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Transient radiative tranfer in the grey case:
well-balanced and asymptotic-preserving schemes
built on Case’s elementary solutions

Laurent Gosse*

November 26, 2010

Abstract

An original well-balanced (WB) Godunov scheme relying on an exact
Riemann solver involving a nonconservative (NC) product is developed
in order to solve accurately the time-dependent one-dimensional radiative
transfer equation in the discrete-ordinates approximation with an arbi-
trary even number of velocities. The collision term is thus concentrated
onto a discrete lattice by means of Dirac masses; this induces steady jump
relations across with the stationary problem is solved by taking advantage
of the method of elementary solutions mainly developed by Case, Zweifel
and Cercignani. This approach produces a rather simple scheme that
compares advantageously to standard existing upwind schemes, especially
for the decay in time toward a Maxwellian distribution. It is possible to
reformulate this scheme in order to handle properly the parabolic scaling
in order to generate a so—called asymptotic-preserving (AP) discretization
for which the consistency with the diffusive approximation holds indepen-
dently of the computational grid. Several numerical results are displayed
to show the realizability and the efficiency of the method.

1 Introduction

This paper is a continuation of the former works [22, 23, 24]; it aims at pushing
toward more complex kinetic models the development of numerical schemes
satisfying both the well-balanced (WB) and the asymptotic-preserving (AP)
criteria in hyperbolic and parabolic scalings, respectively. More precisely, we
first derive a WB scheme which solves the Cauchy problem for a simple model
of “grey” radiative transfer:

1
Onf +80.f = gllf(t,x,g’)dg’ - 1 ¢e[-1,1,ze Rt >0 (1)
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This model is also relevant for neutron transport: in this case, the parameter
¢ € [0,1] stands for the mean number of secondary neutrons obtained by both
fission and scattering per collision. It is of course completed by initial conditions:

ft=0,2,6) = f(,6), Ee[-L1zeR

A central feature of kinetic problems of the type (1) is to admit a so—called
“diffusive approximation”: let us define the macroscopic density and flux as

1 1
olt,z) = / a9l I(ta) = / et

then, for ¢ = 1, it can be shown rigorously that upon rescaling (1) as follows,

1 1
cof+eo =5 [ fenedg -1 0<e<t (@)
-1
in the limit € — 0, the following diffusion holds [3, 38]:
1
O0r0 — gamg =0, z € Rt >0. (3)

In particular, one obtains in this case:

N | =

Fl2.6) = Jolta).  J(t.2) = —3 Ol ).

Our goal in this paper is to derive a numerical scheme for the time-dependent
equation (1) in the discrete-ordinates approximation [44]; it is meant to be
consistent with both the large-time asymptotic behavior (see e.g. [2]) and with
the diffusive approximation (3) when applied to the parabolic scaling (2). Up
to now, this program has been completed only for 2-velocities models [22, 23].
We stress that these algorithms have been used in several meaningful areas of
application: see e.g. [6, 8, 9, 28].

Two complementary methodologies emerged for deriving numerical schemes
approximating nonhomogeneous hyperbolic problems: the well-balanced schemes
[25] roughly asking for an enhanced consistency with the long-time behavior of
the original equation, and the asymptotic-preserving schemes [33, 31] which en-
sure that the limiting process ¢ — 0 leading to the diffusive approximation still
holds at the discrete level independently of the size of the computational grid.
For discrete velocity models, it has been shown rigorously in [22, 23, 24] that the
asymptotic-preserving property is actually a consequence of the well-balanced
when one implements it through a Godunov scheme relying onto an exact Rie-
mann solver. More precisely, the path is to pass from the Cauchy problem for (1)
to the homogeneous (but non-conservative) one (15). This reformulation, which
concentrates the collision term onto a discrete lattice related to the computa-
tional grid, allows to treat the right-hand side by means of Rankine-Hugoniot
type jump relations across which one follows the solution of the stationary prob-
lem for (1), see (4). Clearly, the stiffness issue disappear because multiplying



the right-hand side by any big number boils simply down to going much farer
on these steady-state curves as a rescaling in z easily shows.

