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Abstract.

Mixing and dispersion in coastal aquifers are strongly influenced by pe-

riodic temporal flow fluctuations on multiple time-scales ranging from days

(tides), seasons (pumping and recharge) to glacial cycles (regression and trans-

gressions). Transient forcing effects lead to a complex space- ant time-dependent

flow response which induces enhanced spreading and mixing of a dissolved

substance. We study effective mixing and solute transport in temporally fluc-

tuating one-dimensional flow for a stable stratification of two fluids of dif-

ferent density using detailed numerical simulation as well as accurate col-

umn experiments. We quantify the observed transport behaviors and inter-

face evolution by a time-averaged model that is obtained from a two-scale

expansion of the full transport problem, and derive explicit expressions for

the center of mass and width of the mixing zone between the two fluids. We

find that the magnitude of transient-driven mixing is mainly controlled by

the hydraulic diffusivity, the period and the initial interface location. At an

initial time regime, mixing can be characterized by an effective dispersion

coefficient and both the interface position and width evolve linearly in time.

At larger times, the spatial variability of the flow velocity leads to a decel-

eration of the interface and a compression of its width, which manifests in

a subdiffusive evolution of its width as t1/2.



1. Introduction

The study and proper quantification of solute mixing and spreading mechanisms in

aquifers is the central importance not only for the design of water-resources management

and environmental remediation strategies, but also for the diagnosis and prediction of

chemical reactions that result from mixing.

Fluid mixing results from the fundamental competition between local deformation of

the flow field and diffusion-dispersion mechanisms. Spatially nonuniform variations of

the flow field are mainly controlled by the spatial variability of hydraulic properties of

the subsurface (heterogeneity). The impact of heterogeneity on mixing and the induced

non-Fickian behaviour of solute transport have been examined extensively for the last

four decades [see, e.g., Kitanidis , 1988; Rajaram and Gelhar , 1993; Attinger et al., 1999;

Dentz et al., 2000]. Multi-scale heterogeneity leads to complex groundwater flow patterns

with the existence of preferential flow paths which promote the creation of concentration

gradients which in turn enhanced spreading and mixing of a dissolved substance.

In addition to heterogeneity of the medium, the temporal variability of the flow field due

to transient effects may impact significantly on solute transport. Real systems are strongly

influenced by periodic temporal flow fluctuations on multiple time-scales in response to,

for example, diurnal variations in evapotranspiration, tidal forcing, seasonal variations

in recharge and pumping, as well as regressions and transgressions. Thus, aquifers are

usually under perpetual non-equilibrium flow and solute transport conditions. Intensive

research efforts over the last decades have been devoted to study the effects of temporal

flow fluctuations on solute transport. It has been found that for heterogeneous porous



media parallel fluctuations to the main flow direction have a limited impact on mixing,

whereas transverse fluctuations to the main flow direction slightly enhance transverse

dispersion and reduce longitudinal dispersion [see, e.g., Rehfeldt and Gelhar , 1992; Da-

gan et al., 1996; Dentz and Carrera, 2003; Cirpka and Attinger , 2003; de Dreuzy et al.,

2012]. For homogeneous porous media with constant dispersion, Dentz and Carrera [2003]

demonstrated that temporal flow fluctuations parallel to the main flow direction has little

influence on mixing. However, for homogeneous porous media with velocity-dependent

dispersion, Kinzelbach and Ackerer [1986], who derived an equivalent time-averaged coef-

ficient to quantify the effect of temporal fluctuations on dispersion, found that transient

forcing leads to an important increase in transverse dispersion whereas longitudinal dis-

persion is reduced. While all these investigations provide valuable insights into the effects

of temporal fluctuations on mixing, aforementioned studies assumed stationarity of the

flow field, i.e., an aquifer storativity of zero, which implies an uniform and instantaneous

flow response to a hydraulic perturbation. With nonzero storativity, periodic forcing leads

to a space- and time-dependent flow response in which the oscillation amplitude is atten-

uated and decays exponentially with distance from the transient boundary whereas the

phase lag increases linearly [see, e.g., Jacob, 1950; Van Der Kamp, 1972; Townley , 1995].

The resulting spatially nonuniform flow response may impact on the transient-induced

mixing dynamics. In fact, Goode and Konikow [1990] showed that the effect of temporal

fluctuations on dispersion is controlled by a characteristic response time which depends

on the aquifer hydraulic conductivity, the storativity and the period. So far it is not

clear how the coupling of the aquifer storativity and transient forcing impact on solute

transport.



In this paper, we study dispersion in non-stationary flow under different transient

boundary conditions in order to identify and quantify the controls of the coupling between

mixing and oscillatory transient flow. To this end, we study effective mixing in temporally

fluctuating one-dimensional flow for a stable stratification of two fluids of different density.

We derive an effective model and explicit expressions for the concentration distribution

and the variance to capture and predict the mixing behavior. Numerical results and sand

column experiments under well-controlled laboratory conditions are presented to validate

the theoretical effective model defined.

2. Concepts and Methods

2.1. Problem statement

We investigate solute mixing dynamics between two fluids of different density for a stable

stratification under temporally fluctuating flow conditions. A one-dimensional system is

considered with the z axis pointing vertically upward. Temporal flow fluctuations at z=0

are characterized by a single harmonic with A [L] being the oscillation amplitude and τ

[T ] the period. A sharp interface between the two fluids initially located at a distance of zi

from the transient boundary is considered. Mixing induced by transient-forcing effects is

characterized by the increase in the width of the mixing zone which is quantified from the

gradient g(z, t) of the salt mass fraction distribution c(z, t). Figure 1 depicts a schematic

illustration of the problem considered.

2.2. Governing Equations



In the following, we state the flow and transport problems in terms of their governing

equations and initial and boundary conditions, as well as available analytical expressions

for the solution of the flow problem.

2.2.1. Flow

Momentum conservation in flow through porous media is expressed by Darcy’s law,

which considering small changes of density and saturated flow reads as

q(x, t) = −k∇h(x, t), (1)

where q(x, t) [LT−1] is fluid velocity, k [LT−1] hydraulic conductivity and h(x, t) [L] is the

hydraulic head.

Fluid mass balance in the absence of sinks an sources is given by the continuity equation

∂φρ

∂t
= −∇ · qρ (2)

where φ [L3L−3] is the porosity and ρ [ML−3] fluid density. Assuming ρ to be constant

and expanding the storage term, one can write [Bear , 1972]

Ss
∂h(x, t)

∂t
= ∇ · q(x, t), (3)

where Ss[L
−1] denotes specific storativity defined as Ss = ρag [(1− φ)βm + φβω], in

terms of ag [LT−2] the gravitational acceleration, βω[LT
2M−1] the water compressibil-

ity, 4.47×10−10 ms2kg−1 for pure water at 20◦C, and βm[LT
2M−1] the bulk porous matrix

compressibility, which ranges from 10−10 for sound bedrock to about 10−7 ms2kg−1 for

clay [Freeze and Cherry , 1979].



