary slip on the �ow behavior is qualitatively di	erent. If the pressure gradient is constant,
the �ow rate is almost linearly proportional to the slip parameter ℓwhen ℓ is large; if the pressure gradient is in awaveform, as the slip
parameter ℓ increases, the amplitude of the �ow rate increases until approaching a constant value when ℓ becomes su�ciently large.

1. Introduction

In recent years, many researchers worldwide focus on the
study of behavior of materials at micro- and nanoscales [1, 2],
leading to the development of many biological and engineer-
ing systems and devices. Most of these systems and devices
involve �uid �ow in microchannels, called micro�ows [1,
3–7]. Typical examples include drug delivery systems [8],
fuel cell devices, energy conversion, and biological sensing
devices [9]. As the functional characteristics of these systems
depend on the behavior of �uid �ow in the systems, the study
of micro�ows is important and has attracted more and more
attention from the engineering and science communities in
order to derive a better understanding of the mechanism of
micro�ows and consequently better design and control of the
devices and systems [1, 6, 10].

�e 
eld equations governing the �ow of Newtonian
�uids are the continuity equation and theNavier-Stokes equa-
tions. �ese equations are subject to a set of boundary con-
ditions.�e no-slip boundary condition is used traditionally;
namely, the tangential �uid velocity relative to the solid is zero
on the �uid-solid interface [11]. However, recent molecular
dynamic simulations and experiments in micrometer scale
have shown that the �uid �ow in microsystems is granular

and slip may occur on the �uid-solid interface [10, 12–17].
Hence, for the study of micro�ow, it is important to take
into account the boundary slip of �uids on the �uid-solid
interfaces.

Over the last few decades, intensive research has been
carried out to study various problems of �uid �ow with the
no-slip assumption or a slip boundary condition [1, 5, 17–33].
For �ows under the no-slip assumption, exact solutions to
many problems have been obtained and are available in the
literature [11, 34–37]. But for slip �ow very few exact solutions
are available in the literature. Exact solutions for the �uid
�ow in circular microtubes and circular microannuals with
boundary slip have been derived and discussed in the papers
[17, 25, 28].

For microchannels with rectangular cross-section, a no-
slip solution has been obtained [38–43]. For the slip case
steady state solution has also been obtained [15, 35, 44–48].
However, so far no exact solution has been derived for the
transient �ow of �uids through rectangular channel under
pulsatile pressure. As many microsystems and devices have
microchannels of rectangular cross-section, it is important to
derive exact analytical solutions for the behavior of transient
�ow through rectangular microchannels with slip boundary.
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Figure 1: Rectangular microchannel.

Based on the current development in the 
eld, in this
paper, we study the time-dependent �ow of incompressible
Newtonian �uids through a rectangular microchannel taking
into account boundary slip.�e rest of the paper is organized
as follows. In Section 2, we give the underlying initial bound-
ary value problem for the transient slip �ow. In Section 3,
we derive the exact solution for the velocity 
eld. In Section 4,
an analysis is conducted to study the e	ect of the slip length
on the �ow behavior. Finally, a conclusion is presented in
Section 5.

2. Governing Boundary Value Problem

Consider the unsteady �ow of an incompressible Newtonian
�uid in a rectangular channel of cross-section dimension� × � with the �-axes being in the axial direction as shown in
Figure 1. �e 
eld equations governing the �ow include the
Navier-Stokes equations and the continuity equation. As the
�ow is symmetric about the ��-plane and the ��-plane and is
fully developed, there is no cross-sectional �ow and thus the
velocity components in the � and � directions vanish; that is,
V⃗ = (V�, V�, V�) = (0, 0, 	).

Hence, from the continuity equation


V�
� +

V�
� + 
V�
� = 0 (1)

and the Navier-Stokes equation

�(
V�

 + V� 
V�
� + V� 
V�
� + V� 
V�
� )
= −
�
� + �(


2
V�
�2 + 


2
V�
�2 + 


2
V�
�2 ) + ���,

(2)

the axial velocity, 	, is governed by the following equation:

�� (

2	
�2 + 


2	
�2) − 
	

 = 1� 
�
� . (3)

As a large class of functions may be expressed by Fourier
series, we consider, in this work, the �ow of a �uid driven
by the pressure gradient 
�/
� that may be expressed in the
form of Fourier series given by


�
� = �0 +
∞∑
�=1
[�� cos (��
) + �� sin (��
)] . (4)

