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Hyperbolic heat conduction in a functionally graded hollow cylinder is investigated in this paper. Except for

uniform thermal relaxation time, all other material properties of the cylinder are assumed to vary along the radial

direction following a power-law form with arbitrary exponents known as the nonhomogeneity indices. When the

cylinder is infinitely long, end effects can be ignored, and the one-dimensional heat conduction problem in the radial

direction is solved analytically in theLaplace domain.Thefinal transient solution of theproblem in the timedomain is

obtained by numerical inversion of the Laplace transformed temperature and heat flux. The exact speed of the

thermal wave in the nonhomogeneous cylinder is also obtained.Moreover, the effects of the nonhomogeneity indices

and thermal relaxation time on the results are shown graphically by some illustrative examples. The current results

are corroborated by the steady-state results for the homogeneous cylinder in the literature.

Nomenclature

A1, A2 = integration constants given by Eqs. (18)
a = arbitrary real number that is greater than all the real

parts of singularities of a Laplace transformed
function

C = nondimensional velocity of the thermal waves
cp = specific heat at constant pressure, J=�kgK�
cpo = specific heat of the outer surface of the cylinder,

J=�kgK�
F = nondimensional function defined by Eq. (11)
f, ~f = general function and its Laplace transform
G, H
and I

= nondimensional parameters defined by Eqs. (15)

i = imaginary unit
JG = Gth-order Bessel function of the first kind
K = thermal conductivity,W=�mK�
Ko = thermal conductivity of the outer surface of the

cylinder,W=�mK�
L = number of terms needed in the Laplace inversion

process
M = parameter defined by Eqs. (17)
N = number of time points to which the total time is

divided in the Laplace inversion process
ni = nonhomogeneity index; i� 1, 2 and 3
P = parameter defined by Eqs. (17)
Q, ~Q = nondimensional heat flux and its Laplace transform
q = heat flux vector,W=m2

qr = radial component of heat flux, W=m2

R = internal heat generation, W=m3

r = radial coordinate, m
ri, ro = inner and outer radii of the cylinder, respectively; m
r� = relative thickness of the hollow cylinder, ri=ro
s = Laplace variable
T = absolute temperature, K
Ttotal = total time over which the Laplace inversion is

performed

Twi = absolute temperature of the inner surface of the
cylinder, K

Two = absolute temperature of the outer surface of the
cylinder, K

T� = relative temperature change, �Twi � T1�=�Two � T1�
T1 = ambient temperature, K
t = time, s
vthermal = velocity of thermal waves in hyperbolic heat

conduction theory,
�����������������
K=�cp�

p
; m=s

W, X = parameters defined by Eqs. (19)
YG = Gth-order Bessel function of the second kind
Z = parameter defined by Eqs. (19)
�t = time increment, s
"o = nondimensional thermal relaxation time, �o�=r

2
o

� = nondimensional radial coordinate, r=ro
�, ~� = nondimensional temperature change,

�T � T1�=�Two � T1� and its Laplace transform,
respectively

�o = thermal diffusivity of the outer surface of the cylinder,
Ko=��ocpo�; m2=s

� = nondimensional time, �ot=r
2
o

� = density, kg=m3

�o = density of the outer surface of the cylinder, kg=m3

� = thermal relaxation time, s
� �;s = the partial differentiation of � � with respect to s

Introduction

F UNCTIONALLY graded materials (FGMs) are nonhomoge-
neous materials within which physical properties vary contin-

uously. The smooth variation of properties results from continuous
transition of the volume fraction of constituents. First introduced in
1984 in the aerospace industry as a thermal shock barrier [1], FGMs
have foundmany other engineering applications. FGMs are currently
used in many applications, such as heat engine components, wear
resistant linings, and even prostheses [2].

Heat conduction analysis of FGMs is of great importance, as they
are used as thermal shields. Temperature gradients cause thermal
stresses that may result in crack growth and eventually fracture of the
structure. Hence, to design a reliable FGM structure working under
severe thermal loadings, it is crucial to know the temperature distri-
bution within it.

