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Transient radiative tranfer in the grey 
ase:well-balan
ed and asymptoti
-preserving s
hemesbuilt on Case's elementary solutionsLaurent Gosse�November 26, 2010Abstra
tAn original well-balan
ed (WB) Godunov s
heme relying on an exa
tRiemann solver involving a non
onservative (NC) produ
t is developedin order to solve a

urately the time-dependent one-dimensional radiativetransfer equation in the dis
rete-ordinates approximation with an arbi-trary even number of velo
ities. The 
ollision term is thus 
on
entratedonto a dis
rete latti
e by means of Dira
 masses; this indu
es steady jumprelations a
ross with the stationary problem is solved by taking advantageof the method of elementary solutions mainly developed by Case, Zweifeland Cer
ignani. This approa
h produ
es a rather simple s
heme that
ompares advantageously to standard existing upwind s
hemes, espe
iallyfor the de
ay in time toward a Maxwellian distribution. It is possible toreformulate this s
heme in order to handle properly the paraboli
 s
alingin order to generate a so{
alled asymptoti
-preserving (AP) dis
retizationfor whi
h the 
onsisten
y with the di�usive approximation holds indepen-dently of the 
omputational grid. Several numeri
al results are displayedto show the realizability and the eÆ
ien
y of the method.1 Introdu
tionThis paper is a 
ontinuation of the former works [22, 23, 24℄; it aims at pushingtoward more 
omplex kineti
 models the development of numeri
al s
hemessatisfying both the well-balan
ed (WB) and the asymptoti
-preserving (AP)
riteria in hyperboli
 and paraboli
 s
alings, respe
tively. More pre
isely, we�rst derive a WB s
heme whi
h solves the Cau
hy problem for a simple modelof \grey" radiative transfer:�tf + ��xf = 
2 Z 1�1 f(t; x; �0)d�0 � f; � 2 [�1; 1℄; x 2 R; t > 0: (1)�IAC{CNR \Mauro Pi
one" (sezione di Bari), Via Amendola 122/D, 70126 Bari (Italy)l.gosse�ba.ia
.
nr.it 1



This model is also relevant for neutron transport: in this 
ase, the parameter
 2 [0; 1℄ stands for the mean number of se
ondary neutrons obtained by both�ssion and s
attering per 
ollision. It is of 
ourse 
ompleted by initial 
onditions:f(t = 0; x; �) = f0(x; �); � 2 [�1; 1℄; x 2 R:A 
entral feature of kineti
 problems of the type (1) is to admit a so{
alled\di�usive approximation": let us de�ne the ma
ros
opi
 density and 
ux as%(t; x) = Z 1�1 f(t; x; �)d�; J(t; x) = Z 1�1 �f(t; x; �)d�;then, for 
 = 1, it 
an be shown rigorously that upon res
aling (1) as follows,"2�tf + "��xf = 12 Z 1�1 f(t; x; �0)d�0 � f; 0 < "� 1; (2)in the limit "! 0, the following di�usion holds [3, 38℄:�t%� 13�xx% = 0; x 2 R; t > 0: (3)In parti
ular, one obtains in this 
ase:f(t; x; �) � 12%(t; x); J(t; x) = �13�x%(t; x):Our goal in this paper is to derive a numeri
al s
heme for the time-dependentequation (1) in the dis
rete-ordinates approximation [44℄; it is meant to be
onsistent with both the large-time asymptoti
 behavior (see e.g. [2℄) and withthe di�usive approximation (3) when applied to the paraboli
 s
aling (2). Upto now, this program has been 
ompleted only for 2-velo
ities models [22, 23℄.We stress that these algorithms have been used in several meaningful areas ofappli
ation: see e.g. [6, 8, 9, 28℄.Two 
omplementary methodologies emerged for deriving numeri
al s
hemesapproximating nonhomogeneous hyperboli
 problems: the well-balan
ed s
hemes[25℄ roughly asking for an enhan
ed 
onsisten
y with the long-time behavior ofthe original equation, and the asymptoti
-preserving s
hemes [33, 31℄ whi
h en-sure that the limiting pro
ess "! 0 leading to the di�usive approximation stillholds at the dis
rete level independently of the size of the 
omputational grid.For dis
rete velo
ity models, it has been shown rigorously in [22, 23, 24℄ that theasymptoti
-preserving property is a
tually a 
onsequen
e of the well-balan
edwhen one implements it through a Godunov s
heme relying onto an exa
t Rie-mann solver. More pre
isely, the path is to pass from the Cau
hy problem for (1)to the homogeneous (but non-
onservative) one (15). This reformulation, whi
h
on
entrates the 
ollision term onto a dis
rete latti
e related to the 
omputa-tional grid, allows to treat the right-hand side by means of Rankine-Hugoniottype jump relations a
ross whi
h one follows the solution of the stationary prob-lem for (1), see (4). Clearly, the sti�ness issue disappear be
ause multiplying2



