Dry deposition of organic trace gases addresses a poorly quantified process in the atmosphere (3, 10). We estimate a lower and upper bound for the annual deposition flux of gas phase oVOCs between 37 and 56% relative to the annual NMVOC emission flux on a carbon basis (table S4). It is conceivable that oVOC deposition fluxes to vegetation could increase as a consequence of acute or chronic exposure to high O_3 concentrations in polluted regions (16). ### **References and Notes** - A. H. Goldstein, I. Galbally, Environ. Sci. Technol. 41, 1515 (2007). - 2. A. Guenther et al., Atmos. Chem. Phys. 6, 3181 (2006). - 3. M. Hallquist et al., Atmos. Chem. Phys. 9, 5155 (2009). - 4. R. Atkinson, J. Arey, Chem. Rev. 103, 4605 (2003). - 5. F. Paulot et al., Science 325, 730 (2009). - 6. J. Lelieveld *et al.*, *Nature* **452**, 737 (2008). - W. J. Collins, R. G. Derwent, C. E. Johnson, D. S. Stevenson, Clim. Change 52, 453 (2004). - 8. C. A. Paulson et al., J. Appl. Meteorol. 9, 857 (1970). - 9. M. L. Wesely, Atmos. Environ. 23, 1293 (1989). - L. Zhang et al., Atmos. Environ. 36, 537 (2002). R. Fall, Chem. Rev. 103, 4941 (2003). - H. H. Kirch, D. Bartels, Y. Wei, P. S. Schnable, A. J. Wood, Trends Plant Sci. 9, 371 (2004). - 13. L. K. Emmons et al., Geosci. Model Dev. 3, 43 (2010). - Materials and methods are available as supporting material on Science Online - 15. J. L. Jimenez et al., Science 326, 1525 (2010). - K. L. Denman et al., in IPCC 4th Assessment Report, Solomon et al., Eds. (Cambridge Univ. Press, Cambridge, 2007), chap. 7. - 17. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship from the National Science Foundation. # Supporting Online Material www.sciencemag.org/cgi/content/full/science.1192534/DC1 Materials and Methods Figs. S1 to S16 Tables S1 to S4 References 19 May 2010; accepted 6 October 2010 Published online 21 October 2010; 10.1126/science.1192534 Include this information when citing this paper. # Transient Middle Eocene Atmospheric CO₂ and Temperature Variations Peter K. Bijl, 1*† Alexander J. P. Houben, 1*† Stefan Schouten, 2 Steven M. Bohaty, Appy Sluijs, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, 4 Henk Brinkhuis The long-term warmth of the Eocene (\sim 56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO_2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO_2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; \sim 40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO_2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO_2 trends during the MECO suggests that elevated pCO_2 played a major role in global warming during the MECO. he Middle Eocene Climatic Optimum [MECO; \sim 40 million years ago (Ma)] (I) interrupts a long-term middle Eocene cooling trend (2), with a globally uniform 4° to 6°C warming of both surface and deep oceans within \sim 400,000 years, as derived from foraminiferal stable oxygen isotope records (3). A decrease in carbonate mass accumulation rates during the MECO argues for ocean acidification induced by a rise in pCO $_2$ (3). Application of paleo-pCO $_2$ proxies across the MECO has yet to confirm whether pCO $_2$ changes are indeed associated with this interval of transient warming. We investigated a sedimentary succession spanning the MECO recovered from the East Tasman Plateau at Ocean Drilling Program (ODP) Site 1172, which at that time was situated on the shelf (~65°S paleolatitude; Fig. 1 and figs. S1 and S2) (4, 5). To fully capture the magnitude of the sea surface temperature (SST) change associated ¹Biomarine Sciences, Institute of Environmental Biology, Faculty of Science, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands. ²Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, Post Office Box 59, 1790 AB Den Burg, Texel, Netherlands. ³School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK. ⁴Geochemistry, Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands. *These authors contributed equally to this work. †To whom correspondence should be addressed. E-mail: p.k.bijl@uu.nl (P.K.B.); a.j.p.houben@uu.nl (A.].P.H.) with the MECO at this site, we applied two independent temperature proxies: the alkenone unsaturation index $(U_{37}^{K'})$ (6) and the index of tetraethers consisting of 86 carbon atoms (TEX₈₆) (5, 7) (fig. S3). At the onset of the MECO, $U_{37}^{K'}$ and TEX₈₆ indicate a rise in SST of 3°C and 6°C, respectively, which, also at this location, stands out as an interruption of long-term middle Eocene cooling (Fig. 2). Bulk carbonate oxygen isotope values (δ^{18} O) decrease by 1.0 to 1.2 per mil (‰), which, if controlled by SST only, also indicate a SST rise of ~4° to 5°C (5). Additional evidence of warming is derived from assemblages of hypnozygotic organic cysts of surface-dwelling dinoflagellates (dinocysts) (5). Whereas the middle Eocene dinocyst record at ODP Site 1172 is dominated by taxa that are endemic to the Southern Ocean (8), an incursion of low-latitude dinocyst taxa characterizes the MECO (Fig. 2 and fig. S4). A SST increase of 3° to 6°C is consistent with inferences from benthic foraminiferal and fine-fraction carbonate oxygen isotope records at other sites (1, 3). The $U_{37}^{K'}$ and TEX₈₆ proxies are independent of seawater δ^{18} O. Hence, the consistent magnitude of warming between the proxies suggests that the carbonate δ^{18} O records were not affected by a change in δ^{18} O of seawater, and that global ice volume did not change considerably during the MECO. Absolute SSTs as indicated by U₃₇ and TEX₈₆ are consistent, with 26°C or 24°C just below the onset of the MECO for the two proxies, respective- ly, and peak MECO SSTs exceeding 28°C. These SSTs are much (\sim 10°C) higher than those derived from fine-fraction carbonate oxygen isotope measurements from elsewhere in the Southern Ocean (I, 3). At least part of this large discrepancy is most likely the result of diagenetic alteration of calcite (9). We assessed pCO_2 changes by determining the stable carbon isotopic composition (δ^{13} C) of alkenones, long-chained ketones exclusively synthesized by specific haptophyte algae. Carbon isotopic fractionation during carbon fixation (ε_n) by haptophyte algae varies as a function of dissolved CO₂ [CO_{2(aq)}] (10, 11), specific cell physiological parameters (which show good correspondence to the surface-water concentrations of soluble phosphate), and other environmental parameters, primarily light intensity (5). The carbon isotopic composition of diunsaturated alkenones ($\delta^{13}C_{C37:2}$) ranges between -32.5 and -35.5% (fig. S3). We used bulk carbonate δ^{13} C to estimate the δ^{13} C value of the dissolved inorganic carbon (DIC) pool in seawater (5) to determine ε_p . The data show background ε_p values of 21 to 22% rising up to 24.5% during MECO (Figs. 2 and 3 and fig. S3). The relationship between ε_p and pCO_2 is exponential, which results in a relatively large uncertainty in reconstructed pCO₂ levels with high $\varepsilon_{\rm p}$ values (Fig. 3). Temperature variations, however, play a minor role in the range of temperatures indicated by TEX_{86} and $U_{37}^{K'}$ (Fig. 2) and cannot explain the high ε_p values (Fig. 3). It seems unlikely that changes in light intensity (12) influenced $\varepsilon_{\rm p}$ substantially at ODP Site 1172 (5). The soluble phosphate concentration exerts a strong influence on the relation between ε_p and pCO_2 , particularly if ε_p values are high (5). To evaluate all possible absolute $p\text{CO}_2$ estimates from our record, we applied the full range of present-day surface-water phosphate concentrations. These vary between 0 μ mol liter⁻¹ in the oligotrophic gyres to >2 μ mol liter⁻¹ in the Southern Ocean (5) (fig. S5). Yet even when phosphate concentrations of 0 μ mol liter⁻¹ are assumed, ϵ_p values between 21.2‰ and 24.5‰ yield $p\text{CO}_2$ estimates between 600 parts per million by volume (ppmv) before the MECO and 6400 ppmv during the MECO (Figs. 2 and 3). Hence, elevated levels of $p\text{CO}_2$ must in part be responsible for the high ϵ_p values, with middle Eocene $p\text{CO}_2$ being more than twice the pre-industrial value. When we assume maximal phosphate concentrations of 2 μ mol liter⁻¹, pCO_2 ranges between ~2500 and ~24,000 ppmv (Figs. 2 and 3). The marginal marine Eocene East Tasman Plateau (4) likely experienced phosphate concentrations that **Fig. 1.