More interestingly, it has been first shown in [22] that these non-conservative
jump relations can be divided into 2 qualitatively different terms: the first one is
O(1) and corresponds to the strong relaxation onto the Maxwellian distribution
and the second one is O(e) and contains the diffusive terms which allow to
be consistent with (3) as ¢ = 0 with ¢ « Az and Az > 0. Clearly, in this
regime, the time-step has to meet with the usual parabolic CFL condition, that is
At = O(Az?). Efforts have been made in [23, 24] (and more recently in [21] for a
model of chemotaxis movement) to extend this framework toward more complex
kinetic models: we present in this paper an original Godunov WB scheme for
(1) which is built on the classical theory of so—called “elementary solutions”
introduced by Case [10] and developed by various authors [11, 12, 13, 14]. As
it was the case for simpler discrete-velocity models, this WB scheme can be
reformulated in order to handle the diffusive scaling (2) and be consistent as
e — 0 with the limiting equation (3).

Another feature emerged while studying this type of numerical schemes:
namely, it appears that conventional upwind schemes for the linear equation (1)
generally do not stabilize onto the exact Maxwellian distribution as ¢ — +oo
with Az > 0 fixed despite the fact that the residues plunge to zero. Ripples
keep on existing when ones visualizes the numerical kinetic density f(¢,z,&) in
the plane z, ¢ even if the residues are of the order of 10~7: see Figure 7 on the
right. In sharp contrast, our resulting well-balanced schemes stabilize nicely
with time and, apart from the low velocities |{] < 0.2, the kinetic density f
is truly constant in the ¢ variable. Meaningful steps of this time stabilization
process for the equation (1) inside a box with reflecting boundary conditions are
shown in Figure 5. This dynamic is much more consistent with the asymptotic
behavior [2, 35] of (1) than the one coming from more conventional upwind
discretizations.

Accordingly, this paper is organized as follows: in §2, we recall both the
Case’s method of elementary solutions with the completeness results from [13,
26, 34] and the ADO method of [5, 40]. Later, the well-balanced scheme for
rarefied regime is derived relying on these solutions of the stationary equation,
in the dissipative case ¢ < 1 in §3.1 and in the conservative case ¢ = 1 in §3.2;
a comparison with a classical time-splitting scheme is presented in §3.3. The
reformulation as a AP scheme is derived in §4.1; in §4.2, we show the relation
existing with an earlier scheme in [24]. Numerical results for small values of
e < Az are displayed in §4.3 where the consistency with (3) can be seen. Lastly,
§5 contains some concluding remarks.

Let us close this introduction with some bibliographic comments. Elemen-
tary solutions (also referred to as “spectral Green functions” [17]) have been used
in a numerical context for steady-state radiative transfer problems (involving
coupling) in [32, 45]. The discrete-ordinates method, consisting in discretizing
the velocity variable according to a Gaussian quadrature rule is classical [44]
and has been studied in parabolic regime in e.g. [30]. The method of resolution
developed by Case is by no means limited to radiative transfer problems: it has



been extended to BGK models by Cercignani in [12], see the survey in Chapter 6
of [14]. Ch. Dalitz [16, 18] extended it further to Boltzmann models of charged
particles for which the collision term is not a self-adjoint operator. More gener-
ally, this method can be recast into the framework of exponentially dichotomous
operators: see the Chapter 5 in the book [42]. Spurious long-time behavior of
standard upwind numerical schemes in a particular context has been detected in
[27] where stabilization onto stationary regimes with very big macroscopic fluxes
have been observed. Obviously, for the 2-velocity model considered in [27], a
non-zero macroscopic flux signals that the stationary regime isn’t Maxwellian.

2 The method of Case’s elementary solutions
2.1 Continuous solution of the steady-state problem

In his seminal paper, Case [10] considers the following equation:

1
.18+ f@ =5 [ fa )t cclorlacr @)

In order to solve (4), his method stems on expanding f in terms of a set of
eigenfunctions; invariance by translation suggests the separation of variables:

f(@,8) = Y(x)p(6).
Plugging into (4) and dividing by f leads to

W@ 1 e U
i)~ €T 20 /f(f)df

Both sides of the equation must be equal to the constant —% hence:

b () = exp(—a/), (1 - §) =5 [ o€ = £,

v 2

The first step is to find the eigenmodes v such that both the preceding equations
admit solutions. The normalization of the integral term allows to rewrite the

equation on ¢, as
<1 - §> ‘pu(f) = g: (5)

v

which highlights the two cases to examine, namely v € [-1,1] and v ¢ [-1,1].

1. v ¢ [—1,1]: this corresponds to the discrete part of the spectrum. The
denominator never vanishes thus one can safely write:



In order to meet with the normalization of the integral term, the following
condition should hold:

cv v+1
Alv)=1—- —1 =0.
=1-2 og(y_l) 0

For ¢ < 1, 2 real roots exist for A, usually denoted +vy; hence,

pen®@=5 (15 5)

Vo

2. v € [-1,1]: let PV stand for the Cauchy principal value and ¢ for the
Dirac mass in zero. Generalized solutions of (5) read now:

e©=5Pv (1-5) a0, ve-11l ©

for which the normalization condition of the collision term leads to

1
cv d€ cv v+1
/\(1/)—1——2131//711/_5_1——2 log<y_1>.