the right-hand side by any big number boils simply down to going mu
h fareron these steady-state 
urves as a res
aling in x easily shows.More interestingly, it has been �rst shown in [22℄ that these non-
onservativejump relations 
an be divided into 2 qualitatively di�erent terms: the �rst one isO(1) and 
orresponds to the strong relaxation onto the Maxwellian distributionand the se
ond one is O(") and 
ontains the di�usive terms whi
h allow tobe 
onsistent with (3) as " ! 0 with " � �x and �x > 0. Clearly, in thisregime, the time-step has to meet with the usual paraboli
 CFL 
ondition, that is�t = O(�x2). E�orts have been made in [23, 24℄ (and more re
ently in [21℄ for amodel of 
hemotaxis movement) to extend this framework toward more 
omplexkineti
 models: we present in this paper an original Godunov WB s
heme for(1) whi
h is built on the 
lassi
al theory of so{
alled \elementary solutions"introdu
ed by Case [10℄ and developed by various authors [11, 12, 13, 14℄. Asit was the 
ase for simpler dis
rete-velo
ity models, this WB s
heme 
an bereformulated in order to handle the di�usive s
aling (2) and be 
onsistent as"! 0 with the limiting equation (3).Another feature emerged while studying this type of numeri
al s
hemes:namely, it appears that 
onventional upwind s
hemes for the linear equation (1)generally do not stabilize onto the exa
t Maxwellian distribution as t ! +1with �x > 0 �xed despite the fa
t that the residues plunge to zero. Rippleskeep on existing when ones visualizes the numeri
al kineti
 density f(t; x; �) inthe plane x; � even if the residues are of the order of 10�7: see Figure 7 on theright. In sharp 
ontrast, our resulting well-balan
ed s
hemes stabilize ni
elywith time and, apart from the low velo
ities j�j < 0:2, the kineti
 density fis truly 
onstant in the � variable. Meaningful steps of this time stabilizationpro
ess for the equation (1) inside a box with re
e
ting boundary 
onditions areshown in Figure 5. This dynami
 is mu
h more 
onsistent with the asymptoti
behavior [2, 35℄ of (1) than the one 
oming from more 
onventional upwinddis
retizations.A

ordingly, this paper is organized as follows: in x2, we re
all both theCase's method of elementary solutions with the 
ompleteness results from [13,26, 34℄ and the ADO method of [5, 40℄. Later, the well-balan
ed s
heme forrare�ed regime is derived relying on these solutions of the stationary equation,in the dissipative 
ase 
 < 1 in x3.1 and in the 
onservative 
ase 
 = 1 in x3.2;a 
omparison with a 
lassi
al time-splitting s
heme is presented in x3.3. Thereformulation as a AP s
heme is derived in x4.1; in x4.2, we show the relationexisting with an earlier s
heme in [24℄. Numeri
al results for small values of" < �x are displayed in x4.3 where the 
onsisten
y with (3) 
an be seen. Lastly,x5 
ontains some 
on
luding remarks.Let us 
lose this introdu
tion with some bibliographi
 
