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Abstract
We present the first transient pressure measurements and high-speed
visualization of gas bubbles passing through liquid-filled microchannel
contractions. We have studied contractions ranging from 100 to 500 µm in
glass tubes of main diameter 2 mm and compared the experimental results
with the recent model of quasi-stationary bubble motion by Jensen,
Goranović and Bruus (2004 J. Micromech. Microeng. 14 876) valid for low
flow rates. The influence of the wetting angle is studied by coating a tube
with a hydrophobic solution. Transient pressure measurements, bubble
deformations and the influence of the bubble length on the so-called
clogging pressure �Pc are shown to be in good agreement with the model,
both in terms of maximum values and in terms of transient evolution. Some
deviations from the model are also observed and possible reasons for these
are investigated, such as (a) contact line pinning, (b) thin liquid film along
the bubble modifying capillary pressure and (c) viscous pressure drop in the
contraction. Experiments with increasing flow rates show that two regimes
govern the pressure transients of the bubbles passing the contractions: a
quasi-stationary regime for low capillary number and a viscosity-influenced
regime for non-negligible capillary numbers. We propose a criterion based
on a modified capillary number to discriminate between these two regimes.

1. Introduction

In a typical microfluidic system [1], the fluid flows into
channels with diameters ranging from 3 mm to 50 µm, along a
path involving multiple branching and contractions. The cross
section of these channels is either round (tubing) or rectangular
(due to microfabrication techniques), with some branching,
e.g., in the valving part. Materials range from ceramic and
stainless steel to polymer (PTFE, Tygon, Peek) and silicon,
each having different wetting properties. There are a number
of examples where the functionality of a microfluidic system
relies on the presence of gas bubbles such as micropumps

3 Present address: Department of Mechanical Engineering, Columbia
University, New York NY 10027, USA.

using bubbles as actuators [2], devices where drops are
used as chemical reactors [3], devices creating controlled
liquid–liquid emulsions [4], and especially liquid–gas
emulsions [5–8]. However, in other cases unwanted bubbles
may appear in microfluidic systems due to cavitation,
electrochemistry or priming (filling) of the microchannels, and
they may become problematic if they get stuck in contractions,
which are present in the microfluidic system due to some
functionality such as valves, tree branching or nozzles. For
instance, when a bubble is stuck in a corner or in a dead-
flow zone, it can be extremely difficult to dislodge it, resulting
in a reduction in dynamic performance or accuracy of the
microfluidic device. Therefore, an entire batch of MEMS
microfluidic devices can be ruined by only one problematic
geometric feature. These problems were already identified a
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Figure 1. (a) Sketch of the gas–liquid–solid system with channel
profile r(x), main diameter D, contraction diameter d, left and right
contact angles θL and θR, left and right contact line positions xL and
xR, length of the contraction �con and local tapering angle θt.
(b) Photograph of a gas bubble (dark gray) entering from the left
into a liquid-filled (white) tube with a 490 µm contraction. The flow
rate Q of the liquid is 0.33 µl s−1.

decade ago [9, 10], but were not studied in depth before the
problem was picked in the recent theoretical study of Jensen,
Goranović and Bruus [11].

The pressures needed to move a bubble through a
contraction of minimum diameter d, filled with a liquid of
viscosity µ and surface tension σ , are related to the laminar
friction and the free surface forces. In the laminar regime,
the friction contribution for flow rates Q is proportional to
µQ�con/d

4, where �con is the contraction length, while the
free surface contribution due to the Young–Laplace pressure
is non-zero and proportional to σ/d as soon as the tube
diameter or its wetting properties changes [12]. The resulting
pressure transient may be several kPa, and if the bubbles
are large enough to span across the microchannel this may
block the flow. The minimal external pressure needed to
drive such bubbles out of the channel is called the clogging
pressure �Pc. The goal of our work is to contribute to the
solution of this important technological problem by studying
bubble dynamics in a well-defined microchannel contraction.
We begin by presenting the experimental setup and describe
the measurement method. Then we give a short review of
the theoretical and numerical models used. We move on to
compare and discuss the numerical and experimental results,
and finally we give some concluding remarks.