Consequently, to any value of v €] — 1, 1] can be associated a “generalized
eigenfunction” of the type (6).

This computation should be completed by a completeness assertion: indeed, it
is proved in [11] that any reasonable function f(z, &) can be expanded as follows:

-1 1
c
fa =ass (13 2) ez + [ A expl-afrin. ()
—1

More precise completeness statements are available in [14] (pp. 291/2) or [34].
The case ¢ = 1 is critical for these computations: it is explained in the Appendix
F of [11] (see also [42] p.98) that the discrete part of the spectrum has to be
modified as follows:

f(2,6) = a+ o+ / AW (O exp(—a/v)iv. (s)

For ¢ = 1, discrete eigenvalues are unbounded: more details on this situation
are studied in [43]. From [13] (page 610) comes a result directly concerned with
(4): the set of generalized eigenfunctions is complete for functions f such that:

1. &€~ f(z,€) is Holderian in any closed subinterval of (—1,1)
2. £ f(x,€6)(1 = €2)7 is Holderian in [-1,1] (0 < v < 1).

Extensions to “generalized kinetic equations” T0, f(z,&) + Af = 0 in Hilbert
space for T bounded self-adjoint and A possibly unbounded, self-adjoint and
Fredholm are to be checked in [26]. The orthogonality of the generalized eigen-
functions is easily proved in the original paper by Case (see Theorem I in [10]):

Y

1
[ e (OdE =0, vV



2.2 The Analytical Discrete-Ordinate (ADO) method

The Case’s method of elementary functions has been extended by many authors,
see e.g. [11,12, 13, 14, 16, 17, 18, 34]. For numerical purposes, it has been intro-
duced under the name “Analytical Discrete-Ordinate method” in [5]. Roughly
speaking, it consists in first, introducing a N-point Gaussian quadrature on the
interval (0, 1) given by the following points and weights:

€= (6,6,..60) € (0,1, w=(w,..,un) €RT. (9)

Then, it computes a vector of eigenmodes v € (R )N which is an approximation
of both the discrete and continuous part of the spectrum derived in the preceding
subsection. Last, it determines the coefficients of the generalized eigenfunctions
out of the given inflow boundary conditions. Let us rewrite (4) as follows:

1
¢
gamf(xag) +f(x,§) = 5/ f(x7§,)+f(x7_€l)dgl7 T e [_Io,f(]], (10)
0
with ¢ € [-1, 1] and supplemented by inflow boundary conditions:

f(£z0, Fl¢|) = Fr/r(8), £ €(0,1]. (11)

Analogously with the continuous case, the separation variable v is introduced:

f(@,8) = o(v,§) exp(—z/v).

Plugging into (10) and taking the quadrature rule into account yields:

2
=1

g N
(172 ) o) = 3 (680 + plv-60), k€ {1,

It is at this level that a trick is used in order to reduce the cost of this eigenvalue
problem: let us denote ® 1 (v) = (p(v, £&k))reqr,..., ) and Id the identity matrix
of RV. By using the same notation for a vector in RV and its corresponding
N x N diagonal matrix, it comes:

1 c c
£ (1) = (Id - 5w) D4(v) = Swh=(v) (12)
Barichello, Siewert and Wright [5, 40] now observe that, upon defining S(v) =

(P4 (v) + ®_(v)) € RY, (12) reduces to:

5_1(Id — cw)ﬁ_ls(l/) = iS(V).

v2

This problem can be recast under a very tractable one, to which standard divide-
and-conquer methods [15] can be applied; indeed, by multiplying by the diagonal
N x N matrix T = diag(y/wg), it comes

(677 = c22")X(v) = 5 X (v), (13)



where:

z = diag (é—?’“) =Vvwe!, X@)=TS(@).