To de
ne the problem completely, we supplement the 
eld
equation by the boundary condition. To take into account the

boundary slip, the so-called Navier-slip boundary condition
is used. On the �uid-solid interface � = ±� and � = ±�, the
axial �uid velocity, relative to the solid surface, is assumed
to be proportional to the shear stress on the interface. Let
n = (�1, �2, �3) be the unit normal vector of the surface �
of the �uid, and let t = (
1, 
2, 
3) be the positive tangential
direction. Also let the �uid velocity on the wall direction be
V�, and let the velocity of the solid in the tangential direction
of the surface be V��.�en, as shown in our previouswork [17],
the Navier-slip boundary condition can be expressed by

(V� − V��) 
	 = −ℓ (�	
�

	)� , (5)

where the negative sign indicates that the surface traction
force which acted on the �uid by the solid is opposite to
the tangential velocity of �uid relative to the solid. For our
problems in the (�, �, �) coordinate system, k = (0, 0, 	)
and k� = (0, 0, 0). On the surface � = �, t = (0, 0, 1) and
n = (1, 0, 0), and so (V	 − V�)
	 = V	
	 = 	 and �	
�

	 =��� = �(
	/
�) and consequently (5), on the surface � = �,
becomes

	 (�, �, 
) + ℓ
	
� (�, �, 
) = 0. (6)

On the surface � = −�, we have t = (0, 0, 1) and n = (−1, 0, 0),
and hence (V	 − V�	)
	 = V	
	 = 	 and �	
�

	 = −��� =−�(
	/
�) and consequently (5), on the surface � = −�,
becomes

	 (−�, �, 
) − ℓ
	
� (−�, �, 
) = 0. (7)

Similarly, the boundary condition on the surface � = ±� is
	 (�, ±�, 
) ± ℓ
	
� (�, ±�, 
) = 0. (8)

We will remark here that, for ℓ = 0, the slip boundary con-
ditions (6)–(8) reduce to the no-slip condition; on the other
extreme, where ℓ → ∞, (6)–(8) become the surface traction
conditions for perfectly smooth surfaces; that is, ���(±�,�, 
) = ���(�, ±�, 
) = 0.
3. Exact Solutions for Transient

Velocity and Stress Fields

To solve the partial di	erential equation (3), complex num-
bers are used to express the Fourier series for the pressure
gradient; namely,


�
� =
∞∑
�=0
(�� cos (��
) + �� sin (��
)) = Re(∞∑

�=0
!�"	���) ,

(9)

where !� = �� − ��# and "	��� = cos(��
) + # sin(��
).
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From the symmetry of the problem and the linearity of
(3), we get 	 = ∑∞�=0 Re(	�), where 	� is de
ned by

�� (

2	�
�2 + 


2	�
�2 ) − 
	�

 = !�� "	���,

	�
� (0, �) = 0, 
	�
� (�, 0) = 0,
	� (�, �, 
) + ℓ
	�
� (�, �, 
) = 0,
	� (�, �, 
) + ℓ
	�
� (�, �, 
) = 0.

(10)

�rough some mathematical analysis, we get that, for � ≥ 1,
the boundary value problem (10) has solution of the form

	� = &� (�, �) "	���, (11)

where &� is determined by

&� = '� (�, �) + *� (�, �) − !�#��� , (12)

with '�(�, �) and *�(�, �) being governed, respectively, by
the following boundary value problems:

BVP1:

{{{{{{{{{{{{{{{{{{{{{{{{{{{


2'�
�2 + 

2'�
�2 − #���� '� = 0,
'�
� (0, �) = 0, 
'�
� (�, 0) = 0,

'� (�, �) + ℓ
'�
� (�, �) = !�#��� ,
'� (�, �) + ℓ
'�
� (�, �) = 0,

BVP2:

{{{{{{{{{{{{{{{{{{{{{{{{{{{


2*�
�2 + 

2*�
�2 − #���� *� = 0,
*�
� (0, �) = 0, 
*�
� (�, 0) = 0,

*� (�, �) + ℓ
*�
� (�, �) = 0,
*� (�, �) + ℓ
*�
� (�, �) = !�#��� .