Equation (3) is subject to the following boundary conditions. The upper boundary is

assumed to be located far from the interface between the two fluids (z = L, with L ≫ zi)

where the response to the fluctuations is diminished so that the gradient of h can be

considered to be zero (no flow boundary of both salt and water). In order to examine the

response of the flow field to the transient-forcing boundary, two different types of time-

fluctuating boundary conditions are considered at z=0. First, equation (3) is subject to

a dynamic specified flux (Neumann-type boundary condition), which reads as

qb(x, t)|z=0 = qr +
Ak

L
sin

2πt

τ
; (4)

and second, equation (3) is subject to a periodic prescribed head (Dirichlet-type bound-

ary condition), which is given by

hb(x, t)|z=0 = hr + Asin
2πt

τ
, (5)

where qr[LT
−1] and hr[L] represent a reference flux and head, respectively, considered

here to be zero for simplicity.

These boundary conditions render the flow field 1–dimensional, aligned with the z–

direction of the coordinate system. It is denoted by q(z, t) in the following. The solutions

for q(z, t) for the specified boundary conditions, equations (4) and (5) can be written,

respectively, in the compact way [see, e.g., Jacob, 1950; Ferris , 1951],

q(z, t) = q0 exp(−µz) sin

(

2πt

τ
− µz + ϕ

)

, (6)



where µ =
√

Ssπ/kτ [L−1] is a wave number which depends on the hydraulic diffusiv-

ity (with k/Ss, hydraulic conductivity and specific storage, in confined aquifers or T/S,

transmissivity and storage coefficient, in unconfined aquifers) and the period, and repre-

sents the inverse of a characteristic distance in response to periodic transient flow. For

Neumann boundary conditions we define

q0 =
Ak

L
, ϕ = 0, (7)

while for Dirichlet boundary conditions, we set

q0 =
√
2Akµ, ϕ =

π

4
. (8)

Note that a spatially-nonuniform flow field is obtained from both solutions when con-

sidering a finite storativity (Ss 6=0). However, the solution for periodic transient forcing

strongly depends on the boundary conditions [Townley , 1995]. Thus, for the case of Ss=0

and considering a Neumann-type boundary condition, the time-dependent flow field is

spatially-uniform (instantaneous flow response to hydraulic perturbation), whereas q=0

when imposing a Dirichlet-type boundary condition due to an instantaneous head response

to hydraulic perturbation.

2.2.2. Transport

Solute mass conservation can be expressed in terms of the solute mass fraction

c(x, t)[MM−1] (mass of dissolved solute per unit mass of fluid), and is given by

∂φρc

∂t
= −∇ · qρc+∇ · φρDh∇c, (9)



where Dh(x, t)[L
2T−1] is the hydrodynamic diffusion-dispersion tensor, defined as

Dh(x, t) = [D(x, t) + DmI] with Dm[L
2T−1] the molecular diffusion coefficient, I the

identity matrix and D(x, t)[L2T−1] the dispersion tensor defined in terms of αL[L] and

αT [L], the longitudinal and transverse dispersivities, respectively [e.g., Bear , 1972].

Multiplication of (2) by c and subsequent subtraction from (9) gives the following

transport equation for the solute mass fraction c

∂c(x, t)

∂t
= −v(x, t) · ∇c(x, t) +∇ ·Dh(x, t)∇c(x, t), (10)

where v(x, t)[LT−1] denotes the pore water velocity, v(x, t) = q(x, t)/φ.

The transport equation (10) is subject to natural boundary conditions at z = ∞ and a

non-dispersion boundary condition at z=0. This implies that the salt mass fraction equals

either that of the maximum (cm) for fluid inflows or that of the resident mass fraction

for fluid outflows [Voss and Souza, 1987; Frind , 1982]. The initial condition is given by a

step input of c = cm for z ≤ zi and 0 else.

The initial and boundary conditions for flow and transport render the transport problem

d = 1 dimensional.

∂

∂t
c(z, t) = −v(z, t)

∂

∂z
c(z, t) +

∂

∂z
[D(z, t) +Dm]

∂

∂z
c(z, t), (11)

where the dispersion coefficient is defined as D(z, t) = αL|v(z, t)|.

In order to study the mixing zone, which develops around the step position zi, we

consider the normalized gradient of the salt mass fraction distribution, which is given by



g(z, t) = − 1

cm

∂c(z, t)

∂z
. (12)

Note that the integral of the derivative of c(z, t) over the transport domain is simply

equal to −cm. Derivation of (11) with respect to z gives the following governing equation

for g(z, t)

∂

∂t
g(z, t) = − ∂

∂z
v(z, t)g(z, t) +

∂2

∂z2
[D(z, t) +Dm] g(z, t). (13)

Note that this equation is mass conservative, unlike equation (11) for the salt mass

fraction. Thus, the transport of g(z, t) can be directly formulated in a particle-based

framework. The Langevin equation equivalent to (13) is given by [Kinzelbach, 1988;

Risken, 1996]

dz(t)

dt
= v[z(t), t] +

√

2(D[z(t), t] +Dm)ξ(t), (14)

where we use the Ito interpretation of the stochastic integral; ξ(t) is a Gaussian white

noise characterized by 0 mean and covariance

〈ξ(t)ξ(t′)〉 = δ(t− t′). (15)

The angular brackets denote the average over all noise realizations. The initial position

is given by z(t = 0) = zi. In the following, we make use of both the Eulerian and

Lagrangian pictures of transport.

2.3. Dispersion and Mixing



The impact of periodic temporal fluctuations on dispersion and the width of the mixing

zone is characterized by the second centered moment, or variance of the gradient g(z, t)

of the salt mass fraction c(z, t) [Dentz and Carrera, 2003; Dentz et al., 2011a; Cirpka and

Attinger , 2003], which is defined by

σ2(t) = m2(t)−m1(t)
2 (16)

The first and second moments m1(t) and m2(t) of g(z, t) are given by

mi(t) =

∫

∞

0

dzzigz(z, t) (17)

for i = 1, 2.

In order to characterize the increase of the variance of the mixing zone, we define an

apparent dispersion coefficient in terms of the average rate of change of σ2(t) as

Da
h =

σ2(t)

2t
. (18)

Under uniform homogeneous flow conditions, the width of the mixing zone σ(t) provides

a measure for mixing, this means it characterizes the decay of the maximum concentration.

For transport in space and time variable flow fields, this is in general not the case [Dentz

et al., 2011b]. Under such conditions, the mixing zone between the invading and displaced

fluids can be characterized by the dilution index E(t), an entropy based measure that

quantifies the mixing volume [Kitanidis , 1994]. It is defined by



E(t) = exp [−H(t)] , H(t) =

∫

∞

0

dzg(z, t) ln g(z, t), (19)

where H(t) is the entropy of the gradient distribution g(z, t). The dilution index is a

measure for the mixing state of a system.

