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Abstract 

We have visualized macroscopic transient pores in mechanically stretched giant 

vesicles. They can be observed only if the vesicles are prepared in a viscous solution to slow 

down the leak-out of the internal liquid. We study here theoretically the full dynamics of 

growth (driven by surface tension) and closure (driven by line tension) of these large pores. 

We write two coupled equations of the time evolution of the radii r(t) of the hole and R(t) of 

the vesicle, which both act on the release of the membrane tension. We find four periods in 

the life of a transient pore : (I) exponential growth of the young pore; (II) stop of the growth at 

a maximum radius rm; (III) slow closure limited by the leak-out; (IV) fast closure below a 

critical radius, when leak-out becomes negligible. Ultimately the membrane is completely 

resealed. 
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I. Introduction 

Forcing the passage of molecules, or genes, through a cellular membrane is a central 

problem of drug delivery. Model experiments based on vesicles represent a first step in this 

direction. A variety of physical techniques have been proposed to increase the permeability of 

lipid bilayers : 

a) raising the osmotic pressure inside a vesicle induces a surface tension σ, and the 

permeability (of dyes, or of spin labels) is significantly increased [1] 

b) if a bilayer becomes stuck on a porous surface (e.g. with a cationic bilayer and a 

negative surface) it tends to invade the pores; this again creates a tension σ  and an 

extra permeability [2] 

c) instead of a porous medium it is possible to use a patched solid surface, some 

regions being attractive, and some being neutral or repulsive : a vesicle stuck on 

this surface becomes more permeable, or even breaks [3] 

d) electroporation is a classical technique [4, 5] : with voltage drops of the order of 1 

Volt across the bilayer, some large pores can be induced. 

In a recent series of experiments [6] some of us have studied giant vesicles where the 

tension σ could be established by two different ways : 

(i) adhesion on an attractive surface, which generates flattened vesicles 

(ii) irradiation of a vesicle (doped with suitable fluorescent dyes). For some 

(mysterious) reason, the equilibrium area per polar head under illumination is 

slightly reduced, and a tension σ appears (within minutes). An effect of the same 

kind was reported for unlabeled vesicles submitted to laser tweezers [7]. This 

optically induced tension is very convenient, because it allows to work in a simple 

(spherical) geometry. 
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Another important trick introduced in ref. [6] amounts to replace water by a more 

viscous mixture of water and glycerol (typical viscosity η0=30cPoises). This allows to 

observe the formation, growth, and ultimate closure of large pores (radius r ≈ a few microns). 

The role of glycerol is explained in ref. [6] : a large pore allows for a certain leak-out of the 

inner compartment which has been known for some time [5, 8]. Leak-out reduces the tension 

σ, and leads to pore closure. But with glycerol this leak-out becomes very slow, and we can 

watch large pores persisting over long times (seconds). Some of the salient features of growth 

and closure in the slow leak-out limit have been modelized in ref. [6]. 

Our aim in the present paper is to make the theoretical discussion more general, in two 

directions : 

a) we discuss fast leak-out as well as slow leak-out 

b) it is assumed in ref. [6] that the growth and the late stages of closure were 

dominated by the internal viscosity η2 of the lipid layer. This was correct for the 

experiments at hand, but in some other cases, all steps may be governed by the 

solvent viscosity η0. This limit is discussed here in an appendix. 

In section II we construct the dynamical equations describing the pore size r(t) and the 

overall radius R(t) of the vesicle – allowing for fast or slow leak-out. We display some 

numerical result on r(t) for a few typical cases. In section III we concentrate on the slow leak-

out regime : here, it is possible to derive explicit formulas describing the four major time 

intervals involved : growth (I), bloom (II), leak-out (III) and ultimate closure (IV). Some of 

the physical questions which appear are discussed in section IV. 
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II. Transient pores 

1) Counting the areas 

The geometry is shown on Fig. 1. We constantly assume that the pore area (πr
2) is 

much smaller than the overall area of the envelope sphere (4πR
2). We call Ri the radius of the 

original vesicle under initial tension (σ0) and R0 the radius in zero tension (σ=0). 