** Paleogeographic configuration of the southern high latitudes during the middle Eocene (~49 to 37 Ma; map was obtained from www.odsn.de) and ocean surface current configurations inferred from general circulation model experiments (*13*). The orange star indicates the paleogeographic location of ODP Site 1172 at 65°S in the southwest Pacific Ocean (*24*), under the influence of the Antarctic-derived Tasman Current (TC). were higher than 0 μmol liter⁻¹ but lower than 2 umol liter⁻¹, because closed oceanic gateways during the Eocene (13) prevented mixing associated with the Antarctic Circumpolar Current (ACC) that causes high phosphate levels in the present-day Southern Ocean. Eocene southwest Pacific surface-water phosphate concentrations were unlikely to have exceeded 1 μmol liter⁻¹, which implies maximum pCO₂ estimates of 1600 ppmv just before the MECO and 15,000 ppmv during the MECO (Figs. 2 and 3). With a realistic range of phosphate concentrations, pCO_2 values were between 600 and 1600 ppmv just before the MECO, which is in line with previous estimates of middle Eocene pCO2 values using the same proxy (14), and rose to between 6400 and 15,000 ppmv during the MECO (Fig. 2, light gray band). MECO values exceed any previous Eocene alkenone-based estimate even when we assume phosphate concentrations of 0 µmol liter⁻¹ (5). Despite uncertainties regarding absolute pCO2 values, we note that the trends in pCO_2 follow those in the SST records remarkably well (Fig. 2). Surface-water phosphate concentrations, however, may have varied in a marginal marine setting at ODP Site 1172. A tool for the reconstruction of phosphate concentration uses the remains of dinoflagellates (dinocysts), which are known to be **Fig. 2.** Geochemical and palynological results across the MECO at ODP Site 1172, Hole A, cores 42X to 47X. The MECO is identified by integrating magnetostratigraphy (25), biostratigraphy (25), and chemostratigraphy (3) (see fig. 52). The $\mathsf{U}_{37}^{\mathrm{Kr}}$ (purple), TEX_{86} (red), and bulk $\delta^{18}\mathsf{O}$ (green) SST reconstructions show a warming of 3° to 6°C. The yellow shaded area delimits the MECO interval. The increase in percentage of low-latitude dinocysts (in orange) at the expense of endemic dinocysts during the MECO illustrates biotic response to warming. We estimated $p\mathsf{CO}_2$ from carbon isotopic fractionation during carbon fixation (ϵ_p ; black) by haptophyte algae with phosphate concentrations between 0 and 1 μ mol liter $^{-1}$ (light gray band). We further constrained phosphate estimates (dark blue line) by allowing phosphate concentrations to vary between 0.1 \pm 0.1 μ m liter $^{-1}$ and 0.9 \pm 0.1 μ m liter $^{-1}$ as a function of the ratio of peridinioid over gonyaulacoid dinocysts (P/G ratio; light blue line). This results in further constrained pCO_2 estimates (dark gray band). TEX₈₆, U $_{37}^{K'}$, oxygen isotope, and pCO_2 data are plotted with a 3-point running mean (solid orange, purple, green, and red lines, respectively). The error bars on TEX₈₆ and U $_{37}^{K'}$ represent analytical error. On ϵ_p the error bars represent the difference between the use of TEX₈₆ and U $_{37}^{K'}$ to determine ϵ_p . **Fig. 3.** Relationship between ε_p [versus VPDB (Vienna pee dee belemnite) standard] and pCO_2 . The phosphate concentration ranges plotted are those from the present-day surface ocean, and the SST ranges (22° to 30°C) are those inferred from TEX₈₆ and $U_{37}^{K'}$ data presented in Fig. 2 and a suite of Southern Ocean sites (22, 26–28). The gray vertical bar indicates the values for ε_p as reconstructed for the MECO interval at ODP Site 1172, with use of TEX₈₆-based and $U_{37}^{K'}$ -based SST reconstructions for these same levels, and bulk carbonate δ^{13} C measurements on the same section. Black horizontal line represents present-day pCO_2 . Figure is modified from Pagani *et al.