(13)

�us, the remaining work for 
nding &� and consequently 	�
and then 	 is to solve the two BVPs: BVP1 and BVP2.We 
rst
solve BVP1 by the separation of variables. From the PDE and
the homogeneous boundary conditions of BVP1, we obtain

'� = ∞∑
�=1
5�� cosh (6���) cos (7��) , (14)

where 7� (8 = 1, 2, . . .) are the roots of the nonlinear equa-
tion

cot (�7) = ℓ7, (15)

:� = 72�, Φ� = cos(√:��) , 8 = 1, 2, 3, . . . (16)
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Figure 2: In
nite number of solutions of the two functions � = ℓ7
and � = cot(�7).

are respectively eigenvalues and eigenfunctions of BVP1 and

6�� = √72� + #���� . (17)

�e eigenvalues:� are the solution of the followingnonlinear
equation:

cot (√:�) = ℓ√:, (18)

which has in
nite number of solutions as shown by the
intersection of the graphs � = ℓ7 and � = cot(�7) where 7 =√: in Figure 2.

It can also be proved that the eigenfunctions Φ� (8 =1, 2, . . .) are orthogonal and thus the coe�cients 5�� can be
determined from the nonhomogeneous boundary condition
of BVP1 by

5��
= −# 4!� sin (�7�)��� [2�7� + sin (2�7�)] [cosh (�6��) + ℓ6�� sinh (�6��)] .

(19)

Similarly, the solution *� of the BVP2 is

*� = ∞∑
�=1
D�� cosh (6���) cos (7��) , (20)
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where 7� (8 = 1, 2, . . .) are the roots of the nonlinear
equation

cot (�7) = ℓ7, (21)

6�� = √72� + #���� , (22)

D��
= −# 4!� sin (�7�)��� [2�7� + sin (2�7�)] [cosh (�6� + ℓ6�� sinh (�6��))] .

(23)

Substituting (14) and (20) into (12) yields the solution

	� (�, �, 
)
= "	��� {# !����

+ ∞∑
�=1
[5�� cosh (6���) cos (7��)
+ D�� cosh (6���) cos (7��)] } ,

� = 1, 2, . . . .

(24)

For � = 0, proceeding as for 
nding 	�(�, �, 
), we obtain
	0 (�, �, 
)

= !04� (�2 + �2)
+ ∞∑
�=1
[50� cosh (60��) cos (7��)
+ D0� cosh (60��) cos (7��)] ,

(25)

where 60� and 60� are as de
ned in (17) and (22) with � = 0;
that is, 60� = 7� and 60� = 7�; 50� and D0� are as follows:

50� = (−!0 [ (�2 + 2�ℓ) sin (�7�) + �2 sin (�7�)
+ 27� (� cos (�7�) −

sin (�7�)7� )]
× (� [2�7� + sin (2�7�)]
× [cosh (�7�) + ℓ7� sinh (�7�)])−1) ,

(26)

D0� = (−!0 [ (�2 + 2�ℓ) sin (�7�) + �2 sin (�7�)
+ 27� (� cos (�7�) −

sin (�7�)7� )]
× (� [2�7� + sin (2�7�)]
× [cosh (�7�) + ℓ7� sinh (�7�)])−1) .

(27)

Hence collecting all solutions of the subproblems, we have

	 (�, �, 
)
= �04� (�2 + �2) +

∞∑
�=1

−�� sin (��
) + �� cos (��
)���
+ ∞∑
�=0

Re{"	���

× ∞∑
�=1
[5�� cosh (6���) cos (7��)
+ D�� cosh (6���) cos (7��)] } ,

(28)

where 7� and 7� are determined, respectively, by (15) and
(21), 6�� and 6�� are de
ned by (17) and (22), respectively,50� and D�� are de
ned by (26) and (27), and 5�� andD��(�,8 ≥ 1) are de
ned by (19) and (23), respectively.

Nowwe determine the exact solutions of the �ow rate and
the stresses in the �uid. From the velocity solution (28), we
obtain the �ow rate as follows:

I (
) = 4∫

0
∫�
0
	 (�, �, 
) K� K� = ∞∑

�=0
I�, (29)

where I0 and I� (� ̸= 0) denote, respectively, the �ow rate
corresponding to the constant component and the nth har-
monic component of the pressure gradient and

I0 = �03� [�3� + ��3]
+ 4Re ∞∑

�=1
{ 50�60�7� sinh (�60�) sin (�7�)
+ D0�60�7� sinh (�60�) sin (�7�)} ,

(30)
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I� = 4�� [−�� sin (��
) + �� cos (��
)]���
+ 4Re{"	���

× ∞∑
�=1
[ 5��6��7� sinh (�6��) sin (�7�)
+ D��6��7� sinh (�6��) sin (�7�)]} .