The lipid area AL differs from 2
04 Rπ  because tension stretches our system : 

 





 +=

E
RAL

σπ 14 2
0  (1) 

where E is a two dimensional modulus. In the regime of interest here (weak tensions) 

E is not related to the Van der Waals interactions in the lipid. It is in fact controlled by the 

unfolding of “wrinkles” (fluctuations) of the surface [9]. 
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where Kb is the Helfrich bending constant [10] and kT is the thermal energy. The 

overall distribution of areas is ruled by : 
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It is sometimes convenient to define a critical pore radius rc which corresponds to the 

complete relaxation of the tension (σ=0) in situations of zero leakage (R=Ri). Thus 

 
E

Rrc
02

0
2 4

σ
=  (4) 

2) Rate equations 

a) changes of the pore radius r(t) are driven by two forces : 

(i) the tension σ  (favoring expansion) 

(ii) the line energy ℑ  of the pore (favoring closure) 
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When the internal viscosity of the bilayer is dominant [11], this leads to 

 
rr

r
d

ℑ
−= ση


22  (5) 

where d is the lipid thickness. In most macroscopic physical systems, r/ℑ  is a 

negligible correction. But here it is important, because the tensions σ are unusually small in 

vesicles. 

b) Leak-out provides a way of changing the overall solvent volume, as explained in 

ref. [5, 6, 8]. The leak-out flux is 

 2 const. rVQ L=  

where VL is the leak-out velocity. The shear stresses involved in this outward flow are 

of order η0VL/r where η0 is the solvent viscosity. They are balanced by the Laplace pressure 

p=2σ/R. The result is 

 RRr
R

Q 23

0

4
3
2 π
η
σ

−==  (6) 

On the whole, we now have three equations (3, 5, 6) for three unknowns (r, R, σ). 

3) Non dimensional form 

In the following, we consider small variations of the vesicle radius ( )δ+= 10RR  and 

( )00 1 δ+= RRi  at t=0, with δ,δ0<<1. Then the critical pore radius introduced in Eq. (4) is 

given by 2
00

2 8 Rrc δ= . The two radii can be expressed in reduced units : 
cr

r
r~ =  and 

0

0

δ
δδ∆ −

= . This latter represents the drop of the vesicle radius due to leak-out : ∆ varies 

from 0 to 1 as R decreases from Ri to R0. The reduced time is 
τ
t

t
~ =  with 

 
d2

0

2
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Introducing the reduced surface tension 
0σ

σσ =~ , Eq. (3) rewrites 

 ∆σ −−= 21 r~~  (8) 

The differential equations (5, 6) are normalized as 
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The system (5’, 6’) contains only two adjustable parameters 
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The boundary conditions are ( ) ir
~t

~
r~ == 0  and ( ) 00 ==t

~∆ . 

The radius cLL rr~r =  is the upper pore size determined by leak-out first introduced in 

ref. [6]. The two extreme cases are (i) instantaneous release for rL=0 : pore never opens (ii) 

gelified content for ∞→Lr
~  : there is no leak-out at all, and ( ) 0=t

~∆  all the time. Then Eq. 

(5’) reduces to ( )21 r~r~

t
~

d

r~d
−=  and can be solved analytically, as in [6] : 

 t
~

r~
r~
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r~
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=
−
−

− 2

2

1

1
2
1

 (11) 

4) Numerical simulations 

In the following we take as a conjectural value 150.r~i =  for the initial radius, which 

comes from the fits of Eq. (11) with experimental data on vesicles that burst irreversibly [6]. 

We vary Lr
~  in a broad range (10-2 to 104) as a model of the thickening of the ambient liquid. 

Simulations are performed using the simple Newton algorithm with a variable time step t
~∆  

and an iteration number N ranging from 4000 to 160000 for the largest Lr
~ . We show here 

typical results : 
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i) Fast leak-out ( 10<Lr
~ ) 

For the lowest values 12 1010 −− −=Lr
~ , we see “aborted” pores with a dynamics in 

three stages only : growth (I), maximum (II) and fast closure (IV). The slow closure regime 

(III) appears clearly for 1≥Lr
~ , as seen on Fig. 2(a). It becomes broader when Lr

~  increases 

further. An intriguing result is that the final drop of the vesicle radius ∞∆  (or equivalently the 

surface tension at end ∞σ~ ) is not a monotonous function of Lr
~ . Instead, ∞∆  has a maximum 