The eigenproblem is known to possess numerous “good properties” as explained
in [40]; in particular, since the components of z never vanish, we have the
interlacing repartition,

0<& <y <& <m<...<Env<wvy ¢€(0,1]

Clearly, vy stand for the discrete part of the spectrum and thus can become
very big when ¢ — 1; in the limit ¢ = 1, we have a degeneracy at infinity.
Finally, we recall the normalization of the N eigenvectors:

sz(w(vk,&) + ok, —Eé)) =1,  ke{l,..N} (14)

N
=1

3 Well-balanced scheme based on exact Riemann
solver for kinetic regime

Starting from here, we define a space/time computational grid determined by a
time step At > 0 and the uniform width of the cells Az > 0 such that the CFL
condition holds: At < Az. We obtain:

a:jsz:E,tnznAt,Cj=(a:j_%,a:j+%), jeZ,neN.
Then we introduce approximate values as follows:

where & still refers to the Gaussian quadrature rule (9). The general methodol-
ogy of well-balanced schemes stems on localizing the source terms of hyperbolic
equations onto a discrete lattice; presently, it consists in passing from (1) to:

1
o +0nf = 8e (5 [ st~ 1) ota=as). (19

JEZ

The consistency with the original problem as Az — 0 is the consequence of the
simple observation:

ZAI&(I —zjp) —~ L

JEZ
More details about consistency for hyperbolic systems of balance laws are to
be found in [1]. For discontinuous solutions, the right-hand side of (15) has
become a non-conservative (NC) product and should be defined carefully. It
has been rigorously shown in [23] (see §2.1) that in the simpler case of a discrete
velocity model, the localization process yields a BV-bound on the corresponding



sequence of solutions. The NC product can therefore be defined as a weak limit
in the theory of [36]. It induces a stationary contact discontinuity across which
holds a jump relation following the integral curves of the steady-state equation
(4). This is the reason why the steady-state problem has been studied in the
preceding section. The macroscopic density and flux are defined according to
the quadrature rule introduced while setting up the ADO method:

N N
o =D wi (&) + £ (=&)) T =Y wn (f7(&) = [T (=&)) -

k=1 k=1

3.1 Dissipative case 0 < ¢ < 1 (absorption and scattering)

We aim at constructing our well-balanced scheme as a Godunov scheme relying
on the exact Riemann solver for the NC problem (15). We recall that this
formulation makes the problem nonlinear as it rewrites [23, 29]:

1
Of + &0 f — (% /_1 ft,@,&)dg’ — f) d,a=0,  Oa=0.

The Riemann problem for (15) consists in solving the equation for piecewise
constant initial data for £ € [—1,1]:

fo(x<0a€):fleft(€): fo(x>07€):fright(€)'

Its structure is simple since d,a(z) # 0 only at z = 0, thus the propagating
advection waves are unaffected by the NC product. Therefore, we are led to
solve the boundary value problem for (4) inside the interval z € (—%, %) in
the discrete-ordinates approximation, that is, for ££ € & only. The first step
is clearly to determine the eigenmodes v € RV : they are valid whatever the
computational point z;,t" so they must be computed as a pre-processing step,
before starting the iterations in time.

When the eigenmodes are known, we pass to the resolution of the boundary-
value problem under the normalization (14) and the conditions (11) which can
be deduced easily from the Riemann data:

Fp(€>0) = fies:(€£>0), Fr(€£ <0) = frignt(£ <0).

The discrete-ordinates approximation considers the following expression for the
stationary solution with &, € &: (see also §5.3.1 in [42])

c i (Aé exp(—(A% +2)/vy)  Brexp(—(A% — a:)/w))

Fla, 2&) = 5 I L & /v

(=1

Comparing with (7), it appears that the N — 1 first terms correspond to a
finite approximation of the integral term coming from the continuous spectrum
(also called “damped modes”) and the last one matches the discrete part. The



coefficients vectors A = (4,) and B = (By) for £ = 1,..., N are determined by
the boundary conditions through the resolution of:

(g )=2( o).

Using tensorial products notation, the symmetric matrix M reads as follows:

_ (1—£®u71)*1 (1+§®V*1)71exp(—%)
v ( (1+€®V71)7lexp( A’”) (1_£®V71)71 >, (16)

174

where exp(—4Z) stands for the N x N diagonal matrix of values exp(—ﬁ—;).
Once again, this matrix has to be assembled and inverted once for all as a

pre-processing step. By analogy with [22], we use the following notation:
M Az M Az
e =f(-F-a). e =rs(3a).  an

The uniform (in N and Az) invertibility of M comes from the completeness
theorems for Case’s generalized eigenfunctions. By recalling the simple fact that
the Godunov scheme consists in evaluating numerical fluxes at the interfaces of
each computational cell C;, we are now in position to write it down:

A ~
&) = &) - gkA—; (706 — Fry-3(60)

: (1
fjn+1(_£k) — f]”(—gk) —l—fk% (fL7j+%(_€k) - f]n(_gk)) .