3. Effective Transport

Here, we systematically quantify the effect of temporal fluctuations on the evolution of

the gradient g(t) and the mass fraction c(t). We are interested in the leading behavior for

times t ≫ τ that emerges as a result of temporal and spatial flow fluctuations. To this

end, we consider the evolution of the time-average g0(z, t) of g(z, t), which is defined by

g0(z, t) =
1

τ

τ
∫

0

dt′g(z, t+ t′). (20)

The first and second spatial moments of g0(z, t) are given by

me
i (t) =

∞
∫

0

dzzig0(z, t), (21)

for i = 1, 2. The effective center of mass position is given by me
1(t). The effective

variance σ2
e(t) is defined by

σ2
e(t) = me

2(t)−me
1(t)

2. (22)



3.1. Effective Equation

In order to derive a governing equation for g0(z, t), we employ a two-scale expansion in

a small parameter ǫ = τ/T where T is a characteristic macroscopic observation time. In

Appendix A, we derive the effective transport equation

∂g0(z, t)

∂t
+

∂

∂z
ve(z)g0(z, t)−

∂2

∂z2
[De(z) +Dm] g0(z, t) = 0, (23)

which describes the transport behavior for t ≫ τ . The effective velocity ve(z) and

dispersion coefficient De(z) are given by

ve(z) =
v20µτ exp(−2µz)

4π
, De(z) =

2αLv0
π

exp(−µz). (24)

where v0 = q0/φ with q0 defined in (7) and (8) for Neumann and Dirichlet boundary

conditions, respectively. From (23), we obtain by integration in z the effective equation

for the average solute mass fraction c0

∂c0(z, t)

∂t
+ ve(z)

∂

∂z
c0(z, t)−

∂

∂z
[De(z) +Dm]

∂

∂z
c0(z, t) = 0. (25)

The average transport equation (23) is equivalent to the Langevin equation

dz(t)

dt
= ve[z(t)] +

√

2(De[z(t)] +Dm)ξ(t), (26)

where we use the Ito interpretation of the stochastic integral. The initial position is

given by z(t = 0) = zi. The mass fraction gradient g0(z, t) is given in terms of the particle

trajectories z(t) by g0(z, t) = 〈δ[z− z(t)]〉. The moments (21) of g0(z, t) then are given by



me
i (t) = 〈z(t)i〉. (27)

Numerical solutions for the effective variance σ2
e(t) and center of mass position me

1(t)

are based on the discretized version of (26), which is given by

z(t+∆t) = z(t) + ve[z(t)]∆t+
√

2(De[z(t)] +Dm)∆η(t), (28)

where the η(t) are Gaussian random numbers with 0 mean and unit variance.

3.2. Approximate Solution

Here we derive approximate solutions for the effective gradient of the solute mass frac-

tion g0(z, t) and the mass fraction c0(z, t), as well as the effective center of mass position

me
1(t) and variance σ2

e(t). To this end, we expand z(t) about the purely advective solution

z0(t), which solves (26) for ξ(t) ≡ 0. Thus, z0(t) satisfies the advection equation

dz0(t)

dt
= ve[z0(t)]. (29)

Inserting the explicit expression (24), the latter can be integrated by separation of

variables, which gives

z0(t) = zi +
1

2µ
ln (t/τv + 1) , (30)

where we defined the characteristic time scale

τv =
2π exp(2µzi)

v20µ
2τ

. (31)



It measures the characteristic advection time over the distance 2/µ by the initial velocity

ve(zi). For t ≪ τv, the interface position z0(t) = zi + t/(2µτv) = zi + ve(zi)t. The time

scale τv sets the time at which interface starts decelerating, which, as we will see in the

following, leads to a compression of the interface and thus a slowing down of the growth

of the interface width.

We consider now the shifted variable z′(t) = z(t)− z0(t). Note that the effective mean

and variance are given in terms of z′(t) as

me
1(t) = 〈z′(t)〉+ z0(t), σ2

e(t) = 〈z′(t)2〉 − 〈z′(t)〉2. (32)

Furthermore, g0(z, t) is given in terms of the distribution g′0(z
′, t) of z′ as

g0(z, t) = g′0[z − z0(t), t]. (33)

Inserting z′(t) = z(t)− z0(t) into (26) and using (29) yields

dz′(t)

dt
= (ve[z

′(t) + z0(t)]− ve[z0(t)]) +
√

2(De[z′(t) + z0(t)] +Dm)ξ(t) (34)

with the initial condition z′(t = 0) = 0. For 〈z′(t)〉 ≪ 1, we can expand (34) as

dz′(t)

dt
= −γ(t)z′(t) +

√

2[D(t) +Dm]ξ(t). (35)

where we defined

γ(t) = −dve[z0(t)]

dz
, D(t) = De[z0(t)] (36)



Equation (35) describes a non-stationary Ornstein-Uhlenbeck process [Risken, 1996].

Note that the linear approximation (35) is only valid as along as σ2
e(t) ≪ z0(t)

2. The

latter sets the time scale τa for which the approximation is valid as σ2
e(τa) = z0(τa)

2.

Note also that γ(t) > 0 because the effective flow velocity decreases with increasing

z. This implies that the dispersive interface experiences compression due to the spatial

deceleration of the flow velocity as well as expansion due to dispersion and diffusion, as

expressed by (35) [Le Borgne et al., 2013; Dentz and de Barros , 2015].

3.2.1. Effective Center of Mass Position and Variance

In order to solve for the effective center of mass position and variance, we derive their

governing equations from (35).

By averaging (35) over the noise, we obtain

d〈z′(t)〉
dt

= −γ(t)〈z′(t)〉. (37)

For the initial condition z′(t = 0) = 0, we obtain 〈z′(t)〉 = 0. This implies that the

effective center of mass position can be approximated by

me
1(t) = z0(t). (38)

For t ≪ τv the center of mass migrates linearly with time as ve(z)t, with ve(z) defined

in (24). At increasing times t ≫ τv, the interface is wide enough to experience the spatial

variability of the velocity field induced by the storativity, which leads to a compression

of the mixing zone. As a result, the interface decelerates leading to a logarithmic upward

displacement of the center of mass, see equation (30).