(31)

�e stress tensor in the �uid can then be determined by the
constitutive equation

� = −�I + 2�d, (32)

where I is an identity matrix and the deformation rate d

depends on the velocity by

d = 12 (∇V + (∇V)�) . (33)

As k = (0, 0, 	(�, �, 
)), we get

K = 12
[[[[[[[
[

0 0 
	
�
0 0 
	
�
	
� 
	
� 0

]]]]]]]
]
. (34)

From (28) and (32)–(34), we obtain K�� = K�� = K�� = K�� =0 and
K��
= �02��
+ 12
∞∑
�=0

Re{"	���

× ∞∑
�=1
[5��6�� sinh (6���) cos (7��)
− D��7� cosh (6���) sin (7��)] } ,

(35)

K��
= �02��
+ 12
∞∑
�=0

Re{"	���

× ∞∑
�=1
[−5��7� cosh (6���) sin (7��)
+ D��6�� sinh (6���) cos (7��)] } .

(36)

�us, from the constitutive equation (32), we get

��� = ��� = ��� = −� = �0 (
) + W (
) �,
��� = 0, ��� = 2�K��, ��� = 2�K��, (37)

where W(
) denotes the pressure gradient 
�/
� while �0(
)
is arbitrary and may be chosen to meet certain pressure
condition.

4. Investigation of the Effect of Boundary Slip
on the Flow Behavior

Based on the exact solutions obtained, we investigate the
�ow behaviour and the in�uence of the slip length in this
section. As a general pressure 
eld can be expressed by
a Fourier series in the form of (4), from the principle
of superposition, the exact solution of the problem is the
superposition of the solutions corresponding to the constant
pressure gradient plus the solutions corresponding to the
sine or cosine waveform pressure gradients. In this work,
without loss of generality, we consider �ow problems under
two di	erent cases of driving pressure 
elds including the
case with a constant pressure gradient and the case with a sine
waveformpressure gradient. For simplicity, we introduce four
dimensionless variables as follows:

X = �� , �∗ = �� , �∗ = �� , 
∗ = �
2Y . (38)

Case 1 (
�/
� = �0). For this case, !0 = �0 and !� = 0 for� ≥ 1.�e constant pressure gradientmeans that the pressure
gradient does not depend on time. From (28), (30), (35), and
(36), we get the following normalized velocity, �ow rate, and
shear stresses:

	∗ (�∗, �∗)
= 4��0�2 	 = �∗2 + (X�∗)

2

+ 4��0�2 Re
∞∑
�=1
[50� cosh (�7��∗) cos (�7��∗)
+ D0� cosh (�7��∗) cos (�7��∗)] ,

(39)
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I∗0
= 3��0X�4I0 = 1 + X2
+ 12��0X�4 Re

∞∑
�=1
[50�72� sinh (�7�) sin (�7�)
+ D0�72� sinh (�7�) sin (�7�)] ,

(40)

�∗��
= 1�0���� = �∗
+ ��0� Re

∞∑
�=1
[50�7� sinh (7���∗) cos (�7��∗)
− D0�7� cosh (�7��∗) sin (�7��∗)] ,

(41)

�∗��
= 1�0���� = X�∗
+ ��0� Re

∞∑
�=1
[−50�7� cosh (7���∗) sin (�7��∗)
+ D0�7� sinh (�7��∗) cos (�7��∗)] .

(42)

As the pressure gradient does not depend on time, the nor-
malized velocity and �ow rate as well as stresses are in�u-
enced by the slip length ℓ only, which is implicitly contained
in 7� and 7�.
Case 2 (
�/
� = �1 sin(�
)). For this case, the pressure
gradient is sinusoidal with amplitude �1, and �0 = 0, !1 = −�1#,!� = 0 for ∀� ≥ 2. From (27), we have

	∗ (�∗, �∗)
= ���1 	 = cos (2Y
∗)
+ ���1 Re

∞∑
�=1
"	2��∗ [51� cosh (�61��∗) cos (�7��∗)

+ D1� cosh (�61��∗) cos (�7��∗)] .
(43)

Let

61� = [72� + #��� ]
1/2 := ^1� + #_1�, (44)

where

^1� = [74� + (��� )
2]1/4 cos(`�2 ) ,

_1� = [74� + (��� )
2]1/4 sin(`�2 ) ,

`� = arctan( ���72�) .
(45)

�en

cosh (�61�) = cosh (�^1�) cos (�_1�)+ # sinh (�^1�) sin (�_1�) ,
sinh (�61�) = sinh (�^1�) cos (�_1�)+ # cosh (�^1�) sin (�_1�) .

