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ABSTRACT 

 

 

Transient Fluid and Heat Flow Modeling in Coupled Wellbore/Reservoir Systems. 

(May 2008) 

Bulent Izgec, B.S., Ankara University; M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Ding Zhu 

 

Modeling of changing pressure, temperature, and density profiles in a wellbore as a 

function of time is crucial for design and analysis of pressure-transient tests (particularly 

when data are gathered above perforations), real-time management of annular-pressure 

buildup (ABP) and identifying potential flow-assurance issues. Other applications of this 

modeling approach include improving design of production tubulars and artificial-lift 

systems and gathering pressure data for continuous reservoir management. 

This work presents a transient wellbore model coupled with a semianalytic 

temperature model for computing wellbore-fluid-temperature profile in flowing and shut-

in wells. The accuracy of the analytic heat-transfer calculations improved with a variable-

formation temperature model and a newly developed numerical-differentiation scheme. 

Surrounding formation temperature is updated in every timestep up to a user specified 

distance to account for changes in heat-transfer rate between the hotter wellbore fluid and 

the cooler formation. Matrix operations are not required for energy calculations because 

of the semianalytic formulation. This efficient coupling with the semianalytic heat-

transfer model increased the computational speed significantly.  

Either an analytic or a numeric reservoir model can be coupled with the transient 

wellbore model for rapid computations of pressure, temperature, and velocity.  
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The wellbore simulator is used for modeling a multirate test from a deep offshore 

well. Thermal distortion and its effects on pressure data is studied using the calibrated 

model, resulting in development of correlations for optimum gauge location in both oil 

and gas wells.  

Finally, predictive capabilities of the wellbore model are tested on multiple 

onshore wells experiencing annular-pressure buildup problems. Modeling results 

compare quite well with the field data and also with the state-of-the-art commercial 

wellbore simulator.  
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CHAPTER I 

INTRODUCTION 

1.1 BACKGROUND 

Transient pressure and temperature behavior in a wellbore develops as the hot 

fluid from the reservoir moves upward, exchanging heat with the surrounding formation. 

Because of heat exchange between the reservoir fluid and surrounding formation, the 

temperature profile in the wellbore does not remain constant with time. The changes in 

the temperature profile during flow and shut-in periods also lead to a changing density 

profile throughout the wellbore that affects the pressure profile as well. 

In this study, we will develop a coupled wellbore/reservoir simulator. This 

simulator will entail simultaneous solution of mass, momentum, and energy balance 

equations, providing pressure and temperature as a function of depth and time for a 

predetermined surface flow rate.  

Modeling of changing pressure, temperature, and density profiles in the wellbore 

as a function of time is crucial for design and analysis of pressure-transient tests, 

particularly when data are gathered away from perforations or in deepwater setting, and 

for identifying potential flow-assurance issues. Other applications of this modeling 

approach include improving design of production tubulars and artificial-lift systems, 

gathering pressure data for continuous reservoir management and estimating flow rates 

from multiple producing horizons and real-time monitoring of well stability. 
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1.2 LITERATURE REVIEW 

A coupled wellbore/reservoir simulator entails simultaneous solution of mass, 

momentum, and energy balance equations, providing pressure and temperature as a 

function of depth and time for a predetermined surface flow rate. This work presents a 

finite-difference transient wellbore simulator coupled with a semianalytic temperature 

model for computing wellbore-fluid-temperature profile in flowing and shut-in wells. The 

literature review on temperature models will be followed by wellbore models. 

Estimation of temperatures in a wellbore during injection or production is a 

recurring problem in petroleum engineering. Examples are the prediction of bottomhole 

temperatures of injection fluids and of wellhead temperatures in gas and oil wells. Almost 

all practical methods for calculation of temperature profiles in the wellbores go back to 

the work by Ramey (1962) on wellbore heat transmission published in early 1960’s.  

In that paper, Ramey presented an analytical equation for wellbore temperatures 

based on a simplified heat balance. Assuming steady-state flow of an incompressible 

single phase fluid, he dropped the kinetic energy term. Also, under these assumptions the 

loss in potential energy becomes approximately equal to the increase in enthalpy.    

Apart from his analytical temperature equation, Ramey also proposed a simple 

procedure to estimate an overall heat-transfer coefficient for wellbore heat losses 

comprising both transient heat resistances in the formation and near wellbore heat 

resistances. This method couples heat-transfer mechanisms in the wellbore and transient 

thermal behavior of the reservoir. Temperature equations for injection of either single-

phase incompressible hot liquid or single-phase ideal gas flow have been identified. 

Satter (1965) later included the effect of phase change during steam injection operations. 

In Ramey’s method the transient thermal behavior of the reservoir is determined by 

solution of the problem of radial heat conduction in an infinite cylinder. The resistances 

to heat flow in the wellbore, caused by presence of tubing wall, tubing insulation, fluid in 
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the casing/tubing annulus, casing wall, and cement are incorporated in an overall heat-

transfer coefficient. 

Willhite (1967) suggested a method for the determination of the overall heat-

transfer coefficient. His paper presents comparison of calculated and measured casing 

temperatures during steam injection. Shiu and Beggs (1980) developed an empirical 

correlation for producing oil wells to determine the relaxation distance that Ramey 

defined. This work is actually an attempt to avoid the complex calculation of the overall 

heat-transfer coefficient in the wellbore and the transient heat-transfer behavior of the 

reservoir. Although this correlation simplifies the Ramey method, it should be used with 

caution as a rough approximation. Sharma et al. (1989) modified the Ramey equation for 

the case of producing wells with a downhole heater. Finally, Sagar (1991) developed a 

simplified method suitable for hand calculations based on field data. His model predicts 

the temperature profiles in two-phase flowing wells assuming steady-state heat transfer 

within the wellbore. According to Alves et al. (1992) all these methods include critical 

assumptions related to the thermodynamic behavior of the flowing fluid and thus 

applicable only for limited operational conditions. Their paper presents a unified equation 

for flowing temperature prediction, which degenerates into Ramey’s equation for ideal 

gas or incompressible liquid and into the Coulter-Bardon equation, with the appropriate 

assumptions.  

In 1990, Wu and Pruess presented an analytical solution for wellbore heat 

transmission in a layered formation with different thermal properties without introducing 

the simplifying assumptions of Ramey.  From their example calculations, they observed 

that the Ramey method is valid at long times but can generate large errors at early times. 

However, quantification of the conditions under which Ramey’s method could be applied 

was beyond the scope of their paper.  

Hagoort (2004) studied the Ramey method and tried to establish criteria for its 

applicability. He first performed an inspection analysis of the basic wellbore heat 
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transmission equations without using the simplifying Ramey assumptions. This entailed 

the formulation of the equations in dimensionless form and identification of governing 

dimensionless numbers. Finally he developed a rigorous solution of these dimensionless 

equations and compared the solution with Ramey solution for various ranges of 

dimensionless numbers. Also, in the paper Ramey’s method for estimation of overall heat 

transfer coefficients is discussed. The study concludes by showing that Ramey’s method 

is an excellent approximation except for the early transient period in which, the 

calculated temperatures are significantly overestimated.  

Rigorous prediction of the flowing temperature distribution in a wellbore is 

complex. It requires the simultaneous solution of continuity, momentum, and 

conservation of energy equations. The numerical algorithms apply a double iterative 

procedure on both temperature and pressure for solving the three conservation equation 

simultaneously and require knowledge of the thermodynamic behavior of the flowing 

fluid. The solution is further complicated by the interaction between the wellbore and the 

reservoir at the perforations.  

Almehaideb et al. (1989) studied the effects of multiphase flow and wellbore 

phase segregation during well testing. They used a fully implicit scheme to couple the 

wellbore and an isothermal black-oil reservoir model. The wellbore model accounts only 

for mass and momentum changes with time. Similarly, Winterfeld (1989) showed the 

simulations of buildup tests for both single and two-phase flows in relation to wellbore 

storage and phase redistribution. Fairuzov et al. (2002) model formulation also falls into 

this category. 
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Miller (1980) developed one of the earliest transient wellbore simulators, which 

accounts for changes in geothermal-fluid energy while flowing up the wellbore. In this 

model, mass and momentum equations are combined with the energy equation to yield an 

expression for pressure. After solving for pressure, density, energy, and velocity are 

calculated for the new timestep at a well gridblock. Hasan and Kabir presented 

wellbore/reservoir simulators for gas, oil and two-phase flows (2002). Their formulation 

consists of solution of coupled mass, momentum, and energy equations, all written in 

finite-difference form, and requires time-consuming separate matrix operations. In all 

cases, the wellbore model is coupled with an analytic reservoir model. Fan et al. (2000) 

developed a wellbore simulator for analyzing gas-well buildup tests. Their model uses a 

finite-difference scheme for heat transfer in vertical direction. The heat loss from fluid to 

the surroundings in radial direction is represented by an analytical model.  
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1.3 OBJECTIVES 

An efficient and accurate wellbore model can be used for studying various 

problems such as flow-assurance issues including formation of wax, hydrate, asphaltene 

and timing of chemical injection, translating pressure-transient data when gathered above 

the perforations, production rate estimation by just using wellhead temperatures, and 

prediction of annular pressure buildup occurring in most subsea completed wells due to 

thermal expansion of trapped annulus fluids. 

The main objective of this work is to develop a robust finite-difference transient 

wellbore simulator coupled with an analytic temperature model for computing wellbore-

fluid-temperature and pressure profiles in flowing and shut-in wells.  

In this model, matrix operations are eliminated for the energy calculations with 

the development of analytic temperature formulations. This efficient coupling with the 

analytic heat-transfer model provided the much needed gain in computational speed for 

industry applications. The analytic temperature formulations are fit-for-purpose models 

and can be turned on or off depending on the type of the problem studied. For short term 

well tests a numerical differentiation scheme is developed in addition to the pure 

analytical solutions.  

The accuracy of the flowing fluid calculations is improved by accounting for 

transient heat flow through the surrounding formation. This application requires 

generation of radial grids around each wellbore segment. The numbers of radial grids and 

distance to be covered into the formation are user inputs.  

The new wellbore model is used to develop a comprehensive understanding of the 

gauge-placement issue. Initially, a field example from a deepwater asset is reproduced to 

demonstrate the simulator’s capabilities. Calculations show that thermal effects are 

exacerbated by increasing flow rate and increasing gauge distance from the perforations.  

A detailed uncertainty analysis revealed clues on the effect of perforation-to-

gauge distance to extract formation parameters. Simple correlations are developed for 
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designing gauge placement in many environments.   We probed both oil and gas flow 

problems in a systematic way to arrive at simple design tools for rapid evaluation of 

acceptable gauge depth. In this context, the role of secondary gauge located at the 

mudline is examined.  