* (10). extremely sensitive to surface-water nutrient availability changes (5). The ratio between peridinioid and gonyaulacoid dinocyst groups (the P/G ratio) is often used to reconstruct changes in relative nutrient abundance (15). The MECO at ODP Site 1172 shows a major decrease in the P/G ratio (16) (Fig. 2), suggesting a decrease in nutrient concentrations (16). As an experiment, we allowed phosphate to linearly vary as a function of the P/G ratio (Fig. 2) (5). The most prominent shift toward low P/G ratios occurs at MECO warming, resulting in lower phosphate concentration estimates. Also, when this drop in phosphate is taken into account, pCO₂ rises during the MECO and follows the SST trends (Fig. 2, dark gray band). Hence, regardless of the constraints on phosphate concentrations and other environmental parameters, pCO2 levels must have been substantially higher during the MECO relative to the middle Eocene background. One outstanding issue is the source of carbon responsible for the increase in middle Eocene atmospheric CO_2 . The rise in pCO_2 by 2000 to 3000 ppmv emerging from our data requires a carbon source capable of injecting vast amounts of carbon into the atmosphere. Moreover, the absence of a prominent negative carbon isotope excursion excludes reservoirs with $\delta^{13}C$ signatures below that of marine DIC (3). One mechanism capable of emanating carbon with such a geochemical signature is the metamorphic alteration of carbonates (decarbonation) (1). Massive decarbonation occurred until the late Eocene, with the subduction of vast amounts of Tethyan Ocean pelagic carbonates under Asia as India drifted northward (17-19). However, the flux of carbon required to increase pCO_2 by 2000 to 3000 ppmv within ~400,000 years appears too high to invoke metamorphic (volcanic) outgassing as the sole mechanism. Our pCO_2 and SST reconstructions allow for a tentative assessment of high-latitude climate sensitivity to CO₂ forcing on ~100,000-year time scales, assuming that all MECO warming was caused by pCO2 and associated feedbacks. With an average 5°C SST increase and a factor of 2 to 3 increase in pCO_2 , we arrive at a climate sensitivity of $\sim 2^{\circ}$ to 5°C per pCO_2 doubling. When we consider the pCO_2 decline from the Middle Eocene (~2000 ppmv; this study) to the latest Eocene (~1000 ppmv) (20) and the coeval highlatitude temperature decline (~3.5°C) (21, 22), we derive similar values. Thus, long-term climate sensitivity to pCO_2 forcing in a world without the amplifying effects of ice-albedo feedbacks (23) may have been larger than previously anticipated. # **References and Notes** - S. M. Bohaty, J. C. Zachos, Geology 31, 1017 (2003). - 2. J. Zachos, M. Pagani, L. Sloan, E. Thomas, K. Billups, *Science* **292**, 686 (2001). - 3. S. M. Bohaty, J. C. Zachos, F. Florindo, M. L. Delaney, Paleoceanography 24. PA2207 (2009). - N. F. Exon, J. P. Kennett, M. J. Malone, Eds., Proceedings of the Ocean Drilling Program, Scientific Results (U.S. Government Printing Office, College Station, TX, 2003), vol. 189. - 5. See supporting material on Science Online. - S. C. Brassell, G. Eglinton, I. T. Marlowe, U. Pflaumann, M. Sarnthein, *Nature* 320, 129 (1986). - S. Schouten, E. C. Hopmans, E. Schefuß, J. S. Sinninghe Damsté, Earth Planet. Sci. Lett. 204, 265 (2002). - H. Brinkhuis, S. Sengers, A. Sluijs, J. Warnaar, G. L. Williams, in *Proceedings of the Ocean Drilling Program, Scientific Results*, N. F. Exon, J. P. Kennett, M. J. Malone, Eds. (U.S. Government Printing Office, College Station, TX, 2003), vol. 189, pp. 1–48. - 9. P. N. Pearson et al., Nature 413, 481 (2001). - 10. M. Pagani, *Philos. Trans. R. Soc. London Ser. A* **360**, 609 (2002). - 11. Surface ocean CO₂(aq) originates from atmospheric CO₂ and deep waters, of which the latter is of major importance in marginal marine upwelling areas. Changes in upwelling through time may substantially change CO₂(aq) and hence would skew the reconstructed pCO₂ record. At Site 1172 we argue that a change in upwelling is not responsible for the signal we recorded in the alkenones, because that would have led to prominent shifts in the bulk carbonate carbon isotope profile (figs. S2 and S3). - 12. B. Rost, I. Zondervan, U. Riebesell, *Limnol. Oceanogr.