Figure 2. Measurement setup allowing for transient visualization and pressure measurement during the transport of a microbubble in a
microchannel.

Table 1. List of the tubes used in this work: tube ID, the main
diameter D, the contraction diameter d, bubble length L, measured
and simulated clogging pressures �P m

c and �P s
c , respectively, and

the relative deviation DEV between them defined as DEV =
(�P s

c − �P m
c )/�P m

c .

D d L �P m
c �P s

c DEV
ID (mm) (µm) (mm) (Pa) (Pa) (%)

A7 1.78 490 0.6 330 420 21
3.1 420 500 16

13.8 420 500 16
A8 1.70 264 1.1 877 790 −11

4.7 877 750 −17
12.0 877 840 −4

A19 1.83 103 1.5 2720 2400 −13
3.1 2720 2410 −13
3.5 2720 2670 −2

10.0 2720 2450 −11
A27 2.20 196 4.0 460 510 10

2. Capillaries and experimental setup

For the experimental part of the work, different capillary
glass tubes of circular cross section were used, see table 1.
The tubes with contractions as shown in figure 1 were
manufactured in the glass shop of Stony Brook University.
We only work with smooth contractions, thereby avoiding
problems with cavitation as seen in microfluidic systems with
sudden contractions [13]. The tubes have typical internal
main diameters D = 2 mm and contraction diameters d
ranging between 100 and 500 µm. In a given experiment,
a single capillary tube was connected via stiff polymer (FEP)
connection tubes to a syringe pump and a large reservoir, as
shown in figure 2.

A single bubble was inserted in the tube and moved at
steady flow rates ranging from 0.1 to 200 µl s−1. Most
experiments were performed at 0.33 µl s−1 to keep the
laminar friction contribution to the pressure drops negligible.
A MEMS-based piezoresistive differential pressure sensor
(Honeywell 143PC03D) was connected through a Y-
connection between the syringe pump and the tube. After
calibration with a digital pressure controller (Druck DPI 530)
accurate to 0.1% full scale, it measured the pressure difference
across the bubble in a range of ±17 kPa, with a response time
of 1 ms and a resolution of ±20 Pa. The pressure signal was
acquired with an HP multimeter and Labview, at a maximum
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sample rate of 100 Hz. The motion of the bubble was observed
either through the stereo microscope visible in figure 2 or
through a microscope objective and a Firewire high-speed
camera.

While performing experiments several precautions were
taken to ensure that the measurements were reproducible. The
interior of the glass tubes was soaked in a solution of 5%
Contrad (Fisher Scientifics) overnight and then abundantly
rinsed with deionized water. No other solvents nor alcohol
were put in the tubes as any residue might change surface
properties, e.g., the wetting angle. The water used in
the experiments was deionized with a Millipore Milli-DI
purification system. The wetting angle was measured for a
bubble at equilibrium and for velocities corresponding to flow
rates of 17.0, 3.33 and 0.33 µl s−1. The geometry of the
tubes was measured from the camera pictures and corrected
for the magnification effect induced by the curved walls of
the glass tube. The latter effect was tested by matching
the volume injected in the tube with the experimental and
numerical positions of the left and right menisci of the bubble.

3. Theory and modeling

A theoretical frame for interpreting our experimental results
is provided by implementing the model for quasi-stationary
motion of a gas bubble in a microchannel contraction discussed
by Jensen, Goranović and Bruus [11] and adapting it to the
channel geometries discussed in this paper. We find that
this simple model is in good agreement with most of our
observations, and in the cases of deviations from experiments
it is used as a starting point for pointing out possible theoretical
improvements.