( ∞σ~  has a minimum) near 110−=Lr
~  : see Fig. 2(b), 2(c). A look to the curves of the outward 

flow on Fig. 2(d) helps to understand this. The peak value of Q decreases monotonously with 

Lr
~ , but the peak shape is not symmetrical : the left tail is lacking at 210−=Lr

~ , while there is a 

wide spread right tail for 1≥Lr
~ . The release of the vesicle content and the relaxation of 

surface tension being proportional to the integral of Q, they are both maximum at 110−=Lr
~ , 

which corresponds to a nearly symmetrical peak with maximum area. This means that there is 

a solvent viscosity that maximizes the delivery of the vesicle content : this effect could be 

useful for drug delivery by artificial vesicles and endocytosis processes involved in cells. 

ii) Slow leak-out ( 1>>Lr
~ ) 

In that case, the slow closure (III) takes much more time than the three other stages of 

the long-lived pores. The closure velocity V3 (defined as the slope of the curves on Fig. 3(a)) 

decreases when Lr
~  increases, for a given value of ℑ~ . But the radius 34r~  at the crossover 

between slow (III) and fast (IV) closures does not vary ( 4034 .r~ ≈  on that example). The final 

value of ∆ (and hence of the vesicle radius) is also constant, as seen on Fig. 3(b) : in the slow 

leak-out case, raising the solvent viscosity increases the pore lifetime, but it does not change 

the efficiency of the content release. However, one should keep in mind that Eq. (5) stands for 
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a viscous dissipation dominated by the flows of lipid. For a very viscous content ( ∞→Lr
~ ), a 

more appropriate model is developed in the Appendix. 

iii) Influence of the line tension 

The first role of the line energy ℑ~  is to limit the pore nucleation. If ir
~~ >ℑ  (or 

ir0σ>ℑ ), the force acting on the pore edge is always negative, and it shrinks immediately. 

The other effects are studied by varying ℑ~  among three values : 0.05, 0.10 and 0.14(<0.15). 

We chose 5=Lr
~ , an intermediate value between fast and slow leak-out, which fits 

rather well our experimental results (that will be presented in a forthcoming paper). It is clear 

on the curves of Fig. 4 that, at higher line tension : (a) the pore reaches a smaller maximum 

radius mr
~  and closes faster; (b) the decrease of the vesicle radius (and so the released volume) 

is smaller; (c) there is less relaxation of the surface tension at end; (d) the peak of the outward 

flow occurs at a later time. This last observation means that, for 10<Lr
~ , the line energy ℑ~  

plays a role even in the growth regime (I) : it slows down the pore opening which cannot be 

described simply by Eq. (11). 

The two closure regimes (III) and (IV) depends also directly on ℑ~ . The plot of the 

closure velocity (i.e. the negative values of r~ ) vs. pore radius (e) shows two parts : −a plateau 

between mr
~  and 34r~  corresponding to regime (III) at almost constant velocity denoted V3 −an 

acceleration of the closure, with a final velocity ℑ=∞
~

r~ . This fast regime (IV) will be 

discussed in the next section. 

iv) Scaling laws (Fig. 5) 

In order to compare the simulations to analytical formulas derived in section III, we 

analyze here the variation of some characteristic features of the curves with the two control 

parameters Lr
~  and ℑ~  : 
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(a) the maximum pore radius mr
~  vs. Lr

~  

mr
~  starts to increase with Lr

~ , then it saturates at a level that depends on ℑ~  only. 

(b) the slow closure velocity vs. Lr
~  

Although the pore radius )t
~

(r~  appears linear in time during regime (III), a better 

linear regression is obtained when we plot )t
~

(r~ln  vs. t
~ . The slope is then plotted as a 

function of Lr
~  for the three values of ℑ~ . We find a scaling law that is valid from 10=Lr

~  to 

410=Lr
~  (over three decades) : 

 
Lr

~

~

)..(
t
~

d

)r~(lnd ℑ
±=

 30530
(III)

 (12) 

For smaller Lr
~ , this law overestimates the slope, which tends to a value that depends 

on ℑ~  only. Below 110−=Lr
~ , regime (III) is undistinguished from the final closure at velocity 

ℑ=∞
~

r~  (the difference between ℑ~  and the saturation levels on Fig. 5(b) comes from the semi-

logarithmic plot). 