Another part of this study attempts to address the annular pressure buildup issue 

for subsea completed wells. Pressure from fluid expansion is a natural occurrence in all 

wells.  An explanation for the cause and effect of this type of pressure in addition to the 

cause and effect of pressure from external sources are examined.  
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CHAPTER II 

WELLBORE FLUID TEMPERATURE MODEL 

2.1 SEMIANALYTIC FLUID-TEMPERATURE MODEL 

The analytic heat-transfer model used in this study was initially presented by 

Hasan et al. (2005) for transient gas-well testing. The present work includes the extension 

of the formulation to liquid phase. Also, the assumptions of zero mass flux during a 

buildup and constant mass flux during a drawdown have been replaced by variable-rate 

formulations, which, in turn, gave us the flexibility to mimic energy transport during 

afterflow and multirate tests. For shut-in tests a new formulation for the heat conduction 

in vertical direction has also been developed. 

 

2.1.1 Energy balance for wellbore fluid 

 

Temperature difference between the wellbore fluid and the surrounding formation results 

in energy exchange. A general energy balance for either a single or two phase system can 

be performed on a given volume element as shown in Fig. 2.1.  
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Fig. 2.1 Control volume used to derive heat transfer equations 
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The length of the control volume on the figure is ∆z. Fluid enters from z and 

leaves the control volume at (z + ∆z). The amount of heat (wH) enters the element at (z + 

∆z) by convection. Heat loss to the formation by conduction adds the Q term to the 

equation.  

The steady-state energy balance on the control volume gives; 
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In Eq.2.1 w is mass flux rate, H is enthalpy, v is velocity and Q represents the heat 

transfer rate between wellbore fluid and formation and is negative for production and 

positive for injection. The first term on the left gives the amount of heat entering and 

leaving the control volume by convection. The second and third terms represent the 

changes in kinetic and potential energy of the system. The only term on the right hand 

side accounts for the conductive heat lost to the formation.  

 

Dividing by ∆z and taking the limit as ∆z→0,   we have; 
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For a single phase fluid with no phase changes, enthalpy is a function of pressure 

and temperature. 
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Where cp is the heat capacity of the fluid at constant pressure and cj is the Joule-

Thompson coefficient. Combining Eq.2.3 with Eq.2.2 gives an expression for fluid 

temperature as a function of depth, 
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2.1.2 Energy balance for wellbore fluid and tubular systems 

 

The energy balance is written by noting the conductive heat loss to the formation, 

plus the convective energy transport into and out of the control volume of unit length. In 

terms of fluid internal energy, E, fluid enthalpy, H, fluid mass flow rate, w, fluid mass in 

control volume, m, and the internal energy and the mass of the wellbore system (the 

tubular and cement sheaths combined) , (m’E)w, the energy balance equation gives; 
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The first lumped term represents the rise in fluid temperature at any time. The 

second term on the right side of this equation represents the energy absorbed or released 

by the tubular material and cement sheets in the wellbore. Omitting this term can lead to 

serious error as was noted in the literature since it accounts for a significant fraction of 

the total energy exchange between the wellbore and the formation. The third term on the 

left side of the equation can be simplified as; 
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The heat received from or lost to the formation, Q, is given by; 
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In this equation Tei is the initial earth temperature and Tf corresponds to the wellbore fluid 

temperature. LR is the relaxation distance parameter which is given by Eq. 2.8. Relaxation 

distance parameter LR is related to the solution of diffusivity equation for the formation 

temperature distribution and details on this derivation is provided in Appendix A. 
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Respectively Uto, ke, and rto are overall heat-transfer coefficient, formation conductivity 

and tubing outside radius. Dimensionless temperature is represented by TD. Detailed 

derivation of dimensionless temperature is provided in Appendix A.  

The temperature rise of the cement and tubular material may be taken to be a fraction of 

the rise in the fluid temperature at any time (Hasan and Kabir, 2005). In that case it can 

be written; 
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The thermal storage parameter CT represents the capacity of the wellbore to store or 

release heat as a multiple of the fluid mass and fluid heat capacity. Using this 

relationship, the first term on the energy balance equation can be written as; 
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Incorporating Eq. 2.10 into Eq 2.5 the new form becomes  
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The enthalpy, kinetic energy and potential energy terms can be written using Eq.2.6 as 
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Heat lost to the formation is accounted by Eq.2.7.  Incorporating the heat transfer 

between tubing fluid and formation, the equation becomes 
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Combining Joule-Thompson effect and kinetic energy contribution into a term Ф  
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Upon manipulation the final form of the energy balance equation for fluid temperature in 

time as a linear differential equation can be written as;   

 

( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+

∂

∂

+
+−

+
=

∂

∂

p

f

Tp

p

fei

Tp

Rpf

c

g

z

T

Cmc

wc
TT

Cmc

Lwc

t

T θφ sin

)1()1(
                            (2.15) 

 

The final form of the equation accounts for the energy released or absorbed by the 

tubulars and cement sheet. Unlike Ramey’s approximation the difference between loss in 

enthalpy and static head is also incorporated.   

 

 
2.1.3 Analytic heat transfer models 

 

2.1.3.1 Drawdown 

 

The differential form of the analytic temperature model can be derived by writing 

an energy balance on the differential length of the wellbore. In this energy balance 

equation conductive heat loss to the formation and convective energy transport into and 

out of the control volume are considered.  

An energy balance on the cement sheath, tubulars, and wellbore fluid provides the 

following expression for fluid temperature in time as presented before. 
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The derivative of fluid temperature with respect to depth can be approximated with 

solution provided by a steady-state system. The equation for a steady-state system 

excluding transient terms can be written as 
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                                                                                                    (2.16) 

 

Where 
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The steady-state expression of fluid temperature as a function of depth becomes 
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Defining a lumped variable a as 
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Incorporating Eqs. 2.17 and 2.18 into 2.15 and using the lumped parameter, the working 

equation becomes 
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Eq. 2.20 can be integrated by using the method of integrating factors. An 

appropriate form to construct the result of the product rule of differentiation on the left-

hand side, the equation can be arranged as, 
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The integrating factor is given as  
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Multiplying both sides of Eq. 2.22 by the integrating factor and integrating gives 
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The integration constant obtained by integrating Eq. 2.23 can be found by 

applying the initial condition. At t = 0, the fluid temperature is assumed to be equal to the 

initial undisturbed formation temperature, Tei. The final form of the analytic fluid-

temperature model during production is given by 

 

ψ⎥
⎦

⎤
⎢
⎣

⎡
−

−
+=

−
R

R LLz

R

tLa

eif e
L

e
TT

)(

1
1

                                                                              (2.24) 

 

Eq. 2.24 provides an expression for fluid temperature as a function of time. By this 

equation fluid temperature for every well segment can be calculated independently.  
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2.1.3.2 Buildup 

 

Shut-in tests are conducted to in wells to estimate the formation permeability, 

reservoir pressure and size. It is generally assumed that pressure data collected in the 

wellbore is representative of reservoir excluding any wellbore phenomena. Following 

well shut-in at the surface afterflow at the sandface can persist for sometime. However, it 

can be assumed that rate variation with depth becomes negligible quickly. Assuming zero 

mass flux after shut-in, Eq.2.5 on the wellbore system becomes 
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                                                                                                              (2.25) 

 

The heat lost to the formation during shut-in is 
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The overall heat transfer coefficient for the shut-in excluding the mass flux is defined as; 
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Following the same approach used in drawdown derivations, the differential equation 

becomes 
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Again defining a lumped parameter a
’
 as  
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Arranging the equation for the integrating factors method, the final expression for fluid 

temperature after shut-in is 
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The integrating factor for the solution of the partial differential equation is found by 
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Multiplying both sides of Eq. 2.30 by the integrating factor and integrating, gives 

 

teTa

e

T ta
ei

ta

f ∂= ∫ ⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧ '
'

'

1
                                                                                                           (2.32) 

 

Integral Eq.2.32, the final solution for fluid temperature in time is 
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The integration constant can be found by applying the initial condition after the shut-in. 

At t = ∆t, the fluid temperature at current time step (Tf
n+1

) is assumed to be equal to the 

previous time level temperature, Tf
n
.  

The final form of the analytic fluid-temperature model during shut-in period is given by 
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2.1.3.3 Buildup with after-flow effects 

This section presents an analytic fluid-temperature model for buildup with 

afterflow effects. Beginning with Eq. 2.15, 
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The steady-state expression of fluid temperature as a function of depth is given by     

Eq.2. 18. 
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Defining a lumped variable a as in Eq 2.15  
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Using the relaxation parameter, LR definition given in Eq.2.8  
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Incorporating Eqs. 2.18 and 2.19 into 2.15, the working equation becomes 
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Eq. 2.36 can be integrated by using the method of integrating factors. An appropriate 

form to construct the result of the product rule of differentiation on the left-hand side, the 

equation can be arranged as 
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The integrating factor is found by 
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Multiplying both sides of Eq. 2.37 by the integrating factor and integrating gives 
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The integration constant obtained by integrating Eq. 2.39 can be found by 

applying the initial condition. At ∆t = 0, the fluid temperature is assumed to be equal to 

the fluid temperature prior to shut-in, Tfo. The final form of the analytic fluid-temperature 

model is given by 
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This expression can be used to calculate the changes in fluid temperature when 

the afterflow effects are dominant. Another form for wellbore segments with zero mass 

flow rate after shut-in can be derived using the same initial condition with zero mass flux 

throughout the column. The resulting form is given by 
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2.1.3.4 Buildup with vertical heat transfer 

Most of the temperature models in the open literature account for radial heat loss 

to the surrounding formation only. During a shut-in test each wellbore grid not only 

looses heat to the formation but to the upper and lower grid cells as well. Especially for 

offshore wells vertical heat conduction at the mudline becomes important. In this section 

we will develop an analytical model to calculate the temperature profile during a buildup 

test with consideration of vertical heat transfer. Conducting the same energy balance on a 

given volume element as shown in Fig. 2.2 but accounting for heat conduction in vertical 

direction gives us the desired formulation.  
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Fig. 2.2 Control volume and nodes for heat conduction in vertical direction 

 

The amount of heat coming in and going out of node “i” according to Fourier’s law is 
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Formation conductivity and flow area is denoted as k and A respectively. Incorporating 

Eq. 2.41 and Eq.2.42 into a more general energy balance equation for the volume element 

“i” one can obtain 
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Upon manipulation and accounting for the energy absorbed or released by the tubular 

material and cement sheets Eq.2.43 becomes 
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The conduction term is given as 
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Note that the temperature terms in the conduction equation are evaluated at the old time 

level. If an iterative scheme is employed the old time values can be used as initial 

estimates and the conduction term can be evaluated as at new time step. 