omments. Elemen-tary solutions (also referred to as \spe
tral Green fun
tions" [17℄) have been usedin a numeri
al 
ontext for steady-state radiative transfer problems (involving
oupling) in [32, 45℄. The dis
rete-ordinates method, 
onsisting in dis
retizingthe velo
ity variable a

ording to a Gaussian quadrature rule is 
lassi
al [44℄and has been studied in paraboli
 regime in e.g. [30℄. The method of resolutiondeveloped by Case is by no means limited to radiative transfer problems: it has3



been extended to BGK models by Cer
ignani in [12℄, see the survey in Chapter 6of [14℄. Ch. Dalitz [16, 18℄ extended it further to Boltzmann models of 
hargedparti
les for whi
h the 
ollision term is not a self-adjoint operator. More gener-ally, this method 
an be re
ast into the framework of exponentially di
hotomousoperators: see the Chapter 5 in the book [42℄. Spurious long-time behavior ofstandard upwind numeri
al s
hemes in a parti
ular 
ontext has been dete
ted in[27℄ where stabilization onto stationary regimes with very big ma
ros
opi
 
uxeshave been observed. Obviously, for the 2-velo
ity model 
onsidered in [27℄, anon-zero ma
ros
opi
 
ux signals that the stationary regime isn't Maxwellian.2 The method of Case's elementary solutions2.1 Continuous solution of the steady-state problemIn his seminal paper, Case [10℄ 
onsiders the following equation:��xf(x; �) + f(x; �) = 
2 Z 1�1 f(x; �0)d�0; 
 2 [0; 1℄; x 2 R: (4)In order to solve (4), his method stems on expanding f in terms of a set ofeigenfun
tions; invarian
e by translation suggests the separation of variables:f(x; �) =  (x)'(�):Plugging into (4) and dividing by f leads to 0(x) (x) = �1� + 
2�'(�) Z 1�1 '(�0)d�0Both sides of the equation must be equal to the 
onstant � 1� hen
e: �(x) = exp(�x=�); �1� ���'�(�) = 
2 Z 1�1 '(�0)d�0 � 
2 :The �rst step is to �nd the eigenmodes � su
h that both the pre
eding equationsadmit solutions. The normalization of the integral term allows to rewrite theequation on '� as �1� ���'�(�) = 
2 ; (5)whi
h highlights the two 
ases to examine, namely � 2 [�1; 1℄ and � 62 [�1; 1℄.1. � 62 [�1; 1℄: this 
orresponds to the dis
rete part of the spe
trum. Thedenominator never vanishes thus one 
an safely write:'�(�) = 
2 �1� ����1 :4