On the basis of a microscope picture of a given tube, a
spline was fitted to obtain the shape r(x) of the contraction, see
figure 1. This shape is in turn used for numerical prediction of
the pressure �Pb(x) = Pin −Pout across a bubble as a function
of its position, where Pin and Pout are the pressures at the
tube inlet and outlet, respectively, the latter being atmospheric
pressure. A bubble is defined by its volume Vb and the value
of the receding (left) and advancing (right) contact angles,
θL and θR, at the contact lines of the left and right menisci,
respectively. The total pressure drop �Pb can be written
in terms of the pressure drops �Pσ , due to capillary forces
(simulated by the above-mentioned model), and �Pfric, due to
laminar flow friction,

�Pb = Pin − Pout = �Pσ + �Pfric

= 2σ

[
cos[θR − θt(xR)]

r(xR)
− cos[θL − θt(xL)]

r(xL)

]

+ αβ
128µ�con

πd4
Q, (1)

where θt(x) is the local tapering angle of the tube shape r(x),
α is a factor close to unity that depends on the shape of
the contraction, β is a constant between unity (for a bubble
outside the contraction) and zero (for a bubble spanning the
contraction) and �con is the length of the contraction.

For most of the measurements in this paper, the flow rate
is so low, Q = 0.33 µl s−1, that the contribution �Pfric is
negligible. This is verified by noting that when the gas bubble
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Figure 3. Direct measurements with the MEMS pressure sensor
(dots) and simulation based on measured shape (full line) of the
pressure across a long L = 8 mm bubble in tube A7 for
Q = 0.33 µl s−1 as a function of displaced liquid volume Vin = Qt ,
where t is the time. The differential pressure sensor measures
�Pb = Pin − Pout. The observed values of the advancing and
receding wetting angles used for the simulations are 10◦ and 9◦,
respectively. The inset indicates the bubble length L, the liquid flow
rate Q and the pressures Pin and Pout. The positive and negative
pressure peaks occur during the passage through the contraction of
the right and left menisci, respectively.

is not in the contraction the Young–Laplace pressure drop at the
two menisci cancels, and �Pb = �Pfric. Direct measurements
in this case yield Pfric = 3, 24 and 482 Pa for tubes A7, A8
and A19, respectively. Clearly, Pfric can be neglected for the
wide tubes A7 and A8, but not for the narrow tube A19. This
issue is discussed further in section 4.5.

4. Results and discussion

In the following, we present and discuss our results in five
parts: transient pressure and interface curvature, transient
pressure and bubble breakup, clogging pressure as a function
of tube diameter, influence of wetting angle and influence of
flow rate.

4.1. Transient pressure and interface curvature

In figure 3 are shown the measured and simulated pressure
drops �Pb(x) = Pin − Pout across the bubble, according to
the definition of equation (1), as a function of the displaced
liquid volume in the tube. Two peaks are seen: a positive
one at Vin ≈ 51 µl and a negative one at Vin ≈ 72 µl.
They correspond to the passage through the contraction of
the left and right bubble menisci, respectively. Before and
after the two menisci have passed the contraction, the pressure
difference across the bubble nearly vanishes, because the
advancing and receding wetting angles are equal at such low
capillary number, and only the very small laminar viscous
contribution remains.

In the simulation, the two peaks are symmetrical. For the
first peak, the agreement between the measured and simulated
pressures is good. Peak heights (within 20%), widths (5 µl)
and shapes are comparable.

As we shall discuss here, and again in section 4.4, the
magnitude of the second (negative) pressure peak is much
smaller in the measurement than in the simulation, and a small
pressure spike is visible around 72 µl. Two possible reasons
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Figure 4. Direct measurements with the MEMS pressure sensor
(black circles) and calculation from measured curvatures (white
circles) of the pressure across a short L = 1 mm bubble. The tube
and flow conditions are the same as in figure 3.

for these are (1) that the rear meniscus of the bubble is pinned
by interactions with impurities on the glass surface or by
interactions with a film left by the front meniscus and (2) that
a thin liquid film between the bubble and the glass participates
significantly in the pressure drop. Since the measured values of
the advancing and receding wetting angles were relatively low
(respectively, 10◦ and 9◦, without influence of the velocity), it
appears that our system can be considered as hydrophilic. It
is therefore worth investigating if a thin water film is formed
along the bubble and interacts with the two menisci of the
moving bubble. The thickness h of a film left behind a fully
wetting meniscus moving at velocity U with low capillary
number Ca = µU/σ in a tube of radius r can be described by
the Bretherton law [14]

h

r
∝ Ca

2
3 . (2)

For tubes with diameters of 2.0 to 0.1 mm and flow rate
0.33 µl s−1, the meniscus velocity is U = 0.1 to
40 mm s−1 and Ca = 10−6 to 5×10−4. The thickness h of the
water film left behind is therefore between 200 and 600 nm.
The existence of such a liquid film was shown by measuring
the passage of electrical current in the saline solution film
along a bubble-occluded contraction by Geng et al [15].

