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Abstract
The interaction of free convection with thermal radiation of viscous
incompressible MHD unsteady flow past an impulsively started ver-
tical plate with uniform heat and mass flux is analyzed. This type
of problem finds application in many technological and engineer-
ing fields such as rocket propulsion systems, space craft re-entry
aerothermodynamics, cosmical flight aerodynamics, plasma physics,
glass production and furnace engineering .The Rosseland approxi-
mation is used to describe the radiative heat transfer in the limit
of the optically thin fluid. The non-linear, coupled equations are
solved using an implicit finite difference scheme of Crank-Nicolson
type. Velocity, temperature and concentration of the flow have been
presented for various parameters such as thermal Grashof number,
mass Grashof number, Prandtl number, Schmidt number, radiation
parameter and magnetic parameter. The local and average skin
friction, Nusslet number and Sherwood number are also presented
graphically. It is observed that, when the radiation parameter in-
creases the velocity and temperature decrease in the boundary layer.
Keywords: Radiation, heat and mass transfer, MHD.
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List of symbols

B0 magnetic field strength
cp specific heat
C ′ concentration
C dimensionless concentration
D mass diffusion coefficient
g acceleration due to gravity
Gm mass Grashof number
Gr thermal Grashof number
k thermal conductivity
L reference length
M magnetic parameter
N conduction-radiation
NuX dimensionless local Nusselt Number
Nu dimensionless average Nusselt number
Pr Prandtl number
qr radiative heat flux
q′w heat flux per unit area at the plate
q∗w mass flux per unit area
Sc Schmidt number
ShX dimensionless local Sherwood number

Sh dimensionless average Sherwood number
T ′ temperature
T dimensionless temperature
t′ time
t dimensionless time
u0 velocity of the plate
u, v velocity components in x, y-directions respectively
U, V dimensionless velocity components in X,Y -directions respectively
x spatial coordinate along the plate
X dimensionless spatial coordinate along the plate
y spatial coordinate normal to the plate
Y dimensionless spatial coordinate normal to the plate

Greek symbols
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α thermal diffusivity
β volumetric coefficient of thermal expansion
β∗ volumetric coefficient of expansion with concentration
σ electrical conductivity parameter
ν kinematic viscosity
ρ density
τX dimensionless local skin-friction
τ dimensionless average skin-friction

Subscripts

w conditions on the wall
∞ free stream conditions

Introduction

Stokes [1] first presented an exact solution to the Navier-Stokes equa-
tion, which for the flow of viscous incompressible fluid past an impul-
sively started infinite horizontal plate in its own plane. It is often called
Rayleigh problem in the literature. Such a flow past an impulsively started
semi-infinite horizontal plate was first presented by Stewartson [2]. Hall
[3] considered the flow past an impulsively started semi-infinite horizontal
plate by finite-difference method of explicit-implicit type. Following Stokes
analysis Soundalgekar [4] was the first to present an exact solution to the
flow of a viscous fluid past an impulsively started semi-infinite isothermal
vertical plate. The solution was derived by the Laplace transform tech-
nique and the effects of heating or cooling of the plate on the flow field was
discussed through Grashof number. Soundalgekar and Patil [5] have stud-
ied Stokes problem for an infinite vertical plate with constant heat flux.
Muthucumaraswamy and Ganesan [6] studied first order chemical reaction
on flow past an impulsively started vertical plate with uniform heat and
mass flux.

Free convection flow occurs frequently in nature. It occurs not only
due to temperature difference, but also due to concentration difference or
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combination of these two, e.g., in atmospheric flows, there exists differ-
ences in the H2O concentration and hence the flow is affected by such
concentration difference. Flows in bodies of water are driven through the
comparable effects upon density, of temperature, concentration of dissolved
materials and suspended particulate matter. Many transport process exist
in nature and in industrial applications in which the simultaneous heat and
mass transfer occur as a result of combined buoyancy effects of diffusion of
chemical species. A few representative fields of interest in which combined
heat and mass transfer plays an important role of design of chemical process
in equipment, formation and dispersion of fog, distribution of temperature
and moisture over agriculture fields and groves of fruit trees, damage of
crops due to freezing and the pollution of the environment. In this context
Soundalgekar [7] extended his own problem of [5] to mass transfer effects.