Incorporating Eq’s 2.10 and 2.25  
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Defining the lumped parameter “a
’
 “as in previous section the final form is 
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This equation can be solved using integrating factors method. Using the same integrating 

factor defined previously 

 

taetaFactorgIntegratin =∂=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∫
'

exp                                                                     (2.48) 

 

The equation for new time level temperature becomes 
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Taking the integral 
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Applying the initial condition after the shut-in the integration constant can be written as  
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2.1.3.5 Comparison with Ramey’s model 

Almost all practical methods for calculation of temperature profiles in the 

wellbores go back to the work by Ramey on wellbore heat transmission published in 

early 1960’s. In the original paper, Ramey presented an analytical equation for wellbore 

temperatures based on a simplified heat balance. As shown previously, beginning with a 

simple energy balance one can obtain an expression for fluid temperature as a function 

depth 
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The heat received from or lost to the formation, Q, is given by; 
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In Ramey’s formulation heat loss to the formation is represented as  
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Combining equations 2.52 and 2.53 he obtained 
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The term “A” is the inverse of parameter “LR” defined by Eq.2.8. Ramey’s equation 

include the time function f(t) which is estimated from plotted solutions for an infinitely 

long cylinder loosing heat at constant temperature. The shorter version of the solution he 

provided becomes valid after about one week. Incorporating the “A” parameter into 

Eq.2.14, 
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Ramey assumed steady-state flow of an incompressible single phase fluid; he dropped the 

kinetic energy term. Also, under these assumptions the loss in potential energy becomes 

approximately equal to the increase in enthalpy. Eq.2.55 becomes, 
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Solving Eq.2.56 with integrating factors method and applying the boundary conditions 

the final form for a producing well is 
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Fig. 2.3 and Fig.2.4 show the comparison with Ramey model for two drawdown 

tests. The first example is a low rate production for 3000 stb/D and the second example is 

a multi-rate test with the maximum production rate of 16,000 stb/D. 
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Fig. 2.3 Drawdown test for low production rate 
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F  ig. 2.4 Multirate drawdown test for a maximum rate of 16, 000 stb/D
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2.2 NUMERICAL DIFFERENTIATION FOR SHORT TERM TESTS 

As shown in previous chapter, the analytic model can be derived by conducting an 

energy balance on a differential length of a wellbore. In this energy balance equation, 

conductive heat loss to the formation and convective energy transport into and out of the 

control volume are considered. The resulting differential equation for change in fluid 

temperature with respect to time is given by 
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Eq. 2.11 provides an expression for fluid temperature as a function of time, which can be 

used for both drawdown and buildup calculations after applying the appropriate boundary 

conditions. This equation needs to be integrated by using the integrating-factors method 

to obtain an expression for fluid temperature. However, no solution is feasible unless 

some restrictive assumptions are made. These assumptions are 

 

• Constant relaxation parameter, LR 

• Steady-state temperature expression for the dTf/dz term 

 

The steady-state dTf/dz term can provide a misleading trend of computed bottomhole 

pressures for a transient flow problem at early times. The results obtained from this type 

of approximation become closer to reality as time increases.  

We developed a new approach to improve the analytical fluid-temperature 

solution. The constant relaxation-parameter assumption is replaced by a hybrid Newton-

Backward Euler scheme. The relaxation parameter, LR (Hasan and Kabir, 2002), which is 

the inverse of the parameter, A, defined by Ramey (1962) is given as 
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Where 
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Eq. 2.59 suggests that the expression not only contains thermal properties of both 

the formation and wellbore, but also the dimensionless temperature, TD, and overall-heat-

transfer coefficient, Uto. Although TD is a weak function of time at late times, the 

constant-LR assumption may not work well for early transients, especially for a 

drawdown test. Because wellbore diameter may vary with depth, the overall heat-transfer 

coefficient generally depends on axial position. In addition, changes in heat-transfer 

coefficient of the tubing/casing annular fluid with temperature often cause Uto to be a 

function of time as well.  

Numerical differentiation can be used to eliminate the constant relaxation-

parameter assumption in analytical fluid temperature model.  

Starting with Eq. 2.15, we have 
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Incorporating the steady-state fluid temperature with depth approximation, a 

general form of the partial differential equation as a function of time and fluid 

temperature can be written for further development as follows: 
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In the initial estimation of next time level, the fluid temperature can be obtained 

from forward Euler method. Forward Euler is given as 
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where j denotes the time index. In the next iteration of new time level, the fluid 

temperature is obtained from a combined backward Euler–Newton type procedure. 

Backward Euler introduces an implicit solution and is far more superior to forward Euler 

in terms of stability because it is unconditionally stable and allows larger time steps. It is 

given as 
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With the backward Euler method, the solution becomes iterative because the 

solution at the new timestep is dependent on itself. The residual form of backward Euler 

is given by 
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The combined form of backward Euler and Newton-Raphson iteration scheme, 

shown below, provides an efficient algorithm for faster convergence.  
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The iteration index is denoted as “k” and the derivative of the residual equation is 

given as 

 

⎥
⎦

⎤
⎢
⎣

⎡
∆−−

∂
∂

∂
∂

+
++++

= ),(
1

11
11

jfff
ff

tTftTT
TT

R

jjj
jj

                                                                (2.62) 

                                                                    

Incorporating the generalized function defined by Eq. 2.14 and steady-state dTf/dz 

term, we have 
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The final expression for the derivative of the residual equation is 
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The iteration continues until the difference in fluid temperature obtained from two 

successive steps approaches predetermined convergence criteria. The solution provided 

by this methodology is implicit in nature and provides an efficient algorithm for fast 

convergence and stability. 
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2.3 HEAT TRANSFER RATE IN ANNULUS 

In a well/reservoir system heat is transferred from the wellbore fluid to the 

formation overcoming the resistances offered by the tubing wall, tubing insulation, 

tubing-casing annulus casing wall and cement. These resistances are in series and except 

for the annulus the only heat transfer mechanism involved is conductive heat transfer.  

Ramey (1962) and Willhite (1967) presented detailed discussions that lead to the 

following steady-state equation for heat transfer rate, dq/dz and the wellbore temperature 

Twb. Usually natural convection is the dominant heat transfer mechanism for the fluid in 

the annulus. Also resistance through the cement layer could be important depending on 

its thickness. Over-all heat transfer coefficient, Uto in Eq.2.65 is based on the tubing 

inside area and temperature difference between wellbore fluid and wellbore-formation 

interface. Heat transfer coefficient represents the resistances offered by different material 

around tubing.  
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The derivation of overall heat transfer coefficient assumes that heat flow rate 

through the each element is same, which corresponds to steady-state behavior. Heat flow 

through the tubing wall, casing wall and the cement sheath occurs by conduction. 

However, heat transfer process in the liquid filled annulus is not a steady-state process 

and involves three different types of heat transfer mechanisms.  

Heat is conducted through the fluid contained in the annulus. Radiation and 

natural convection also takes place. Radiation, natural convection and conduction are 

independent heat transfer mechanisms. Therefore, the total heat flow in the annulus is the 

sum of heat transferred by each of those mechanisms. 

 



 32

Heat transfer by natural convection in the annulus between the tubing and casing is 

caused by fluid motion as shown in Fig. 2.5. 
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Fig. 2.5 Heat transfer by natural convection in annulus 

 

The fluid motion is resulting from the variation in density with temperature. Hot fluid 

near the tubing wall is less than the fluid in the center of the annulus and tends to rise. 

Similarly, the fluid near the casing wall is cooler compared to the fluid in the center and 

tends to fall under gravitational forces.   

In most cases of oil production, the temperature difference across the annulus is small 

and one needs to consider convective heat transfer only. Unfortunately, no work on 

natural convection in vertical annular geometry is reported in the literature. This work 

adapts the correlation proposed by Dropkin and Sommerscales (1965) for heat transfer 

coefficient for natural convection in fluid between two vertical plates. Their correlation 

for natural convection is  
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The Grashof number Gr in Eq. 2.66 is given by 
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Eq.2.67 reflects the extent of motion of the annulus fluid due to natural convection. 

Prandtl number, Pr on the other hand, is a measure of the interaction between the 

hydrodynamic boundary layer and the thermal boundary layer. The lower density of the 

heated fluid next to the tubing wall creates a buoyancy force.  The viscous force, working 

against the buoyancy generates a circular motion of the fluid in the annulus. Iterative 

solution procedure becomes necessary because casing inside temperature and insulation 

outside temperatures are unknown. 

The iterative calculation procedure starts with assuming the temperature drop 

across the annulus. Using the assumed temperature drop Grasof number, heat transfer 

coefficient for natural convection and finally overall heat transfer coefficient can be 

calculated. Once the overall heat transfer coefficient is calculated the fluid temperature 

can be estimated by employing the analytic temperature model explained in the previous 

chapters. The amount of heat lost to the formation can be calculated assuming steady-

state heat flow through the resistances between tubing fluid and formation. Temperature 

drop across the annulus fluid can be updated by Fourier’s law of heat conduction. The 

iterative procedure continues until the desired convergence criterion is reached.   

The scheme in Fig.2.6 shows the iterative calculation procedure. 
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Fig. 2.6 Iterative procedure for calculating annulus heat transfer rate 
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2.4 FORMATION TEMPERATURE UPDATING 

As production continues, heat transfer from the wellbore causes a gradual rise in 

the temperature of the surrounding formation, which, in turn causes a slow decrease in 

the rate of heat flow. The same process is true for a buidup period following a drawdown. 

A methodology to account for this change in heat transfer rate is developed.  

The following partial-differential equation in cylindrical coordinates gives variation of 

formation temperature with radial distance from the well  
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Eq. 2.68 can be solved by assuming three boundary conditions. According to one 

boundary condition, heat flow at the formation/wellbore interface is governed by 

Fourier’s law of heat conduction, which requires constant-heat flux at all times. However, 

as the formation partially heats up after the initiation of flow, the driving force for heat 

flux; that is, the difference between fluid and formation temperatures (∆T) is subject to 

subsequent changes. Consequently, the net heat transfer rate becomes a function of this 

temperature difference. For a combined multirate and buildup schedules, this temperature 

difference may never reach steady-state, as postulated by Ramey (1962).    

The changes in ∆T can be accounted for by adjusting the formation temperature 

using the methodology presented below. Fig. 2.7 depicts the conductive heat transfer 

from wellbore fluid to the formation and through the volume element at the interface of 

formation and wellbore. 
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Fig. 2.7 Conductive heat transfer through the volume element taken at the 

formation/wellbore interface. 