The values f‘R’jfé(gk) are deduced from the “left” problem,

OREO!

and the ones fL,H% (—&), from the “right” problem,

M<g>:%< fﬂg—)o)‘

Remark 1 We stress that the scheme (18) never makes any approximation of
the integral collision term by means of a finite summation. Instead, it is the
elementary solution itself which is approzimated through the ADO method, es-
pecially the continuous part of the spectrum. We believe, and numerical evidence
supports this idea, that the overall accuracy is improved by this treatment.

Figures 1 and 2 display numerical results for this well-balanced Godunov scheme:
we considered a bounded computational domain x € [—1,1] with reflecting
boundary conditions on each side in order to study stabilization as time grows
and Az > 0is fixed. The value of Az is given by imposing 27 = 128 grid points
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Figure 1: Macroscopic density (left) and flux (right) at time ¢ = 3.
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Figure 2: Kinetic density at time ¢ = 3.
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in the z variable and the time-step At is deduced from the CFL number of 0.9.
We took N = 15 grid points for the Gaussian quadrature rule which gives 30
points for gridding the interval ¢ € [—1,1]. Initial data consist in 2 bumps:

2z, €) = 10exp ( — 20(€ T 0.35)2 — 50(z + 0.35)2).

The parameter ¢ = 0.85 and we iterate until time ¢ = 3. The macroscopic
density and flux are free from oscillations, so is the kinetic density too when
displayed in the z, £ plane.

3.2 Conservative case ¢ =1 (purely scattering)

Let us begin by recalling that the equation (1) with ¢ = 1 has been completely
analysed in §3 of [13] by means of the Laplace transform and the method of
elementary solutions. In our numerical context, we follow the Appendix F in
[11] and replace the expansion (7) with the one (8) in order to deal with the
degeneracy at infinity, vy — +00. Clearly, this doesn’t affect the pre-processing
step dealing with the computation of the eigenmodes vector v. However, the
expression of the ADO solution has to be amended accordingly:

Flo,26) = 2Bl 46 ) + 5 + @3 60)

where

Bl&v)= 3, ¢ /v T+ &/m

(=1

N-1 (Aé exp(—(A% +2)/vy)  Brexp(—(AL — a;)/w)> |

Consequently, the matrix M is deduced from the preceding one (16) only by
modifying two of its columns (which are related to the discrete spectrum of the
continuous equation):

Mp.n =1, My—1,.. . .Non ==& My—14n,. 282N =&+ Ax.

It is very interesting to relate this modification of M with what has been found
in [22] for the 2-velocity model for which there are no “damped modes” (the
continuous part of the spectrum). Indeed, in this case, the matrix M reads:

1 -1
M_<1 1+Aa:>’

With the notation of [22], we obtain that:

2((1 + Az)ur, + vg) 2(—uy, + vR)
@ 24+ Ax ’ p 2+ Ax (19)
Hence, we recover the expressions
- Az/2 . Ax/2
U—UL+m(UR—UL), ’U—’UR—m(’UR—UL),

11



which means that the jump relations derived in [22] are particular cases of
elementary solutions with a discrete spectrum. The present Godunov scheme
(18) with its interface values determined either in the dissipative case ¢ < 1,
or in the conservative case ¢ = 1 is likely to be the most natural generalization
of the simple discrete velocity model studied in [22]. On Figures 3 and 4, we
display numerical results for the test-case corresponding to the same initial
data than in the preceding subsection. The only change is that ¢ = 1 and the
modified M matrix is used for computing the vectors A and B. Since there
is no dissipation, the total mass is preserved and we can therefore observe the
time-asymptotic behavior of the WB Godunov scheme, especially the decay of
its numerical solution onto the Maxwellian distribution. We aim at observing
numerically that, as time passes, the numerical kinetic density becomes less and
less varying in the & velocity variable. This is actually what happens as can be
seen in Figure 5 despite the reflecting boundary conditions in z = £1.

3.3 Comparison with a classical time-splitting scheme

One may think that a conventional time-splitting scheme can behave equally well
since the equation (1) is linear and the ordinary differential equation associated
to the collision term can be integrated exactly since the macroscopic density o
is invariant along its flow. Indeed, such a scheme would read:

ntl A
£H@) = 1@ - G (16) — fua(60)

1 (20)
60 = 1760 + e (i (&) — [1(-&0)

together with:
n ntsz ¢ n+3
F7 () = exp(=AD £ (26 + 5 (1 - exp(-A1) ) o) 7.

