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The  ratio  of  the powers in  the sideband t 1  to that in the  de- 
sired sideband  is 

(A.20) 

One quick  estimate of the magnitude of the term (A.20) may 
be made by noting that 

(A.2 1) 

where b is  Kogelnik’s b-parameter. Hence the power ratio 
(A.20) may be  kept  under  control as long as the coupling 
distance L = ~ / 2 c  obeys  the  relationship. 

(A.22) 

It should be  noted  that in these calculations, we  have ne- 
glected the phase sh f t  exp [ j (m t n t 1)  tan-’ (zlb)] asso- 
ciated  with Hermite Gaussian mode  number and the phase 
shift  due phase front  curvature  both of which  multiply u, and 
uo [ lo]  . However, in (A.3) the phase front  curvature  factor 
cancels because it is independent of the mode number.  Ignor- 

ing the  factor  exp [j(m t n t 1) tan-’ z /b ]  results  in an over- 
estimate  of  the  power  generated in the  modes m # 0, n # 0. 
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Transient  Four-Wave  Mixing  and Real Time 
Holography in Atomic  Systems 

Abstract-The problem of transient  four-wave  mixing  with noncoin- 
cident  optical pulses is analyzed using the formalism of the  time evolu- 
tion  and  the  density  matrix  operators.  The results are relevant to prob- 
lems involving real time holography and wave conjugation. The  treatment 
establishes  a bridge between the  conventional formalisms of nonlinear 
optics  and of photon echoes. 

T HE subject  of  conjugate wave generation by nonlinear 
optical mixing has  been the  subject  of considerable recent 

interest [ 11 -[5] . The formal analogy between the case  of 
degenerate four-wave mixing and holography [6] has sug- 
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gested the possibility of using four-wave mixing for real time 
holographic  applications. 

Heer and McManamon [7] first pointed  out  that wavefront 
correction  and phase conjugation  can take place in a photon- 
echo  geometry involving forward traveling noncoincident four- 
wave mixing. Shiren [8] later showed that a backward con- 
jugate  echo can result when two of the noncoincident input 
pulses are  opposite to each other. 

The  purpose of this  note is to explore further these ideas and 
to develop a perturbation  theory  that can be applied to  more 
general situations. This theory results in a formulation  of the 
problem that is  similar to  the perturbational  description  of CW 
nonlinear optical mixing [9] . It also includes the  effects of 
collisional relaxation ( T I ,  T,) on  the process of conjugate 
echo formation. 
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We will first  consider an ensemble  of two-level atoms.  The 
resonant levels are E, and E,(E, >E,) and we will, for  the 
moment, assume that no collisions  exist so that  the relaxation 
times are taken  asinfinite.  The  atoms are  subjected to three 
pulses of  duration 6 of  optical  radiation  of  the  same  frequency 
CG but traveling  along  arbitrary  directions 

Ei(r, t )  = 4&t) exp [i(ot - E j  F)] + C.C. 

i =  1 ,2 ,3 .  (1) 

The pulse amplitude  envelopes Ej( t )  are  shown  in Fig. 1. The 
pulses may  or  may not coincide. We seek to solve for  the 
polarization  induced in the  atomic  medium  which is third 
order  in the applied  fields. The pulse areas  are  taken to be 
much smaller than 71. To establish  a  bridge  between  the  prob- 
lem  described above and  conventional  nonlinear  optics  (where 
tlhe three  fields  exist  simultaneously) we  will solve the  prob- 
lem using a  perturbation  expansion  of  the  time  evolution 
operator [IO]. The wave function  at  time t is  related to its 
value at an earlier  time, say t o ,  according to 

* 

*(t> = exp -i 5 (t - to)]  *(to) 
[ A  

K 1 1  
t 

- f {io 5 Ig><gl exp [ - iag( t -  t ‘ ) ~   ~ ( t ’ )  

exp -i - ( t ’ -  t o )  dt’ *(to) 

= [ 8 ( t  - t o )  + 9 ( t  - t o ) ]  * ( t o )  (2) 

where wg E E,/: the  total Hamiltonian i t  the  sum  of  the un- 
perturbed value Ho and  the  perturbation V(t) and 

A -  

V(t) = - i i .  E(E t )  (3) 

with j2 being the  atomic dipole moment  operator  and  where 
B(6 t)  is treated as a classical variable. Only  the  zero  and  first- 
order  terms  in the expansion  of  the  time  evolution  operator 
are included. 