In order to meet with the normalization of the integral term, the following
ondition should hold:�(�) = 1� 
�2 log�� + 1� � 1� = 0:For 
 < 1, 2 real roots exist for �, usually denoted ��0; hen
e,'��0(�) = 
2 �1� ��0��1 :2. � 2 [�1; 1℄: let PV stand for the Cau
hy prin
ipal value and Æ for theDira
 mass in zero. Generalized solutions of (5) read now:'�(�) = 
2PV �1� ����1 + �(�)Æ(� � �); � 2℄� 1; 1[; (6)for whi
h the normalization 
ondition of the 
ollision term leads to�(�) = 1� 
�2 PV Z 1�1 d�� � � = 1� 
�2 log�� + 1� � 1� :Consequently, to any value of � 2℄� 1; 1[ 
an be asso
iated a \generalizedeigenfun
tion" of the type (6).This 
omputation should be 
ompleted by a 
ompleteness assertion: indeed, itis proved in [11℄ that any reasonable fun
tion f(x; �) 
an be expanded as follows:f(x; �) = a� 
2 �1� ��0��1 exp(�x=�0) + Z 1�1A(�)'� (�) exp(�x=�)d�: (7)More pre
ise 
ompleteness statements are available in [14℄ (pp. 291/2) or [34℄.The 
ase 
 = 1 is 
riti
al for these 
omputations: it is explained in the AppendixF of [11℄ (see also [42℄ p.98) that the dis
rete part of the spe
trum has to bemodi�ed as follows:f(x; �) = �+ �x+ Z 1�1A(�)'� (�) exp(�x=�)d�: (8)For 
 = 1, dis
rete eigenvalues are unbounded: more details on this situationare studied in [43℄. From [13℄ (page 610) 
omes a result dire
tly 
on
erned with(4): the set of generalized eigenfun
tions is 
omplete for fun
tions f su
h that:1. � 7! f(x; �) is H�olderian in any 
losed subinterval of (�1; 1),2. � 7! f(x; �)(1� �2)
 is H�olderian in [�1; 1℄ (0 < 
 < 1).Extensions to \generalized kineti
 equations" T�xf(x; �) + Af = 0 in Hilbertspa
e for T bounded self-adjoint and A possibly unbounded, self-adjoint andFredholm are to be 
he
ked in [26℄. The orthogonality of the generalized eigen-fun
tions is easily proved in the original paper by Case (see Theorem I in [10℄):Z 1�1 �'�(�)'�0 (�)d� = 0; � 6= �0:5



2.2 The Analyti
al Dis
rete-Ordinate (ADO) methodThe Case's method of elementary fun
tions has been extended by many authors,see e.g. [11, 12, 13, 14, 16, 17, 18, 34℄. For numeri
al purposes, it has been intro-du
ed under the name \Analyti
al Dis
rete-Ordinate method" in [5℄. Roughlyspeaking, it 
onsists in �rst, introdu
ing a N -point Gaussian quadrature on theinterval (0; 1) given by the following points and weights:� = (�1; �2; :::; �N ) 2 (0; 1)N ; ! = (!1; :::; !N ) 2 R+ : (9)Then, it 
omputes a ve
tor of eigenmodes � 2 (R+ )N whi
h is an approximationof both the dis
rete and 
ontinuous part of the spe
trum derived in the pre
edingsubse
tion. Last, it determines the 
oeÆ
ients of the generalized eigenfun
tionsout of the given in
ow boundary 
onditions. Let us rewrite (4) as follows:��xf(x; �) + f(x; �) = 
2 Z 10 f(x; �0) + f(x;��0)d�0; x 2 [�x0; x0℄; (10)with � 2 [�1; 1℄ and supplemented by in
ow boundary 
onditions:f(�x0;�j�j) = FL=R(�); � 2 (0; 1℄: (11)Analogously with the 
ontinuous 
ase, the separation variable � is introdu
ed:f(x; �) = '(�; �) exp(�x=�):Plugging into (10) and taking the quadrature rule into a

ount yields:�1� �k�k�'(�;��k) = 
2 NX̀=1 !`�'(�; �`) + '(�;��`)�; k 2 f1; :::; Ng:It is at this level that a tri
k is used in order to redu
e the 
ost of this eigenvalueproblem: let us denote ��(�) = ('(�;��k))k2f1;:::;Ng and Id the identity matrixof RN . By using the same notation for a ve
tor in RN and its 
orrespondingN �N diagonal matrix, it 
omes:�1� ���(�) = �Id� 
2!���(�)� 
2!��(�) (12)Bari
hello, Siewert and Wright [5, 40℄ now observe that, upon de�ning S(�) =�(�+(�) + ��(�)) 2 RN , (12) redu
es to:��1(Id� 
!)��1S(�) = 1�2S(�):This problem 
an be re
ast under a very tra
table one, to whi
h standard divide-and-
onquer methods [15℄ 
an be applied; indeed, by multiplying by the diagonalN �N matrix T = diag(p!k), it 
omes(��2 � 
zzT )X(�) = 1�2X(�); (13)6