There are different theories about heat conduction in solids. The
famous Fourier heat conduction theory relates heatfluxdirectly to the
temperature gradient using a proportionality coefficient known as
thermal conductivity. The accuracy of Fourier’s heat conduction law
is sufficient for many practical engineering applications. However,
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this theory cannot accurately explain conduction of heat caused by
highly varying thermal loading such as pulsed laser heating. For
example, the surface temperature of a slab measured immediately
after a sudden thermal shock is 300�C higher than that predicted by
Fourier’s law [3]. The Fourier heat conduction theory also breaks
down at very low temperatures and when the applied heat flux is
extremely large [4]. In addition, Fourier’s law results in an infinite
speed of thermal wave propagation, which is physically unrealistic.
To better explain heat conduction in solids, non-Fourier heat
conduction theories have been developed. One of the non-Fourier
theories is hyperbolic heat conduction theory. This theory, separately
proposed by Vernotte [5] and Cattaneo [6], accounts for the finite
speed of thermal energy propagation by introducing a new material
property called thermal relaxation time. Thermal relaxation time is
the time that the temperature field needs to adjust itself to thermal
disturbances. This theory is called hyperbolic heat conduction
because it results in a hyperbolic differential equation for temperature
rather than the parabolic one obtained using Fourier’s law.

There are many papers in the literature dealing with hyperbolic
heat conduction in homogeneous solids. A few of these papers are
described in the following discussion. Sadd and Cha [7] analytically
solved the conduction problem for regions interior and exterior to
long cylinders. However, their solution is limited to small time
durations. Lin and Chen [8] employed the Laplace transform
technique in the time domain and the numericalfinite volumemethod
in the spatial domain to give the solution for hyperbolic heat
conduction in both cylindrical and spherical objects. Periodic, steady
heat conduction in long, hollow cylinders was investigated by
Zanchini and Pulvirenti [9]. Jiang and Sousa [10] provided a com-
pletely analytical solution for hyperbolic heat conduction problems
in homogeneous spheres. Tsai and Hung [11] investigated thermal
wave propagation in a bilayered composite sphere due to a sudden
temperature change on the outer surface. The finite difference
method has been employed by Darabseh et al. [12] to find thermal
stresses induced by hyperbolic heat conduction in orthotropic
cylinders. A review of available analytical solutions for hyperbolic
heat conduction in homogeneous solids is given by Antaki [13].

The literature on Fourier heat conduction in FGMs is not widely
developed as compared with that of hyperbolic heat conduction in
homogeneous solids. Some papers dealt with power-law FGMs.
Hosseini et al. [14] solved the Fourier heat conduction problem in an
FGM cylindrical shell using direct separation of variables, viz., the
radial coordinate and time. Eslami et al. [15] used Fourier’s law to
find temperature-induced stress in a hollow FGM sphere. The best
transition of material properties is also given in [15] to optimize
tangential stresses in a nonhomogeneous spherical vessel. Tarn and
Wang [16] used the state-space approach to analyze transient and
steady Fourier heat conduction in a power-law FGM cylinder.

To the authors’ best knowledge, there are a few articles related to
hyperbolic heat conduction in FGM structures. Fang and Hu [17]
investigated the propagation of hyperbolic thermal waves caused by
a spherical substrate in a semi-infinite FGMmedium. To simplify the
solution procedure, they assumed that density and thermal relaxation
are constant, while other properties vary exponentially in the
direction normal to the boundary of the medium. Babaei and Chen
[18] solved a transient hyperbolic heat conduction problem in an
FGM hollow sphere.

In the present paper, similar to [18], the transient hyperbolic heat
conduction problem is considered for an FG, long, hollow cylinder.
Except for thermal relaxation, which is taken to be uniform to
simplify the analytical solution in the Laplace domain, all other
material properties are assumed to vary along the radial direction
following a power law with an arbitrary exponent. As a first step in
analyzing the non-Fourier heat conduction in FGM structures,
dependence of material properties on temperature was not taken into
account for simplicity. To find temperature and heat flux in this one-
dimensional problem, the Laplace transform technique is used to
eliminate time. The problem is solved analytically in the Laplace
domain. Time dependency is then restored by numerically inverting
the Laplace transform. Effects of the thermal relaxation and
nonhomogeneity index of the cylinder on the results are further

investigated by a numerical example. In the steady-state case, the
results are also verified for homogeneous cylinders. It is worth noting
that, unlike a hollow sphere [18], the thermal wave speeds for the
hollow cylinder can be expressed explicitly.