The study of magnetohydrodynamics (MHD) plays an important role
in agriculture, engineering and petroleum industries. The problem of free
convection under the influence of a magnetic filed has attracted the in-
terest of many researchers in view of its applications in geophysics and
astrophysics. Magnetohydrodynamics has its own practical applications.
For instance, it may be used to deal with problems such as cooling of nu-
clear reactors by liquid sodium and induction flow meter, which depends
on the potential difference in the fluid in the direction perpendicular to
the motion and go the magnetic field. Soundalgekar et al. [8] analysed the
problem of free convection effects on Stokes problem for a vertical plate
under the action of transversely applied magnetic field. Elbashbeshy [9]
studied the heat and mass transfer along a vertical plate under the com-
bined buoyancy effects of thermal and species diffusion, in the presence of
magnetic field. Helmy [10] presented an unsteady two-dimensional laminar
free convection flow of an incompressible, electrically conducting (Newto-
nian or polar) fluid through a porous medium bounded by infinite vertical
plane surface of constant temperature.

In the context of space technology and in processes involving high tem-
peratures the effects of radiation are of vital importance. Recent develop-
ments in hypersonic flights, missile reentry, rocket combustion chambers,
power plants for inter planetary flight and gas cooled nuclear reactors, have
focused attention on thermal radiation as a mode of energy transfer, and
emphasize the need for improved understanding of radiative transfer in
these process. The interaction of radiation with laminar free convection
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heat transfer from a vertical plate was investigated by Cess [11] for an
absorbing, emitting fluid in the optically thick region, using the singular
perturbation technique. Arpaci [12] considered a similar problem in both
the optically thin and optically thick regions and used the approximate in-
tegral technique and first-order profiles to solve the energy equation. Cheng
and Ozisik [13] considered a related problem for an absorbing, emitting and
isotropically scattering fluid, and treated the radiation part of the prob-
lem exactly with the normal-mode expansion technique. Raptis [14] has
analyzed the thermal radiation and free convection flow through a porous
medium by using perturbation technique. Hossain and Takhar [15] studied
the radiation effects on mixed convection along a vertical plate with uni-
form surface temperature using Keller Box finite difference method. In all
these papers the flow is considered to be steady. The unsteady flow past a
moving plate in the presence of free convection and radiation were studied
by Mansour [16]. Raptis and Perdikis [17] studied the effects of thermal
radiation and free convective flow past moving plate. Das et al. [18] have
analyzed the radiation effects on flow past an impulsively started infinite
isothermal vertical plate. Chamkha et al [19] et al studied the effect of
radiation on free convective flow past a semi-infinite vertical plate with
mass transfer. Ganesan and Loganadhan [20] studied the radiation and
mass transfer effects on flow of incompressible viscous fluid past a moving
vertical cylinder using Rosseland approximation.

The objective of the present paper is to study unsteady, laminar, hydro-
magnetic simultaneous free convective heat and mass transfer flow along
an impulsively started plate with uniform heat and mass flux in the pres-
ence of thermal radiation effects. The solution of the problem is obtained
by using an implicit finite difference method of Crank-Nicolson type.

Mathematical Analysis:

Consider a two-dimensional, transient, hydromagnetic, laminar natural
convection flow of an incompressible viscous radiating fluid past an im-
pulsively started semi-infinite vertical plate. It is assumed that the con-
centration C ′ of the diffusing species in the binary mixture is very less in
comparison to the other chemical species, which are present. This leads
to the assumption that the Soret and Dufour effects are negligible. It is
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also assumed that the effect of viscous dissipation is negligible in the en-
ergy equation. The x-axis is taken along the plate in the upward direction
the y-axis is taken normal to it. The plate starts moving impulsively in
the vertical direction with constant velocity u0 and the temperature of the
plate and the concentration level near the plate is also raised. Initially, it
is assumed that the plate and the fluid are of the same temperature and
concentration. The x-axis is taken along the plate in the upward direction
the y-axis is taken normal to it. Initially, it is assumed that the plate and
the fluid are of the same temperature and concentration in a stationary
condition. At time t′ > 0, the plate starts moving impulsively in the verti-
cal direction with constant velocity u0 against the gravitational field. The
temperature and concentration level near the plate are raised at a constant
rate. Then under usual Boussinesq’s approximation the unsteady flow past
the semi-infinite vertical plate is governed by the following equations.