Many variants, like the second order Strang splitting, exist and they probably
share the same problem when it comes to long-time behavior. Actually, the
first part (20) creates variation in the & variable since it separates the particles
according to their velocity: in particular, it drives apart left-moving particles
from right-moving ones; this is stated rigorously as the so—called dispersion
Lemma 2.1 in [37]. Later, comes the relaxation step which projects the resulting
kinetic density onto g; however, this doesn’t compensate for the preceding step.
There is no mechanism in this scheme which can efficiently tame the variations
in the ¢ variable of its numerical kinetic density. This manifests itself through
several signs: when considering the decay of the L? time residues,

R" = lo(t",) = ot"™", )llz2,  nm €N,

one easily sees on the top of Figure 6 that the ones of the time-splitting scheme
decrease less quickly and in a more erratic way compared to the ones of the well-
balanced scheme (15). Moreover, by looking at the numerical kinetic densities
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in the z, ¢ plane at later time ¢ = 15 on Figure 7, one sees that many ripples
still appear on the time-splitting solution w.r.t. the WB as a consequence of
the drawback explained formerly. It comes as no surprise that the resulting
macroscopic density also displays more variation. Time-splitting schemes have
been studied in [20] for a relaxing system in hyperbolic scaling admitting BV-
bounds according to a NC formalism related to the one we used presently.

4 Asymptotic-Preserving for diffusive regime
In this section, we shall always be concerned with the rescaled problem (2) as
we now aim at modifying the Godunov scheme (15) in order to make stable

independently of the smallness of € and moreover consistent with the limiting
diffusion equation (3) as ¢ — 0 with Az > 0 fixed.
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4.1 Splitting between Maxwellian and diffusive fluxes

To cope with the diffusive scaling in (2), we rewrite the stationary equation,

Az A
.09+ 10.0=3 [ were,  re(-55.57),

together the ADO approximation of Case’s elementary solution:

flo.26) = gBlafe xm) + 2+ 5 (L3 6). (1)

Thus the M matrix has to be modified accordingly,

Ve ( (1-gev )" (€@ ) exp(~22) )
(1-|-£®l/71)7 exp(— A’”) (1-¢ov) '

with its two columns reading like:

Az
Miny=1, Mioy  nvov ==& Mi—iin.onen =€+ —.

The interface values come from the solutions of the linear systems:

wn)=2(58) w(5)=2(48 )

Looking at (15), it seems far less easy than in [22, 23] to separate inside the
interface values J?L/R’#%(fk) between a Maxwellian O(1) term and a diffusive
O(e) one as their explicit expression isn’t available. However, we can proceed
based on the guidelines of the simple linear Goldstein-Taylor model: according
to the computation of the previous section, the coefficient 8 in (19) is a good
candidate for a diffusive term. Thus, we propose the following decomposition
of the ADO interface values:

1. the Maxwellian terms 2M (—¢;) = E(—Az/e, &, v) + a and 2Mpg(&) =
E(Az/e, &, l/)-l-a-l-ﬂ% where E contains the “damped modes” expressed
with exponential functions which are probably very small when ¢ < Az,

2. the diffusive terms 2Dy, (—&) = B|&k| and 2Dg(&k) = —B|&k|, independent
on Az, which also have the nice feature of making the coefficient % easily
appear when the discrete equation on ¢} is derived.

By treating implicitly the Maxwellian part and explicitly the diffusive one, the
Godunov scheme (15) rewrites in the diffusive scaling as follows:

F1 (&) Sl At B

n+1 _ J sAzx

fi )= L Fes Ty i’ﬁtMR’jfé(gk) R (22)
. (=&)Lt At BY,

N (=&) = 11 ea T +Ags,ﬁtML7j+ L(=&) | + &— Ar c
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For the time being, we are not able to derive rigorous proofs for the scheme (22)
and we shall mainly rely on numerical evidence displayed in the subsection §4.3.
Following [22], we can derive formally the consistency of (22) with (3) assuming
that each fJ'(£) is close to Maxwellian. Indeed, (22) rewrites:

1) = 176 - SR (1916 - My, (00) - g AL n
=) = [ (=&) + kaAt (ML7j+%(_§k) - f?+1(_§k)) +£i% ha g
We multiply each equation for +£ by the weights vector w and sum up:
A e e A =
At 3 eAx (23)

N
Zj’ij ([M o1 (k) + My (= §k>]—[ff*l(gk)+f;+1(—gk)]).
k=1

The right-hand side becomes small as € — 0 in the computations shown in §4.3.