Similarly, we obtain an equation for the variance σ2
e(t) by multiplying (35) with z′(t),

using the Ito formula [Risken, 1996] and subsequent averaging. This gives

dσ2
e(t)

dt
= −2γ(t)σ2

e(t) + 2[D(t) +Dm]. (39)

This equation quantifies the competition between interface compression represented by

the compression rate γ(t) and hydrodynamic dispersion and diffusion given by the time-

dependent D(t) and the constant Dm, respectively. Unlike in purely diffusive mixing

problems [Le Borgne et al., 2013; Dentz and de Barros , 2015], here the flow velocity

impacts on the dynamics of the width of the mixing zone through the compression as well

as the dispersion term. Equation (39) can be integrated by separation of variables, which

gives

σ2
e(t) = σ2(0) exp [−2Γ(t)] + 2 exp [−2Γ(t)]

t
∫

0

dt′[D(t′) +Dm] exp [2Γ(t
′)] , (40)

where σ2(0) is the initial variance of the mixing zone and

Γ(t) =

t
∫

0

dt′γ(t′). (41)

Appendix B derives the following explicit expression for the effective variance

σ2
e(t) =

σ2(0)

(1 + t/τv)2
+

4Deτv
5

[

(1 + t/τv)
5/2 − 1

(1 + t/τv)2

]

+ 2Dmt

[

1

3
+

(1 + t/τv)
2 − 1

3t/τv(1 + t/τv)2

]

, (42)

where we defined



De =
2

π
αLv0 exp(−µzi). (43)

Different regimes in the temporal evolution of the variance are identified. Figure 2

shows the evolution of σ2
e(t) and the behaviors in the different time regimes. For times

τ0 ≪ t ≪ τv, with τ0 the dispersion time over the initial width of the mixing zone given

by τ0 = σ2(0)/(De + Dm) and τv the characteristic time defined in (31), the interface is

mainly influenced by the velocities around the interface location (zi), where the gradient

is maximum. Thus, the mixing zone grows linearly with time and σ2
e(t) = 2De

ht with the

effective dispersion coefficient

De
h = De +Dm. (44)

In this time regime, the apparent dispersion coefficient Da
h defined by (18) is Da

h = De
h.

Note that under steady-state conditions (µ = 0) and for Dm = 0 expression (44) reduces

to the expression for the longitudinal dispersion coefficient derived by Kinzelbach and

Ackerer [1986].

For t ≫ τv, the interface starts sampling the strong velocity contrast induced by the

exponential decay in amplitude with distance from the boundary, which implies the decel-

eration of the center of mass. Therefore, τv marks the time scale after which the interface

starts to decelerate, which leads to a compression of the interface.

The time scale

τD =
4

25

D2
e

D2
m

τv (45)



sets the time after which the diffusive second term in (42) wins over the dispersive

first terms. If τv ≪ τD, we observe an intermediate time regime for which the variance

increases subdiffusively as σ2
s(t) ∝ t1/2 due to interface compression. For times larger than

τD and smaller than τa the variance increases diffusively as σ2
e(t) = 2Dmt/3. The time

scale τa marks the validity limit of the approximation (35), after which σ2
e(t) > me

1(t).

3.2.2. Gradient Distribution and Dilution Index

The Fokker-Planck equation for g′(z′, t) corresponding to the Langevin equation (35) is

∂g′0(z
′, t)

∂t
= − ∂

∂z′
γ(t)z′g′0(z

′, t) +
∂

∂z
[D(t) +Dm]

∂

∂z′
g′0(z

′, t). (46)

Its solution is given by a Gaussian characterized by the mean 〈z′〉 and the variance

σ2
e(t). Thus, we obtain for g0(z, t) according to (33)

g0(z, t) =
exp

(

− [z−z0(t)]2

2σ2
e(t)

)

√

2πσ2
e(t)

. (47)

According to (12), we then obtain by integration for the effective solute mass fraction

c0(z, t) =
cm
2
erfc

[

z − z0(t)
√

2σ2
e(t)

]

. (48)

We obtain from (47) for the dilution index (19) the expression

E(t) =
√

2π e σ2
e(t) (49)

In the early time regime (t < τv), characterized by a linear increase of the variance, the

dilution index increases as E(t) ∝ t1/2. However, in the late time regime (t > τv), the



dilution index enhances subdiffusively as E(t) ∝ t1/4 due to compression of the interface

induced by the impact of the exponential decay in flow velocities.

Solute mixing and thus dilution is quantified fully in terms of the effective width of

mixing zone σ2
e(t). Note that σ2

e(t) is derived from the time averaged gradient distribu-

tion (47). In the following, we will compare these results to direct numerical simulations

of the full flow and transport problem.

4. Numerical Investigation

In this section, we present a detailed numerical investigation of the full flow and trans-

port problem posed in Section 2.2. We first describe the numerical methodology, and then

discuss the results for the apparent dispersion, variance of the gradient distribution and

dilution index.

4.1. Methodology

Several sets of simulations were carried out to evaluate the impact of transient-forcing

flow on mixing and to test accuracy of the proposed effective model. One-dimensional nu-

merical simulations were performed with the code TRANSIN [Medina and Carrera, 2003],

which solves the flow and transport equations using linear finite elements for spatial dis-

cretization and weighted finite differences for time integration [see, e.g., Vázquez-Suñé

et al., 2005; Abarca et al., 2006]. In order to better assess the effects of the spatial vari-

ability of the flow field on the transient driven mixing dynamics, runs were performed by

independently varying the storage coefficient (S) and the interface location (zi). The spa-

tial and temporal discretization were defined to ensure accuracy and numerical stability.

Table 1 summarizes the parameters used for all numerical simulations.



4.2. Results

4.2.1. Apparent Dispersion

We focus first on the transient-induced linear growth of the variance for t ≪ τv. Figure

3 shows the comparison between numerical results for the apparent dispersion coefficient

computed from the first and second moments of the gradient of the concentration distri-

bution given by (18) with the analytical prediction (44). Numerical and predicted results

are displayed with respect to the storage coefficient and the interface location normalized

by the maximum extent of the response to the temporal fluctuations (zt = 4.5/µ), defined

as the characteristic distance at which the response to the temporal fluctuations becomes

less than 1%. Results obtained from the analytical solution derived by Kinzelbach and

Ackerer [1986] using a Neumann-type boundary condition and results for the purely dif-

fusive case are also included for illustration. Note that for all cases the predictions of the

effective model are in good agreement with the numerical results.

For the case of Neumann-type boundary conditions (Figures 3a,b), Da
h is maximum

if the storativity is small and the interface is close to the transient boundary. This is

due to the spatial dependence of the velocity field, which is controlled by the factor e−zµ

(equation (6), with q0 defined in (7)). Thus, an increase in the storativity, and then in

the wave number µ, or in the distance of the interface from the boundary, tends to favor

the exponential decay of the velocity and, as a result, Da
h coefficient decreases. Similar

results were obtained by Goode and Konikow [1990] who found that the maximum impact

of temporal fluctuations on mixing occurs for quasi-steady flow conditions (S = 0).

Note that the scaling of zi with the maximum extent of the influence of the transient

boundary (zt), allows us to collapse the predicted and numerical data onto a single curve



for the case of using a Neumann-type boundary condition (Figure 3b). In this case, it can

be observed that the apparent dispersion coefficient evolves with increasing µ and zi from

the solution obtained for the quasi-steady state problem [Kinzelbach and Ackerer , 1986]

to the one purely diffusive for a distance of the interface from the transient boundary of

zi ≥ zt. Therefore, numerical and analytical results provide evidence that no transient

driven mixing occurs and the enhancement of the interface becomes purely diffusive for

zi ≥ 4.5/µ.