(c) the surface tension at the end ∞σ~  vs. ℑ~  

For 10>Lr
~ , ∞σ~  is independent on Lr

~  and fits the scaling law 32891 /~
.~ ℑ=∞σ . 

In the following section, we derive analytical developments of the solutions )t
~

(r~  for 

the “slow leak-out limit” 1>>Lr
~ . Interestingly, we have shown here numerically that, in 

practical, the condition 10>Lr
~  is sufficient to ensure the validity of the scaling laws. 
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III. The slow leak-out limit 

We can solve the adimensional equations (5’) and (6’) in the limit of slow release 

1>>Lr
~ . This condition simplifies the analytical resolution because the characteristic time of 

leak-out ττ LL r~≅  is much larger than the rise time τ. Therefore the initial growth of the pore 

is decoupled from the slow release of the encapsulated liquid. We analyze in this limit the 

four regimes of the life of a transient pore defined on the experimental curve (Fig. 1). 

Regime (I) : Growth 

At time t=0, a pore nucleates at a radius ri. This nucleation may be induced by a 

surface defect (dust particle, chemical heterogeneity, …) or by thermal activation. The pore 

grows for ℑ> ~
r~i . At short times, we have the following approximations : 

 




=
=

1

0

σ
∆
~  or with dimensional units 





=
=

0σσ
iRR

 (13) 

Eq. (5’) then reduces to r~

t
~

d

r~d
= , i.e. : 

 t
~

ier~r~ ≅  τ/t
ierr ≅  (14) 

In the limit 1>>Lr
~ , the solution over the whole regime I verifies ∆=0, and the pore 

radius is given by Eq. (11) as in the case ∞→Lr
~ . 

Regime (II) : Maximum radius 

The hole grows up to mr
~ , and starts to decrease. At its maximum size, 0=mr

~  leads to 

a first relation : 

 ℑ= ~~r~ mmσ  ℑ=mmr σ  (15) 

where mmm r~~ ∆σ −−= 21 . We can estimate ∆m by using a scaling solution of Eq. (6’) : 

 
L

m

L

m
mm

r~

~

r~

r~

~
r~

ℑ
=≅ 23 σ∆  

L

mmi
r

rRR
0

222 4
σ

ℑ
≅−  (16) 
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In the limit 1>>Lr
~ , mr

~  becomes close to one, and ∆m<<1. Eq. (15) leads to : 

 ( )21 mm r~r~
~ −≅ℑ  (17) 

i.e. 
2

1
ℑ

−≅
~

r~m  
02σ

ℑ
−≅ cm rr  (18) 

The parameter 0σ/ℑ  has a simple meaning : it is the nucleation radius of a pore (in 

conditions of ideal nucleation) as derived from a pore energy ℑ− rr πσπ 20
2 . Indeed, this 

radius is small (<1µm). 

The numerical simulations show that the maximum pore radius fits well Eq. (17) as 

soon as 20>Lr
~  with less than 1% uncertainty : Fig. 5(a). The linearized form (18) becomes a 

good approximation for small values of ℑ~ . 

The curvature ℑ−=−=−= ~

r~
r~

r~

~
r~r~r~

L

m

L

m
mmmm

3
4 σ∆  tends to zero like 1−

Lr
~  when ∞→Lr

~ . 

Regime (III) : Quasistatic leak-out (r23>r>r34) 

As r(t) starts to decrease, σ(r,R) grows : a release of the inner liquid is then necessary 

in order to maintain an almost zero surface tension. More precisely, the pore closes if the 

driving force is negative, i.e. : 

 ℑ< ~~r~σ  ℑ<σr  (19) 

We shall see that the inequality (19) is very nearly an equality : in regime (III) the 

driving force of Eq. (5) is nearly zero r/ℑ≅σ  or 

 1<<
ℑ−

σ
σ r/

 (20) 

We may say the regime (III) is quasistatic. A detailed argument for this follows : 

We calculate the derivative of Eq. (5’) : 