∂ u

∂ x
+

∂ v

∂ y
= 0 (1)

∂ u

∂ t′
+u

∂ u

∂ x
+v

∂ u

∂ y
= g β (T ′−T ′

∞)+g β∗(C ′−C ′
∞) + ν

∂2u

∂ y2
− σB2

0

ρ
u (2)

∂ T ′

∂ t′
+ u

∂ T ′

∂ x
+ v

∂ T ′

∂ y
= α

∂2 T ′

∂ y2
− 1

ρ cp

∂ qr

∂ y
(3)

∂ C ′

∂ t′
+ u

∂ C ′

∂ x
+ v

∂ C ′

∂ y
= D

∂2 C ′

∂ y2
(4)

The initial boundary conditions are

t′ ≤ 0 : u = 0 , v = 0, T ′ = T ′
∞,

C ′ = C ′
∞t′ > 0 : u = u0 , v = 0 ,

∂T ′

∂y
= −q′w(x)

k
,

∂C ′

∂y
= −q∗w(x)

D
at y = 0
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u = 0, T ′ = T ′
∞ , C ′ = C ′

∞ at x = 0

u → 0 , T ′ → T ′
∞, C ′ → C ′

∞ as y →∞ (5)

We now assume Rosseland approximation (Brewster [21]), which leads
to the radiative heat flux qr is given by

qr = −4σ∗

3κ∗
∂ T ′4

∂ y
(6)

where σ∗ is the Stefan-Boltzmann constant and κ∗ is the mean absorption
coefficient.

If temperature differences within the flow are sufficiently small such
that T ′4 may be expressed as a linear function of the temperature, then
the Taylor series for T ′4 above T ′

∞, after neglecting higher order terms, is
given by

T ′4 ∼= 4T ′3
∞ T ′ − 3T ′4

∞ (7)

In view of Eqs. (6) and (7), Eq. (3) reduces to

∂ T ′

∂ t′
+ u

∂ T ′

∂ x
+ v

∂ T ′

∂ y
= α

∂2 T ′

∂ y2
+

16σ T ′3
∞

3κ∗ρ cp

∂2T ′

∂ y2
(8)

On introducing the following non-dimensional quantities:

X =
xu0

v
, Y =

yu0

v
, t =

t′ u2
0

v
,

U =
u

u0

, V =
v

u0

, Gr =
g βq′wv2

ku4
0

,

Gm =
g β∗v2q∗w

Du4
0

, N =
κ∗k

4σT ′3∞
, M =

σB2
0ν

u2
0

T =
T ′ − T ′∞(

q′wv
ku0

) , C =
C ′ − C ′∞(

q∗wv
Du0

) , Pr =
ν

α
, Sc =

ν

D
(9)

Equations (1), (2), (3) and (4) are reduced to the following non-dimensional
form
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∂ U

∂ X
+

∂ V

∂ Y
= 0 (10)

∂ U

∂ t
+ U

∂ U

∂ X
+ V

∂ U

∂ Y
= Gr T + GmC +

∂2 U

∂ Y 2
−MU (11)

∂ T

∂ t
+ U

∂ T

∂ X
+ V

∂ T

∂ Y
=

1

Pr

(
1 +

4

3N

)
∂2 T

∂ Y 2
(12)

∂ C

∂ t
+ U

∂ C

∂ X
+ V

∂ C

∂ Y
=

1

Sc

∂2C

∂ Y 2
(13)

The initial and boundary conditions are

t ≤ 0 : U = 0 , V = 0, T = 0, C = 0,

t > 0 : U = 1 , V = 0 ,
∂T

∂Y
= −1,

∂C

∂Y
= −1 at Y = 0,

U = 0, T = 0 , C = 0 at X = 0,

U → 0 , T → 0, C → 0 as Y →∞ (14)

Knowing the velocity, temperature and concentration field it is custom-
ary to study the rate of shear stress, the rate of heat transfer and the rate
of concentration. The dimensionless local as well as average values of the
skin friction, the Nusselt number and the Sherwood number are given by
the following expressions:

τx = −
〈

∂ U

∂ Y

〉

y=0

(15)

τ = −
1∫

0

〈
∂ U

∂ Y

〉

Y =0

dX (16)

Nux = −X

〈
∂ T

∂ Y

〉

Y =0

(17)

Nu = −
1∫

0

〈
∂ T

∂ Y

〉

y=0

dX (18)
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ShX = X

〈
∂ C

∂ Y

〉

y=0

(19)

Sh = −
1∫

0

〈
∂ C

∂ Y

〉

y=0

dX (20)

Numerical Technique:

In order to solve these unsteady, non-linear coupled equations (10) to (13)
under the conditions (14), an implicit finite difference scheme of Crank-
Nicolson type has been employed. The finite difference equations corre-
sponding to equations (1) to (13) are as follows:

[
Un+1

i.j − Un+1
i−1.j + Un

i.j − Un
i−1.j + Un+1

i.j−1 − Un+1
i−1.j−1 + Un

i.j−1 − Un
i−1.j−1

]

4∆X
+

[
V n+1

i.j − V n+1
i.j−1 + V n

i.j − V n
i.j−1

]

2∆Y
= 0. (21)

[
Un+1

i.j − Un
i.j

]

∆t
+ Un

i.j

[
Un+1

i.j − Un+1
i−1.j + Un

i.j − Un
i−1.j

]

2∆X
+

V n
i.j

[
Un+1

i.j+1 − Un+1
i.j−1 + Un

i.j+1 − Un
i.j−1

]

4∆Y
=

Gr

[
T n+1

i.j + T n
i.j

]

2
+ Gm

[
Cn+1

i.j + Cn
i.j

]

2
+

[
Un+1

i.j−1 − 2 Un+1
i.j + Un+1

i.j+1 + Un+1
i.j+1 − 2Un

i.j + Un
i.j+1

]

2(∆Y )2
. (22)

[T n+1
i.j − T n

i.j]

∆t
+ Un

i.j

[
T n+1

i.j − T n+1
i−1.j + T n

i.j − T n
i−1j

]

2∆X
+

V n
i.j

[
T n+1

i.j+1 − T n+1
i.j−1 + T n

i.j+1 − T n
i.j−1

]

4∆Y
=

1

Pr

(
1 +

4

3N

)

[
T n+1

i.j−1 − 2 T n+1
i.j + T n+1

i.j+1 + T n
i.j−1 − 2T n

i.j + T n
i.j+1

]

2(∆Y )2
. (23)
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[Cn+1
i.j − Cn

i.j]

∆t
+ Un

i.j

[
Cn+1

i.j − Cn+1
i−1.j + Cn

i.j − Cn
i−1j

]

2∆X
+

V n
i.j

[
Cn+1

i.j+1 − Cn+1
i.j−1 + Cn

i.j+1 − Cn
i.j−1

]

4∆Y

=
1

Sc

[
Cn+1

i.j−1 − 2 Cn+1
i.j + Cn+1

i.j+1 + Cn
i.j−1 − 2Cn

i.j + Cn
i.j+1

]

2(∆Y )2
. (24)

The boundary condition at Y=0 for the temperature in the finite difference
form is

[
T n+1

i.1 − T n+1
i.−1 + T n

i.1 − T n
i.−1

]

4∆Y
= −1 (25)

At Y=0(i.e., j=0), Eq (23) becomes

[T n+1
i.0 − T n

i.0]

∆t
+ Un

i.0

[
T n+1

i.0 − T n+1
i−1.0 + T n

i.0 − T n
i−1,0

]

2∆X
+

V n
i.0

[
T n+1

i.1 − T n+1
i.−1 + T n

i.1 − T n
i.1

]

4∆Y
= (26)

1

Pr

(
1 +

4

3N

) [
T n+1

i.−1 − 2 T n+1
i.0 + T n+1

i.1 + T n
i.−1 − 2T n

i.0 + T n
i.1

]

2(∆Y )2
.