* **47**, 120 (2002). - 13. M. Huber *et al.*, *Paleoceanography* **19**, PA4026 (2004). - M. Pagani, J. C. Zachos, K. H. Freeman, B. Tipple, Bohaty, Science 309, 600 (2005); 10.1126/science.1110063. - A. Sluijs, J. Pross, H. Brinkhuis, Earth Sci. Rev. 68, 281 (2005). - 16. U. Röhl et al., Geophys. Monogr. 151, 127 (2004). - D. V. Kent, G. Muttoni, Proc. Natl. Acad. Sci. U.S.A. 105, 16065 (2008). - J. C. Aitchison, J. R. Ali, A. M. Davis, J. Geohys. Res. 112, B05423 (2007). - G. Dupont-Nivet, C. Hoorn, M. Konert, Geology 36, 987 (2008). - P. N. Pearson, G. L. Foster, B. S. Wade, *Nature* 461, 1110 (2009). - 21. J. C. Zachos, G. R. Dickens, R. E. Zeebe, *Nature* **451**, 279 (2008). - 22. Z. Liu et al., Science 323, 1187 (2009). - M. Pagani, Z. Liu, J. LaRiviere, A. C. Ravelo, *Nat. Geosci.* 27 (2010). - N. Exon, J. P. Kennett, M. Malone, *Geophys. Monogr.* 151, 367 (2004). - C. E. Stickley et al., in Proceedings of the Ocean Drilling Program, Scientific Results, N. F. Exon, J. P. Kennett, M. J. Malone, Eds. (U.S. Government Printing Office, College Station, TX, 2003), vol. 189, pp. 1–57. - 26. C. E. Burgess et al., Geology 36, 651 (2008). - 27. C. J. Hollis et al., Geology 37, 99 (2009). - 28. P. K. Bijl et al., Nature 461, 776 (2009). - 29. This research used samples and data provided by the Ocean Drilling Program (ODP) sponsored by NSF and participating countries under the management of Joint Oceanographic Institutions Inc. We thank Utrecht University and the LPP foundation (P.K.B.), Statoil (A.J.P.H.), and the Netherlands Organization for Scientific Research (Vici grant to S.S.; Veni grant 863.07.001 to A.S.) for financial support. A.S. acknowledges the European Research Council under the European Community's Seventh Framework Program for ERC Starting Grant 259627. Groundwork for this research was provided at the Urbino Summer School of Paleoclimatology, We thank N. Welters, 1, van Tongeren. J. Ossebaar, E. Hopmans, M. Kienhuis, G. Nobbe, E. van Bentum, E. Speelman, and E. van Soelen for technical support and M. Pagani, C. Stickley, J. Zachos, and two anonymous reviewers for invaluable discussions and ## Supporting Online Material www.sciencemag.org/cgi/content/full/330/6005/819/DC1 Materials and Methods SOM Text Figs. S1 to S5 Tables S1 to S3 11 June 2010; accepted 17 September 2010 10.1126/science.1193654 # Transient Middle Eocene Atmospheric CO₂ and Temperature Variations Peter K. Bijl, Alexander J. P. Houben, Stefan Schouten, Steven M. Bohaty, Appy Sluijs, Gert-Jan Reichart, Jaap S. Sinninghe Damsté and Henk Brinkhuis Science **330** (6005), 819-821. DOI: 10.1126/science.1193654 The Dependable Warmer During the middle of the Eocene, about 40 million years ago, a transient warming event interrupted the long-term cooling trend that had been in progress for the previous 10 million years. **Bijl et al.** (p. 819; see the Perspective by **Pearson**) constructed records of sea surface temperature and atmospheric CO₂ concentrations across the warming period. It appears that vast amounts of CO₂ were injected into the atmosphere, and a sea surface temperature increase of as much a 6°C accompanied the atmospheric CO₂ rise. ARTICLE TOOLS http://science.sciencemag.org/content/330/6005/819 SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2010/11/03/330.6005.819.DC1 MATERIALS RELATED http://science.sciencemag.org/content/sci/330/6005/763.full file:/contentpending:yes REFERENCES This article cites 23 articles, 8 of which you can access for free http://science.sciencemag.org/content/330/6005/819#BIBL PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions Use of this article is subject to the Terms of Service