 

An energy balance on small volume element of formation near the wellbore gives 
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The amount of heat conducted out varies with radial distance and is very difficult 

to model. However, for a small time increment the heat conducted out from the volume 

element may assumed negligible. Thus, 
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With this assumption, the heat-transfer rate at the formation/well interface 

obtained from semianalytical fluid-temperature model (Qz) can be used as the net heat 

accumulation of the volume element. The final form of the equation becomes 
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The mass of the volume element is given by mve and cp is the heat capacity of the 

formation. Rearranging for formation temperature at new time level 
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Eq. 2.72 requires an estimation of the thickness of the volume element, which is 

used as a history-matching parameter in this work.  As the thickness of the volume 

element is increased, the estimated temperature of the formation approaches the 

undisturbed earth temperature, Tei. in a buildup test.  During drawdown, the net heat-

transfer rate going through the formation volume element increases with time. In that 

case, decreasing the thickness of the volume element provides an increase in predicted 

formation temperature around the wellbore. 

Typically, a transient test involves a series of flow and shut-in segments. Because 

thermal diffusion occurs at a much slower rate than its pressure counterpart, the steady-

state heat transfer assumption becomes inappropriate. The formulation presented in this 

study is an attempt to avoid this limitation by updating the formation temperature at every 

time step as a function of mass flow rate, regardless of flow or shut-in test. 
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CHAPTER III 

WELLBORE AND RESERVOIR FLOW MODEL 

3.1 WELLBORE FLOW MODEL 

3.1.1 Mass and momentum balance 

Fluid pressure and temperature depend on the fluid velocity. Thus, an accurate 

estimate of fluid velocity as a function of time and wellbore length is required. Starting 

with the transient form of conservation of momentum equation and using Fig. 2.2    
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The fluid enters from node “z + ∆z”  
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Dividing by ∆x∆y∆z;  
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And taking the limit as ∆z approaches zero, 
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Final equation becomes;  
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3.1.2 Wellbore mass and velocity distribution 

The discrete form of the equation can be obtained using the following gridding 

scheme as shown in Fig.3.1; 
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Fig. 3.1 Mass and velocity distribution in the wellbore 

 

The discrete form allows us to write the mid point (ρν)j+1/2 as   ; 
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where Φj 
n
 stands for previous timestep variables 
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and Φj 
n+1

 represents present timestep values 

  

( )
jj

n

j

n

j

n

jn

j

jj

n

jj

jj

n

j

n

jn
j

zz

f

g
zz

PP

zz −
−−

−

−
+

−

−

+

+
+

+
+

+
++

+
+

+
+

+

++
+=Φ

1

2
1

2/1

1

2/1

1

2/11

2/1

1

1

1

1

121

1

2
2

sin

)()( υρ
θρ

ρυρυ
 

 

                                                                                                                        (3.8) 

 

In Eq. 3.6 β is the relaxation factor whose values lies between 0 and 1. Notice that the 

solution of Eq. 3.6 for the next time step value of mass flux (ρν)n+1
 requires values of 

various properties at next time step again so an iterative solution procedure is required. 

We use bn to denote the spatial mid-point mass flux, (ρν)j+1/2
n+1

, and an for node 

point values, (ρν)j+1
n+1

. Further, the flowing relationships among the nodes can be 

assumed. 
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Separating bn and an and manipulating, we get 
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Mass flow rates at the top and bottom of the system, an and an+1 are known. In matrix 

form Eq. 3.10 can written as, 

 

11

43

32

121

3

2

....

..

41

...

...

141

14

+−
−−−

−−
−−
−−−

=

−

−
−

•

nnnn
abb

bb

bb

abb

a

a

a

                                               (3.11) 

 

The matrix is a tridiagonal; therefore, three vectors can be used to store non-zero 

elements. The notation can be arranged as follows, 
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Two-step simple Gaussian elimination can be used to solve the equations. Step one if 

forward elimination. 

 

( )

( ) 11122

11122

/

/

gdfgg

edfdd

−=

−=

                                                                                                                  (3.13) 

 

 



 42

Second step is backward substitution, which is, 
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3.2 RESERVOIR MODEL 

An analytical reservoir model with superposition in time is used to account for 

fluid flux at the sandface. This formulation can be used for both drawdown and buildup 

simulations and is given for the liquid case by 
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CHAPTER IV 

ANNULAR-PRESSURE BUILDUP MODEL 

4.1 TRANSIENT BEHAVIOR OF ANNULAR-PRESSURE BUILDUP 

Annular pressure buildup (ABP) is a phenomenon that has been recognized in the 

oil and gas industry for many years. ABP is the pressure generated by thermal expansion 

of trapped fluids as they are heated. During production as the temperature increases 

throughout the wellbore, the trapped fluid, usually drilling mud and spacer, expands.  

When wellbore fluids heat up and expand in a closed system, the annular pressure 

increases significantly. Pressure buildup, caused by fluid thermal expansion in sealed 

annuli of high pressure/high temperature wells, can have serious consequences such as 

casing failure or tubing collapse. 

Pressure buildup in tubing-casing or casing-casing annuli is, in general, 

undesirable. Although casing design should take into account high pressures at the casing 

head, high pressure differences always hold the risk of casing bursting or collapsing at 

weak points, leading to loss of production or in the worst case loss of well (Oudeman & 

Kerem 2006). For this reason, most operating companies adhere to annular-pressure-

management schemes for onshore and offshore wells, which prescribe bleeding off 

pressure through the wellhead until a predetermined pressure level is reached. 

The annular-pressure-management schemes described above cannot be applied to 

subsea completed wells since these wells are not equipped with the option to bleed off the 

annular pressure. Deepwater developments are extremely susceptible to ABP when the 

differential between mudline temperatures and flowing production temperatures exceeds 

125 to 200 
o
F depending on the sea water temperature. Furthermore, the high 

temperatures developing in the well during prolonged production periods aggravate the 

problem of pressure buildup in annuli since the thermal expansion of the liquids tends to 

 



 44

increase at higher temperatures. For this reason, accurate prediction of annular pressure 

buildup in annuli is important. 

 

4.2 ACCOUNTING FOR FLUID EXPANSION IN ANNULI 

For a well to experience ABP, two conditions are known to exist. First, a sealed 

annulus or annuli must exist. Commonly a drilled formation is isolated in a cased well. 

Cement is circulated above the formation, and the top of cement is frequently inside the 

annulus of the previous casing. When the wellhead is sealed, an isolated volume of liquid 

is created or trapped. The condition is termed as “trapped fluid”. Second, a temperature 

increase must take place resulting from either production or drilling operations. When the 

fluid is heated, it begins to expand and can produce a substantial increase in pressure, 

which can be compounded if more than one annulus is isolated. 

Basically the pressure at a specific depth in a trapped column of liquid is 

determined by the average annulus temperature, the volume of annulus and the amount of 

fluid trapped. The following expression for a change in pressure in a contained annulus 

can be written 
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Where α is the coefficient of thermal expansion of annular fluid, κ is the 

coefficient of isothermal compressibility, Vl is the volume of annular liquid, and Va is the 

annular volume. According to this expression there are three contributing terms to 

annular pressure buildup. These are; 
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• Thermal expansion, which results in an increase in pressure when the 

annular volume does not increase sufficiently to accommodate this 

expansion 

• Change of annular volume, by thermal expansion, ballooning, or 

compression of the casings 

• Change in the amount of the fluid in the annulus caused either by liquid 

leak-of  to formation or fluid influx into the annulus 

 

In a sealed annulus the first term, thermal expansion is dominant. The second term, 

change in annular volume is a downward correction to the first term for about 10 %. For a 

perfectly sealed annulus the last term is eliminated because the amount of liquid remains 

constant with time. Because the first term or the liquid expansion is by far the most 

dominant in a sealed annulus, accounting for well over 80% of pressure increase in most 

cases, our modeling approaches center around this term.   

 For thermal expansion term to dominate the ABP the following two conditions 

need to apply; 

 

• No liquid is lost or added to the annuls 

• The walls of annulus are completely rigid, a condition taking place when 

the casings are cemented to the surface  

 

In the absence of leak-off and changes in annular volume the relevant equation becomes 
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The contribution to ABP is governed by the ratio of isobaric thermal expansion and the 

isothermal compressibility. Thermodynamically, fluid volume (or density) can be 

expressed as a function of pressure and temperature as follows. 
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When volume is constant, dV = 0, and we have, 
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Using the definitions of coefficient of thermal expansion and coefficient of isothermal 

compressibility Eq. 4.4 can be arranged for pressure as  
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Along with the annulus fluid temperature, fluid properties (α and κ) will change with 

depth.  For example, near the bottomhole, annulus fluid temperature is high and the 

temperature increase around that region with producing time (hence ∆P) is likely to be 

small.  However, near the wellhead, annulus fluid temperature is initially low, and may 

rise substantially over a period of production.  Hence direct use of Eq. 4.7 will give 
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inaccurate results. Accounting for the change in volume of trapped fluid as a function 

depth the equation becomes; 
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In Eq.4.8 the summation is taken over the total number of grids in the simulation model 

and M is the mass of trapped fluid in lbm/ft for each grid cell of a given annulus. M can 

be calculated using the following equation.  

 

144/2ρπ rM ∆≡                                                                                                                     (4.9) 

 

The “Bleed-Off Volume” is the amount of fluid withdrawn from annulus 

(ft
3
/Length) during the simulation. The amount of fluid taken out of the system by 

“bleeding off” at any time step is represented by the term (∆V) Bleed Off.   It can also be used 

to account for the size of air cushion in the annuli. If there is an air cushion initially and 

at some point in time fluid withdrawal takes place then this term should represent the 

summation of those two volumes. 

Eq 4.8 also requires relevant temperature profiles for each annulus. The next 

chapter provides the details on calculation of annulus and formation temperatures around 

the wellbore. 
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4.3 HEAT TRANSFER CALCULATIONS IN ANNULI AND AROUND    

WELLBORE 

A numerical simulation model has been developed to calculate temperature and 

pressure distributions in multiple annuli of a wellbore as shown in Fig. 4.1. In the model 

wellbore is represented by cylindrical grids in vertical direction to calculate heat and 

mass flow during production and shut-in. The heat flow from tubing fluid into to the 

formation can be calculated by generating radial grids around each cylindrical element 

and solving for conduction equation in finite difference form with the relevant properties.  
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Fig. 4.1 Wellbore grids in vertical and lateral directions. 

 

 

Single phase constant pressure or constant pressure outer boundary fluid flow 

solutions for a single well in a given reservoir form a straight line when plotted against 

the logarithm of radius. This is because equally spaced nodes on logarithmic basis, 

improves the accuracy of the finite difference solution scheme. Using the analogy 
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between heat and fluid flow equations one can generate geometrically spaced radial grids 

around the wellbore to calculate formation temperature profiles. In that case the outer 

bounder, represented by the last grid, is not affected by the heat transfer from wellbore 

and is always at geothermal gradient.  