Problem Definition and Governing Equations

As shown in Fig. 1, we consider heat conduction in a radially FG,
long, hollow cylinder. The initial temperature of the cylinder is the
ambient temperature, T1. To represent a thermal shock (e.g., a
sudden change of the surrounding temperature), the temperatures of
the inner and outer surfaces of the cylinder are suddenly elevated to
new values:

T�r; t�jr�ri � Twi T�r; t�jr�ro � Two (1)

The hyperbolic heat conduction equation for isotropic solids is
written as follows [19]:

q � �@q=@t��KrT (2)

On the other hand, for a conduction problem, the first law of
thermodynamics accounting for energy conservation reads [13]:

�cp@T=@t� R� r � q (3)

The uniformly imposed boundary conditions and geometrymake the
current problem axisymmetric. Moreover, end effects in the axial
direction are also eliminated as the cylinder is infinitely long. Thus,
temperature and heat flux just depend on the radial coordinate and
time. Then, Eqs. (2) and (3) are reduced to

� �1� �@=@t�qr � K@T=@r (4a)

� �1=r�@�rqr�=@r� �cp@T=@t (4b)

It is also assumed that the continuous transition ofmaterial properties
in the radial direction follows a power law, except for thermal
relaxation, which is taken to be constant:

K��� � Ko�n1 ; ���� � �o�n2 ; cp��� � cpo�n3 (5)

where �� r=ro.
For convenience, we normalize Eqs. (4) by introducing the

following parameters:

�� �ot=r2o; "o � �o�=r2o; r� � ri=ro
�� �T � T1�=�Two � T1�; T� � �Twi � T1�=�Two � T1�

Q� roqr=�KoT1� (6)

Using these parameters and Eqs. (5), we can rewrite Eqs. (4) as

�1� "o@=@��Q���n1�Two � T1�=T1@�=@� (7a)

@��Q�=@����n2�n3�1�Two � T1�=T1@�=@� (7b)

ir
or

r

wiT woT

Fig. 1 Geometry and loading conditions of the FG hollow cylinder.
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The boundary and initial conditions of the problem mentioned
earlier, when normalized, read

���; ��j��r� � T�; ���; ��j��1 � 1

���; ��j��0 � �;���; ��j��0 � 0 (8)

Solution Procedure

Eliminating the heat flux term,Q, between Eqs. (7a) and (7b), we
can obtain a second-order differential equation for the normalized
temperature change, �, as follows:

��;�� � �n1 � 1��;� � �n2�n3�n1�1��;� � "0�;��� � 0 (9)

The existence of second derivatives of the temperature change with
respect to both the radial coordinate and time implies awave nature of
the temperature in the hyperbolic heat conduction theory.

We rewrite Eq. (9) in the following form:

�;�� � �C����2�;�� � F��; @�=@�; @�=@�� (10)

where

F� 1

"o

�
n1 � 1

�n2�n3�n1�1
�;� � �;�

�
(11)

C��� is the velocity of the thermal waves within the FG cylinder:

C��� � �1=2�n1�n2�n3�= �����
"o
p

(12)

It is seen that the nondimensional velocity of the thermal waves
depends both on the material nonhomogeneity indices, ni, and the
position, �. Discussion on the speed of the thermal waves is given in
the next section.

To find the temperature change and heat flux, we now apply the
Laplace transform to Eq. (9). The resulting equation is

� ~�;�� � �n1 � 1� ~�;� � �n2�n3�n1�1s�1� "os� ~�� 0 (13)

where � indicates the Laplace transform of a function.
The solution of the aforementioned homogeneous ordinary

differential equation is

~���; s� � �A1JG�I�H� � A2YG�I�H����1=2n1 (14)

where

G� n1=�2� n2 � n3 � n1�; H � 1 � 1=2�n1 � n2 � n3�

I � 2
��������������������������
��1� "os�s

p
=�2� n2 � n3 � n1� (15)

Substituting Eq. (14) into the Laplace transform of Eq. (7a), we can

obtain the heat flux in the transformed domain, ~Q, as follows:

~Q� P=2�1=2n1�1�A1�MJG�I�H� � 2IH�HJG�1�I�H��
� A2�MYG�I�H� � 2IH�HYG�1�I�H��� (16)

where

M��n1 � 2HG; P���Two � T1�=��1� "os�T1� (17)

We are now able to find A1 and A2 by satisfying the boundary
conditions [Eqs. (8)] of the problem in the Laplace domain, as
follows:

A1 � Z=X; A2 �W=X (18)

where

Z��YG�IrH� � � r1=2n1� YG�I�T�
W � JG�IrH� � � r1=2n1� JG�I�T�
X � s��JG�I�YG�IrH� � � JG�IrH� �YG�I��

(19)

To restore the time effect, the solutions in the Laplace domain, ~�

and ~Q, must be inverted. As this inversion may not be simply done
analytically, a numerical treatment is employed. We use the fast
Laplace inversion technique method first proposed by Durbin [20].