(46)

Using (19) and (23), through a lengthy derivation, we obtain

	∗ = cos (2Y
∗) + ∞∑
�=1
[K3� cos (2Y
∗) − K4� sin (2Y
∗)] ,

(47)

where

K1� = cosh (�^1�) cos (�_1�)
+ ℓ^1� sinh (�^1�) cos (�_1�)
− ℓ_1� cosh (�^1�) sin (�_1�) ,

K2� = sinh (�^1�) sin (�_1�)
+ ℓ^1� cosh (�^1�) sin (�_1�)
+ ℓ_1� sinh (�^1�) cos (�_1�) ,

K3� = 5∗1� cos (�7��∗)
× [K1� cosh (�^1��∗) cos (�_1��∗)
+ K2� sinh (�^1��∗) sin (�_1��∗)]

+ D∗1� cos (�7��∗)
× [K1� cosh (�^1��∗) cos (�_1��∗)
+ K2� sinh (�^1��∗) sin (�_1��∗)] ,

K4� = 5∗1� cos (�7��∗)
× [K1� sinh (�^1��∗) sin (�_1��∗)
− K2� cosh (�^1��∗) cos (�_1��∗)]

+ D∗1� cos (�7��∗)
× [K1� sinh (�^1��∗) sin (�_1��∗)
− K2� cosh (�^1��∗) cos (�_1��∗)] ,

5∗1� = − 4 sin (�7�)[2�7� + sin (2�7�)] (K21� + K22�) ,
51� = �1��5∗1� (K1� − K2�#) ,

D∗1� = − 4 sin (�7�)
[2�7� + sin (2�7�)] (K21� + K22�) ,

D1� = �1��D∗1� (K1� − K2�#) .

(48)
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Figure 3: Axial velocity pro
le on the cross-section of the channel with the area of 1.0 × 10−6m2 and ratio X of 3/4 for constant pressure
gradient under various values of slip lengths ℓ: (a) ℓ = 0.001; (b) ℓ = 0.002; (c) ℓ = 0.003; (d) ℓ = 0.004.

For convenience in discussion, transform (47) into the fol-
lowing form:

	∗ = 	∗� cos (2Y
∗ + `�) , (49)

where 	∗� and `� denote the amplitude and phase angles of
the normalized velocity de
ned, respectively, by

	∗� = [(1 + ∞∑
�=1
K3�)
2 + ( ∞∑
�=1
K4�)
2]
1/2

,
`� = arctan( ∑∞�=1 K4�1 + ∑∞�=1 K3�) .

(50)

�e �ow rate is

I1 = 4���1 cos (2Y
∗)��
+ 4 ∞∑
�=1

Re("	2��∗

× ( 51�61�]� sinh (�61�) sin (�]�)
+ D1�61�]� sinh (�61�) sin (�]�))) .

(51)
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Figure 6: Axial velocity pro
le on the cross-section of the channel with the area of 1.0 × 10−6m2 and ratio �/� = 1 under the frequency� = ^/��2 with ^ = 0.005 and slip length of 0.001 for various instants of time.
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Using real arithmetic, through lengthy calculation, we obtain
the normalized �ow rate

I∗1 = ���1 (4��)I1 = cos (2Y
∗)
+ 1��

∞∑
�=1
[K5� cos (2Y
∗) − K6� sin (2Y
∗)]

= [1 + 1��
∞∑
�=1
K5�] cos (2Y
∗)

− [ 1��
∞∑
�=1
K6�] sin (2Y
∗) = I∗� cos (2Y
∗ + `) ,

(52)

where

I∗� = ((1 + 1��
∞∑
�=1
K5�)
2 + ( 1��

∞∑
�=1
K6�)
2)
1/2

,
` = arctan( ((1/��)∑∞�=1 K6�)(1 + (1/��)∑∞�=1 K5�)) .