The procedure for generating logarithmically spaced radial grids around the 

wellbore is as follows 
 

• Calculate a scaling parameter                                                               
 

)
r

r
(=

-1)1/(i

w

e maxβ                                                                                                                       (4.10) 

 

• Calculate initial grid distance                   
 

 ii r=r β1+                                                                                                                                     (4.11) 

 

• Calculate the remaining grids   

 

r=r 1i1/2+i 2/−β                                                                                                                            (4.12) 

 

and  

 

 

rr=r 1+iii 2/2/1−                                                                                                                        (4.13) 

                                                 

The maximum distance from wellbore into the formation is given with “re” and “imax” 

gives the number of grids around the wellbore. The user can specify any number of grids 

at any distance into the formation. Once the grid system is constructed radial heat transfer 
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into the formation is calculated using finite difference form of transient heat conduction 

equation.  

Starting with the conservation of heat in an unsteady-state radial system 

 

ElementVolumeInsideHeatinIncrease

OutHeatofRateInHeatofRate =−
                                                                         (4.14) 

 

Using Fourier’s law of heat conduction for volume element “i” rate of heat entering and 

leaving the control volume is 
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Where k is the thermal conductivity and the accumulation term becomes 
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Density and heat capacity are given with c and ρ. Combining Eqs. 4.15, 4.16 and 4.17 the 

final form of the equation is 

 

t

i
T

i
T

hrc
r

TT

r

TT
nn

i

n

i

n

i

ii

i

n

i

n

i

ii
hrkhrk

∆

−
∆

∆

−

∆

− +

+

++
+

++
−

−−
=+

1

1

11

1

11

1

11

222 πρππ      (4.18) 

 

 



 51

Defining transmissibility terms with respect to grid in the middle and the thermal 

diffusivity 
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hrc
2∆= πρα                                                                                                                              (4.21) 

 

The final form of the equation is implicit in nature and requires matrix solution.  
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Simultaneous solution of all equations for a particular timestep matrix system should be 

in the form of; 

 

bTA
rr

=                                                                                                                                          (4.23) 

 

In Eq. 4.23 A is the coefficient matrix, T and b are the column vectors. The new form of 

the equation is 
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Defining a lumped parameter for central node coefficient 
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⎟
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The equation becomes 

 

nn
iE

n
iC

n
iW i

T
t

TTRTTRTTR
∆

−=−− +
+

++
−

α1
1

11
1

                                                                         (4.26)                                       

 

Eq. 4.27 is the matrix form of Eq.4.26.  For this particular case, the given matrix is 

constructed for four radial grids around one vertical wellbore grid. 
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The boundary conditions for this system are as follows; 

• T(r,0) = Tei 

• T(r=rt ,t) = Tf(t) 

• T(r=∞,t) = Tei 

Here tubing outer radius is given by rt. Notice that the first temperature value on the right 

hand side vector, T1 is specified and is provided by the analytic temperature solution 

explained before. 

The final form of the equation to calculate temperature in the tubing does not 

account for the heat accumulation or increase in temperature in the first annulus. The 

general form of the heat transfer coefficient used in this formulation is; 
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The temperature rise in the annulus will slow down the net heat transfer rate from tubing 

fluid to the surrounding formation. The impact of change in annulus heat transfer rate can 

be approximated by continuously evaluating heat transfer coefficients relevant to 

conduction and convection in the annulus. That is 

 

 
hh

 
 = 

 U rcann +
11

                                                                                                                    (4.29) 

 

Heat entering from tubing to the annulus is  

 

( )annfannto TTUrQ −= π2                                                                                                         (4.30) 

 

Eq.4.30 is used to update the annulus heat transfer coefficient. The annulus temperature is 

calculated using the methodology given above. After the calculation of annulus heat 

transfer coefficient, it is incorporated back into the general overall heat transfer 

coefficient and tubing fluid temperature is calculated again with the analytic model. 
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CHAPTER V 

FIELD APPLICATIONS 

In this section, we discuss examples from both oil and gas wells. The first 

example consists of drawdown and buildup tests in a gas well. Different mathematical 

solutions for the analytical temperature model and their corresponding effect on 

temperature profiles are explored in this context. The second example is a buildup test 

from an oil well. In this case, the simulator is used to reproduce the afterflow upon well 

shut-in. Both examples point out the importance of accounting for changes in heat 

transfer rate between formation and wellbore fluid during transient testing. 

5.1 GAS-WELL DRAWDOWN 

The wellbore model is initially used to simulate a drawdown test for a gas well 

from the Gulf of Mexico (Kabir et al. 1996). The duration of the drawdown period is 

about 6 hours. The reservoir temperature is 407 
o
F and the depth of producing formation 

is given as 22,500 ft. The wellbore is divided into 19 segments and two different segment 

lengths used in the model are given as 1,000 and 1,500 ft.  

Figs. 5.1 and 5.2 compare the measured and calculated wellhead temperature and 

bottomhole pressures as a function of time. 
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Fig. 5.1 – Wellhead temperature during a gas-well drawdown test. 
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    Fig. 5.2 – Bottomhole pressure during a gas-well drawdown test. 

 

After about six hours of production, the temperature at the wellhead increases 

from 60 
0
F to 145 

0
F. Continuously changing temperature profile during production also 

provides a changing density profile throughout the wellbore, as depicted in Fig. 5.3. 
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   Fig. 5.3 – Temperature profile during gas-well drawdown test. 

 

According to Fig. 5.4, the wellbore fluid becomes lighter as the production continues. In 

contrast, during buildup, produced fluid becomes dense at the wellhead owing to heat 

loss to the surrounding formation.   
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   Fig. 5.4 – Density profile during a gas-well drawdown test. 

 

Figs. 5.5 and 5.6 show the changes in relaxation parameter (LR) during drawdown and 

buildup tests, respectively. LR is evaluated as a function of time for each segment of the 

wellbore for heat-transfer calculations. While the constant-LR assumption is viable in 

buildups, the same is untrue for drawdowns. Consequently, we developed a numerical-

differentiation scheme to eliminate this limiting assumption in the solution of analytic 

fluid-temperature model. 
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   Fig. 5.5 – Changes in LR during gas-well buildup test. 
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Fig. 5.6 – Changes in LR during a gas-well drawdown test. 

 

Fig. 5.7 compares the percentage error on calculated wellhead temperatures for 

each methodology. These are; pure analytic temperature solution, analytic solution with 

numerical differentiation and numerical differentiation scheme combined with formation 

temperature updating scheme. The error on calculated wellhead temperature oscillates 

and grows with time, if analytic temperature model with constant LR is used for heat-

transfer calculations. The combination of numerical differentiation scheme with the 

variable-formation-temperature approach provides the best results for analytic heat-

transfer calculations. 
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         Fig. 5.7 – Error on calculated WHT during gas-well drawdown test. 

 

Fig. 5.8 shows the formation temperature profiles calculated for different volume-

element thicknesses, as discussed in previous sections. For this particular case, best 

matches with field data are obtained using a volume-element thickness of one foot. 
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During drawdown, the net heat-transfer rate going through the formation volume element 

increases with time.  This fact implies that decreasing thickness of the volume element 

provides an increasing formation temperature around the wellbore. 
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Fig. 5.8 – Formation temperature profiles calculated at different locations around the 

wellbore during drawdown. 

 

Accurate representation heat transfer processes in the wellbore is crucial because the 

temperature profile has a big impact on the density profile, which, in turn affects the 

calculated pressure response.  

 

5.2 OIL-WELL BUILDUP 

5.2.1 Forward simulation 

The second field example is a buildup test on an oil well, which lasts about one 

hour. Fluid production above the bubblepoint occurs even at the wellhead. Fig. 5.9 

compares the calculated and measured wellhead pressure with forward simulation. 

During buildup, wellbore fluid begins to lose heat to the formation, and with 

increasing shut-in times, fluid temperature profile becomes closer to the geothermal 

gradient.  

Steady-state simulators assume zero mass flux in the wellbore after surface shut-

in. In reality, depending on the compressibility of the reservoir fluid, flow at the sandface 

does not cease immediately. As long as the warm reservoir fluid enters into the wellbore 
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at sandface, both conductive heat loss to the formation and convective heat transfer 

owing to fluid flow should be considered for an accurate estimation of wellbore-

temperature profile. 
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          Fig. 5.9 – Wellhead pressure of oil well #1 during buildup. 

 

Fig. 5.10 compares the calculated wellhead temperatures from a steady-state and 

transient model during pressure buildup. Transient model accounts for the afterflow 

effects; whereas, zero mass flux is assumed in a steady-state model. 
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            Fig. 6.10 – WHT of oil well #1 during buildup. 

 

Fig. 5.11 shows the velocity profile in the wellbore after shut-in. High kh value 

and low-fluid compressibility of the system result in a short afterflow period, lasting 

about 10 minutes.  
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According to Fig. 5.10, the deviations from measured wellhead temperatures are 

15 
o
F for steady-state and 3 

o
F for transient models. Perhaps implication of this 

temperature difference is best understood by hypothetical reverse simulations. In this 

exercise, the bottomhole pressures generated from the wellhead pressures show a 

maximum difference occurring at the end of the test: the transient model shows only 1.5 

psi difference with field data, whereas the steady-state model has an error of 10 psi.  
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Fig. 5.11 – Velocity profile in the wellbore during shut-in. 

 

Figs. 5.12 and 5.13 show the changing temperature and density profiles in the 

wellbore after surface shut-in. Heat loss to the formation throughout the wellbore leads to 

an increasingly denser fluid with time. These time-dependent nonlinear profiles 

underscore their importance in the context of wellhead to bottomhole pressure 

conversion. 
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Fig. 5.12 – Temperature profile in the wellbore during an oil-well buildup test. 
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Fig. 5.13 – Density profile in the wellbore during an oil-well buildup test. 

 

During buildup, similar to the heat transfer process described in drawdown, the 

amount of heat transfered to the formation does not remain constant with time. The 

changes in heat transfer rate during buildup can be accounted for using the formation-

temperature updating scheme. Contrary to the application of formation updating scheme 

in drawdown, one should increase the thickness of the volume element, shown in Fig.2.5, 

to get closer to the geothermal gradient. As the thickness of the volume element 

increases, the impact of net incoming heat on the designated wellbore segment reduces.  

Fig. 5.14 compares the formation temperature profiles in the near-wellbore region 

for different volume-element thicknesses. As shown in the figure, the largest thickness of 

5 inches provides the same results as initial formation temperature. 

Fig. 5.15 presents an oil-well buildup test lasting about four hours. Single-phase 

oil rate of 5,817 STB/D was recorded during the flow period lasting about eight hours. 

Reservoir parameters were obtained after doing the usual diagnosis with the derivative 

plot. To a large degree, reverse simulation replicated the measured response quite 

satisfactorily. However, the late-time match representing radial flow was less than 

satisfactory. Let us explore this point. 
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Fig. 5.14 – Changes in formation temperature profiles around the wellbore calculated from 

volume elements with different sizes. 