where: z = diag�p!k�k � = p!��1; X(�) = TS(�):The eigenproblem is known to possess numerous \good properties" as explainedin [40℄; in parti
ular, sin
e the 
omponents of z never vanish, we have theinterla
ing repartition,0 < �1 < �1 < �2 < �2 < ::: < �N < �N 62 (0; 1℄:Clearly, �N stand for the dis
rete part of the spe
trum and thus 
an be
omevery big when 
 ! 1; in the limit 
 = 1, we have a degenera
y at in�nity.Finally, we re
all the normalization of the N eigenve
tors:NX̀=1 !`�'(�k ; �`) + '(�k;��`)� = 1; k 2 f1; :::; Ng: (14)3 Well-balan
ed s
heme based on exa
t Riemannsolver for kineti
 regimeStarting from here, we de�ne a spa
e/time 
omputational grid determined by atime step �t > 0 and the uniform width of the 
ells �x > 0 su
h that the CFL
ondition holds: �t � �x. We obtain:xj = j�x; tn = n�t; Cj = (xj� 12 ; xj+ 12 ); j 2 Z; n 2 N:Then we introdu
e approximate values as follows:fnj (��k) ' f(tn; xj ;��k);where �k still refers to the Gaussian quadrature rule (9). The general methodol-ogy of well-balan
ed s
hemes stems on lo
alizing the sour
e terms of hyperboli
equations onto a dis
rete latti
e; presently, it 
onsists in passing from (1) to:�tf + ��xf =Xj2Z�x� 
2 Z 1�1 f(t; x; �0)d�0 � f� Æ(x� xj+ 12 ): (15)The 
onsisten
y with the original problem as �x! 0 is the 
onsequen
e of thesimple observation: Xj2Z�xÆ(x� xj+ 12 ) * 1:More details about 
onsisten
y for hyperboli
 systems of balan
e laws are tobe found in [1℄. For dis
ontinuous solutions, the right-hand side of (15) hasbe
ome a non-
onservative (NC) produ
t and should be de�ned 
arefully. Ithas been rigorously shown in [23℄ (see x2.1) that in the simpler 
ase of a dis
retevelo
ity model, the lo
alization pro
ess yields a BV-bound on the 
orresponding7



sequen
e of solutions. The NC produ
t 
an therefore be de�ned as a weak limitin the theory of [36℄. It indu
es a stationary 
onta
t dis
ontinuity a
ross whi
hholds a jump relation following the integral 
urves of the steady-state equation(4). This is the reason why the steady-state problem has been studied in thepre
eding se
tion. The ma
ros
opi
 density and 
ux are de�ned a

ording tothe quadrature rule introdu
ed while setting up the ADO method:%nj = NXk=1!k �fnj (�k) + fnj (��k)� ; Jnj = NXk=1!k�k �fnj (�k)� fnj (��k)� :3.1 Dissipative 
ase 0 < 
 < 1 (absorption and s
attering)We aim at 
onstru
ting our well-balan
ed s
heme as a Godunov s
heme relyingon the exa
t Riemann solver for the NC problem (15). We re
all that thisformulation makes the problem nonlinear as it rewrites [23, 29℄:�tf + ��xf �� 
2 Z 1�1 f(t; x; �0)d�0 � f��xa = 0; �ta = 0:The Riemann problem for (15) 
onsists in solving the equation for pie
ewise
onstant initial data for � 2 [�1; 1℄:f0(x < 0; �) = fleft(�); f0(x > 0; �) = fright(�):Its stru
ture is simple sin
e �xa(x) 6= 0 only at x = 0, thus the propagatingadve
tion waves are una�e
ted by the NC produ
t. Therefore, we are led tosolve the boundary value problem for (4) inside the interval x 2 (��x2 ; �x2 ) inthe dis
rete-ordinates approximation, that is, for �� 2 � only. The �rst stepis 
learly to determine the eigenmodes � 2 RN : they are valid whatever the
omputational point xj ; tn so they must be 
omputed as a pre-pro
essing step,before starting the iterations in time.When the eigenmodes are known, we pass to the resolution of the boundary-value problem under the normalization (14) and the 
onditions (11) whi
h 
anbe dedu
ed easily from the Riemann data:FL(� > 0) = fleft(� > 0); FR(� < 0) = fright(� < 0):The dis
rete-ordinates approximation 
onsiders the following expression for thestationary solution with �k 2 �: (see also x5.3.1 in [42℄)f(x;��k) = 
2 NX̀=1 A` exp(�(�x2 + x)=�`)1� �k=�` + B` exp(�(�x2 � x)=�`)1� �k=�` !Comparing with (7), it appears that the N � 1 �rst terms 
orrespond to a�nite approximation of the integral term 
oming from the 
ontinuous spe
trum(also 
alled \damped modes") and the last one mat
hes the dis
rete part. The8