The first hypothesis, i.e., that the rear meniscus is
flattened by pinning, has been tested by measuring with a
high-speed camera the temporal evolution of the menisci
curvatures. In figure 4, the pressure calculated from the
meniscus curvature (white circles) is compared with the direct
pressure measurement (black circles). The symmetrical shape
of the indirect pressure curve is a good sign that flattening of the
meniscus is not responsible for the dissymmetry in the peaks of
the direct pressure curve measured with the MEMS pressure
sensor. However, when the tube is contaminated, we have
observed flattening of the rear meniscus and a corresponding
change in measured pressure. This stick–slip motion of the
meniscus corresponds to a sawtooth profile of the measured
pressure across the bubble.

The second hypothesis, i.e., interactions with a thin film,
has been tested to some extent by observing interferences of
white light with the bubble–tube contact surface. A diffraction
pattern was observed and evolved to a steady pattern over a
time of approximately 60 s: this transient phenomenon is likely
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Figure 5. Measurements (dots) and simulation (full line) of the
pressure drop �Pb across an L = 3.1 mm bubble in tube A19 for
Q = 0.33 µl s−1 as a function of displaced liquid volume Vin = Qt .
Note that this tube has the most narrow contraction (d = 103 µm)
studied in this work. The viscous pressure drop, neglected in the
modeling, is now significant and explains the difference in the base
level of the two curves. Between the positive and negative pressure
peaks, the measured sawtooth-shaped pressure curve has a nearly
constant period denoted by �Vin = 0.54 µl.

to indicate the presence of a thin film and its dewetting. It has
been shown by Redon et al [16] that such a thin film contracts
or dewets as a function of viscosity µ, surface tension σ and
contact angle θ with the approximate contraction velocity V

given by

V = 1

120
√

2

σ

µ
θ3, (3)

provided that the film thickness h is much smaller than a critical
film thickness hc = 2λcap sin(q/2) = 400 µm, where λcap =
2.7 mm is the capillary length. In our case, the film thickness
is indeed much smaller than hc. For the water–glass system,
we obtain V = 2 mm s−1. During the observed dewetting
time of approximately 60 s, the meniscus in our experiments
travels a distance between 6 mm (in the main channel) and
2400 mm (in the smallest contraction). Interactions between
the dewetting film, its geometry or disjoining pressure [17] and
one of the two bubble menisci are therefore very likely and
might be responsible for discrepancies between the measured
and simulated pressures, as in figure 3, but these considerations
are outside the scope of this study. It must be noted that a
laser fringe probing has recently been used to quantitatively
monitor the liquid film thickness along a bubble in a liquid-
filled capillary [18].

4.2. Transient pressure and bubble breakup

Experiments have been made with a tube exhibiting a more
narrow contraction (tube A19, 110 µm contraction), as shown
in figure 5. The viscous pressure drop, neglected in the
modeling, is now significant and explains the difference in
the base level of experimental and theoretical curves. The
magnitude of the first pressure peak is comparable with the
numerical simulation; however, the shape is not in a good
agreement with the simulation. Also, oscillations of the
pressure occur at well-defined volume steps �Vin during the
entire phase where the bubble is spanning the contraction.
The discrepancy in the shape of the first pressure peak can
be explained by the fact that our measurement system is not
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Figure 6. (a)–(d ) Pictures of an L = 1 mm bubble advancing in
tube A19 under the same flow conditions as in figure 5. The
positions xL,1, xR,1, xL,2 and xR,2 of the left and right menisci are
indicated on the snapshots extracted from a visualization at 600 fps.
The circle in snapshot (c) at time t = 5.8 s shows the initiation of
the instability generating the menisci. (e) The positions are plotted
as a function of Vin. The vertical lines to the right of the gaps in the
measurement points represent the start and end of a period. The size
�Vin = 0.54 µl of the periods was observed to be uniform and to
coincide with the oscillations in figure 5. The gaps, such as that at
82.75 µl, indicate the reconnection into a single bubble and the
corresponding disappearance of the intermediate menisci.