 

5.2.2 Reverse simulation 

In reverse simulations, the wellhead pressure data are converted into bottomhole 

pressure. This computation requires reliable estimation of wellbore temperature profile 

because changes in density develop as a function of temperature and pressure. Therefore, 

good estimates of wellhead temperature that are used as one of the boundary conditions 

in the model are imperative. Note that the measured wellhead temperature is not used 

explicitly in these calculations; they are used for comparison only to gain confidence in 

computed solutions.  

Let us illustrate this point with Fig. 5.15, which compares wellhead temperature 

using both the steady-state and temperature-update formulations for a buildup test in an 

oil well, both approaches compare favorably with the measured data; however, the one 

proposed here does a better job in reproducing field response, particularly at late times. 
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Fig. 5.15 – Comparison of WHT with the computed values in reverse simulation, oil well #2. 

 

Fig. 5.16 compares the bottomhole pressure response for this well, which produced at 

5,817 STB/D for eight hours before shutting it in for about four hours. Reservoir 

parameters were obtained after doing the usual diagnosis with the pressure-derivative 

plot. Reverse simulation replicated the measured response quite satisfactorily, 

particularly that at late times. However, the early-time match representing afterflow is 

less than satisfactory because this formulation does not attempt to model this 

phenomenon. 
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Fig. 5.16 – Comparison of BHP with that translated from WHP by reverse simulation, oil 

well #2. 
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We did forward simulations to compare and contrast these results with those from reverse 

simulations. Fig. 5.17 compares the results of measured and computed values for the 

same well. Oddly enough one observes divergence of wellhead pressure after about 0.1 

hr, although wellhead temperature was reproduced very well by the temperature-update 

formulation during the entire test. Because the same wellhead pressure reproduced the 

measured bottomhole pressure in Fig. 5.15, we concluded that the two sets of pressures 

are consistent. However, divergence of wellhead pressure after 0.1 hr can only be 

explained by a slow developing leak at the wellhead wing valve.  Let us explore this 

point. 
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Fig. 5.17 – Comparison of WHP and WHT obtained by forward simulation, oil well #2. 

 

Wellhead leaks across wing valves can precipitate changes in wellhead pressure when a 

certain threshold value is exceeded during buildup. In this case, we surmise that the wing 

valve downstream to the point of wellhead pressure measurement gave away when the 

flowline was bled at the other end, thereby creating increasing pressure-drop with time. 

Fig. 5.18 provides the description of the situation. Note that the master valve is left open 

to allow wellhead pressure measurement.  Slow leak of this nature also clouds the 

authenticity of bottomhole pressure measurements in that the rate of buildup decreased 
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with time, perhaps leading to a lower value of semilog slope and correspondingly higher 

kh than the true value. 
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Fig. 5.18 – Wellhead leak during a shut-in test 

 

We demonstrated the value of both types of simulations whenever measurements 

are available at the wellhead and sandface. For example, the buildup test in oil well #2 

identified incoherence between the model and field observations, which led to the logical 

conclusion of a possible leak at the wing valve. This observation will lead to corrective 

procedure in future testing programs.  

Although reverse simulation is a powerful approach, we should be aware of some 

of its caveats.  First, for the reverse simulation to work, both the surface and downhole 

gauges must have the same character in terms of resolution and absolute accuracy. Unless 

planned carefully, the surface gauge will typically offer resolution perhaps an order-of-

magnitude lower than its downhole counterpart. Second, changes in ambient condition, 

such as cooling, during the test also present challenge in wellhead pressure conversion, 

especially when tests go through a day-and-night time cycle. For this situation, 

convective heat transport in the variable-temperature environment needs modeling.   
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5.3 MULTIRATE TEST ON AN OFFSHORE OIL WELL 

In this section, we will reproduce a multi-rate test from a deepwater asset to 

demonstrate the models capabilities. Tahiti Field sits in more than 4,000 ft of water in the 

Gulf of Mexico and is a three-way anticlinal structure trapped against salt. The primary 

pays are Miocene age turbidite sheet sands at depths ranging from 24,000 to 27,000 feet 

TVD. The field was discovered in April, 2002 by the GC 640 #1 and appraised in 2003-

2004 with the drilling of two additional wells, both with major sidetracks. In addition, a 

surface flow test was conducted in the original discovery well over a seven day period in 

August, 2004. The flow test data was used to verify the simulation model described in 

this work. 

The high reservoir pressure (19,500 psi) and depth (26,000 ft TVD) of the Tahiti 

completions required the development of several new equipment designs to successfully 

perforate, fracpac and flow test the well (Chandler et al. 2005). In a lower pressure 

environment the use of a feed-through packer system would have allowed placement of 

the downhole pressure gauges just above the perforations. However, the high Tahiti 

bottomhole pressures and formation depth necessitated the use of a conventional 

permanent packer system, resulting in the placement of the gauge mandrel at a point 

some 517 ft above the perforations. To date, neither retrievable nor permanent packer 

systems have been developed to meet the 15,000 psi differential requirement for Tahiti-

class applications. 

Operational contingencies overcome while drilling the original discovery well at 

Tahiti resulted in this well having several sealed casing annuli and the possibility that 

annular pressure buildup could burst or collapse casing strings. To mitigate annular 

pressure buildup potential, the Project Team designed a vacuum insulated subsea 

production tubing string for use in producers (Nowinka et al. 2005). During the flow test, 

a subsurface mandrel with a memory-only gauge was placed at the base of the vacuum 

insulated portion of the tubing string (9,600 ft MD) to acquire pressure and temperature 
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data, which is useful to calibrate and verify wellbore flow models. The location of the 

mandrel was 1,000 ft below the top of a massive tabular salt feature. Fig. 5.19 shows the 

wellbore modeled during this study. 
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Fig. 5.19 – Simulated wellbore during a multi-rate test 

 

A multi-rate test has been run on this well. Fig. 5.20 presents raw pressure/rate 

data for the entire test, including the cleanup period. As shown, multiple drawdown tests 

were conducted in a decreasing rate sequence before the final buildup occurred. 

Conventional analysis of two major shut-in periods and multirate drawdown tests are 

presented in Appendix B. Parameters so derived became the starting point for subsequent 

analysis, as discussed here. The rigorous approach of tackling both downhole and off-

bottom pressure and temperature matching is detailed in the next section. 
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Fig. 5.20 – Test history showing cleanup period. 

 

5.3.1 Modeling field data 

 

The 26,500 ft well is represented by 46 grid cells in the simulator, each of which 

is about 650 ft long. Reservoir pressure is 19,530 psi and reservoir temperature is 200 
o
F. 

The geothermal gradient and seawater temperature profiles used in the model are given 

by Fig. 5.21. 
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Fig. 5.21 – Geothermal gradient and sea water temperature profile. 

 

The seawater temperature profile is linear from 40 
o
F at the mudline to 75 

o
F at 

the surface. The mudline of the well is located at approximately 4,000 ft water depth. 

This water column acts as a heat sink and the produced fluid will cool considerably while 

passing through this region, regardless of the producing rate. 

This well also passes through 10,500 ft of salt layer. A vacuum insulated tubing 

section is installed to prevent annulus-pressure buildup owing to thermal expansion of 
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fluids. The vacuum insulated tubing has been accounted for in the simulation model for 

accurate heat-transfer calculations. Beyond the cleanup period, data collected during the 

60 hour test period were bottomhole pressue, surface wellhead pressure and temperature, 

and flow rates. Fig. 5.22 shows the measured and input production rates. The surface 

wellhead pressure and temperature measurements occur at 9,625 ft from the surface, 

roughly called midpoint of the flow string. 
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     Fig. 5.22 – Mimicking oil production rate input. 

 

 

Fig. 5.23 compares the measured and simulated bottomhole pressures for the 60-

hour multirate test. Fig. 5.24 compares the measured and calculated temperature 

response. The temperature data was collected at the midpoint of the flow string. The 

initial discrepancy between the measured and calculated temperature profiles is the result 

of another flow and subsequent shut-in period that were not simulated. As shown in 

Fig.5.20, a cleanup period involving flow and shut-in lasted about 42 hours. 

Consequently, the wellbore-fluid temperature distorted the thermal equilibrium between 

the formation and the wellbore. No attempt was made to match the cleanup period 

because predominantly completion fluids were produced. 
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     Fig. 5.23 – Matching bottomhole pressure. 
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Fig. 5.24 – Matching temperature at the midpoint of the flow string. 

 

Fig. 5.25 showing the pressure match at the same location does not reveal any 

serious issues even though we ignored the cleanup period. Overall, our ability to 

reproduce pressure response at both bottomhole and wellbore midpoint and temperature 

at the wellbore midpoint instilled a great deal of confidence to move forward with 

parametric studies. 
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         Fig. 5.25 – Matching pressure at the midpoint of the flow string. 
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5.3.2 Optimal location of permanent downhole gauge 

Ideally, pressure gauges should be placed as close to perforations as possible to 

ensure that data remain unaffected by thermal effects, friction in the tubing between the 

perforations, and the gauge and phase segregation during shut-ins. In addition, 

restrictions in internal diameter of the tubing string associated with downhole equipment 

may add to pressure drop at high rates. For most types of downhole pressure gauge 

installations without sand control, one can place a mandrel with pressure gauges near the 

perforated zone using a feed-through packer, as depicted on the left side of Fig. 5.26. In a 

set of stacked completions (without sand control), the gauges can be run in the specific 

producing zone by using multiple feed-through packers. 
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Fig. 5.26 – Downhole gauge placement configurations. 
 

Getting gauges close to the perforations in a frac-packed well is challenging in 

that a service packer below the production packer does not allow feed-through 

applications. The location of the service packer dictates the depth of the bottom most 

downhole pressure gauge, as shown on the right side of Fig. 5.26. 
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In addition, there are some circumstances for which a feed-through packer system 

may be unavailable (the Tahiti example above) and some operational conditions for 

which a simpler and robust equipment design may be chosen, such as in high-pressure 

high-temperature environment. Also, although some high-profile exploratory flow tests 

will use a permanent downhole gauge installation for surface readout in lieu of running 

wireline in the hole, the decision may be made to place the gauge mandrel above the 

packer so that the gauge and control lines may be retrieved to surface when the well is 

suspended.  

In all of these cases, the value of better quality data must be weighed against the 

practicality of the completion design, the increase in risk with additional completion 

complexity and the cost incurred. The simple correlations for design of gauge placement 

developed in this paper should prove to be beneficial in making decisions when planning 

a new completion or coping with the effect of gauge placement on analysis results, if the 

preferred placement proves impractical. 

5.4 EFFECT OF GAUGE LOCATION ON PRESSURE-TRANSIENT ANALYSIS 

A well model similar to the Tahiti offshore well with 4,000 ft of water depth is 

used for drawdown and buildup simulations. We investigated the effect of gauge location 

on calculated formation parameters by analyzing pressure data at increasing distances 

away from the sandface. 