In thismethod, theLaplace inverse of a function � ~f��; s�� at time �j
is found as follows:

f��; �j� �D�j�
�
�1=2Ref ~f��; a�g � Re

�XN�1
k�0
�A��; k�

� iB��; k��Ujk

��
j� 0; 1; 2; . . . ; N � 1 (20)

where

A��; k� �
XL
t�0

Ref ~f��; a� i�k� lN�2�=Ttotal�g

D�j� � 2=Ttotale
aj�t; �t� Ttotal=N

B��; k� �
XL
l�0

Imf ~f��; a� i�k� lN�2�=Ttotal�g; U� ei2�=N (21)

It should also be noted that a, an arbitrary real number, should be
greater than any of the real parts of the function’s singularities;
parameters L and N influence the accuracy of the solution;�t is the
time increment; and Ttotal is the total time over which the numerical
inversion is performed.

To minimize both discretization and truncation errors, it is
recommended that the following constraints be observed :

5 	 aTtotal 	 10 50 	 NL 	 5000 (22)

For the present work, these parameters are taken as

aTtotal � 7:5 L� 10 N � 500 (23)

Numerical Example

In the numerical calculations, we use the following values for the
initial and boundary conditions: 1) the initial temperature of the
cylinder is 300K (ambient); 2) the temperature of the inner surface of
the cylinder is kept at ambient temperature, that is,T� � 0; and 3) the
temperature of the outer surface of the cylinder is Two � 500 K. The
sudden increase in the temperature of the outer surface results in the
generation of thermal waves from the outer surface toward the inner
surface of the cylinder. The outer radius of the cylinder is taken to be
ro � 1 m, and the inner radius is such that r� � 0:6.

Figure 2 illustrates the effect of nonhomogeneity indices, ni, on
the position of thermal waves at three different times. In these plots,
nonhomogeneity indices are taken to be the same for all properties
varying along the radial coordinate, that is, n1 � n2 � n3 � n. This
allows us to focus exclusively on the effect of the nonhomogeneity.

When hyperbolic heat conduction theory is employed, the
temperature field requires a finite amount of time to adjust to thermal
disturbances. This can be observed in Fig. 2a at nondimensional time
0.1260. The inner portion of the cylinder has not yet responded to the
temperature increase of the outer surface, that is, the temperature
change and heat flux are still zero.

As seen in Figs. 2a and 2b, the wave fronts of the larger non-
homogeneity indices are ahead of those of the smaller nonhomo-
geneity indices. Thismeans that a highern results in a higher speed of
the thermal wave propagation, just as Eq. (12) indicates. It is known
that a higher thermal conductivity results in a higher speed of the
thermal wave propagation.When n is increased, the average value of
the thermal conductivity in the cylinder is increased, leading to a
higher velocity of the thermal waves. It is also worth noting that the
thermal waves dissipate with time and eventually vanish. Figure 2c
shows the steady-state distribution of the temperature and heat flux
for different nonhomogeneity indices. A higher n leads to larger
temperature and heat flux values.
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Although not depicted graphically, the curves in Fig. 2c related to
the homogeneous case, n� 0, are exactly the same as those of the
completely analytical solution given in [21]. This corroborates the
correctness of the current results.

Although it may not be possible to manufacture such an FGM
cylinder, by further investigating Eq. (12), it is revealed that when the

nonhomogeneity indices have the specific relationship n1 � n2�
n3, the speed of wave propagation is neither a function of the
nonhomogeneity index nor a function of the radial coordinate. In this
case, all wave fronts are in the same position regardless of thenvalue,
as shown in Fig. 3.

Figure 4 depicts the effect of the thermal relaxation time on the
temperature history at the middle of the annulus. To focus on the
effect of thermal relaxation, a homogeneous cylinder, ni � n� 0, is
considered in the calculations. Figure 4 shows that higher thermal
relaxation times lead to higher transient amplitudes and longer
durations of the thermal waves, whereas smaller relaxation times
result in diffusive behavior of the temperature. When "o � 0, the
hyperbolic heat conduction theory is reduced to Fourier’s theory.