After eliminating T n+1
i.1 + T n+1

i.−1 using Eq. (25), Eq. (26) reduces to the
form

[T n+1
i.0 − T n

i.0]

∆t
+ Un

i.0

[
T n+1

i.0 − T n+1
i−1.0 − T n

i.0 + T n
i−1,0

]

2∆X
=

1

Pr

(
1 +

4

3N

) [
T n+1

i.1 − T n+1
i,0 + T n

i.1 − T n
i.0 + 2∆Y

]

2(∆Y )2
. (27)

The boundary condition at Y=0 for the concentration in the finite differ-
ence form is

[
Cn+1

i.1 − Cn+1
i.−1 + Cn

i.1 − Cn
i.−1

]

4∆Y
= −1 (28)
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At Y=0(i.e., j=0), Eq. (24) becomes

[Cn+1
i.0 − Cn

i.0]

∆t
+ Un

i.0

[
Cn+1

i.0 − Cn+1
i−1.0 + Cn

i.0 − Cn
i−1,0

]

2∆X
+

V n
i.0

[
Cn+1

i.1 − Cn+1
i.−1 + Cn

i.1 − Cn
i.1

]

4∆Y
= (29)

1

Pr

(
1 +

4

3N

) [
Cn+1

i.−1 − 2Cn+1
i.0 + Cn+1

i.1 + Cn
i.−1 − 2Cn

i.0 + Cn
i.1

]

(∆Y )2
.

After eliminating Cn+1
i.1 + Cn+1

i.−1 using Eq (28), Eq (29) reduces to the form

[Cn+1
i.0 − Cn

i.0]

∆t
+ Un

i.0

[
Cn+1

i.0 − Cn+1
i−1.0 + Cn

i.0 − Cn
i−1,0

]

2∆X
=

1

Sc

[
Cn+1

i.1 − Cn+1
i,0 + Cn

i.1 − Cn
i.0 + 2∆Y

]

(∆Y )2
. (30)

The region of integration is considered as a rectangle with sides Xmax(= 1)
and Ymax(= 14) corresponds to Y = ∞, which lies very well outside the
momentum, energy and concentration boundary layers. The maximum
of Y was chosen as 14 after some preliminary investigations so that the
last two of the boundary conditions of Eq. (14) are satisfied. Here, the
subscript i-designates the grid point along the X-direction, j-along the Y-
direction and the superscript n along the t-direction. An appropriate mesh
sizes considered for the calculation is ∆X = 0.05, ∆Y = 0.25,and the time
step ∆t = 0.01.During any one time step, the coefficients Un+1

i.j and V n+1
i.j

appearing in the difference equations are treated as constants. The values
of C, T, U and V at time level (n + 1) using the known values at previous
time level (n + 1) using the known values at previous time level (n) are
calculated as follows. The finite difference Eqs. (30) and (28) at every
internal nodal point on a particular i-level constitute a tridiagonal system
of equations. Such a system of equations are solved by using Thomas
algorithm as discussed in Carnahan et al. [22]. Thus, the values of C are
known at every internal nodal point on a particular i at (n + 1)-th time
level. Similarly, the values of T are calculated from Eqs. (27) and (25).
Using the values of C and T at (n+1)-th time level in Eq. (22), the values
of U at (n + 1)-th time level are found in similar manner. Then the values
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of V are calculated explicitly using the Eq. (21) at every nodal point at
particular i-level at (n+1)th time level. This process is repeated for various
i-levels. Thus the values of C, T, U and V are known, at all grid points in
the rectangular region at (n + 1)th time level. Computations are carried
out until the steady-state is reached. The steady-state solution is assumed
to have been reached, when the absolute difference between the values of
U as well as temperature T and concentration C at two consecutive time
steps are less than 10−5 at all grid points.

After experimenting with few sets of mesh, they have been fixed at
the level ∆X = 0.05, ∆Y = 0.25, and the time step ∆t = 0.01. In this
case, spatial mesh sizes are reduced by 50% in one direction, and then in
both directions, and the results are compared. It is observed that, when
mesh size is reduced by 50% in X-direction or both X and Y directions,
the results are correct to fourth decimal places. The computer takes more
time to compute, if the size of the time-step is small. Hence, the above-
mentioned sizes have been considered as appropriate mesh sizes have been
considered as appropriate mesh sizes for calculations.