Similar effect of the interface location on mixing is observed when considering a

Dirichlet-type boundary condition (see Figure 3d), with a maximum impact for small

distances of the interface to the transient boundary. This is consisted with Chen and

Pinder [2011a, b], who numerically and experimentally demonstrated that the further the

interface is from the transient boundary, the smaller the impact on dispersion. However,

in this case, an increase in the storativity causes the transient-induced mixing to increase,

see Figure 3c. This is because an increase in the storativity, although implying an in-

crease in µ so that the extent of the aquifer response to the fluctuations is reduced, leads

to a more non-uniform hydraulic response to the temporal fluctuations with higher flow

velocities (equation (6), with q0 defined in (8)). Thus, the resulting delayed flow response

to the temporal fluctuations increases the velocity variability, which in turn leads to an

increase in the apparent dispersion coefficient.

4.2.2. Variance and Center of Mass Position

The comparison of predicted and numerical results of the temporal evolution the vari-

ance for different values of the storativity is shown in Figure 4. As previously discussed,

when considering a Neumann-type boundary condition transient driven mixing evolves



from the quasi-steady state solution to purely diffusive mixing with increasing distance of

the interface from the boundary, and the transition is faster as the storativity increases.

On the other hand, for Dirichlet-type boundary conditions, temporal fluctuations have

the largest impact on mixing as the storativity increases. Note that for all the cases and

considering the same fluctuation amplitude and period, the variance and thus, for t ≪ τv,

the apparent dispersion coefficient are larger for a Dirichlet-type boundary condition than

for Neumann-type boundary condition. Thus, for the case with S=5e-2, the variance is

over one order of magnitude larger for Dirichlet than Neumann-type boundary condition.

Note also that fluctuations about the mean variance are observed when considering

a Dirichlet-type boundary condition, especially for large storativity values, see inset in

Figure 4b. This behavior is due to the effect of the stretching and compression of the

interface induced by the delayed response in the velocity field. Thus, when the head at

the transient boundary is reaching its highest level, the upward migration of the mixing

zone is faster at the lower part of the interface compared to the one at the upper part,

leading to a local compression of the interface. This effect causes the width of the mixing

zone to decrease. In contrast, when the head at the boundary falls from the mean level to

the lowest level, the faster downward migration of the saline end of the interface induces

stretching of the interface which leads to an increase in the width of the mixing zone. The

analytical solution (42) for the effective variance predicts accurately the average increase

of the variance.

As pointed out above, the growth of the variance is essentially linear for t ≪ τv and

characterized by the effective dispersion coefficient (44). In this time regime the center

of mass of the gradient distribution increases linearly as discussed in Section (3.2). For



t ≫ τv, however, the interface decelerates, which leads to a compression of the mixing

zone. These mechanisms are manifest in a sublinear behavior as σ2 ∝ t1/2. The time-scale

τv given by (31) depends critically on the spatial variability of the velocity field. It is

therefore controlled by the oscillation amplitude, the wave number, the period and the

interface location. The smaller the storativity and the amplitude, and the longer the

period, the more uniform the velocity field, and then the longer it takes to arrive at the

subdiffusion regime.

The numerical results and the predictions of (30) and (42) for the center of mass po-

sition of the gradient disstribution and variance for S=1e-1 and Dirichlet-type boundary

conditions are shown in Figure 5. The effective model accurately captures the linear and

non-linear behaviors of the center of mass position and variance.

4.2.3. Solute Mass Fraction, Gradient Distribution and Dilution Index

Profiles of the solute mass fraction and gradient distribution for different storativity

values are shown in Figure 6. The analytical solutions (48) and (47) predict the numer-

ical results accurately, which confirms the validity of the approximation in Section 3.2

not only for the center of mass position and variance but also for the full concentration

profiles. For increasing time, however, when the gradient distribution is wide enough to

notice the non-linear nature of the velocity profile, the distribution becomes asymmetric.

Note that the approximation in Section 3.2 relies on a linearization of the flow velocity

about the purely advective interface position. The tendency towards asymmetry at longer

times characterized by a larger degree of mixing at the saline end of the interface where

the velocities are higher can be observed in Figure 7. Similar asymmetry in the freshwater-

seawater interface has been reported in field studies of tidally dominated coastal aquifers



where vertical salinity profiles are usually characterized by a steeper gradient at the fresh-

water end of the mixing zone [see, e.g., Stoessell , 1995; Oki et al., 1998; Bonnesen et al.,

2009].

Figure 8 shows the evolution of the dilution index obtained from the direct numerical

simulations and the analytical prediction (49), which relies on the time-average gradient

distribution. The analytical results predict the numerical behavior accurately which in-

dicates that solute mixing is well represented by the effective variance (42). The dilution

index increases first as E(t) ∝ t1/2, which reflects the linear growth of the variance of

the mixing zone for t ≪ τv. At increasing times t ≫ τv, the spatial deceleration and

subsequent compression leads to the observed subdiffusive growth of the dilution index as

E(t) ∝ t1/4.

5. Sand column experiments

Transient forcing experiments were performed on an uniformly packed sand column

under well-controlled laboratory conditions in order to investigate the mixing dynamics

of two fluids of different density for a stable stratification under temporally fluctuating

flow conditions.

5.1. Experimental setup

The experiments were conducted using an acrylic column of 15 cm in internal diameter

and 90 cm in length. The filling material was medium-grained quartz sand (30-CFS

grade, Sloan Sands, Dry Creek, South Australia). The sand packing was carried out

adding gradually thin sand layers which were stirred with a thin stick and compacted to

avoid air entrapment. Once the column was sand-filled, the interstitial air was displaced



by flushing with freshwater from the bottom up at a very low flow rate. For all the

experiments, freshwater was prepared from boiled and deionized water. Uniform flow

through the cross-sectional area at the bottom of the column was assured by placing a

spreader and a thin nylon mesh between the column inlet/outlet and the packed bed. A

glass beads layer of about 10 cm thickness was placed on the surface of the packed column

to ensure fully saturated conditions in the sand and reduce capillarity effects.

The pore water pressures were monitored using eight pressure transducers (P1-P8)

located at different depths (4.3, 27, 36, 43, 43, 48.5, 54, 61, and 70 cm from the bottom

of the sand column). The piezometric head was calculated from the pressure readings.

In order to measure the electrical conductivity (EC), eight voltage electrodes (W1-W8)

were located at approximate distances of 18.2, 28.5, 36.3, 42.3, 47.3, 53.3, 61.3, and 71.3

cm from the bottom of the sand column. The long electrodes crossed the entire diameter

of the column such as the voltage readings represented averaged values over the cross-

sectional area. The electrical conductivity was estimated from calibrated EC-voltage

linear relationships obtained for each electrode by conducting a series of saline-water

injection tests.

