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Transient Interaction of a 

Spherical Shell with an 

Underwater Explosion Shock 

Wave and Subsequent 

Pulsating Bubble 

The nonlinear interaction problem is analyzed by simultaneously solving the mass, 
momentum, and energy conservation equations together .with appropriate material 
constitutive equations governing the fluid dynamics of the explosion gaseous product 
and the water and the structural dynamics of the compliant shell. A finite difference 
technique in a coupled Eulerian-Lagrangian scheme is used. The computer program 
PISCES 2DELK is employed to carry out the numerical computations. The results 
demonstrate that to rigorously analyze the response of a submerged structure to a 
nearby explosion, the interactions among the explosion shock wave, the structure, its 
surrounding media, and the explosion bubble need to be considered. © 1995 John 
Wiley & Sons, Inc. 

INTRODUCTION 

Immediately after an explosive charge is deto

nated underwater, the solid explosive material 

is converted into high pressure gaseous reaction 

products. This high pressure is transmitted into 

the surrounding water and propagates therein as 

a shock wave generally referred to as the under

water explosion initial shock wave. The high pres

sure gaseous product, referred to as the gas globe 
or the bubble, expands rapidly against the ambi

ent water until the gas pressure has fallen substan

tially below the ambient pressure. Then the bub

ble contracts due to the higher surrounding 

pressure and recompresses the gaseous product. 

Near the instant when the bubble reaches its mini

mum volume, a secondary pressure pulse, also 
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referred to as the bubble pulse, is emitted. The 

bubble pulsates in this manner several times, ex

cept for near surface explosions where the bub

bles are vented early. The dynamic behavior of 

the bubble is strongly influenced by the gravity 

field and the surrounding flow field and therefore 

the nearby boundary conditions such as pre

sented by the free surface, the bottom, and the 

shape and motion of a structure. A rigid surface 

attracts and the free surface repels the bubble. 

Gravity causes the bubble to migrate upward. If 

there is a sufficient difference in pressure between 

opposite sides of the contracting bubble, the 

higher pressure side is pushed inward faster than 

the lower pressure side, the bubble assumes a 

kidneylike shape; subsequently the two interfaces 

impinge upon each other and the bubble becomes 
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a torus. This induces a high velocity water jet 

penetrating through the torus. An excellent com

pact and comprehensive description of the hydro

dynamics of the underwater explosion shock 

wave and bubble was published by Snay (1957). 

For a detailed exposition ofthe subject, the reader 

is referred to the classical text of Cole (1948). 

A submerged structure nearby the explosion 

will be first impinged upon by the initial shock 

wave and subsequently also subjected to the bub

ble pulse loading, the dynamic loading due to the 

pulsating bubble flow field, as well as-depending 

on the standoff, orientation, and depth of the ex

plosion-the impact of the bubble jet. In the en

ergy partition of an underwater explosion, about 

50% of the total energy of the charge is radiated 

in the initial shock wave and the other 50% is 

found in the energy of the bubble (Snay, 1957). 

Therefore, the bubble loading, vis-a.-vis the initial 

shock wave, can be expected to contribute sig

nificantly to the damage of the structure. 

Past studies of structural response to underwa

ter explosions (Keil, 1961; Geers, 1975) have 

shown that during the action of the initial shock 

wave there is a strong interdependence between 

the actual loading acting on the structure and the 

structural response. For the case where the bub

ble is sufficiently far away from the structure, the 

bubble-structure interaction is insignificant and 

can be neglected (Hicks, 1986). However, if the 

bubble is at the immediate proximity of the struc

ture, as explained previously, its dynamic behav

ior including the collapse, the emission of the 

bubble pulse, and the formation of the bubble jet 

are strongly influenced by the structure and the 

structural motions. To rigorously determine the 

structural response to a nearby underwater explo

sion, it is necessary to first simultaneously solve 

the problem of scattering of the initial shock wave 

by the structure and the initial structural dynamic 

response problem and subsequently to simultane

ously solve the hydrodynamics problem of the 

pulsating bubble and the later structural dynamic 

response problem. This article describes such a 

study for the response of a submerged spherical 

shell using modern computation methodology for 

continuum mechanics. 