Results and Discussion

In order to check the accuracy of our numerical results, the present study
is compared with the available theoretical solution of Soundalgekar and
Patil [5], and they are found to be in good agreement.

The transient velocity, temperature and concentration profiles are dif-
ferent physical parameters such as Gr,Gm, Sc,M, N and Pr are shown
in Figs.1.to 9 at X = 1.0. In Fig.2 the steady state velocity profiles
are presented for different values of buoyancy force parameter Gr or Gm
and N . The time required to reach the steady state for smaller val-
ues of Gr = Gm(= 2) is 8.70,9.45.9.75 respectively, where as for large
Gr = Gm(= 4) the steady state for smaller vales of Gr = Gm(= 2) the
steady state is reached at 7.75,8.58,8.79 respectively, which leads to con-
clude that increased in buoyancy force parameter reduces the time taken
to reach the steady state. It can also be seen that increase in radiation
parameter N leads to a decrease in velocity profiles.

In Fig.3, steady state velocity profiles for different values of Gr or
Gm,Sc,N and for fluid Prandtl number, Pr = 0.71 are shown. From
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Fig.3 it can be concluded that velocity decreases due to an increase in the
Schmidt number Sc. In these Figs.2 and 3, for Sc = 2.0 is larger than
Pr = 0.71 and hence concentration layer is thinner than thermal layer.
This confirms the downward flow to a thin region near the surface. For
lower Sc the thickness of the concentration layer increases and the region
of flow extend farther away from the plate. Figs. 4 and 5 illustrate the
influence of the magnetic parameter M on the velocity and temperature
profiles in the boundary layer respectively. Application of a transverse
magnetic field to an electrically conducting gives rise to a resistive type
of force called Lorenz force. This force has the tendency to slowdown the
motion of the fluid in the boundary layer and to increase its temperature
also, the effects on the flow and thermal fields become more so as the
strength of the magnetic field increases. This is obvious from the decrease
in the velocity and the increase in the temperature profiles presented in
4 and 5.Fig 6 shows that the temperature decreases with the increasing
values of Gr or Gm.

In Fig.7, it is seen that the time required to reach the steady state
is more at higher values of N = 10 as compared to the lower values of
N = 5.It is also observed that the temperature increases with the increasing
Schmidt number.

From Figs.1 to 7 it is observed that owing to an increase in the value of
the radiation parameter N , both momentum and thermal boundary layer
thickness decrease. However the time taken to reach the steady state in-
creases as N increases. At small values of N , the velocity and temperature
of the fluid increases sharply near the plate as the time t increases, which
totally absent in the absence of radiation effects.

From Fig.8, the effect of buoyancy force parameter Gr or Gm on time
taken to reach the steady state conditions are shown graphically. For Gr =
Gm(= 2) the time required to reach the steady state when N = 3, 5, 10
are 8.70, 9.54 and 9.75 respectively where as for large Gr = Gm(= 4) the
time required to reach the steady state are 7.75,8.58 and 8.79 respectively.
Which leads to conclude that when the buoyancy force parameter Gr or
Gm increases, the time required to reach the steady state is reduced. Tran-
sient concentration profiles for Pr = 0.71, Gr = Gm(= 2), N = 5, 10 and
Sc = 0.78 and 2.0 are shown Fig.9.it is observed that for small values of
Sc = 0.78 and N = 5 the time taken to reach the steady state is 9.64 where
as when N = 10,under similar conditions, the time required to reach the
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state is 9.82 from which it is concluded that for higher value of N , the time
taken to reach the steady state is more when Sc is small. In Fig.10, steady
state concentration profiles are plotted for different values of Schmidt num-
ber and magnetic field parameter M . As expected concentration is lower
for systems with a larger Sc. Concentration increases with increase in M .