In  the  limit  of small “area”  pulses (pE6/T?) << 1 and negli- 
gible defhasing  during the pulse (urn - a, - w)6 << 1  the  op- 
erator U(’)(t - to)  of  (2),  which  represents  the  effect (to first 
order  in E )  of  a pulse at ti on the  wavefunction,  becomes 

A 

i6 
24 

6(’)(tj) = - exp [+i(oti - Iti . T ) ]  Ig><glEfcj 
g .’ 

g = m  ors ,E fEEy ,E i+EEi , j=x ,y ,or z .  (4) 

We take (Gj),, = pims for m # s and  zero  otherwise. It @llows 
that  if  at ti the  atom is in the  ground  state [s> then U(’)(Q) 
causes it  to make  a  transition to the  excited  state Im > and 
vice versa. In the  first  case, we  use the  lower (-) superscript 
while in the second case we  use the  upper (+) superscript.  The 
choice of Ei+(EEj) or E[(=ET) is due to the  fact  that only 
terms  with  near vanishing resonance  denominators are retained 
in  the  derivation  leading to (4). (This is equivalent to  the  rotat- 
ing wave approximation.) 

E ,  (t) E,(!) E,(!) 

t ,  - 0  12 f3 
;-time 
t 

E3G, t) 

E,(?, 1 )  

Fig. 1. The geometry for  the interaction of the three-pulse sequence 
with the  atomic medium. 

We define  the  eigenfunction *(1y0y3), as an example, as that 
component  of *(t)  that is due to “scattering”  from Is> to 
Im > at tl (by E , )  and  from I r n  > back to Is > at t3 (by E3) ,  
l.e., 

* ( ‘ @ ’ 3 ) ( t )  = i P ( t  - t3)i?(l)(t3)$J)(t3 - tl) i?“)(tl)IS>. 

(5) 
We can  now use the formalism to calculate  the j component of 
the  induced  atomic  dipole moment (pj(t))  following  the se- 
quence  of  three  pulses.  Specifically we  will look first  for  a 
dipole moment which is proportional to EFEzE3. Such  a di- 
pole moment results  from (\k(0~0’3)1~j1\k(1,2,0)) and  from 
(\k(0~2’0)lpjl\k(1,0,3)). To calculate  the  first  term, we apply (4) 
to  obtain 

*(l,2,0) = (3 - PlmsPzsm E?E2 ~ X P  { - i [ (wt~  - . r) 

+ ~ m ( t 2 - t l ) - ( ~ t 2 - k ; !  * ~ ) + ~ , ( t - t z ) l } l ~ >  

(6) 
\k(’7230) thus  represents  a component of 9 ( t )  which  under- 
went  a scattering Is > .+ I r n  > absorbing  a photon  from El fol- 
lowed  by I r n  > -+ Is > scattering  due to the  emission  of  a pho- 
ton  to E2.  Similarly 

*(0,093) = - p g r n s ~ ?  exp {- i [ (at3 - k3 SF) + wm(t - t 3 )  
i6 
273 

+ 4 t 3  - tl)] Nm>. (7) 

When the  time t ,  is taken,  without loss of  generality, as zero, 
the  induced  dipole moment  at t > t3 is 

( P j )  = 

i6 - -- 8T?3 P-llmspzsm ~ 3 s m  ~ j m s ~ l * ~ 2 ~ 3  e x ~  {i[at - ( - E l  

-k + k3) ’ r + (urns  - a)(t - t 2  - t 3 ) ] }  (8) 

where w,, E w, - a,. 
A calculation  of  the contribution due to ( \ k ( 0 ~ 2 p ) l ~ ~ l \ k ( 1 ~ 0 7 3 ) )  

gives a  result  identical to (8). The  total value of ( p j )  is thus 
twice that given by (8). Let the  resonance  offset  parameter be 
A E (a,, - a). An inhomogeneous  distribution  of  resonant 
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frequencies is described by a  normalized  lineshape  function 
g(A).  The  induced  polarization Pi is obtained by summing (8) 
over  all A. The result is 

Pj = N / I  (pj)g(A)  dA 

i6 
4fi3 = - NP1msPZSm ~ 3 m  ~ i m s ~ ? ~ 2 ~ 3  ~ X P  {i [ut - (-El 

+ k 2  + kg) . F]}S(t - tz - t 3 )  (9) 

where S(t)  = S_m_ g(A)eiAt dA is the  Fourier  transform of the 
normalized  lineshape function  g(A)  and N is the  dipole mo- 
ment  density. 