Prior to the transient forcing test, a series of Darcy-column tests and tracer break-

through experiments were carried out to determine the flow and transport parameters of

the sand as well as the degree of heterogeneity. For these experiments, the flow rate of

the injected water and tracers was controlled by a peristaltic pump (Master FLEX, L/S

7519-25) connected to the bottom of the sand column.

For the transient forcing experiment, first saline water was injected into the sand column,

initially saturated with freshwater, until the interface between the two fluids was located



at a distance zi=0.4m. The sand column was then connected to a saline-water reservoir

column, in which a weighted piston with length 35 cm and diameter of 6.75 cm was

introduced, which induced a periodic head difference between the two columns through

its sinusoidal up-down displacement. The experimental set-up is shown in Figure 9.

5.2. Experimental results

The hydraulic conductivity of the sand was determined from Darcy-column experiments.

For these tests, freshwater was injected from the bottom up of the sand column at a range

of constant flow rates (20-40 mL/s). The head gradients at the eight pressure transducers

(P1-P8) were then computed, and hydraulic conductivity estimates in the range 7-12m/d

were obtained. Similar estimates were reported by Levy and Berkowitz [2003] and Chao

et al. [2000].

Continuous and pulse conservative tracer experiments were conducted to evaluate the

porosity and longitudinal dispersivity of the sand. Firstly, freshwater was injected at a

flow rate of 40 mL/s from the bottom up of the column in order to stabilize the flow.

Once the steady state was established, i.e., head fluctuations measured at P1-P8 were

negligible, saline water was then injected with calcium chloride as a conservative tracer

and a fluorescent dye (Sodium Fluorescein) to help visual inspection of the mixing zone.

The injections were conducted by using a T joint which enabled an immediate switch

over between the different water reservoirs. The electrical conductivity measured at the

W1-W8 electrodes (ECi) was normalized by the inflow electrical conductivity (ECm), and

breakthrough curves (BTCs) were computed by assuming that the electrical conductivity

is linearly related to salt mass fraction, so that ECi/ECm=ci/cm.



For the continuous injection test, the saline water was injected until the ECi readings

were steady and equal to the inflow ECm at all the electrodes (2.3 hours). For the pulse

tracer test, the duration of the injection was about 10.6 minutes (1% of the characteristic

advective time).

Porosity was determined from the mean arrival time of the plume center of mass

(ci/cm=0.5) for each BTC, and values in the range 0.32-0.33 were obtained. Consid-

ering a value of 1.0×10−8 ms2kg−1 for the bulk porous matrix compressibility of the sand

[see, e.g., Freeze and Cherry , 1979; Domenico and Mifflin, 1965], a value of 5×10−5 m−1

was obtained for the specific storage coefficient.

The longitudinal dispersivity was estimated by fitting the experimental BTCs to the

analytical solution for the tracer injection (t < T ) and the post freshwater injection

(t ≥ T ), which reads as

c/cm =

{

G(z, t) t < T

G(z, t)−G(z, T ) t ≥ T

(50a)

(50b)

with G(z, t) the solution of the advection-dispersion equation (ADE) for a tracer injection

in a one-dimensional semi-finite domain [see, e.g., Ogata and Banks , 1961; Kreft and

Zuber , 1978], which is given by

G(z, t) =
1

2
erfc

(

z − vt√
4Dht

)

+
1

2
exp

(

vz

Dh

)

erfc

(

z − vt√
4Dht

)

. (51)

A value of 0.18 cm for the longitudinal dispersivity was found to obtain an optimal fit

for both the continuous and pulse tracer tests at different column depths. The comparison

between the experimental BTCs and the predicted results from equation (51) is displayed



in Figure 10. The results are plotted with a log-log scale to enable examination of the

possible tailing behavior.

Note that the ADE model correctly predicts the Fickian behavior of the experiments

and important tailing was not observed, except in the electrode W1. The observed ho-

mogeneous transport behavior of the experiment is likely caused by the uniformity of the

sand, the large length of the column compared to the diameter of the grains and the long

residence times [e.g., Dentz et al., 2004; Cortis et al., 2004].

For the transient forcing experiment, first freshwater was injected at a flow rate of

40 mL/s from the bottom up of the column in order to stabilize the flow. Once the

steady state was reached, saline water was injected for 50 minutes to displace the stable

density interface at a distance of zi=0.4 m from the bottom of the column. Once head

gradients at the pressure transducers were negligible, the sand column was then connected

to the saline-water reservoir column. After reaching the equilibrium between the two

columns, the sinusoidal up-down displacement of the piston was activated leading to a

simple harmonic forcing with an oscillation amplitude of about 5 cm and period of 15500

s. The oscillation-driven mixing experiment was run for 10 days.

In order to take into account the influence of temperature fluctuations, the EC measure-

ments were corrected according to the equation EC20=ECT/[1+a(T -20)] [Hayashi , 2004],

where EC20 is electrical conductivity at 20◦C, ECT is electrical conductivity measured

at the electrodes at temperature T (◦C) and a (◦C−1) is a temperature compensation

factor commonly assumed to be about 2.2% [Matthess , 1982; Hem, 1985]. The gradient

of concentration distribution was then computed from the corrected and normalized EC

measurements.



Oscillation-driven mixing was experimentally characterized by the spatial variance (16)

derived in terms of the first and second moments of the gradient of the concentration

distribution computed at the electrodes. Experimental results for the concentration dis-

tribution and the spatial variance are displayed in Figure 11. Note that the interface

between the two fluids was not sharp before imposing the oscillatory transient-forcing

(t=0), and then the spatial variance was not zero. This is due to dispersion mechanisms

induced by the initial saline injection.

Experimental results show that, as expected, once the steady oscillatory state is reached

(approximately 1 day), the variance increases linearly with time. Note that significant

fluctuations about the mean temporal evolution of the variance are observed. These

fluctuations may be caused by effects of noise in EC measurements and the sensitivity of

the gradient calculation to the number of electrodes used.

We test the validity of the proposed effective model by comparing the model predictions

with the experimental results. We first computed the concentration distribution after the

initial saline injection from equation (51). From this initial gradient distribution (t=0),

we computed the initial value for the variance σ2(0) from equation (16), and its temporal

evolution in response to a simple harmonic driving head from equation (42) considering a

Dirichlet-type boundary condition. Finally, the concentration distribution at the end of

the experiment (t=10 d) was evaluated from equation (48).

The comparison of experimental and predicted results for the concentration distribution

and temporal evolution of the spatial variance demonstrates that the predictions are in

good agreement with the experimental results and the effective model correctly reproduces

the shape of the interface and the mixing dynamics. It is important to mention that



under stationary conditions (Ss=0) and considering a Dirichlet-type boundary condition,

there would be an instantaneous head response and q(z, t) would be equal to zero, see

equations (6) and (8), obtaining a purely diffusive enhancement of the interface.