DESCRIPTION OF PROBLEM 

The spherical shell and the spherical explosive 

charge are submerged at such depths that the free 

surface and the ocean bottom have no effect on 

the loading and response. The line joining the 

centers of the shell and the explosive is parallel 

to the gravity vector and the problem is thus axi

symmetric with respect to this line. The standoff 

of the detonation from the shell is such that the 

explosion bubble will intersect and interact with 

the shell. 

The detonation of the spherical charge is initi

ated at its center and ideal detonation is assumed. 

At the time equal to the radius of the charge di

vided by its detonation velocity, the solid explo

sive is completely converted into high tempera

ture and high pressure gaseous products. The 

dynamic pUlsation of the gas globe, the bubble, 

can be described by the conservation principles 

of mass, momentum, and energy of gas dynamics 

together with an appropriate equation of state. 

Likewise, the propagation of the shock wave and 

the bubble pulse in water and the dynamic motion 

of the water are governed by the conservation 

principles of hydrodynamics and the equation of 

state for water. The dynamic response of the 

spherical shell can be calculated using an elas

toplastic shell theory taking into account both the 

geometric and the material nonlinearities. In the 

present study, the material viscosities in the ex

plosion gaseous product and the water, damping 

in the shell, as well as all heat transfer effects are 

neglected. The interaction among the shell, its 

surrounding water, the nearby gas bubble, the 

incident shock wave, and the bubble pulse can 

be analyzed in detail by solving these equations 

simultaneously. This can be carried out using 

modern finite element/difference computation 

methodology for continuum mechanics. 

Computation methods formulated in the Euler

ian scheme, where the material moves through 

the computational mesh fixed in space, are well 

suited for the bubble pulsation, collapse, and the 

bubble jet formation (Tipton et al., 1991). Meth

ods formulated in the Lagrangian scheme, where 

the computational mesh moves with the material, 

are well suited for the dynamic deflection of 

shells. Therefore, the present highly nonlinear 

problem needs to be analyzed in a coupled Euler

ian-Lagrangian or an arbitrary Lagrangian-Eul

erian formulation. A finite difference computer 

program named PISCES 2DELK (Hancock, 

1987) for solving these conservation equations is 

employed to carry out the required computation 

here. This program possesses a coupled Euler

ian-Lagrangian capability, equipped with La

grangian elastoplastic shell elements and uses a 



second-order accurate advection algorithm in its 

Eulerian computation. 

PISCES FINITE DIFFERENCE MESH 

Figure 1 is a close-up of the computational mesh 

for the vicinity of the spherical shell and the 

spherical charge prior to detonation. The gravita

tion vector points to the left. The shaded rectangle 

contains the Eulerian mesh fixed in space. The 

spherical shell is divided into Lagrangian axisym

metric shell segments being embedded in the Eu

lerian mesh to facilitate coupled Lagrangian-Eul

erian computation. The meridian of the shell is 

represented in the figure by the larger circle and 

the Lagrangian shell mesh cannot be shown 

clearly. Initially the spherical shell contains a vac

uum. The initial boundary ofthe spherical charge 

is denoted by the smaller circle. The charge is 

embedded in the Eulerian mesh. Water occupies 

the rest of the mesh exterior to the shell and 

the explosi ve charge. During dynamic motion and 

deflection, the Lagrangian shell mesh cuts across 

some portion of the Eulerian mesh. The coupled 

Lagrangian-Eulerian algorithm will activate 

these crosscut Eulerian elements and adjust their 

material contents to either water or gaseous prod

uct or vacuum according to the physical situation. 

It is known that the Lagrangian mesh is compu

tationally more efficient than the Eulerian mesh. 

Therefore it is both economical and appropriate 

to use Lagrangian mesh for regions where large 

mesh distortions are not expected. For the pres

ent problem, it is computationally more efficient 

to use Lagrangian mesh for regions sufficiently 

far away from the fully expanded bubble. Figure 

1 shows the Lagrangian mesh outside and the 

overlapping Lagrangian mesh inside the shaded 

rectangle. The inner boundary of the Lagrangian 

FIGURE 1 Close-up of the initial computation mesh. 
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FIGURE 2 Entire initial computational mesh. 

mesh is the arc near the perimeter of the rectan

gle. Again, the overlapping Lagrangian mesh is 

to facilitate coupled Lagrangian-Eulerian com

putation. The outer boundary of the Lagrangian 

mesh, i.e., the extent of the water included in the 

computation, depends on the problem require

ments. The computational effort could be mini

mized by including an optimum extent of the wa

ter and invoking a nonreflecting or transmitting 

boundary condition at the outer boundary of the 

Lagrangian mesh. For the present 2-dimensional 

problem, a large mesh is used to insure that no 

reflection from the outer mesh boundary affects 

the solution for one bubble pulsation period. Fig

ure 2 sketches the entire computational mesh 

prior to detonation. The dark areas therein are 

caused by the highly dense meshing used for those 

areas. For convenience, the present analysis uses 

a fixed boundary condition for the outer boundary 

of the Lagrangian mesh. 