For  an even g(A), the  function S(t  - t2 - t 3 ) ,  hence Pi, is  es- 
sentially zero  except  for  a  duration  -2n/A1/2  centered  on 

t = t 2  + t 3  (10) 

where A,,, is the  width  of  g(A).  During  this  period  the  sample 
will radiate a  photon echo’  provided the phase-matching con- 
ditions are satisfied. If the  pulses E2 and E3 are exactly op- 
posite, k2 t k3 = 0, then  the radiated  echo  at t = t2 t t3  will 
propagate  according to  (9)in  the  direction -k l  , i.e., the reverse 
of  the  direction of E l .  These results have been noted  by Shiren 
[8] who applied the formalism of photon echoes.  Our pertur- 
bation  approach  brings  out specifically the field dependence 
E?E2E3 which is in  a  form  identical to  that used to describe 
four-wave  conjugation  in  conventional  nonlinear  optics  termi- 
nology [lo] . It  should be recalled however, that  here El ( t ) ,  
E2(t), and E3(t)  do  not, necessarily, coincide in time. 

The output wave radiated  by  the  polarization  (9) is the  com- 
plex  conjugate of the first wave El(t) .  In holographic  terms 
we can  describe the process as one  whereby  a  “hologram” is 
written  into  the  atomic  medium by pulses El  ( t )  and Ez(t)  
which  do not coincide  in  time. An interrogation pulse at t3 
opposite  in  direction to Ez(t)  gives  rise to  the backward  read- 
out  echo  at t = t3  + t2 which is the  conjugate replica of El (t). 
If pulses E, and E3 are parallel to each other as  well  as to 
pulse E l ,  i.e., kl = it, = k 3 ,  then  the  induced  echo has  accord- 
ing to (8) a spatial dependence of exp [i(ut - kl  + F)] . It is 
thus  radiated  in  the  forward  direction. 

The special case of& (6 t )  = E3 (E t )  is of  interest.  The pulse 
formed is proportional  to E,*Ei exp { i [ u t  - (2k2 - k l )  . Y]} 
and  occurs,  according to (1 0)  at t = 2t,. If kl  = k, then  the 
pulse is radiated in the  forward  direction  and can be recognized 
as the usual  forward  photon  echo [ l l ]  . It is interesting to 
note  that  it involves a  third-order  mixing  except  that  two of 
the fields (E2 and E 3 )  are degenerate. 

It is of  interest to inquire  about  the possibility of an  echo 
proportional to ElEzE3 in which  the  second  pulse is conju- 
gated. An analysis similar to the  above reveals that such  an 
echo occurs at t = t3 - tz  < t3 and is thus unrealizable  except 
for  the special case tz  = 0 ,  i.e., pulses El and E, coincide. 

We have discussed  above  the  holographic  analogy of the 
three  pulse  sequence  leading to (9). It is thus  important  to 
determine  the  effect  of  the  population  relaxation  time  (T1 ) 
and  dephasing collisions (T2) on  the  intensity of the  radiated 

pulse. The  induced  dipole  moment  can be alternatively ob- 
tained as 

(pj) = Trace ($;j) (1 1) 

where 6, the density matrix  operator, obeys  the  following 
equation of motion 

For j = j ,  Tij equals Tl and p!!) is determined  by  the ith energy 
level thermal  equilibrium population.  For i # j ,  Tijequals T2 
and p$) = 0. Equation  (12) is obtained  by using a  perturba- 
tion  expansion of’ the density  matrix  operator [ 121  in  terms of 
the applied fields and we shall look  for a term in p12 that is 
proportional to the  product of the  three applied fields. 

Upon  the  incidence  of the first pulse, only the off  diagonal 
density  matrix  elements, p12 and pzl , are perturbed to first 
order in E l .  The  driving  term on  the right-hand side of  (12) 
is proportional to (pi:) - &))El (t). After  the  perturbation 
due to  the first pulse, plz evolves as exp [t(iums - l/T,)] 
and  in  the  limit of  small 6 

.F)] exp fams- - t -   t l )  . (13) [( 3( 1 
The  second pulse affects  the  diagonal  elements pll  and pZ2 
giving  rise to perturbation  terms  proportional to E,*Ez. In 
this case, the driving  term in (12) is the  product of Ez (t)  and 
the p$a)( t )  given in  (1 3). p 11 and p Z 2  then evolve  as exp (- t/  
T,) after  the  second pulse. 