infinitely stiff. We have measured that the volume of our
measurement system increases by about 1 µl per kPa internal
pressure. Although this deformation is negligible with respect
to the overall system volume of about 12 000 µl, it is enough to
reduce the ascending slope of the first pressure peak observed
in figure 5 and correspondingly delay the occurrence of the
positive pressure peak.

The sawtooth pressure profile is due to instabilities
occurring when the bubble passes through a long contraction
with large aspect ratio: the single bubble breaks into several
smaller bubbles that can merge back and separate with a given
frequency. This mechanism is shown in figure 6, where the
positions of these sub-bubbles have been visualized with our
high-speed camera at 600 fps and measured. This instability
involves the creation and destruction of interfaces and
induces sawtooth perturbations in the pressure measurement.
Comparison between figures 5 and 6 shows a good agreement
in terms of the period �Vin = 0.54 µl of the perturbation. It is
not known for now if the breakup is due to the elongated shape
of the contraction itself or due to the large diameter ratio.

4.3. Clogging pressure as a function of tube diameter

The clogging pressure �Pc is defined as the minimum pressure
needed to push a bubble through the contraction [11]. We have
measured the clogging pressures for four different micro-tubes
with contractions and for different lengths L of the bubbles.
The results are summarized in table 1.
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Figure 7. Measured (dots) and simulated (full and dotted line)
pressure drops �Pb across an L = 4 mm bubble for Q =
0.33 µl s−1 as a function of displaced liquid volume Vin = Qt . The
bubble moves in tube A27 covered with a hydrophobic layer of
rainX, and the observed wetting angles used in the simulation are
θR = 39◦ and θL = 89◦. For comparison is shown a simulation
(dashed line) based on the wetting angles for the untreated
(hydrophilic) tube.

The tubes have contraction diameters d between 103 and
490 µm, and the corresponding range of clogging pressure
�Pc is from 2.7 to 0.3 kPa. The experimental and numerical
pressure values agree within 20%. For a given contraction,
the amplitude of the first pressure peak is constant for bubbles
larger than the contraction length. For small bubbles, this is
no longer true since both menisci are in the contraction when
the pressure reaches its maximum value [11].

4.4. Influence of wetting angle

The influence of the wetting angle was tested by coating the
inside of a tube, A27, with a hydrophobic layer of rainX and
passing an L = 4 mm bubble through this tube. As seen in
figure 7, the measured and simulated pressure drops are in
agreement. The simulated curve is based on the measured
wetting angles: θR = 39◦ and θL = 89◦. In both simulation
and experiments, the first pressure peak is much larger than
the second, and the qualitative features of the first and second
peaks are well matched. The numerical simulation with
wetting angles corresponding to a non-coated tube is also
plotted for comparison, and it shows large discrepancies with
the other two curves.

The better agreement between theory and experiment
observed in figure 7 as compared to figure 3 may be understood
in terms of the theoretical results obtained by de Gennes et al
[19] regarding the formation of a thin wetting film. This theory
shows that for an increased contact angle, as the 39◦ in figure 7,
a wetting film only arises at higher velocities, while a wetting
film is formed more easily at the lower contact angle, such as
the 10◦ in figure 3. Thus, our theoretical model leaving out
the wetting film may be more adequately applied for systems
with large contact angles.