Figure 5 shows the effect of nonhomogeneity of different
properties on the temperature history when "o � 0:35. Figure 5a
shows the effect of nonhomogeneity of thermal conductivity, with
n1 ≠ 0, while density and specific heat are uniform, n2 � n3 � 0.
The final value of the temperature in the steady-state case depends on
the nonhomogeneity index of thermal conductivity. Higher non-
homogeneity of thermal conductivity results in higher amplitudes of
the thermal wave and the steady-state temperature. Figure 5b shows
the effect of nonhomogeneity of density, n2 ≠ 0, while thermal
conductivity and specific heat are uniform, n1 � n3 � 0. Similar to
the nonhomogeneity of thermal conductivity, a higher nonhomo-
geneity of density results in higher amplitudes of the thermal wave;
however, the steady-state temperature distribution is not affected by
the nonhomogeneity index of density. Although not shown here for

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−1.5

−1

−0.5

0

0.5

1

1.5

Nondimensional radial coordinate (η)

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

 a
nd

 h
ea

t f
lu

x 
(θ

, Q
)

n= −1

n= 0 (Homogeneous)

n= 1

ξ=0.1260
rγ= 0.6
εo= 0.35

Temperature, θ

Heat flux, Q

direction of thermal waves

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Nondimensional radial coordinate (η)

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

 a
nd

 h
ea

t f
lu

x 
(θ

,Q
)

n= −1

n= 0 (Homogeneous)

n= 1

ξ= 0.3360
rγ= 0.6

ε
o
= 0.35

direction of thermal waves

Heat flux, Q

Temperature, θ

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Nondimensional radial coordinate (η)

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

 a
nd

 h
ea

t f
lu

x 
(θ

,Q
)

n= −1

n= 0 (Homogeneous)

n= 1
ξ= 3.4860
rγ= 0.6
εo= 0.35

Temperature, θ

Heat flux, Q

a)

b)

c)

Fig. 2 Effect of nonhomogeneity indices on the distribution of

temperature and heat flux at different times: a) �� 0:1260, b) ��
0:3360, and c) steady-state solution.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nondimensional radial coordinate (η)

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

 (
θ)

n
1
= −1, n

2
=n

3
= −0.5

n
1
=n

2
=n

3
= 0

n
1
= 1, n

2
= 0.5, n

3
= 0.5

ξ= 0.3360
rγ= 0.6
εo= 0.35

Fig. 3 Independence of the position of the thermal waves from the

nonhomogeneity indices when n1 � n2 � n3.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nondimensional time (ξ)

N
on

di
m

en
si

on
al

 te
m

pe
ra

tu
re

 (
θ)

ε
o
= 0.01

ε
o
= 0.1

ε
o
= 0.35

η= 0.8
rγ = 0.6
n= 0

Fig. 4 Effect of thermal relaxation time on the temperature at the

middle of the annulus (�� 0:8).

328 BABAEI AND CHEN



brevity, the steady-state thermal field is also not affected by the
nonhomogeneity of specific heat. The key effect of thermal conduc-
tivity on the steady-state temperature values can be mathematically
deduced from Eq. (4b). As seen in the equation, in the steady-state
case, in which @T=@t� 0, density and specific heat are eliminated in
the governing equations.

Conclusions

Transient hyperbolic heat conduction in an FG hollow cylinder is
investigated herein. The cylinder is power-law graded with arbitrary
nonhomogeneity indices. The one-dimensional heat conduction
problem in a long cylinder is solved analytically in the Laplace
domain. The speed of thermal wave propagation is also given in the
paper. Time dependency is restored by the numerical inversion of the
Laplace-transformed temperature and heat flux. With some illus-
trative examples, effects of the nonhomogeneity index and thermal
relaxation time on the thermal field are investigated. The summary of
the results are as follows:

1) The speed of thermal wave propagation depends strongly on the
nonhomogeneity indices. Higher nonhomogeneity indices lead to
higher wave speeds, as shown in Figs. 2a and 2b.

2) The higher the nonhomogeneity index is, the higher the steady-
state values of both the temperature and heat flux are, as shown in
Fig. 2c.

3) In the case in which nonhomogeneity indices satisfy the
relationship n1 � n2 � n3, the thermal wave propagates at a constant

speed regardless of the values of the nonhomogeneity indices, as
shown in Fig. 3.

4) Higher thermal relaxation results in larger amplitudes and
longer durations of the thermal waves before the steady-state is
reached, as shown in Fig. 4.

5) The steady-state values of the temperature and heat flux are
affected only by nonhomogeneity in thermal conductivity. The
nonhomogeneity of density or specific heat has no influence on the
final (steady-state) value of the temperature, as shown in Fig. 5.
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