Remark 2 The scheme (22) is hopefully asymptotic-preserving independently
of the number of points N chosen in the Gaussian quadrature for the ADO
method, and consequently of the number of equations in the hyperbolic system
obtained from the discretization in the & variable.

Once again, it is of interest to observe how behaves our Maxwellian/diffusive
splitting on the simple Goldstein-Taylor model; the matrix M€ simplifies to

. (1 -1
M_<1 1+%>’

and from the equation M¢(a B)T = 2(ur, vg)" solved at any interface Tip1,
j € Z, of the computational domain, it comes:

-2 —€

E vy VY

(UL — ’UR).

And this is exactly the right term yielding the correct asymptotic diffusion when
multiplied by At/eAz with e — 0; moreover, this type of value would lead to
a centered discretization of the second derivative —8zzg in (23). Thus we have
every reason to believe that the aforementioned decomposmon still works in the
general case where 2N velocities £ are considered.

Proposition 1 Let f be defined as (21); if ¢ = 1, there holds:

Az A
vee (-52.580). /’ﬁws%——ﬁ
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Proof. It proceeds by approximately integrating the piecewise constant func-
tion in (21) according to the quadrature rule w, € introduced in (9):

1 N
[ er@ode= Y a6 - o -6l
-1 k=1

One part of the integral clearly vanishes because £ — (a + fz/¢)¢ is odd on
(—1,1). Concerning the exponential terms, we leave the part depending on = and
recall the normalization condition (14) in order to compute for any v € (—1,1):

Tl e (e 6) =0 —) = $ XL @ (= - w27
- _% Zszl Wk (2 o 1—€1k/l/ - 1+51k/1/)
~2 (2250 wnle(v &) + o (v, —60)])

At this point, inserting ¢ = 1 ensures that this term vanishes. Thus remains:

N 8 N 5
> welf@.6) — f@,-e)] = -5 Y w2 = -5 O
k=1 k=1

Proposition 1 is somehow a restatement of equation (40) in [4]; it explains why
the diffusive fluxes appearing in the left-hand side of (23) are correct for ¢ = 1
and e small enough. The fact that neither Az nor & show up in the expression
of these fluxes ensures the AP property and the consistency of (22) with (3).

4.2 Relation with a previous AP scheme

Figure 8: Errors on approximating «, 8 for various € with (24) and (25).
In the previous decomposition, we included in the Maxwellian part the terms

of the order of exp(—Ax/ev) despite the fact they decrease very quickly with
e. Tt is therefore very tempting to cancel them when deriving the scheme (22);
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a first consequence of this assumption is to get Maxwellian terms independent
on ¢,. However, there is another interesting one: on Figure 8, we display the
numerical the behavior of the following approximations for the values o and §3,

N N
s +2Ag; ((1 + Az) ;wkfleft(gk) + ;wkf”ght(—gk)> (24)

and

N
6 = _2 +2ACE (; Wi &k (fleft(gk) - fright(_fk))> s (25)

for e = 1, = 0.01,e = 0.00001 as a function of time. Of course, for ¢ « Az,
the value Az is replaced by Az/e as we pass from the scheme (15) to the
AP one (22). One sees that these simple approximations improve when the
kinetic density becomes slowly-varying in the velocity variable £&. These values
of @ and  mean that two reasonable assumptions are made: one, the kinetic
density is close to its Maxwellian distribution and two, the exponential terms
corresponding to the continuous spectrum are negligible. Then it can be checked
that, in the notation of (17), the following jump relations hold:

fr(=&) = %J\(fa + B&k) N
= Zwéfleft(gk) - ﬁ Zwé(fzfaft(ﬁk) — fright(—&k))

(=1

2+A/ Zwe& fleft(fk) fright(_fk))a

= Zwéfleft(gk Z Lt Gde (frert(&r) = fright(—&k))

P 25-|-A
a 25§k
~ Zwéﬁeft(ﬁk) %1 An Zwé Jrert(€x) = frigne(—&x))
=
and
fr&) = La+pBAz/e—B&)
al 1+ Az/e ul
= Zwéfm'ght(—fk) + I+ Anje Zwé(fleft(ﬁk) — fright(—&k))
- =
_A N
+%+7A;//E Zwé&z(fleft(ﬁk) — Frignt(—&k)),
)A
= Zwéfrzght =) +Z é 9% -EZA w(fz«aft(fk)—fright(—fk))

+EZ 2++£kA& (frepe(&r) — Fright(—&k))

2e¢ N
2€+7kA$ ;wé(fleft(fk) - fright(_gk))

12

Z wéfright _fk)

