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INTRODUCTION

Three classical problems associated with the ordinary diffusion
equation concern the temperature in (1) a half-space with clamped
heat flux at the free face, (2) a half-space with clamped temperature
at the free face, and (3) an infinite medium with a pulsed plane
heat source. These problems are also important for the nonlinear
diffusion equation based on the Gorter-Mellink relation, which
describes heat transport in superfluid helium. A similarity solution
to problem (1), the clamped-flux problem, has already been found1

and compared, with good agreement, with experimental data of
van Sciver.2 [A similarity solution is one in which the profiles
of temperature rise AT versus distance Z at different times t can
be obtained from one another by suitable (different) stretching of
the temperature and distance axes.] In this paper, I give similarity
solutions in analytic form to problems (2) and (3), the clamped-
temperature and pulsed-source problems.

Both of the latter problems have been studied experimentally
and both have practical uses. According to Seyfert et al.,3 the
clamped-temperature problem describes recovery from burnout (phase
transition to He-I at the heated surface) in the presence of
steady heating. The pulsed-source problem, studied experimentally
by Lottin and van Sciver,** describes the late stages of disappearance
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of a zone of warm He-II in a long channel. The application of the
similarity solutions to these problems and their comparison with
the experimental data are explained below.

SIMILARITY SOLUTIONS

The Gorter-Mellink relation states that in superfluid helium

q = - K ( V T ) V 3 (1)

where q is the heat flux (W«m ), VT is the temperature gradient

(K«m~ ) , and K is a thermal conductance parameter (W-m «K ) .
Combined with the equation of energy conservation,

V • q + slf- = 0 (2)

where S is the volumetric heat capacity (J*m *K ) , eq. (1) gives

V • [K(VT)V3] - s|^ (3)

In slab geometry with constant thermophysical properties, eq. (3)
becomes

9/3TU/3 _ 8T
K 3z\3z/ " S3l

A solution of eq. (4) obeying the boundary conditions

T(O,t) = T Q < 1X (5a)

T(Z,O) = Tfa (5b)

T(«,t) = T b (5c)

of the clamped-temperature problem is
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The reader can verify that (6a, b) is a solution by substitution.
(How to discover such a solution, rather than to verify it once it
is known, is described partially in Ref. 1 and in exhaustive detail
in Ref. 5.)



A solution of eq. (4) obeying the boundary conditions

+00

S(T - % )dZ = Q for a l l t (7a)
b

T(Z,O) = T^ (7b)
D

T(»,t) = T, (7c)
b

of the pulsed-source problem is

(Q/S) 2 (X4 + b4) 1 / 2

-3/2
X = Z(C/S) (Kt/S) ' (8b)

b = 2[r(l/4)]2/3v/3rT = 2.855 (8c)

This solution, too, can be verified by substitution.

THE PULSED-SOURCE PROBLEM

Shown in the inset in Fig. 1 are Lottin and van Server's
temperature profiles at various times after the heat pulse. According
to eq. (8) , all of these profiles should collapse to a single curve

3/2 3/2
if we use the similarity variables Z/t and (T - T ) t . Shown
in the main part of Fig. 1 are the points from the inset replotted
in terms of the similarity variables. They do, as expected, define
a single curve, which should be given by eq. (8a). Since the
temperature rise is only tenths of a degree or less after just a
few hundred milliseconds, it is a satisfactory approximation to

give K and S their values at T = 1.8 K, namely, K = 10.4 W-cm"5'3«K~1/'3

-3 -1 l
and S = 0.410 J«cm *K ,x The curve in Fig. 1 has been calculated
with eq. (8a) using these values. Agreement is excellent, reinforcing
the conclusion of ref. 1 that the Gorter-Mellink relation gives an
excellent description of heat transport in superfluid helium.