 ( ) ( )∆∆  +−−−= r~r~r~r~r~r~ 21 2  (21) 
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In this regime, the closure velocity is very slow, and we can assume ℑ≅ ~~r~σ  to 

evaluate ℑ≅ ~

r~
r~

L

2

∆ . Eq. (21) becomes : 

 02
3

2 ≅ℑ−







−

ℑ
≅ ~

r~
r~

r~

r~

~

r~r~

L

  (22) 

We set 0=r~  because the scale time variation for leak-out is Lr
~  times larger 

( 1
1

<<≅
Lr

~r~
r~




) : the closure is at almost constant velocity. If 3r~2

~ <<ℑ  (or r>r34, which 

defines the limit of regime (III), where the pore is not too small so that leak-out has a 

significant effect), the first term between parentheses in Eq. (22) is negligible. This leads to : 

 02 ≅ℑ+ ~

r~
r~

r~

L

  (23) 

Introducing r23 and t23 as the cross-over values between regimes (II) and (III), the 

solution is : 

 ( )23
23 2

t
~

t
~

r~

~

r~
r~

ln
L

−
ℑ

−=  ( )232
0023 3

2
tt

Rr

r
ln −

ℑ
−=

πη
 (24) 

This formula is very closed to the scaling law deduced from Fig. 5(b). A linearized 

form of Eq. (24) is ( )







−

ℑ
−≅ 2323 2

1 t
~

t
~

r~

~

r~r~

L

. Taking into account that mrr ≅23 , we find an 

approximate expression for the closure velocity during regime (III) : 

 2
00

3 3
2

R

r
V m

πη
ℑ

≅  (25) 

Regime (IV) : Fast closure (r<r34) 

When the size of the hole becomes too small, leak-out is nearly suppressed. The radius 

r34 at cross-over between regimes (III) and (IV) has already been introduced, and verifies : 
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 ℑ≅ ~
r~

3
342  

0

2
3

342
σ

crr
ℑ

≅  (26) 

The vesicle has almost reached a constant radius ∞R  and Eqs. (5’, 6’) becomes : 

 
( )







≅

ℑ−−−= ∞

0

1 2

∆

∆


 ~
r~r~r~

 
(28)

(27)
 

Assuming that ℑ≅ ~~r~σ  is still valid at the cross-over enables to estimate the surface 

tension at the end : 

 322
34

2
34

34

89131 /~
.r~r~

r~

~
~ ℑ≅≅+

ℑ
≅−= ∞∞ ∆σ  (29) 

This relation (also verified on the numerical simulations) shows that the vesicle 

recovers a non-negligible surface tension at the end of the pore closure. For example above 

40% of the initial tension is maintained for 100.
~ =ℑ . This could explain why series of 

successive pores are observed in the experiments. 

The fast closure of the pore is governed by Eq. (27), which rewrites : 

 ( ) 3
34

22
34 23 r~r~r~r~r~ −−=  (30) 

We do not propose an analytical solution that would be valid for the whole duration of 

regime (IV). Instead, we just look at the final stage, when the equation is linear : 

 





 −≅ 34

2
34 3

2
3 r~r~r~r~  (31) 

This is a good approximation after a time t4 that is defined arbitrarily such as 

 ( )
3
34

4
r~

t
~

r~ =  (32) 

Then the integration leads to : 

 ( ) 23
2
3

1 4
2

34
34

lnt
~

t
~

r~

r~
r~

ln −−=







−  (33) 

which can be linearized as 
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 ( )4343
22

t
~

t
~~

r~
ln

r~ −ℑ−≅  (34) 

Therefore it appears that the final closure of the pore is at constant velocity : 

 
d

V
2

4 2η
ℑ

≅  (35) 

This linear regime is valid over a range that is not negligible, since ( ) 31
4 260 /~

.t
~

r~ ℑ≅  

(for example ( ) cr.tr 1204 ≅  for 100.
~ =ℑ ). 