(53)

In this study, we analyze the �ow pattern through the
rectangular microchannel having the same size of the cross-

sectional area of 1.0 × 10−6m2 for � = 1060 kg/m3, � =10−3 Pa⋅s, �0 = 1, !0 = 1, and �1 = 1.
For Case 1, as the pressure gradient is constant, the

normalized velocity and �ow rate as well as shear stress vary
with the slip length and the geometry of the cross-section,
namely, the ratio X = �/� of the cross-sectional area. �e
in�uences of the slip length and the ratio X on the �ow behav-
ior are demonstrated by analyzing the solutions graphically.
Figures 3 and 4 show, respectively, the three-dimensional and
two-dimensional velocity pro
les on a cross-section of the
channel obtained from (39) for four di	erent values of the slip
length, ℓ = 0.001, 0.002, 0.003, 0.004.�e results indicate that
the axial velocity increases signi
cantly when the slip length
increases. Figure 5 shows the e	ects of the slip length and
ratio X on the �ow rate I∗0 . It is found that the �ow rate is
linear in slip length. For the same size of the cross-sectional
area with the variation of the ratio X, the �ow rate increases
signi
cantly as the ratio increases.

For Case 2, as the pressure gradient depends on time, the
normalized velocity and �ow rate as well as shear stress vary
with time and the slip length.We investigate the axial velocity	∗ on a cross-section of the channel having the ratio X of 1 and
the slip length of 0.001 under the frequency � = ^/��2 with^ = 0.005 at various instants of time. Figures 6 and 7 show the
transient velocity 	∗ obtained from (43) for the slip length ℓ =0.001. For 
∗ = 0, the axial velocity has similar pro
le with
∗ = 1, as "	2��∗ = 1 is constant on the velocity equation (43)
so that the curves coincide. �e in�uences of the slip length,
the frequency �, and the ratio X of the cross-section of the
channel on the �ow behavior are illustrated by analyzing the
solutions graphically. Figure 8 shows the transient �ow rateI∗1 on a cross-section of the channel for four di	erent values
of the slip length, ℓ = 0.001, 0.002, 0.003, 0.004. Figure 9
presents the in�uence of ℓ on the amplitude I∗� of the �ow
rate for various frequencies � = ^/��2 with four di	erent ^
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Figure 7: Axial velocity along the �-axis and �-axis on the cross-
section of the channel with the area of 1.0 × 10−6m2 and ratio �/� =
1 under the frequency � = ^/��2 with ^ = 0.005 and slip length of
0.001 at various instants of time.

values: ^ = 0.0001, 0.0005, 0.001, 0.005. �e result indicates
that the dependence of I∗� on ℓ is di	erent for di	erent �.
At high frequency (high ^), the amplitude of the �ow rate
increases initially as ℓ increases but it then tends to a constant
value once the slip length becomes su�ciently large. Figure 10
shows the in�uence of the ratio X under the same cross-
sectional area size on the �ow rate for di	erent slip lengths ℓ.
It is noted that as the ratio X increases the �ow rate increases
but tends to a constant value as X becomes su�ciently large.
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5. Conclusions

In this paper, we derive an exact solution for the unsteady
�ow of an incompressible Newtonian �uid in a rectangular
microchannel with a Navier-slip boundary. From the explicit

Q
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Figure 10: In�uence of ratio X of �/� and slip length ℓ on the
amplitude of the �ow rate on the cross-section of the channel with
constant area of 1.0 × 10−6m2 under the frequency � = ^/��2 with^ = 0.005.

analytical solutions of the velocity and �ow rate, we investi-
gate the e	ect of the slip length ℓ and the geometry of the
cross-section on the �ow of the �uid through the channel.
�e investigation shows the following.

(1) For the �ow through rectangular microchannels with
constant pressure gradient, the axial velocity increases
faster in the center of the cross-section than in other
areas as the slip length increases, while for the �ows,
due to the waveform pressure gradient, the velocity
changes signi
cantly as the slip length increases.

(2) For �ow driven by a constant pressure gradient, the
�ow rate is linear with respect to the slip length and
the ratio (X = �/�), and, for di	erent values of X
with constant (� × �), the �ow rate increases when X
increases and also when the slip length increases.

(3) �e amplitudes of �ow rate initially increase signi
-
cantly as slip length ℓ increases but tend to a constant
value when ℓ becomes su�ciently large for various ^
values.�is pro
le is similar to the case shown in [39].
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