6. Conclusions

Periodic transient forcing effects lead to a spatially nonuniform time-dependent velocity

field which induces enhanced spreading and mixing of solutes. We investigate dispersion

and mixing of two fluids of different density under oscillatory transient flow. Between

the two fluids a diffuse interface develops, the mixing zone, which is characterized by the

spatial moments of the gradient of the solute concentration distribution and quantified by

the evolution of the variance of the gradient distribution. The behavior of the mixing zone

is investigate by detailed numerical simulations and column experiments. The observed

behaviors are quantified by an effective model that is obtained from the time-average of

the full flow and transport equations.

In the present study, two different time-fluctuating boundary conditions have been con-

sidered: a dynamic specified flux (Neumann-type), and a periodic prescribed head bound-

ary condition (Dirichlet-type). We demonstrate that the key parameters controlling the

impact of temporal fluctuations on mixing are the interface location (zi) and the wave

number (µ =
√

Ssπ/kτ), which depends on the period and the hydraulic diffusivity. We

find that transient driven mixing increases if the interface is close to the transient bound-

ary, and the enhancement of the interface becomes purely diffusive for zi = 4.5/µ. We also

find that the impact of the wave number on transient-induced mixing strongly depends

on the boundary conditions. Thus, for the case of using a Neumann-type boundary condi-

tion, large wave number (large storativity or short period), tends to favor the exponential



decay in flow velocities with distance causing the effect of oscillatory-transient forcing on

mixing to reduce [Goode and Konikow , 1990]. On the other hand, for the case of using

a Dirichlet-type boundary condition, large wave number implies not only a delayed head

response to temporal fluctuation, but also higher flow velocities, which leads to enhanced

dispersion.

We derived an effective time-average formulation to describe the coupling between mix-

ing and oscillatory transient flow under non-stationary flow conditions. Explicit expres-

sions for the concentration distribution and the variance are developed to predict the

transient mixing dynamics. Two dominant regimes are identified in the temporal evo-

lution of the variance in response to the spatial and temporal variability of the velocity

field induced by temporal fluctuations. At small times, the width of the mixing zone is

mainly influenced by the flow velocity at the interface location and both the center of

mass as well as the variance increase linearly with time. In this regime, the mixing zone

dynamics can be characterized by a constant in time effective dispersion coefficient, which

decreases exponentially as the initial interface location increases. For increasing times, as

soon as the interface start experiences the non-linear spatial velocity profile, the center of

mass position decelerates, which leads to a compression of the interface. This deceleration

results in a logarithmic upward displacement of the center of mass and a growth of the

variance with t1/2.

This study has only examined the effect of temporally fluctuating one-dimensional flow

on mixing. Further analysis extending the problem to two- and three-dimensions and

considering other physical factors such as fluid density differences and heterogeneity ef-

fects is required. Furthermore, temporal flow fluctuations usually have multiple harmonic



constituent signals on multiple time-scales (recharge, pumping, tides), such that their

response on the flow field may lead to more complex flow and transport dynamics. There-

fore, the impact of the coupling between aquifer storativity, heterogeneity, density effects

and multiple scales of transient forcing on solute transport is required to explore the im-

plications of these findings for the understanding of mixing and reaction processes in real

systems.

Appendix A: Two-Scale Expansion of the Transport Equation

Here, we derive a transport equation for the temporally averaged gradient. To this end,

we first non-dimensionalize the original transport equation for the gradient according to

z = z′µ−1, t = t′τ ′, αL = α′

Lµ
−1, D′

m = µ2τDm, (A1)

with the period τ ′ = τ/(2π).

The dimensionless pore water velocity reads as

v′(z′, t′) = µτ ′v0 exp(−z′) sin(t′ − z′ + ϕ). (A2)

where, for the Neumann boundary conditions we define

v0 =
Ak

φL
, ϕ = 0, (A3)

while for the Dirichlet boundary conditions, we define

v0 =
√
2
Akµ

φ
, ϕ =

π

4
. (A4)



Thus, equation (13) for the gradient reads as

∂g(z′, t′)

∂t′
+

∂

∂z′
v′(z′, t′)g(z′, t′)− ∂2

∂z′2
[α′

L|v′|(z′, t′) +D′

m] g(z
′, t′) = 0. (A5)

We seek the behavior on time scales T ≫ τ ′. The latter provides the small expansion

parameter ǫ = τ ′/T ≪ 1. Thus, we now define the ’slow’ time ts = ǫ2t′ and write

g(z′, t′) = ĝ(z′, ǫ2t′, t′). (A6)

This gives for (A5)

ǫ2
∂ĝ(z′, ts, t

′)

∂ts
+

∂ĝ(z′, t, t′)

∂t′
+

∂

∂z′
v′(z′, t′)ĝ(z′, ts, t

′)

− ∂2

∂z′2
[α′

L|v′|(z′, t′) +D′

m] ĝ(z
′, ts, t

′) = 0. (A7)

We now assume that ĝ(z, ts, t
′) can be expanded in ǫ as

ĝ(z, ts, t
′) = ĝ0(z, ts, t

′) +
∞
∑

i=1

ĝi(z, ts, t
′), (A8)

where the ĝi(z
′, ts, t

′) are of order ǫi. Note that v′(z′, t′) is of order ǫ and further assume

that α′

L is of order ǫ as well. We furthermore require ĝi(z
′, ts, t

′) to be periodic in t′.

Inserting this expansion into (A7) we obtain at order ǫ0

∂ĝ0(z
′, ts, t

′)

∂t′
= 0, (A9)

from which follows that ĝ0(z
′, ts, t

′) ≡ ĝ0(z
′, ts). At order ǫ, we have



∂ĝ1(z
′, ts, t

′)

∂t′
= − ∂

∂z′
v′(z′, t′)ĝ0(z

′, ts), (A10)

At order ǫ2, we obtain the equation

ǫ2
∂ĝ0(z

′, ts)

∂ts
+

∂ĝ2(z
′, ts, t

′)

∂t′
+

∂

∂z′
v′(z′, t′)ĝ1(z

′, ts, t
′)

− ∂2

∂z′2
[α′

L|v′|(z′, t′) +D′

m] ĝ0(z
′, ts) = 0 (A11)

Averaging over a period gives the governing equation for ĝ0(z
′, ts) as

ǫ2
∂ĝ0(z

′, ts)

∂ts
+

∂

∂z′
v′(z′, t′)ĝ1(z′, ts, t′)−

∂2

∂z′2

[

D̂e(z
′) +D′

m

]

ĝ0(z
′, ts) = 0, (A12)

where we used that ĝ2(z
′, ts, t

′) is periodic in t′. The overbar denotes the temporal

averaging over a period. We furthermore defined the effective dispersion coefficient

D̂e(z
′) =

1

2π

2π
∫

0

dt′α′

L|v′|(z′, t′). (A13)