NUMERICAL RESULTS AND 

DISCUSSION 

Computations are carried out for the case of the 

detonation of a spherical TNT charge underneath 

a steel spherical shell. The center of the charge 

is submerged at a depth of304.8 m (1,000 f1) while 

the center of the shell is at 295.50 m (969.54 ft). 

The solid charge has a radius of 0.575 m and a 

weight of 1298 kg (2862 lb). The middle surface 

radius and thickness of the shell are 5.08 m (200 

in.) and 0.1016 m (4 in.), respectively. It can be 

estimated using empirical formulas of underwater 

explosion (Keil, 1961) that the maximum bubble 

radius resulting from the free field detonation of 

this charge at this depth is 5.6 m and the duration 

ofthe first bubble pulsation is 0.187 s. To capture 

the significant interaction phenomena between 



454 Huang and Kiddy 

the bubble and the shell, the computation needs 

be carried out beyond 0.187 s. 

The solid TNT charge has a density of 1630 

kg/m3 and a detonation velocity of 6930 m/s. The 

charge is detonated at its center at time t = O. 

The detonation wave arrives at the surface of the 

charge at t = 8.297 X 10-5 s. At this time, the 

entire charge has been converted into gaseous 

product and the bubble begins to expand against 

the surrounding water. For the analysis of the gas 

dynamic behavior of the bubble, standard proper

ties and the JWL equation of state for the TNT 

explosion product (Dobratz, 1981) are used. The 

shell is made of high strength steel with a yield 

stress equal to 919.80 x 106 N/m2 (133,400 psi). 

Its density, Young's modulus, and Poisson's ratio 

are, respectively, 7893 kg/m3, 206.843 x 109 N/ 

m2 , and 0.3. For the present analysis of its large 

inelastic deformation, the Johnson-Cook consti

tutive model (Johnson and Cook, 1983), which 

also includes strain rate and temperature effects, 

is used. The water is treated as a compressible 

fluid with an initial density of 1000 kg/m3 • In the 

present PISCES computation, the polynomial 

equation of state for water is used. The cavitation 

pressure is set at 0.0 Pa. The Lagrangian shell 

mesh consists of 40 shell segments (axisymmetric 

elements). There are a total of 13,328 Eulerian 

zones (elements) and 7,884 Lagrangian zones in 

the entire computational mesh. In the shaded area 

and below the arc demarcating the outer Lagran

gian zones in Fig. 1, the dimensions of an Eulerian 

zone are 0.2 x 0.2 m. The zone sizes increase 

gradually toward the outer boundary of the entire 

mesh. For the present computations, the radius 

of the outer Lagrangian mesh boundary is set to 

be 300 m to ensure that the reflection from this 

boundary does not arrive at the region of interest 

for the time duration of about two periods of the 

bubble pulsation. PISCES 2DELK uses an ex

plicit method (the central difference method) for 

integrating the conservation equations forward in 

time. The time step used is less than the time it 

takes a stress wave to travel the length of the 

smallest element in the computational mesh. For 

numerical accuracy and stability, the computer 

program has built-in algorithms for automatic 

time step control (Hancock, 1987). 