When the  third pulse arrives, p12 and pZl are affected  by driv- 
ing  terms  proportional to E3(t)(p$:)(t) - p$’(t)) when  the  on 
diagonal  elements are given  in (14). Thus plz and pzl are pro- 
portional  to EfE2E3 and evolve  as exp [t(iums - 1/T2)] for 
t > t3 .  Setting t l  = 0, the  final  expression  for the induced 
polarization is 

- i63 
4A Pi = 7 N ~ 1 m s ~ a m P 3 m  PjmsETE2E3 exP { i [ u t -  (-XI 

t k, t k 3 )  . Y]} X s ( t  - t2 - t 3 )  exp 

- - ( t 3  - td]  
1 

’TI 
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At  the  height  of  the  echo  at  time t = t2 + t 3 ,  the  effect  of 
relaxation  is thus  to reduce  the  radiated  field by  the  factor 
exp [-(1/T2)(2t2) - ( l /T1) ( t3  - t 2 ) ] .  It is  thus  necessary 
that  the time  delay t2 between the first  and  second pulses be 
short  compared to the  homogeneous  relaxation  time T2.  

The above formalism can be easily applied to describe  the 
interaction  between  a  multilevel  atomic  system  and  a  multi- 
pulse sequence  (provided all the pulses have areas very much 
smaller than T). We shall next  consider  an  interesting case of 
a  three level system  with  energy levels E,, Eb, and Ec(Ec > 
Eb  >Ea). The  three  atomic  states are connected  by the  non- 
zero  dipole  matrix  elements pab and pbc while pm is taken to 
be zero. The  atoms are subjected to three  pulses,  each of 
width 6 at times t l  , t2 , and t 3 ,  respectively.  The  first two 
pulses are of the same frequency w1 = o2 5: wba, but  can 
have different  polarizations  and wave vectors.  They modu- 
late  the  atomic  state  populations,  which in turn,  scatter  the 
third  applied pulse which  has  frequency o3 2: web. The 
induced  dipole moment  that involves all the  three  applied 
fields  is  caused  by (\k(0~2p)Ip~l\k('~0~3)) and (Ik (1,0,0)lpjjlIk(03233)) 
resulting  in 

3 

(pi)= (g) ~ l a b ~ 2 b a ~ J b c ~ j j c b E l E z * E 3  exp { i [ 0 3 t -  (El  

- k2 + k3) * r + (Wba - wl)(t2 - t l )  

3 

-k ( a c b  - 0 3 ) ( t -  t3)I) + ($) plabp2bap3bcpjcb 

* E:E2E3 exp { i [w3 t -  (-El + k 2  + k 3 ) * Y  

- (aha- wl)(t2 - t l ) + ( w c b -  ' 3 3 ) ( t -  t 3 ) I ) .  (16) 

When summed over the  inhomogeneous  distribution  of  the 
resonant  frequencies of the  atoms, it is observed that  a  max- 
imum  superradiant  superposition  of all the  individual  atomic 
polarizations  is formed  at t 3  provided that t2 = t l  . To include 
the  relaxation  effect,  the  density  matrix  operators  are solved 
and the  induced polarization at t > t3 and  for  the case t2 = 
tl = 0 is 

1 
Tl 

- t 3  - + i(b&b - 0 3 ) ( t  - t 3 ) }  x {E1EfE3 

exp {i[w3t - (k, - k2 + k 3 )  . Y]} + E T E z E ~  

- exp { i [w3t  - (-El + k2 + k 3 )  * 71)). ( 1  7) 

The  first  term  of  this  polarization gives rise to a  radiated  field 
of  frequency w 3  and wave vector k,. with k,. = (03/c)n(w3) 
provided 

- 
kl(o1)- E 2 ( 0 2 ) , + Z 3 ( 4 = k y ( 0 3 )  (1 8 )  

where n ( w 3 )  is the  material  index of refraction at 03. The 
roles of El and E2 are reversed in  the  second  term  of  the  in- 
duced  polarization. In  an  atomic  medium  in  which Wba = o,b, 
w3 can  be  made  equal to ol, and ( 1 8 )  is  easily  satisfied.  In 

@) 
Fig. 2. (a) A _graphic construction  for  satisfying  the  phase-matching 

condition kl (wl)  - Ez(w2)  + E3(w3) = E,.(w3) in an isotropic 
medium  for w3 > w2 = w1; (b) frequency  upconverter. 

particular, El and E3 can be chosen to be the  two  counter- 
propagating pump fields  and  a  backward  conjugate  replica  of 
E2 is produced  independent  of  the  direction  of k 2 .  

The  phase-matching  condition of ( 1  8) can  also be met in a 
birefringent  or  an  isotropic medium. Fig. 2(a) shows  a  graphic 
construction  for  satisfying  the  phase-matching  condition  in  an 
isotropic  medium  for o3 > w2 = wl. Given some  choice of 
kl  (0, ) and k 2 ( w l )  the  direction  of k3(w3) and  the  radiated 
field kr(w3) is determined as shown. 