5.4.1 Oil well 

A well model similar to the Tahiti offshore well with 4,000 ft of water depth is 

used for drawdown and buildup simulations. We investigated the effect of gauge location 

on calculated formation parameters by analyzing pressure data at increasing distances 

away from the sandface. 
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5.4.1.1 Drawdown response 

 

Continuously changing flowing fluid temperature during both drawdown and 

shut-in affects the wellbore density profile. Fig. 5.27 shows fluid temperature and density 

profile when the well was producing at 5,000 STB/D. 
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Fig. 5.27 – Temperature and density profiles in the wellbore. 

 

As the produced fluid approaches the mudline, the temperature difference 

between the fluid and the formation is maximized, leading to the maximum changes in 

flowing fluid properties. Above the mudline, sea water temperature begins to increase as 

a function of depth, resulting in change of slope in temperature curve. Fig. 5.28 shows 

the increasing viscosity profile around the mudline in relation to the decreasing fluid 

temperature. The combined effects of increased density and viscosity around the mudline 

cause some fluctuations, even in steady-state flow profile. As a consequence of thermal 

effects, the rate of pressure change at any point in the wellbore does not necessarily 

reflect the same at the sandface for single-phase oil. Therefore, we cannot readily use 

pressures at any point of the column to extract formation parameters at all times. 
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Fig. 5.28 – Temperature and viscosity profiles in the wellbore. 

 

For single-phase oil experiencing drawdown, we demonstrate this point by 

plotting the changes in semilog slope as the virtual gauge moves up in the wellbore. Fig. 

5.29 shows the calculated error in semilog slope as a function of depth. The percentage 

error in the slope increases with decreasing depth and reaches to its maximum around 

mudline. Thereafter, the error remains constant. For this particular case, it was possible to 

identify the radial flow region on the derivative plot up to the mudline, unlike some of the 

buildup runs as we discuss later. 
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Fig. 5.29 – Error in semilog slope as a function of depth. 

 

We used experimental design to investigate the effect of different variables on the 

semilog slope. The variables used in experimental design are, perforation-to-gauge 

distance (DG), permeability-thickness product (kh), geothermal gradient (gT), flow rate 

(q), oil gravity (γo), deviation angle (θ), and thermal conductivity of annular fluid (ka). 
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Table 5.1 provides the range of variables used to generate the experimental design table. 

This table attempts to capture the reservoir properties generally encountered in the Gulf 

of Mexico. Note that the entire range of variables cannot be encapsulated because 

nonphysical reservoir/wellbore models are generated that do not lend themselves for any 

solution. 

 

 

 
Table 5.1 ─ Range of sensitivity variables for design of experiments for oil 

 Variable p-10 p-50 p-90

kh , md-ft 50*250 80*250 600*200

q , STB/D 5,000 10,000 25,000

γo 25 30 32

D G , ft 20,000 1,500 400

k an , Btu/hr-ft-oF 0.1 0.2 0.3

g T , oF/ft 1 1.2 1.4

θ , degree 45 30 0  
 

 

 

Fig. 5.30 displays the Pareto chart for drawdown using the Plackett-Burman 

(1943) statistical design of experiments. Similar approach is described by Hasan et al. 

(2005). The Pareto chart shows that perforation-to-gauge distance (DG) has the biggest 

effect on percent error in semilog slope, followed by permeability-thickness product (kh) 

and deviation angle (θ). Note that the vertical line signifies 95% confidence interval. In 

other words, one can develop a simple linear correlation with the first three variables 

influencing the semilog slope, m*.  
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Fig. 5.30 – Pareto chart for oil-well drawdown for the dependent variable Em*. 

 

The following correlation includes all the variables studied for completeness:  
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As long as radial flow can be identified on the derivative plot, one can calculate 

the error on semilog slope by using this correlation for the variable range presented in 

Table 5.1. 

 

5.4.1.2 Buildup response 

 

In buildup simulations, we observed that the radial flow regime becomes difficult 

to identify as pressure is gathered at increasing distances from the sandface. The reason 

for this kind of behavior is twofold. After the valve at the mudline is completely closed, 

the mass flow rate at the upper parts of the wellbore diminishes rapidly. By contrast, the 

incoming flow at the sandface maintains a velocity profile up to certain depth, thereby 

creating a fully transient profile throughout the wellbore. Once mass flow rate ceases, the 

temperature of the wellbore fluid decreases rapidly, especially around the mudline, 

thereby triggering rapid changes in fluid properties.  
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For a buildup test, continual changes in fluid properties combined with afterflow 

may mask the radial flow regime, or lead to an erroneous interpretation on a log-log plot. 

Presence of gas, such as in two- or three-phase flow makes the situation even more 

complicated. Fig. 5.31 presents the percentage error on semilog slope for a buildup test 

conducted at different locations in the wellbore. Also, the error on slope from a 

drawdown run, as shown in Fig. 5.29, is included for comparison. 
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Fig. 5.31 – Error in semilog slope for drawdown and buildup as a function of depth. 

 

Notice that the error curve for the buildup tests disappears after reaching a certain 

depth. That is because radial flow cannot be identified beyond 3,000 ft from the sandface, 

implying that no meaningful information can be extracted. Fig. 5.32 shows the derivative 

plot generated at 3,000 ft above the sandface. Duration of the buildup test would not 

change the signature on the log-log plot in this case because at the end of the run the 

bottomhole pressure is only one psia lower than the initial-reservoir pressure. 
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Fig. 5.32 – Log-log plot for buildup in an oil well. 
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Fig. 5.33 presents a Pareto chart for buildup tests using the Plackett–Burman 

design, with the same variables identified earlier in Table 1. Note that only the upper 

limit for perforation-to-gauge distance needed to be adjusted because radial flow did not 

develop beyond 3,000 ft. 
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Fig. 5.33 – Pareto chart for oil-well buildup for the dependent variable Em*. 

 

For the buildup runs, the most influential variables affecting the dependent 

variable m* are the perforation-to-gauge distance and permeability-thickness product, as 

signified by the 95% confidence limit. However, the third important variable for buildup 

runs turned out to be the production rate just before the shut-in as opposed to deviation 

angle in drawdown runs. The resultant correlation that can be used to estimate the error 

on semilog slope for a builup test is given by 
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5.4.2 Gas well 

For the single-phase gas simulations, we used an offshore wellbore model with 

the same water depth to investigate mudline issues during gas production. Table 6.2 
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presents the range of variables considered in this study. Flow and shut-in periods of 30 

and 20 hours, respectively, were used for all simulation runs. 

 

 
Table 5.2 ─ Range of sensitivity variables for design of experiments for gas 

 Variable p-10 p-50 p-90

kh , md-ft 10*250 80*250 600*200

q , MMscf/D 10 25 50

γg 0.5 0.6 0.7

D G , ft 20,000 1,500 400

k an , Btu/hr-ft-oF 0.1 0.2 0.3

g T , oF/ft 1 1.2 1.4

θ , degree 45 30 0  
 

 

Because gas PVT properties are much more sensitive to the changes in 

temperature, both flow and shut-in periods exhibited trend reversals during simulations at 

increasing distances from the sandface. Because gases have intrinsically much lower heat 

capacity and, therefore, lower enthalpy than a liquid, heat dissipation occurs much faster, 

leading to trend reversal of pressure. Fig. 5.34 compares the bottomhole and mudline 

pressures for flow and shut-in periods. 
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Fig. 5.34 – Pressure at the mudline and bottomhole for a deepwater gas well. 

 

During drawdown, pressure at the mudline increases even though the bottomhole 

pressure declines in accord with normal behavior. Conversely, during shut-in period, 

pressure at the mudline declines continuously. This trend reversal at the mudline is a 
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direct consequence of temperature response, which eliminates the possibility of 

extracting any formation parameters with conventional pressure-transient analysis. 

Similarly, this inverted pressure behavior precludes one from doing wellhead-to-

bottomhole pressure conversion or reverse simulation. Fig. 5.35 shows the derivative plot 

for the shut-in period generated with pressure data collected at 3,000 ft above the 

sandface. Here, the radial flow is hard to discern. 
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Fig. 5.35 – Derivative diagnosis of gas-well buildup for a gauge at 3,000 ft away from 

sandface.  

 

Fig. 5.36 shows the changes in mudline pressure in relation to temperature. The 

similarity in pressure and temperature trends clearly demonstrates the strong connection 

between the two responses, as one may surmise intuitively from the real-gas law. One 

consequence of this gas-well behavior is that significant heat loss not only occurs at the 

seabed, but its effect gets transmitted thousands of feet below the mudline. Fig. 5.37 

shows the temperature and pressure profiles during gas production at 2,000 ft below the 

mudline. 
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Fig. 5.36 – Pressure and temperature behavior at the mudline. 
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Fig. 5.37 – Pressure and temperature behavior 2,000 ft below the mudline. 

 

We found that the trend reversal for drawdown pressure is a strong function of gas 

production rate and duration of the production period. The initial pressure trend reversal 

takes place regardless of the production rate. However, duration of this reverse-trend 

period depends on the rate, and with continued production the trend gradually begins to 

mimic that of the bottomhole pressure. Again, placing the gauge close to the sandface is 

the only way to ensure data quality. Similar to the oil flow problem, we generated the 

Pareto chart with the data presented in Table 5.2. Fig. 5.38 presents the chart. 

 

 



 82

 

0.491

0.642

1.437

1.454

-0.456

-0.842

-1.637

0 0.5 1 1.5 2 2.5 3

θ
kan

API

gT

k*h

DG

q

Effect Estimate (Absolute Value)

q

D G

kh

g T

γ g

k an

θ
p=0.2 significance limit

 
Fig. 5.38 – Pareto chart for gas-well drawdown for the dependent variable Em*. 

 

The resultant correlation that can be used to estimate the error in semilog slope for 

a drawdown test in a gas well is given by 
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We have already discussed issues pertaining to data gathered in off-bottom 

gauges. While that discussion is helpful in designing future installations, questions arise 

what to do with current installations where potential problems exist. To mitigate this 

situation, we explored the notion of translating off-bottom pressures into bottomhole 

pressure with the reverse-simulation technique (Izgec et al. 2006; Hasan et al. 2005). Fig. 

5.39 shows such an attempt for a gas well where pressure data are collected at the 

mudline and 2,000 ft above the perforations in a drawdown test. Although absolute 

pressure values are acceptably close, the data do not lend themselves for transient 

analysis. Clearly, the early-time semilog slope suffers as the gauge moves away from the 

sandface. 
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Fig. 5.39 – Comparison of converted BHP responses (2,000-ft off-bottom and the mudline) 

with the true response. 
 

Note that we considered favorable drawdown tests because buildup responses 

have considerably higher error bar, as Fig. 5.31 demonstrates. Although not shown, 

single-phase oil system responds more favorably than its gas counterpart, as far as 

pressure conversion is concerned. Therefore, to mitigate off-bottom pressure 

measurements, we think the better approach is forward simulations, wherein one has to 

honor both pressure and temperature measurements from one or more locations in the 

borehole. This point was made earlier in the field example section.    