oeÆ
ients ve
tors A = (A`) and B = (B`) for ` = 1; :::; N are determined bythe boundary 
onditions through the resolution of:M � AB � = 2
 � fleft(�)fright(��) � :Using tensorial produ
ts notation, the symmetri
 matrix M reads as follows:M =  �1� � 
 ��1��1 �1 + � 
 ��1��1 exp(��x� )�1 + � 
 ��1��1 exp(��x� ) �1� � 
 ��1��1 ! ; (16)where exp(��x� ) stands for the N � N diagonal matrix of values exp(��x�k ).On
e again, this matrix has to be assembled and inverted on
e for all as apre-pro
essing step. By analogy with [22℄, we use the following notation:~fL(��k) := f ���x2 ;��k� ; ~fR(�k) := f ��x2 ; �k� : (17)The uniform (in N and �x) invertibility of M 
omes from the 
ompletenesstheorems for Case's generalized eigenfun
tions. By re
alling the simple fa
t thatthe Godunov s
heme 
onsists in evaluating numeri
al 
uxes at the interfa
es ofea
h 
omputational 
ell Cj , we are now in position to write it down:8><>: fn+1j (�k) = fnj (�k)� �k �t�x �fnj (�k)� ~fR;j� 12 (�k)� ;fn+1j (��k) = fnj (��k) + �k �t�x � ~fL;j+ 12 (��k)� fnj (��k)� : (18)The values ~fR;j� 12 (�k) are dedu
ed from the \left" problem,M � AB � = 2
 � fnj�1(�)fnj (��) � ;and the ones ~fL;j+ 12 (��k), from the \right" problem,M � AB � = 2
 � fnj (�)fnj+1(��) � :Remark 1 We stress that the s
heme (18) never makes any approximation ofthe integral 
ollision term by means of a �nite summation. Instead, it is theelementary solution itself whi
h is approximated through the ADO method, es-pe
ially the 
ontinuous part of the spe
trum. We believe, and numeri
al eviden
esupports this idea, that the overall a

ura
y is improved by this treatment.Figures 1 and 2 display numeri
al results for this well-balan
ed Godunov s
heme:we 
onsidered a bounded 
omputational domain x 2 [�1; 1℄ with re
e
tingboundary 
onditions on ea
h side in order to study stabilization as time growsand �x > 0 is �xed. The value of �x is given by imposing 27 = 128 grid points9
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 density (left) and 
ux (right) at time t = 3.
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Figure 2: Kineti
 density at time t = 3.
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in the x variable and the time-step �t is dedu
ed from the CFL number of 0:9.We took N = 15 grid points for the Gaussian quadrature rule whi
h gives 30points for gridding the interval � 2 [�1; 1℄. Initial data 
onsist in 2 bumps:f0(x; �) = 10 exp�� 20(� � 0:35)2 � 50(x� 0:35)2�:The parameter 
 = 0:85 and we iterate until time t = 3. The ma
ros
opi
density and 
ux are free from os
illations, so is the kineti
 density too whendisplayed in the x; � plane.3.2 Conservative 
ase 
 = 1 (purely s
attering)Let us begin by re
alling that the equation (1) with 
 = 1 has been 
ompletelyanalysed in x3 of [13℄ by means of the Lapla
e transform and the method ofelementary solutions. In our numeri
al 
ontext, we follow the Appendix F in[11℄ and repla
e the expansion (7) with the one (8) in order to deal with thedegenera
y at in�nity, �0 ! +1. Clearly, this doesn't a�e
t the pre-pro
essingstep dealing with the 
omputation of the eigenmodes ve
tor �. However, theexpression of the ADO solution has to be amended a