Using the dimensionless velocity (A2) gives

D̂e(z) =
2α′

Lµτ
′v0

π
exp(−z′). (A14)

In order to determine the average in second term in (A12), we first derive the expression

for ĝ1(z
′, ts, t

′). We obtain from (A10) by using (A2) the following expression

ĝ1(z
′, ts, t

′) = v0µτ
′ exp(−z′)

[

sin(t′ − z′)ĝ0(z
′, ts)− cos(t′ − z′)

∂ĝ0(z
′, ts)

∂z′

]

(A15)



Multiplying the latter with (A2) gives

v′(z′, t′)ĝ1(z
′, ts, t

′) =

(v0µτ
′)2 exp(−2z′)

[

sin(t′ − z′)2ĝ0(z
′, ts)− sin(t′ − z′) cos(t′ − z′)

∂ĝ0(z
′, ts)

∂z′

]

. (A16)

Averaging over the period of 2π gives

v′(z′, t′)ĝ1(z′, ts, t′) =
(v0µτ

′)2 exp(−2z′)

2
ĝ0(z

′, ts). (A17)

Thus, we obtain for g0(z
′, t) the governing equation

ǫ2
∂ĝ0(z

′, ts)

∂ts
+

∂

∂z′
v̂e(z

′)ĝ1(z
′, ts, t

′)− ∂2

∂z′2

[

D̂e(z
′) +D′

m

]

ĝ0(z
′, ts) = 0, (A18)

We obtain (23) by casting (A12) in dimensional terms using ts = ǫ2t′ and (A1).

Appendix B: Approximate Solution for the Variance

Using (24) and (30), we obtain for γ(t) and D(t) defined in (36) the explicit expressions

γ(t) =
v20µ

2τ exp(−2µzi)

2π

[

v20µ
2τ exp(−2µzi)t

2π
+ 1

]

−1

(B1)

D(t) =
2αLv0 exp(−µzi)

π

[

v20µ
2τ exp(−2µzi)t

2π
+ 1

]

−1/2

(B2)

Thus, we obtain for Γ(t) defined in (41)

Γ(t) = ln

[

v20µ
2τ exp(−2µzi)t

2π
+ 1

]

(B3)

Inserting these expressions into (40) gives



σ2(t) =
σ2(0)

[

v2
0
µ2τ exp(−2µzi)t

2π
+ 1
]2 +

2
[

v2
0
µ2τ exp(−2µzi)t

2π
+ 1
]2×

t
∫

0

dt′

(

2αLv0 exp(−µzi)

π

[

v20µ
2τ exp(−2µzi)t

′

2π
+ 1

]

−1/2

+Dm

)

×

[

v20µ
2τ exp(−2µzi)t

′

2π
+ 1

]2

(B4)

Carrying out the integration and after rearrangement of terms gives the analytical

expression (42) for the variance.
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Figure 1. Schematic overview of the 1d problem considered. A simple harmonic

oscillation with an amplitude of A [L] and a period of τ [T ] is imposed at z=0. The red

line represents the vertical profile of the salt mass fraction distribution, c(z, t), and the

blue line represents its gradient, g(z, t), which is maximum at the interface location zi.
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Figure 2. Illustration of the effective variance σ2
e(t) (solid red line) given by (42) and

center of mass position me
1(t) (dashed blue line) given by (30) for τv = 107 s, µ = 1/2 m−1,

De = 10−7 m2/s, Dm = 10−9 m2/s, σ2(0) = 10−3 m2 and zi = 1 m. The arrows denote,

from left to right, the diffusion time scale τ0 = σ2(0)/(De
h +Dm) over the initial mixing

zone, the time scale τv given by (31), which marks the breakdown of the linear dispersion

regime, the time scale τD given by (45) and the time scale τa at which σ2
e(τa) = z0(τa)

2,

which sets the limit of validity of the approximation (42) for σ2
e(t). The thin dashed gray

line indicates the subdiffusive t1/2-behavior for τv ≪ t ≪ τD.



Table 1. Parameters used in numerical simulations

Parameter Value Description

L (m) 52 Domain length

T (m2s−1) 1.23e-4 Transmissivity

S (-) 0-0.1 Storage coefficient

φ (-) 0.25 Porosity

αL (m) 1e-3 Longitudinal dispersivity

Dm (m2/s−1) 1e-9 Molecular diffusion coefficient

A (m) 0.05 Oscillation amplitude

τ (s) 7200 Oscillation period

zi (m) 0.05-4 Interface location
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Figure 3. Apparent dispersion coefficient as a function of (a,c) the storativity (S) for

(top to bottom) zi=0.5, 1, 2, 3 and 4m; and (b,d) the interface location (zi) normalized

by the maximum extent of the hydraulic influence of the temporal fluctuations (zt =

4.5/µ) for (bottom to top) S=0, 1e-5, 1e-4, 1e-3, 1e-2, 5e-2, 1e-1, with (a,b) a Neumann-

type boundary condition and (c,d) a Dirichlet-type boundary condition. Black solid lines

represent predictions from the equation (44), red dots represent the numerical results,

dark-green dashed lines represent the results obtained from the analytical solution of

Kinzelbach and Ackerer [1986] and blue dashed lines represent the results for a purely

diffusive problem.
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Figure 4. Temporal behavior of the variance of the gradient of concentration for different

interface locations, showing the effect of varying the storage coefficient S. Black solid lines

represent predictions from the effective model, red dots and lines represent the numerical

results with Neumann and Dirichlet boundary conditions, respectively, dark-green dashed

lines represent the results obtained from the analytical solution of Kinzelbach and Ackerer

[1986] and blue dashed lines represent the results for a purely diffusive problem.
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Figure 5. Temporal behavior of the center of mass and variance for a storativity

of S=1e-1 and different interface locations. Red and orange lines represent numerical

results for zi=1m and zi=2m, respectively, black solid lines represent predictions from the

equation (42) and gray dashed lines represent results for the linear regime.
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under periodic transient forcing considering a Dirichlet-type boundary condition at a

specific time (2πt/τ=1500) and for a specific interface location (zi = 0.5m). Red dots

represent the numerical solution to the problem and black solid lines predicted results

calculated from equation (48).



0

1

2

0 0.5 1 1.5 2

g

z(m)

Numerical model

Effective model

Figure 7. Gradient of the salt mass fraction distribution for 2πt/τ=33400, S=1e-1

and zi=1m. Red dots represent numerical results and the solid black line represents the

predicted solution calculated from equation (47).
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lines the one-dimensional analytical solution
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Figure 11. Experiment and predicted results of (a) the concentration distribution after

the saline injection (t=0) and after the influence of the temporal fluctuations of the flow

condictions (t=10 d) and (b) temporal evolution of the variance of the gradient of the

concentration distribution from the W1-W8 electrodes (red line) and predicted results

from equation (black line).