Steady state local skin-friction τX profiles are plotted in Fig.11 against
the axial coordinate X. The local shear stress τX increases with the increas-
ing value of Sc and decreasing value of Gr and Gm. The average values
of skin friction τ̄ for different Gr,Gm, Sc and N are shown in Fig.12.It
is noted that τ̄ decreases with decreasing values of Sc, but increases with
decreasing values of Gr or Gm throughout the transient period and at
the steady state level. It is also observed that the average skin-friction τ̄
increases as the radiation interaction parameter N increases. The local
Nusslet number NuX for different Gr,Gm, Sc and N are shown in Fig.13.
Local heat transfer rate NuX decreases with increasing values of Sc and
increases with increasing Gr or Gm. For increasing values of radiation
parameter N , the local Nusselt number NuX increases. The trend is just
opposite in case of local Sherwood number ShX with respect to Gr,Gm, Sc
and N (Fig.15). From Fig.14 it is observed that the average Nusselt num-
ber Nu increases with increasing values of Gr or Gm and N . From Fig.16,
we can easily see that the average Sherwood number Sh increases as Gr
or Gm and Sc increases.

Conclusions

A detailed numerical study has been carried out for the radiative MHD
flow past an impulsively started vertical plate with uniform heat and mass
flux. The dimensionless governing equations are solved by an implicit
finite-difference method of Crank-Nicolson type. Conclusions of the study
are as follows.

1. The magnetic filed parameter has retarding effect on the velocity.

2. Temperature and concentration increases with increasing value of the
magnetic field parameter.

3. In case of Sc, the velocity and concentration profiles are decreasing
as Sc increases.
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4. The time required to reach the steady state increases as radiation
parameter increases.

5. At small values of the radiation parameter, the velocity and tempera-
ture of the fluid increases sharply near the late as the time t increase,
which is totally absent in the absence of radiation effects.

6. The local and average skin-friction decreases with increasing Gr or
Gm and increases with increasing value of N and Sc. The local
and average Nusselt number increases with the increasing value of
radiation parameter. The average Sherwood number increases as Gr
or Gm and Sc increases.
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Prelazno radijaciono hidromagnetsko slobodno kon-
vektivno tečenje preko impulsno pokrenute vertikal-
ne ploče sa uniformnim toplotnim i masenim fluksom

UDK 536.7, 536.84

Analizira se interakcija slobodne konvekcije sa termičkom radijacijom
viskoznog nestǐsljivog nestacionarnog MHD-tečenja sa uniformnim toplot-
nim i masenim fluksom. Ovaj tip problema se javlja pri primeni mnogih
tehničkih oblasti kao: raketnih sistema, aerotermodinamike, aerodinamike
kosmičkog leta, fizike plazme, proizvodnje stakla i tehnike grejača. Rosseland-
ova aproksimacija se ovde koristi za opis radijacionog prenosa toplote u
graničnom slučaju optički tankog fluida. Nelinearne spregnute jednačine
se rešavaju implicitnom metodom konačnih razlika Crank-Nicolson-ovog
tipa. Brzina, temperatura i koncentracija tečenja su prikazane za razne
vrednosti parametara kao: termički Grashof-ov broj, maseni Grashof-ov
broj, Prnadtl-ov broj, Schmidt-ov broj, radijacioni parametar i magnetski
parametar. Lokalno i prosečno skin-trenje, Nusselt-ov broj i Sherwood-ov
broj su takodje grafički prikazani. Primećeno je da sa porastom radija-
cionog parametra raste brzina dok temperatura opada u graničnom sloju.
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Figure 1: Comparison of velocity profiles.
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Figure 2: Transient velocity profiles at X = 1.0 for different Gr,Gm, N .
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Figure 3: Steady state velocity profiles at X = 1.0 for different Sc.
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Figure 4: Transient velocity profiles for different N and M



52 V.Ramachandra Prasad, N.Bhaskar Reddy, R.Muthucumaraswamy

Figure 5: Transient temperature profiles for different N and M
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Figure 6: Transient temperature profiles at X = 1.0 for different
Gr,Gm,N .
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Figure 7: Transient temperature profiles for different N and Sc.
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Figure 8: Steady state concentration profiles at X = 1.0 fo rdifferent
Gr,Gm,N .
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Figure 9: Steady state concentration profiles at X = 1.0 fo rdifferent
Gr,Gm, N .
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Figure 10: Steady state concentration profiles for different Sc and M .
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Figure 11: Local skin friction.
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Figure 12: Average skin friction.
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Figure 13: Local Nusselt number.
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Figure 14: Average Nusselt number.
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Figure 15: Local Sherwood number.
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Figure 16: Average Sherwood number.