We note  that  the above described  interaction  between  the 
three-level  system  and  the pulse sequence  can  be used as a  fre- 
quency  upconverter.  Consider  the  situation  where  a  light 
pulse at frequency o1 and  intensity Il is  first  split into  two 
beams (E, and E,) and  incident onto the  atomic  medium  with 
k-vectors as shown  in  Fig. 2(b). Upon  the  incidence, at  a  later 
time t3 ,  of  a third pulse at frequency o3 and  intensity I3 in 
the  direction  determined  in  Fig. 2(a), an output pulse at fre- 
quency w3 and of duration 1/Al,2 will be  detected  in  the 
direction E,.. The pulse intensity  is  proportional to (I1)'I3 - 
exp (- 2t3 / T l ) .  We thus observe that  a weak  and  low  frequency 
input signal can be detected, amplified,  delayed  (by t3),  and 
converted to a  high  frequency  output signal, which is emitted 
as a  superradiant  pulse  along  a  specific  direction. We note  that 
there were other schemes  proposed to observe echo  phenomena 
in three-level  atomic  systems [ 131 . 

In  conclusion, we have used  a  simplified  time  evolution op- 
erator  formalism to analyze the  transient phenomena of four- 
wave mixing  of  noncoincident  pulses  in  atomic  systems.  The 
relaxation  effects are also included  by using a  density  matrix 
formalism.  The treatment is useful  .(in  the small pulse area 

- 
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limit)  in describing photon echoes and  thus establishes a bridge 
between the conventional  theories of nonlinear  optics and  that 
of coherent pulse excitation of  superradiant  atomic systems. 
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Servo  Tuning and Stabilization of Nonlinear 
Optical  Crystals 

Abstract-A new optical technique for  servo  tuning  and stabilization 
of angle  tuned  nonlinear optical crystals  is  described. This technique 
has zero insertion loss and works equally well with collimated, focused, 
or noncollinear fundamental beams.  Servo  tuning of a Type I KDP 
nonlinear  crystal for summing the output of a tunable dye laser with 
the Nd:YAG second harmonic  and  servo stabilization of the produc- 
tion of the Nd :YAG fourth harmonic  in Type I KDP are demonstrated. 

N ONLINEAR optical crystals are extensively used to 
extend  the wavelength range covered by fixed frequency 

and  tunable lasers [ 11 - [3] . Coherent  radiation at new wave- 
lengths is produced either by direct  harmonic  generation 
utilizing a single  laser source or  by frequency mixing the  out- 
puts of two  separate lasers. Phase matching,  which is  necessary 
for  efficient  power  conversion,  is usually achieved by utilizing 
birefringent  nonlinear crystals and  adjusting  the degree of 
birefringence to compensate for  the index of refraction dis- 
persion between the  fundamental  and generated wavelengths. 
Adjustment of the phase matching is accomplished either  by 
changing the  crystal  temperature  (“temperature  tuning”) 
or  by changing the  internal  direction of propagation through 
the  crystal with respect to the  optic axis  (“angle tuning”). 
Angle tuning, which is usually accomplished by physically 
rotating  the  crystal  with respect to  the  fixed  direction of 
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propagation of the laser beam, has the advantage of permitting 
rapid adjustment of phase matching to  keep up with variations 
of the frequencies of the  fundamental beams or  with laser 
induced  heating of the crystals. 

For applications which require  either long term  stability of 
the power level  of the  generated  radiation  or which require 
frequency mixing using broadly  tunable input lasers, auto- 
matic servo control of the angle tuning is desirable. In  order to 
utilize angle tuning  for servo control of nonlinear  crystals, 
however, a means must be found to provide a discriminant 
signal which is  sensitive to  the direction of the deviation from 
the  optimum crystal orientation.  For  the case  of second- 
harmonic  generation of tightly focused beams,  Kuhl  and  Spits- 
chan [4] have developed an elegant scheme wherein the 
discriminant signal  is provided by monitoring the spatial posi- 
tion of the generated beam. Their method is useful for  second- 
harmonic generation of moderate  power  dye lasers, since a 
tight focusing geometry is commonly employed to provide 
maximum  generated output. However, when the fundamental 
beam is collimated  or slightly converging, which is  usually the 
optimum case for high power lasers, or  when  the  fundamental 
beams are noncollinear,  the spatial position  of  the  generated 
beam does not provide an adequate  discriminant [5] . 

In this paper, we report a new optical  technique for  obtain- 
ing a discriminant signal suitable for servo tuning and stabiliza- 
tion of angle tuned uniaxial nonlinear crystals. This technique 
has zero  insertion loss and works equally well with  collimated, 
slightly converging, slightly  diverging, or  tightly  focused  funda- 
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