IV. Conclusions 

1) A thickening of the solution increases the size of transient pores. The cross-over 

between “fast” and “slow” leak-out is ruled by 
d

R
rL

2

2
00

η
η

≅ . If 1<= cLL r/rr~ , the blooming of 

pores (regime II) occurs for a radius Lm rr ≅  : pores abort before reaching the equilibrium size 

rc, because enough surface tension is relaxed by the fast release of the vesicle content. If 

1>Lr
~ , a full blooming of pores is allowed : slowing down leak-out leads to mature pores, 

now at almost their equilibrium radius. After blooming, pores close slowly (regime III), 

before dying abruptly (regime IV). In the limit of slow leak-out ( 1>>Lr
~ ), the dynamical 

equation for r(t) can be derived by a simple scaling argument. Line tension closes the pore 

with a net power that equilibrates the entropy production per unit time : 

 3
2

0 r
r

V
STr L 






==ℑ− η  (36) 

The viscous losses are due to flows of solution through the pore. The leak-out velocity 

has already been estimated as 
R

r
VL

0η
σ

= . The closure is quasi-stationary and we can use 

approximation (20) to get 
R

VL

0η
ℑ

≅ . Thus Eq. (36) rewrites 
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 r
R

r 2
0

2

η
ℑ

=ℑ−   (37) 

This simple expression contains the salient features of regime (III) : the logarithm of 

the pore radius decreases linearly in time, with a slope in agreement with Eq. (24). Of course 

the exact prefactor cannot be obtained by this scaling argument. 

2) Looking back at Fig. 1, our theoretical picture allows us to derive with a good 

accuracy two important parameters of the membrane: the surface viscosity ηs=η2d and the 

line energy of a pore. Indeed the ratio between the velocities in the two linear regimes (III) 

and (IV) contains ηs as the only unknown : 

 
smr

R

V

V

η
ηπ 0

2
0

3

4

4
3

=  (38) 

The values R0=14.5µm, rm= 4.5µm, -22
0 Nsm1023 −×= .η (=32cPoise), V3=0.9µm/s and 

V4≈9µm/s are measured. Thus we calculate -17 Nsm1053 −×≈ .sη ( sesurfacePoi1053 4-×= . ). 

The thickness of a phospholipid bilayer being d≈3.5nm, we predict the bulk viscosity of 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) : -2
2 Nsm100≈η (=105cPoise). We calculate 

also (from V3 only) N1060 11−×≈ℑ . . The usual measurements of line energies ℑ  are 

extremely delicate [4, 5, 8, 12], and ℑ  is expected to be sensitive to certain lipid impurities. 

We have studied one extreme case, based on the well-known effect of cholesterol to stiffen 

the bilayers. Our preliminary results show that the line energy is three times larger for a 

membrane containing DOPC and 30mol% cholesterol. 

3) The presence of glycerol may modify the membrane characteristics and the two-

dimensional mobility of lipids. Vesicles of DOPC containing a hydrophobic fluorophore were 

studied by time-resolved fluorescence spectroscopy [13]. The rotational motion of the 

molecular probe was slowed down at high glycerol content (in a 91:9 w/w mixture of glycerol 

and water, the rotation time becomes three times larger than in water). This result tells us that 
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a slight viscous thickening of the lipid is observed, but no dramatic effects are reported. This 

is crucial because the maximum size of transient pores in the fast leak-out limit is 2
0

0 Rr
s

L η
η

≅ . 

If we assume no dependence of ηs on the glycerol content, the size of transient pores in pure 

water are expected to be thirty times smaller : 100-200nm. These pores open and close before 

reaching a visible size in optical microscopy. But their presence explains certain anomalous 

permeabilities observed for stretched adhesive vesicles [14]. They have also been observed in 

the membrane of human erythrocytes [15]. The authors used a very clever setup to freeze the 

cells with a controlled time delay after electroporation, and observe them later by electron 

microscopy. Despite statistical scatter among the cells, they reached a good insight of the pore 

dynamics. They divided it into three stages : (i) within 3ms, pores expand rapidly up to 20-

40nm in diameter (ii) between 20ms and 220ms they saturate at a maximum diameter of 100-

160nm (iii) after 1s to 5s almost all the pores have shrank. This scenario looks similar to ours 

except that the scales of times and pore sizes are about thirty times smaller. 