Interaction of a Fixed Rigid Sphere and 
the Explosion 

To delineate the effects of the dynamic motions 

and deformations of the shell on the shell-bubble 

interaction, a computation is first carried out for 

the case in which the present shell is rigid and 

immovable while being subjected to the same de

scribed explosion. Figure 3 is a velocity vector 

plot for the fluid media at t = 2.039 X 10-3 sand 

infers that the initial spherical shock wave has 

just impinged upon the fixed sphere. The incident 

wave front pressure there is l.53753 x 108 Pa 

(22,300 psi), a rather strong shock wave, as calcu

lated by the empirical formula for TNT (Keil, 

1961). The double horizontal lines appearing in

side the smaller rectangle indicate the joining of 

the two Euler subgrids and have no effect on 

the numerical solution. Two subgrids are used 

because of limitations on the number of computa

tional zones allowed per Euler subgrid. Therefore 

the double horizontal lines have no meaning in 

this and many of the subsequent figures. Figure 

4 plots the time history of the volume of the explo

sion gaseous product and indicates that the bub

ble attains its maximum size at t = 0.094 sand 

is recompressed to its first minimum volume at 

t = 0.199 s. The first pulsation of the bubble has 

a period 0.012 s longer than that of the free field 

explosion. Figure 5 depicts the form of the bubble 

at t = 0.100 s intersecting the fixed sphere. Then 

the bubble volume decreases slightly from its 

maximum value and the pressure inside the bub

ble falls substantially below the ambient. In con

trast to a free-field bubble, only the portion of 

the bubble surface not intersecting with the fixed 

sphere is being pushed back by the surrounding 

water, i.e., less force is applied for the recompres

sion. This could explain why the first pulsation 

period of the bubble in this case is longer than 

that of a free field explosion. During this contrac

tion, the bubble remains attached to the fixed 

sphere. Figure 6 shows the torus shaped bubble 

near its minimum at t = 0.200 s. From the plot 

of momentum vectors at t = 0.200 s of Fig. 7, it 

FIGURE 3 Velocity vector plot showing the initial 

shock wave impinging upon the fixed sphere. 
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FIGURE 4 Time history of the volume of the bubble intersecting the fixed sphere. 

can be seen that a strong water jet has been 

formed, penetrating through the torus and impact

ing the fixed sphere. From the magnitude of the 

momentum vector, it is estimated that the veloc

ity of the water jet impacting the apex of the 

sphere is 350 mls (1,150 ft/s). Figure 8 plots the 

FIGURE 5 Bubble shape at 0.100 s, near its maxi

mum volume and attaching to the fixed sphere. 

FIGURE 6 Bubble shape at 0.200 s, near its minimum 

volume and attaching to the fixed sphere. 

shape of the reexpanding torus bubble at t = 0.220 

s. Figure 9 plots the time history of pressure at 

the apex of the fixed sphere first impinged upon 

by the initial shock wave, contacted by the ex

panding bubble, and impacted by the bubble jet. 

The significant loadings on the sphere are those 

FIGURE 7 Momentum vector plot showing the water 

jet impacting the fixed sphere at 0.200 s. 

FIGURE 8 Reexpansion of the torus bubble attaching 

to the fixed sphere at 0.220 s. 
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FIGURE 9 Pressure at the apex of the fixed sphere 

facing the explosion. 

due to the initial shock wave, the reflection and 

diffraction thereof, the bubble jet impact, and the 

bubble pulse. The significant bubble loadings are 

separated from the shock wave loadings by a time 

span roughly equal to the period of the first bubble 

pulsation. The initial water jet impact pressure 

can be estimated by the water hammer equation 

(Plesset and Chapman, 1971) that states that on 

a rigid surface it is equal to the product of the 

water density multiplied by the water sound speed 

and the jet velocity. Based on the estimated jet 

velocity of 350 mls (1,150 ft/s), the initial jet im

pact pressure is 5.75727 x 108 Pa (74,800 psi). 

The bubble loadings in Fig. 9 contain a very short 

duration high magnitude spike of 4.89527 x 108 

Pa (71,000 psi) due to the water jet impact and 

agrees closely with the water hammer equation 

estimation. These numerical results demonstrate 

that the computation methodology is robust and 

capable of rendering detailed results representing 

the physics ofthe problem and agreeing very well 

with the deduction from experimental observa

tions summarized in Cole (1948) and Snay (1957). 