Besides thermal effects, wellhead pressure measurements may sometimes be 

affected by wellbore hydrodynamics, such as slugging, associated with two-phase flow. 

Fig. 5.40 illustrates this point with a field example, where slugging persists over days 

after initiating flow, following a short shut-in period. The rate fluctuation is roughly 4% 

about its mean value. We surmise that the overall increasing wellhead pressure trend at 

the mudline in this high-GOR well is similar to a gas well, shown earlier in Fig. 5.34. 

Obviously, any attempt to translate wellhead pressure to bottomhole pressure will be 

severly challenged, unless unstable flow physics is modeled implicitly in addition to 

thermal effects. 
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Fig. 5.40 – Wellhead pressure response shows both slugging and thermal effects. 

 

5.5 ANNULAR PRESSURE BUILDUP FOR AN ONSHORE WELL 

 

For this onshore well pressure buildup was observed in the 7-in. production 

casing owing to heating of annular fluid by the producing fluid in the tubing string. As 

Fig. 5.41 shows, the rise in wellhead temperature is directly related to increase in flow 

rate.  
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Fig. 5.41 – Wellhead temperature during production. 

 

With increased rate the available energy for heat transfer increases proportionately, 

leading to the increased annular pressure. Fig. 5.42 makes this point amply clear. 

Thermal expansion of annular fluid appears to be solely responsible for the APB behavior 

in this closed-annular system. 
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Fig. 5.42 – Annulus pressure during production. 

 

According to Fig.5.42 some annular liquid was bled off to relieve pressure. As a 

consequence, higher producing rate was restored while annulus pressure decreased. 

This bleed-off volume was not reported, however. When we used a bleed-off 

volume of 300 liters, the model was able to reproduce the annular pressure decline quite 

accurately. The corresponding temperature match at the wellhead was shown in Fig. 5.41. 
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CHAPTER VI 

CONCLUSIONS 

This study presents a finite-difference wellbore model coupled with an improved 

semianalytic fluid-temperature formulation for transient simulations of flow and shut-in 

tests. Three major improvements to previous studies are offered to gain computational 

speed, accuracy and stability: 

 

• A new analytic temperature model including mass influx upon shut-in and heat 

conduction in vertical direction is developed. 

• The hybrid numerical-differentiation scheme removes limitations imposed by the 

constant-relaxation-parameter assumption, used in previous analytic heat-transfer 

formulations. 

• The variable-formation-temperature scheme improves estimation of temperature 

by accounting for the changes in heat-transfer rate between the wellbore fluids 

and formation, which in turn, improves the pressure calculations when forward 

and reverse simulations are sought.   

 

The simulation model is extended for temperature calculations in multiple annuli 

and is capable of predicting trapped fluid expansion in each of them as a function of time. 

The ABP model also predicts the surrounding formation temperature at every timestep up 

to a user specified distance into the reservoir. 

Verification of pressure and temperature computation with field data is 

demonstrated with both forward and reverse simulations for single-phase oil and single-

phase gas wells. The usefulness of both approaches during a test is demonstrated by an 

example wherein suspected wellhead leak was uncovered.  
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The notion of thermally induced pressure distortion is investigated with a deep 

offshore wellbore model after matching the pressure and temperature data from 60 hours 

of multirate test. The results show that gauge location is the key factor in collecting 

analyzable data and data quality suffers as the gauge is moved away from the 

perforations.   

The final part of this work presents simple correlations to check the validity of 

subsurface pressure data yielding reliable formation parameters in accord with gauge 

placement. These correlations, in turn, provide guidance for placing both temporary and 

permanent downhole gauges in a specific wellbore/reservoir environment. 
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NOMENCLATURE 

A=drainage area or area exposed to flow, ft
2

a = lumped parameter  

B= formation volume factor, RB/STB 

Bo= formation-volume factor, RB/STB 

CA=Dietz shape factor for drainage area, dimensionless 

cp= specific heat capacity of fluid, Btu/lbm-°F 

ct=  total system compressibility, 1/psi 

CT= thermal storage parameter (=m′E′/mE), dimensionless 

D = non-Darcy flow coefficient, D/STB 

DG = perforation-to-gauge distance, ft 

E = internal energy of the wellbore fluid, Btu/lbm 

E′ = internal energy of the wellbore system, Btu/lbm 

Em* = error in semilog slope, percent 

Gp = cumulative gas production, Bscf 

gG= geothermal gradient, °F/ft 

g= gravitational acceleration, ft/sec2  

gc= conversion factor, 32.17 lbm-ft/lbf/sec2  

h= formation thickness, ft 

H=Enthalpy, Btu/lbm 

J=productivity index, MMscf/D-psi 

k= permeability, md 

ke= thermal conductivity of earth, Btu/hr-ft-°F 
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LR= relaxation parameter 

m = semilog slope (=162.6 Bµ/kh), psi/log-cycle 

 m(p) = pseudopressure, psi
2
/cp 

m = mass of fluid, lbm 

m′ = mass of wellbore system per unit length, lbm/ft 

m* = semilog slope (=162.6 Bµ/kh), psi/log-cycle 

mve = mass of formation volume element, lbm 

nw = number of wells 

N=  cumulative production of a well, STB 

Np=  cumulative production of the field, STB 

pD= {kh(pi-p(x,y,t)}/141.2qrefBµ 

pwh  = flowing wellhead pressure, psig 

⎯p=average drainage-area pressure, psia  

p*= Horner extrapolated pressure, psia 

pD = dimensionless pressure 

pi= initial pressure, psia 

pwh= wellhead pressure, psia 

pwf= flowing bottomhole pressure, psia 

q= sandface flow rate, STB/D 

qD = q(t)/qref 

qg= gas rate, MMscf/D 

qk= well rate, STB/D 

qT= total field rate, STB/D 
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Q(t) =  instantaneous cumulative production,     MMscf 

Q= heat flow rate from or to the wellbore, Btu/hr 

rw= wellbore radius, ft 

rwa= apparent wellbore radius, ft 

r= thickness of the control volume, ft 

R = residual form of backward Euler formulation 

Rgo=  producing gas/oil ratio, scf/STB 

Rs   =  solution gas/oil ratio, scf/STB 

s= mechanical skin, dimensionless 

Sgi = initial gas saturation, fraction of pore space 

Soi = initial oil saturation, fraction of pore space 

Swi = initial water saturation, fraction of pore space 

t= producing time, hr 

tD = dimensionless time, hours 

TD= dimensionless temperature 

te = equivalent producing time {=Q(t)/q(t)}, hr 

tott  = total field material-balance time, hr 

 tDA =   dimensionless time (=0.00633kt/φµctA) 

ttot= material-balance time, hr  

Tsc= temperature at standard conditions, 
o
F 

Tf= fluid temperature, °F 

Te= earth or formation temperature, °F 

Tei= undisturbed earth or formation temperature, °F 
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Twb= wellbore/earth interface temperature, °F 

Twh= wellhead temperature, °F 

Uto= overall-heat-transfer coefficient, Btu/hr-ft
2
-°F 

w =mass rate, lbm/hr 

x = rectangular coordinate distance, ft 

xD = x/√A, dimensionless 

 y = rectangular coordinate distance, ft 

yD = y/√A, dimensionless 

z =variable well depth from surface, ft 

γo= oil gravity, oAPI 

γg= gas gravity (air = 1), dimensionless  

µ= fluid viscosity, cp 

γ = 0.577216, Euler’s constant  

ρe= earth density, lbm/ft
3

φ =(1/cp ρ) (dp/dz) 

φ  = porosity, fraction  

ψ =gGsinθ + φ – (gsinθ /cpJgc) 

θ = well inclination from horizontal, degree 

 τ = dummy integration variable 

             

SubSubscripts 

i=well number index 

j=timestep index 

k=well position index or iteration index 
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n =nth flow period 

0=initial condition 

1, 2, 3=indices of flow period 
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APPENDIX A 

ANALYTICAL SOLUTION OF DIFFUSIVITY EQUATION IN THE 

FORMATION 

An energy balance on the formation leads to the partial differential equation, derived in 

cylindrical coordinates, for the variation of formation temperature with radial distance 

from the well.   
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In Eq. A.1 Te is the formation temperature at an arbitrary depth at time, t, and distance, r, 

measured from the center of the wellbore. Heat capacity, density and conductivity are 

given with ce, ρe and ke. The solution of the equation requires three boundary conditions. 

At very early times, the formation temperature retains its initial value, except near the 

wellbore. As time increases, heat transferred from the warm wellbore fluid will raise the 

formation temperature in its vicinity. The heat flow rate at the wellbore/formation 

interface is governed by Fourier’s law of heat conduction.  

Eq. A.1 can be solved in terms of dimensionless variables.  Hasan and Kabir solved the 

resulting equation with the Laplace transform, following the approach suggested by van 

Everdingen and Hurst for a similar set of equations used for pressure transients. For 

estimating flowing fluid temperature the formation temperature and its spatial derivative 

at the wellbore/formation interface are needed. 

According to their solution if tD > 1.5 
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And if tD < 1.5 
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The above expressions for dimensionless temperature become discontinuous around 1.5. 

The continuous expression for the same expression is provided as 
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APPENDIX B 

CONVENTIONAL ANALYSIS OF FIELD DATA 

Fig. B1 presents temperature data along with pressure.  Temperature increase 

during flow tests is precipitated by Joule-Thompson heating that the fluid experiences 

owing to significant pressure drop at the sandface. Conversely, temperature decrease 

during shut-in periods is tied to energy dissipation, particularly in this slightly off-bottom 

gauge, 517 ft away from perforations.    

Fig. B2 compares the two major buildup tests, one at the end of the cleanup 

period and the other at the end of the whole sequence of testing. Permeability so derived 

is used to anchor drawdown analysis to discern the non-Darcy or rate-dependent skin 

component, as shown in Fig. B3. The possibility of non-Darcy skin can be discerned by 

inspecting Fig. B1, where separation of the two pressure curves occurs. Note that the two 

shut-in tests are preceded by very dissimilar oil rates: 10, 275 STB/D after the cleanup 

and 6, 129 STB/D before the final buildup.    

Fig. B3 shows data from three flow periods, including the one just before the final 

buildup test. As discussed elsewhere (Kabir 2006), buildup-derived slope is 

superimposed on drawdown data to discern the intercepts, leading to the separation of 

skin components, as shown in Fig. B4.  Permeability and the two skin components 

became the starting point for overall history matching, as described in the text.  
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Fig. B1 – Pressure and temperature history of test data. 
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Fig. B3 – Analy d permeability. 
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Fig. B4 – Separation of skin components. 
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