DISAPPEARANCE OF A WARM ZONE IN A LONG CHANNEL

As mentioned in the introduction, eq. (8) describes the late
stages in the disappearance of a warm He-II zone in a long channel,
such as mijnt be found in a cable-in-conduit conductor.6 In the
early stages, the temperature profiles depend on the extent and
duration of the heat deposition, but a long time after the heat is
deposited, the temperature profiles approach those of an instantaneous
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Fig. 1. Temperature distribution in a 6-mm-diam He-II channel
after a 0.92-J pulse. Experimental data from Lottin
and van Sciver (Ref. 4).



plane source. If the initial temperature of the warm zone (of
length L) is Tx, then the central (Z = 0) temperature rise reaches

the value AT « T^ - T in a time t given by

t = 0.207 r-

2 L 2 12/3

AT (9)

For T = 1.8 K and L = 1 m, AT reaches 0.1 (T.. - TJ = 37 mK in
** A b

about 9.1 s, while for L = 10 m, t is about 3.3 min.

It is neither impossible nor even unlikely for the current-
sharing threshold temperature to be larger than the temperature T

A
of phase transition. So after recovery from a transient normality
the helium opposite the normal zone may be warmed to a temperature
Tl > T^- I n this case, the rate-limiting step in recovery may be
longitudinal heat conduction in the warm, He-I—filled region.
While this problem is strictly speaking not within the announced
compass of this paper, it is too important not to be dealt with
here. Figure 2 shows (a) a sketch of the physical arrangement and
<b) a sketch of the assumed temperature distribution. In the He-II
region we assume a linear temperature profile between T at the

A
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Fig. 2. Sketch of (a) the conceptual physical arrangement and (b)
the assumed temperature profile used in calculating the
velocity of a He-I-He-II front in a long channel.



He-II-He-I interface and T, at the open end of the channel. In the
D

He-I region, the temperature obeys the diffusion equation

ST 3 T
SHeI JZ - ACukCu-T

d X
V S

where STT _ is the volumetric heat capacity of the He-I region, A
Hex He

and A are the cross-sectional areas of helium and copper in the

unit cell composed of channel and conductor, and k is the thermal
conductivity of copper. Equation (10) is based on the simplifying
assumption that the main contribution to the specific heat is made
by the helium and the main contribution to the longitudinal conduction
is made by the copper. The related boundary conditions are

T = T. at the He-I-He-II front (lla)
A

T = T tzr to the right of the front (lib)

L\ •*>
: I A^ at the front

A traveling wave solution T(Z - vt) must obey the ordinary differential
equation

He Hel V Cu Cu " (12)

where the dots denote differentiation of T with respect to its single
argument. If we integrate once and use boundary conditions (lla) and
(lie) at the front, we get

/TX " T b \ 1 / 3

u S u TTv + A,, k^ THe Hel Cu Cu
/TX " T b \ 1 / 3

T = Kf ^1 A^ + AtT StT vT, (13)
I I I He He Hel X

Far to the right of the front, T = T and T = 0. Then from (13) we
find '

SHeI(Tl " TX>
(14)

which, interestingly, is independent of the cross-sectional areas of
the helium and copper as well as of the thermal conductivity of the
copper.

If a warm zone with T - T. = 2 K is created in the center of a

100-m-long, He-II-filled (Tfa = 1.8 K) , cable-in-conduit conductor,



then K[(TX - Tb)/£] 1 / 3 = 0.44 W«cm~2. Taking S = 0.35 J-cm «K ,

we find v = 0.62 cm*s . This is a rather low velocity and a 1-m-
long warm zone would take some 2.7 minutes to disappear, while a 10-m-
long zone would require nearly half an hour.

RECOVERY FROM BURNOUT: SEYFERT'S MODEL

Seyfert et al.3 consider a situation (see Fig. 3) in which the
conductor is normalized by a heat pulse per unit face area E, follow-
ing which it produces a steady power per unit face area q (post-
heating) . They are interested in the maximum value of E that permits
recovery of the superconducting state for a given q .