4.5. Influence of the liquid flow rate

A long L = 10 mm bubble was moved in tubes A7, A8 and
A19 with contraction diameters of 490, 103 and 264 µm,
respectively, at flow rates ranging from 0.1 to 160 µl s−1.
The maximum amplitudes |�P | of the positive and negative
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Figure 8. (a) Maximum amplitudes |�P | of the positive (pos) and
negative (neg) pressure peaks observed as the bubble passes through
the contraction versus flow rate Q for a long L = 10 mm bubble in
tubes A7, A8 and A19 with contraction diameters of 490, 103 and
264 µm, respectively. (b) Same data as in panel (a), but now
expressed in terms of the rescaled variables �P ∗ versus Ca∗; see
equations (8) and (7). The negative pressure peak is represented by
the open symbols and the positive pressure peak by the filled
symbols.

pressure peaks observed as the bubble passes through each
contraction are plotted in figure 8(a) as a function of the flow
rate Q.

Two regimes are visible in the figure. (i) For flow rates
smaller than a critical value, which depends on the contraction
diameter, the positive and negative pressure peak amplitudes
are constant, the positive peak being slightly larger than the
negative one, as, e.g., in figure 3. (ii) For flow rates larger
than the critical value, the amplitude of the positive pressure
peak decreases and ultimately vanishes, while the value of
the negative pressure peak increases exponentially, without
bound. This means that in this high flow rate regime the
bubble is pushed through more easily. Further tests on two
tubes with different contraction diameters explain how the
transition between the two regimes occurs. The first (positive)
pressure peak is mostly due to the Laplace pressure, when
the bubble is pushed through the contraction, as detailed in
equation (1). As a first approximation, the Laplace pressure
drop is

�Pσ ≈ 4σ

d
. (4)

This is true for low flow rate situations, as seen, e.g., in figure 3,
by the good agreement between measurements and simulation
based on the quasi-stationary model. However, at higher flow
rates the pressure drop �Pfric due to friction can no longer be
neglected. This contribution to the total pressure drop �Pb is
of magnitude

�Pfric ≈ 128µ�con

πd4
Q. (5)

The observed change in regime, where the positive pressure
peak transient vanishes, therefore occurs when �Pfric ≈ �Pσ .
Using this together with the expressions for the flow rate,

Q = π(d/2)2v, and the capillary number, Ca = µv/σ , the
transition condition can be written as

Ca ≈ d

8�con
. (6)

Based on this equation, it is convenient now to define a rescaled
capillary number Ca∗ as

Ca∗ ≡ 8�con

d
Ca. (7)

In terms of the rescaled capillary number, the transition
happens at Ca∗ ≈ 1. Likewise, it is convenient to introduce
the rescaled pressure drop amplitude of the pressure transient
�P ∗ as

�P ∗ ≡ P(Q)

P (0)
, (8)

i.e., the ratio between the observed amplitude of the transient
pressure drop at high flow rate Q and the amplitude of the
positive pressure transient at negligible flow rate Q = 0.

In figure 8(b), the data of panel (a) are replotted using
the rescaled variables �P ∗ and Ca∗. The values of �con

can be determined by optical inspection of the contraction
geometries, as a first estimate. In figure 8(b), we used values
of �con obtained by a linear regression between equation (5)
and measurements of the viscous pressure drop. It is seen
how the transition between the capillary pressure drop regime,
with a large positive peak amplitude, and the viscous pressure
drop regime, with a vanishing positive peak amplitude, occurs
for Ca∗ ≈ 1. In other words, this criterion has practical
implications: it discriminates between the case of bubbles
clogging the flow through the contraction and the case of
bubbles not clogging the flow.

5. Conclusion

An experimental study of a bubble passing through a
microchannel contraction has been performed. Transient
measurements have quantified the pressure and bubble shape
during its motion through the contraction. The experiments
were confronted with the simple theoretical model of quasi-
static motion, and generally a good agreement was obtained.
However, some deviations have been observed and discussed.
The influence of the wetting angle has been studied. High-
speed visualization reveals that some departures from the
simulations are due to instabilities and breakup of the bubble.
Experiments varying the flow rate show that two regimes
govern the pressure transients when the bubble passes the
contraction: a quasi-steady regime for low capillary number
and a viscosity-influenced regime for non-negligible capillary
numbers. A criterion based on a modified capillary number
is proposed to discriminate between these two regimes, and
it shows the existence of a critical flush velocity above which
clogging by bubbles at contractions is avoided.
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