4) We assumed that, at all times, σ  is uniform all over the vesicle. This means that no 

rim surrounds the hole. This is the signature of plug flows extending over large distances, 

which have been observed in the bursting of polymer “bare” films (i.e. with no surfactants, 

[11]). An experimental evidence of this assumption is that no bright circle around the pore is 

visible in fluorescence microscopy. This simplification may be lost when the membrane 

viscosity is no more dominant. Our experiments on liquid/liquid dewetting have shown that 

indeed a rim appears when dissipation in the bulk liquid overcomes dissipation in the film 

[16]. 

Note added in proof: While this paper was in review, we became aware that Eq. (15) 

in H. Isambert, Phys. Rev. Lett. 80 (1998) 3404-3407 is an equivalent form of our Eq. (11) for 

the pore radius vs. time in the case of negligible leak-out. 
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Appendix : transient pores in low viscosity membranes 

We now study the opposite limit, when the viscous dissipation in the membrane is 

small compared to the dissipation of the backflows induced by the pore opening in the 

surrounding liquid. The extension of Eq. (5), incorporating a mixed dissipation both in the 

membrane and in the solvent may be written as 

 ℑ−=+ σηη rrdrr  20 2  (A1) 

The first term is the contribution of the viscous dissipation in the solvent. It can be 

justified by the following scaling argument. The entropy production per unit time is 

3
2

0 r
r

r
ST 






≅

 η , where r3 is the volume of the flows occurring through the pore. The transfer 

of surface and line energies into viscous losses leads to Eq. (A1). Notice that for the 

backflows in the solvent, we have only a scaling form and we do not know the exact 

numerical coefficient. This is not true for the second term, because dissipation due to radial 

plug flows in the membrane was calculated exactly. 

We study here the case where solvent dissipation is dominant. This implies 

dr 20 ηη >> . Eq. (A1) then becomes 

 ℑ−= ση rrr0  (A2) 

 where 







−
−

−−= 2
0

2

22

2

2

0 1
RR

RR

r

r

i

i

c

σσ  

The other rate equation (describing leak-out) is not modified 

 3

0

2

3
2

4 r
R

RR
η
σπ =−   (A3) 

Eqs. (A2, A3) with initial conditions 
0

0
σ
ℑ

>== ir)t(r  and R(t=0)=Ri describes the 

full life of transient pores in that limit. At short times the pores grow at constant velocity 
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0

0

η
σ

=gr , where σ0 is the stress before hole opening. We can define a characteristic time of 

growth 
0

0

σ
ητ c

g

c r

r

r
' ==


 (A4) 

Eqs. (A2, A3) can be written in adimensional units 
cr

r
r~ = , 

'

t
't

~

τ
= , 

0

0

δ
δδ∆ −

=  and 

0σ
σσ =~  as 














=

−−=

ℑ−=

'r

r~~

't
~

d

d

r~~

~~r~

't
~

d

r~d
r~

L

3
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σ∆

∆σ

σ

 (A5) 

where 
cr

~

0σ
ℑ

=ℑ  and 
2

2
0

c

L
r

R
'r =  

Because the same viscosity is involved in the pore expansion and in solvent release, η0 

does not show up in the controlled parameter. In addition the pore can reseal only if  rc<R0 

(otherwise the vesicle bursts irreversibly). Therefore in practice 1>'rL , which means that 

when dissipation in backflows dominates, the pores are always in the slow leak-out regime. 

Pores will open at constant velocity gr  (I) up to a large size rm (II). Then they close slowly 

during step (III) which is identical to the previous case, with a closure velocity 
2
00

3 3
2

R

r
V m

πη
ℑ

≅ . 

The cross-over radius 34r  between slow and fast closure is unchanged. But the fast regime 

(IV) is entirely different. Eq. (A1) shows that ( )ttr −
ℑ

≅ ∞
0

2

η
, i.e. the slope as 0→r  

becomes infinite. The line tension can still be deduced, from the curvature of r(t) near r=0. 