The model of recovery from burnout proposed by Seyfert et al. is
best described in their own words: "At the onset of burnout, forma-
tion of the thermal barrier starts. The He-Il near the heated surface
experiences a phase transition. A He-II-He-I interface appears which
has its temperature locked at T^ . . . . We assumed that this barrier

had a negligible thickness and that it only affected heat transport
in He-II by the condition of a constant temperature, i.e., T = T ,

at the hot end of the channels in our test section." [Italics mine.]

HEATER
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Fig. 3. Sketch by Seyfert et al. of their experimental channel.
Ideally, the heater should be transverse to the channel.
The. face area to which superficial densities are referred
is the cross-sectional area of the channel. Because a
circumferential rather than a transverse heater was used,
the experimental values of E obtained by Seyfert et al.
have an added constant included in them that is equal to
the enthalpy difference between T

under the circumferential heater.

and T, of the helium



The clamped-temperature similarity solution (6) gives for the
instantaneous heat flux into the helium

/3/3U/6K3/4sl/4 _ T ,

\ 8 / A O
(15)

According to the model of Seyfert et al., the maximum heat pulse E
still permitting recovery is related to the post-heating power q

by the balance of areas shown in Fig. 4. The algebraic statement
of this balance of areas is

t t

E - / q dt = / q dt - (16a)

or

E = / q dt - q (t - t )
0 ^

Substituting (15) into (16) and noting that t » t and that
-1/4

q = At , we find

(16b)

E = -=r q t3 V2
(17)
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Fig. 4. Balance of areas deter-
mining the relation between the
initial heat pulse E and the post-
heating power q , according to

Seyfert et al.3
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From (15) we find

so that

(18)

(19)

COMPARISON WITH EXPERIMENT

The experimental values of E summarized by Sefyfert et al.
in Fig. 11 of Ref. 3 include an added constant that is equal to the
enthalpy difference between T.. and T. of the helium under the

A t>
circumferential heater in the center of their experimental channel.
When this constant is subtracted from their experimental values of
E, these values are brought into excellent agreement with the
results of their numerical calculations. Consequently, I shall
compare eq. (19) with the numerical results.

Figure 5 shows the calculated results of Seyfert et al.
replotted on log-log paper. The lines, which have a slope of -3, fit
the points quite well, verifying the dependence of E on q given
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Fig. 5. The maximum allowable
heat pulse E as a function of
the post-heating power q . The

points, taken from the paper of
Seyfert et al.,3 have been
corrected for the presence of
helium under the circumferential
heater.
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by eq. (19). Both lines correspond to KS 1 / 3 = 5.68 WJ 1 / 3-cnf 8 / 3-K"" 2' 3.
This value may be compared with the values of 7.73, 9.52, 10.6, and

8.62 W-J1/3-cm~8/3-K~2/3 at 1.8, 1.9, 2.0, and 2.1 K, respectively,
obtainable from Table I of Ref. 1. The discrepancy arises because
in the clamped-temperature problem, the superfluid elements near
the heater have temperatures very close to T^. As we approach T. from

below, K falls sharply toward zero and S rises (though not to
infinity). Presumably, the sharp drop in K near T is what diminishes

the best-fit value of KS1/'3.

VALIDITY OF THE INFINITE-CHANNEL APPROXIMATION

The theory of the last two sections applies to an infinitely
long channel, whereas the experiments of Seyfert et CLL. refer to a
channel of lenth L = 4 cm. When x » 1, T = T, according to the

similarity solution (6) So if

Kt I 3 / 4
K t ' (20)

then T(L) will be close to T and the infinite-channel approximation

should be a valid description of the finite channel. If we substitute
from eq. (18) for t,, we find

T, - TwNl/3
(21)

If we take T.. = 2.17 K, T. = 1.8 K, L = 4 cm, and K = 5.80 W-cm~^3-K.X b _2
(half the largest value from Ref. 1) we find q » 2.4 W«citi

—2
For T = 1.9 K, q must be >>2.2 W«cm . So we expect the infinite-
channel approximation to be a reasonable one for the points in
Fig. 5.
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