(=1
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And this matches the results in [24]: the simplifications in the macroscopic
fluxes follow the computations in pp. 234-236. Thus, by treating implicitly the
stiff terms, we obtain the equations of the scheme (34) with the integral terms
replaced by finite sums involving the Gaussian quadrature rule:

n+1 _ n _ kat n+1 _ a n+l/_
&) = &) - 2o (76 = Do w7 (&)
(=1
AL . .
+m Zwl (fj&(fk) —fj (—fk))=

=1

A N
- = f}’(—&kHikA; (Zweff“(fw—ff“(_f’“))

=1

~

L 2A

M=

we (£71(60) = £ (=60))-

4

1

We can exploit the rigorous stability results from [24] at least in this special case
where drastic simplifications have been made in the ADO approximate solution
assuming that the kinetic density is very close to Maxwellian. This also provides
us with another manner of deriving the AP schemes studied in this earlier paper.

Remark 3 A big difference between the present work and the former one [24]
is that, despite considering the numerical approxzimation of the same problems
(1) and (2), the treatment of the stationary equations is quite different. Indeed,
in [24], we approzimated this steady-state problem by finite differences; in sharp
contrast, we treat it exactly by means of the method of elementary solutions, and
we approzximate only the continuous part of the spectrum by means of a finite
sum with a Gaussian quadrature rule. So the WB scheme (15) can be considered
as a potentially much sharper version of the one proposed earlier in §2 of [24].

4.3 Numerical results

We now present some numerical results from the scheme (22) in the parabolic
scaling (2) with the “nearly Maxwellian” initial data:

fO(x,f) = eXp(—5(§2 _ I2))Xxe[_1/371/3], B
{ F(@,€) = exp(—e&® — $2)Xm€[*1/3,1/3]: z€[-1.1]

Y

where x4 stands for the indicator function of a set A. The parabolic CFL
condition has been used, namely At = 0.45Az%, we took again N = 15 and 127
points to grid the z interval. Tests have been carried out up to ¢ = 0.05 with
e = 0.01 and € = 0.00001. For this smaller value of ¢, we display on Figure
9 the macroscopic density ¢ and the flux J obtained out of the kinetic density
f7(£€) computed with (22); especially, the density is compared to the direct
solution of the equation (3) computed by means of a standard centered scheme.
The consistency can be considered satisfactory. On Figure 10, we display the
kinetic distribution for e = 0.01 at time ¢t = 0.05; clearly, it can be considered
as “practically Maxwellian” even if ¢ is snaller but still of the order of Ax.
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5 Conclusion and outlook

An original well-balanced Godunov scheme for the linear kinetic equation (1)
has been presented and its numerical results have been compared to the ones
generated by a more classical time-splitting discretization.
been shown that it is possible, like in simpler 2-velocities models, to reformulate
the scheme in order to make it asymptotic-preserving in the diffusive scaling
(2), thus displaying consistency with the limiting diffusion equation (3) inde-
pendently of the grid parameters as soon as the usual parabolic CFL restriction
is met. This approach is by no means limited to this particular radiative transfer

equation; namely, 2 main extensions emerge rather spontaneously:

1. more elaborate kinetic models: one can choose to treat any collision opera-
tor for which the formalism of Case’s elementary solutions can be applied.
This class contains for instance the BGK models studied by Cercignani
[12, 13, 14] and treated numerically in the stationary regime by Siewert et
al. [4]. Another very interesting direction is to treat Boltzmann equations
for charged particles: in this case, one has to follow the results by Dalitz
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Figure 10: Perturbed Maxwellian kinetic density at time ¢ = 0.05 for £ ~ Az.

[16, 18] where the elementary solutions are derived in several meaningful
situations. It is reasonable to believe that these solutions can handle an
unsteady electric field ruled by the Poisson equation in the same man-
ner than the well-balanced scheme in [21] is stable in the presence of the
diffusion equation for the chemoattractant substance.

2. numerical coupling between a kinetic and a diffusive region in the compu-
tational domain: even if it looks easy to couple the simple schemes derived
in [22] (as they are practically the 2 versions of the same discretization),
the result isn’t satisfactory because mass gets lost at the junction as long
as the kinetic density is not Maxwellian in the kinetic region. It would
therefore be interesting to fix this issue, as it has been done in [45] for
stationary problems.

We close this text metioning that there exists other approaches to numerical
calculations in radiative transfer, see for instance [19, 31, 39, 41]. There exists
an alternative to Case/ADO method to compute stationary solutions, namely
the iterative scheme proposed by Bobylev and Struckmeier [7].
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