Numerical simulations of Eq. (A5) are shown in Fig. 6 for several values of 'rL  (=5, 10, 50). 
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Glossary 

r pore radius η2 lipid viscosity 

ri pore radius at nucleation ηs surface viscosity 

rc pore radius at zero tension η0 viscosity of solution  

R vesicle radius VL leak-out velocity 

Ri initial vesicle radius Q leak-out flux 

R0 vesicle radius at zero tension rL characteristic radius of leak-

out 

Kb Helfrich bending constant τ rise time of pore growth (I) 

E surface stretching modulus rm radius at maxium (II) 

d membrane thickness r23 pore radius at cross-over 

between (II) and (III) 

ℑ  line tension V3 slow closure velocity limited 

by leak-out (III) 

σ surface tension r34 pore radius at cross-over 

between (III) and (IV) 

σ0 surface tension before pore 

opening 

V4 fast closure velocity at end 

(IV) 
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Figures and captions 

(a)  

 

 

Fig. 1 : Typical experiment (a) time sequences of a transient pore in a giant vesicle stretched 

by intense illumination; the membrane lipid is DOPC labeled as described in ref. [6]; the 

solvent is a 71:29 w/w mixture of glycerol and water, with a measured viscosity 

η0=32±0.4cPoise; the solutes are sucrose 0.1M inside, glucose 0.1M outside; (b) 

corresponding measurement of pore radius vs. time, showing four stages in the pore 

dynamics. 
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(III) V3=0.9µm/s 

(IV) V4≅9µm/s 
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Fig. 2 : Fast leak-out regime − numerical simulations of Eqs. (5’, 6’) for constant line tension 

10.
~ =ℑ  and different low values of the leak-out parameter 105110010 −−−−= ..r~L ; (a) 

pore radius r~  vs. time t
~ ; (b) drop of vesicle radius ∆ vs. time t

~ ; (c) surface tension σ~  vs. 

time t
~ ; (d) liquid outflow Q in the early times. 
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Fig. 3 : Slow leak-out regime − numerical simulations of Eqs. (5’, 6’) for constant line tension 

10.
~ =ℑ  and different high values of the leak-out parameter 433 1010210 −×−=Lr

~ ; (a) pore 

radius r~  vs. time t
~ ; (b) drop of vesicle radius ∆ vs. time t

~ . 



(a)
0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0 50 100 150 200 250
time

po
re

 r
ad

iu
s

0.05
0.05
0.05
0.1
0.14

 

(b)
0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

0 50 100 150 200 250
time

dr
op

 o
f 

ve
si

cl
e 

ra
di

us 0.05

0.05

0.05

0.1

0.14

 

(c)
0

0.1
0.2

0.3

0.4
0.5

0.6

0.7

0.8
0.9

1

0 50 100 150 200 250
time

m
em

br
an

e 
te

ns
io

n 0.05

0.05

0.05

0.1

0.14

 

(d)
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20
time

liq
ui

d 
ou

tf
lo

w 0.05

0.1

0.14

 



(e)
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.2 0.4 0.6 0.8 1
pore radius

cl
os

ur
e 

ve
lo

ci
ty

0.05

0.05

0.05

0.1

0.14

 

 

Fig. 4 : Influence of line tension − numerical simulations of Eqs. (5’, 6’) for constant leak-out 

parameter 5=Lr
~  and three different line tensions 14010050 ...

~ −−=ℑ ; (a) pore radius r~  vs. 

time t
~ ; (b) drop of vesicle radius ∆ vs. time t

~ ; (c) surface tension σ~  vs. time t
~ ; (d) liquid 

outflow Q in the early times; (e) closure velocity 0<r~  vs. pore radius r~ . 
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Fig. 5 : Scaling laws − the leak-out parameter Lr
~  is varied over a broad range, and three 

values of the line tension ℑ~  are studied : 0.05 (closed circles), 0.1 (open circles) and 0.14 

(closed triangles); (a) maximum pore radius mr
~  vs. Lr

~ ; (b) closure velocity during regime (III) 

(slope of semilogarithmic plot )t
~

(r~ln  vs. t
~ ) vs. Lr

~ . 
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Fig. 6 : Dissipation dominated by backflows − numerical simulations of Eqs. (A5) for 

constant line tension 10.
~ =ℑ  and different values of the leak-out parameter 50105 −−='rL ; 

(a) pore radius r~  vs. time t
~ ; (b) drop of vesicle radius ∆ vs. time t

~ ; (c) surface tension σ~  

vs. time t
~ ; (d) liquid outflow Q in the early times; (e) enlarged view of the growth (I); (f) 

enlarged view of the final stage (IV). 
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