Interaction of an Unrestrained Steel 
Spherical Shell and the Explosion 

Numerical results are then obtained for the case 

of the unrestrained steel shell subjected to the 

same explosion. Because the present article pur

ports primarily to study the interaction effects 

the hydrostatic prestress and the buoyancy ef~ 
fects of the shell are not included in the computa

tion. The initial shock wave front impinges upon 

the spherical shell at the same time as the previous 

FIGURE 10 Bubble shape and shell deformation at 

0.020 s. 

case of a rigid and fixed sphere. As expected, 

there is no difference in the results for the two 

cases up to this time. Figure 10 shows the shapes 

of the expanding bubble and the deforming shell 

at t = 0.020 s. It can be seen that the effect of 

the initial shock wave results in a shell dimple 

which is 0.26 m (10.2 in.) deep at this time. At 

t = 0.040 s, as portrayed in Fig. 11, the depth of 

the dimple has increased to 0.296 m (11.65 in.) 

and the pressure waves reflected and radiated 

by the shell flatten the opposing surface of the 

expanding bubble at this instant. From then on 

until near the time when the bubble contracts 

to its minimum size, the dimple depth remains 

roughly at this magnitude. This implies that dur

ing this time span, the shell moves primarily in the 

rigid body mode, being pushed by the expanding 

bubble and sucked back by the contracting bub

?le. The shell response motion causes the pulsat

mg bubble to assume different shapes than those 

~or t~e previous fixed sphere case at correspond

mg hmes. The time histories of the upward de

flections of the two apexes of the shell are plotted 

in Fig. 12 where A designates the apex first im

pinged upon and B the other apex on the far side. 

FIGURE 11 Bubble shape and shell deformation at 

0.040 s. 
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FIGURE 12 Time histories of shell deflections, A designates the front apex and B the rear apex. 

The time histories of the upward velocities of 

these two apexes are plotted in Fig. 13. The early 

time velocity (the kickoff velocity) of apex A can 

be estimated by the simple linear theory of the 

response of a vacuum backed rigid plate of infinite 
extent impinged upon by a plane underwater 

shock wave (Keil, 1961). Using the maximum 

pressure and the exponential decay constant of 

the shock wave of the present explosion calcu
lated by the empirical formulas for TNT (Keil, 

1961), the early time velocity of apex A is also 

calculated by this plate theory and a linear theory 

of transient interaction of spherical incident 

waves with a spherical elastic shell (Huang et aI., 
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1971). The results are compared to the nonlinear 

PISCES calculation in Fig. 14. The kickoffveloci

ties agree within 10%. Because a relatively coarse 

mesh is used in the PISCES calculation, it is not 

expected that the shock wave front could be well 
represented when it impinges on the shell. The 

agreement on the kickoff velocity is indicative 

that the PISCES result nevertheless gives a cor

rect initial impulse imparted to the shell by the 

shock wave, which is important for the prediction 

of structural damage. Figure 15 shows that at 
t = 0.060 s a small part of the expanding bubble 

protrudes out and touches the shell. Tracking the 

time history of the volume of the explosion prod-

R 
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FIGURE 13 Time histories of shell velocities, A designates the front apex and B the rear apex. 
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FIGURE 14 Comparison of results for the early time 

velocity of the shell apex facing the explosion. 

FIGURE 15 Shape of the bubble attaching to the steel 

shell at 0.060 s. 
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ucts, the numerical results indicate in Fig. 16 that 

this bubble also attains the same maximum vol

ume as the previous fixed sphere case at t = 0.093 

s but contracts to its minimum volume at t = 

0.193 s, 0.006 s earlier than the fixed sphere case. 

Figure 17 portrays the bubble near its maximum 

size and indicates that the bubble still intersects 

only a small area of the shell surface with a pro

truding part. Again, the pressure inside the bubble 

then has fallen substantially below the ambient 

and except for a small part contacting the shell, 

the bubble is being pushed back by the surround

ing water at most of its surface. The flow field 

associated with the contracting bubble and the 

intersection by the bubble cause an imbalance in 

pressure between the two sides of the opposite 

apexes and the shell thus is pushed back toward 

the explosion center as can be also seen from the 

time histories of the shell displacement in Fig. 

12. Figure 18 shows that the contracting bubble 

has detached from the shell. Figure 19 portrays 

the bubble and the shell at t = 0.180 s and reveals 

that the contracting bubble then assumes a pear 

shape with a dimple formed facing the shell. Fig

ure 20 portrays the bubble at t = 0.190 s near its 

minimum and the numerical results indicate that 

no bubble jet has been formed in sharp contrast 

to the previous fixed sphere case. Therefore, the 

bubble loading on this spherical shell is due to 

the bubble pulse only and is much different from 

that on the previous fixed sphere. Figure 21 shows 

that at t = 0.200 s the bubble reexpands with an 

irregular shape and that the bubble pulse results 

I I I I I I 
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FIGURE 16 Time history of the volume of the bubble interacting with the steel shell. 



FIGURE 17 Shape of the bubble interacting with the 

steel shell at O. 100 s. 

FIGURE 18 Detaching of the bubble from the steel 

shell at 0.160 s. 

FIGURE 19 Contracting bubble shape and shell de

formation at 0.180 s. 

FIGURE 20 Contacting bubble shape and shell defor

mation at 0.190 s. 
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FIGURE 21 Reexpanding bubble shape and shell de

formation at 0.200 s. 

in a large shell deformation that can also be corre

lated with the time histories of the shell deflec

tions and velocities in Figs. 12 and 13, respec

tively. At t = 0.200 s, the shell deflection at the 

frontal apex has increased to 1.34 m (52.76 in.). 

CONCLUSIONS 

The PISCES 2DELK coupled Eulerian-Lagran

gian computation method is very well suited for 

this type of problem. Its second-order accurate 

advection scheme in the Eulerian computation is 

capable of correctly tracking the surface of the 

pulsating bubble. By juxtaposing the results for 

the fixed sphere case and the unrestrained steel 

spherical shell case, it is shown that the shell 

response motion could be a significant factor in 

determining the characteristics of the flow field 

surrounding a nearby pulsating bubble and conse

quently strongly influences the manner of col

lapse of the bubble, the formation of the bubble 

jet, and the bubble pulsation period. This in turn 

will strongly influence the characteristics of the 

bubble loading on the structure. Therefore, to 

rigorously analyze the response of the structure, 

the interaction among the initial shock wave, the 

structure, its surrounding media and the explo

sion bubble need to be considered. 

REFERENCES 

Cole, R. H., 1948, Underwater Explosion, Princeton 

University Press, Princeton, Nl. 

Dobratz, B. M., 1981, LLNL Explosive Handbook, 

UCRL-52997, Lawrence Livermore National Labo

ratory, Livermore, CA. 

Geers, T. L., 1975, "Transient Response Analysis of 

Submerged Structures," in T. Belytschko, J. R. 

Osias, and P. V. Marcel, Finite Element Analysis of 



460 Huang and Kiddy 

Transient Nonlinear Structural Behavior, AMD-Vol. 

14, ASME, New York, pp. 59-84. 

Hancock, S., 1987, PISCES 2DELK Theoretical Man

ual, PISCES International bv, San Leandro, CA. 

Hicks, A. N., 1986, "Explosion Induced Whipping," 

in C. S. Smith and J. D. Clarke, Advances in Marine 

Structures, Elsevier Applied Science Publishers, 

Ltd., London and New York, pp. 390-410. 

Huang, H., Lu, Y. P., and Wang, Y. F., 1971, "Tran

sient Interaction of Spherical Acoustic Waves and a 

Spherical Elastic Shell," Journal of Applied Me

chanics, Vol. 38, pp. 71-74. 

Johnson, G. R., and Cook, W. H., 1983, "A Constitu

tive Model and Data for Metals Subjected to Large 

Strains, High Strain Rates, and High Tempera

tures," in Proceedings of the 7th International Sym

posium on Ballistics, The Hague, The Netherlands, 

pp. 541-554. 

Keil, A. H., 1961, "The Response of Ships to Under

water Explosions," Paper no. 7 presented at the 

Annual Meeting of the Society of Naval Architects 

and Marine Engineers, New York, November 

16-17. 

Plesset, M. S., and Chapman, R. B., 1971, "Collapse 

of an Initially Spherical Vapour Cavity in the Neigh

bourhood of a Solid Boundary," Journal of Fluid 

Mechanics, Vol. 47, pp. 283-290. 

Snay, H. G., Hydrodynamics of Underwater Explo

sions," in Symposium on Naval Hydrodynamics, 

1957, Publication 515, National Academy of Science, 

National Research Council, Washington, DC, pp. 

325-352. 
Tipton. R. E., Steinberg, D. J., and Tomita Y., 1991, 

"Bubble Expansion and Collapse Near a Rigid 

Wall," UCRL-102945, Lawrence Livermore Na

tional Laboratory, Livermore, CA. 



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