ordingly:f(x;��k) = 12E(x;��k;�) + �2 + �2 (x� �k);whereE(x; �;�) = N�1X̀=1  A` exp(�(�x2 + x)=�`)1� �=�` + B` exp(�(�x2 � x)=�`)1 + �=�` ! :Consequently, the matrix M is dedu
ed from the pre
eding one (16) only bymodifying two of its 
olumns (whi
h are related to the dis
rete spe
trum of the
ontinuous equation):Mk;N � 1; Mk=1;:::;N;2N = ��; Mk=1+N;:::;2N;2N = � +�x:It is very interesting to relate this modi�
ation of M with what has been foundin [22℄ for the 2-velo
ity model for whi
h there are no \damped modes" (the
ontinuous part of the spe
trum). Indeed, in this 
ase, the matrix M reads:M = � 1 �11 1 +�x � ;With the notation of [22℄, we obtain that:� = 2((1 +�x)uL + vR)2 +�x ; � = 2(�uL + vR)2 +�x : (19)Hen
e, we re
over the expressions~u = uL + �x=21 +�x=2(vR � uL); ~v = vR � �x=21 +�x=2(vR � uL);11



whi
h means that the jump relations derived in [22℄ are parti
ular 
ases ofelementary solutions with a dis
rete spe
trum. The present Godunov s
heme(18) with its interfa
e values determined either in the dissipative 
ase 
 < 1,or in the 
onservative 
ase 
 = 1 is likely to be the most natural generalizationof the simple dis
rete velo
ity model studied in [22℄. On Figures 3 and 4, wedisplay numeri
al results for the test-
ase 
orresponding to the same initialdata than in the pre
eding subse
tion. The only 
hange is that 
 = 1 and themodi�ed M matrix is used for 
omputing the ve
tors A and B. Sin
e thereis no dissipation, the total mass is preserved and we 
an therefore observe thetime-asymptoti
 behavior of the WB Godunov s
heme, espe
ially the de
ay ofits numeri
al solution onto the Maxwellian distribution. We aim at observingnumeri
ally that, as time passes, the numeri
al kineti
 density be
omes less andless varying in the � velo
ity variable. This is a
tually what happens as 
an beseen in Figure 5 despite the re
e
ting boundary 
onditions in x = �1.3.3 Comparison with a 
lassi
al time-splitting s
hemeOne may think that a 
onventional time-splitting s
heme 
an behave equally wellsin
e the equation (1) is linear and the ordinary di�erential equation asso
iatedto the 
ollision term 
an be integrated exa
tly sin
e the ma
ros
opi
 density %is invariant along its 
ow. Indeed, su
h a s
heme would read:8><>: fn+ 12j (�k) = fnj (�k)� �k �t�x �fnj (�k)� fnj�1(�k)� ;fn+ 12j (��k) = fnj (��k) + �k �t�x �fnj+1(��k)� fnj (��k)� ; (20)together with:fn+1j (��k) = exp(��t)fn+ 12j (��k) + 
2�1� exp(��t)�%n+ 12j :Many variants, like the se
ond order Strang splitting, exist and they probablyshare the same problem when it 
omes to long-time behavior. A
tually, the�rst part (20) 
reates variation in the � variable sin
e it separates the parti
lesa

ording to their velo
ity: in parti
ular, it drives apart left-moving parti
lesfrom right-moving ones; this is stated rigorously as the so{
alled dispersionLemma 2.1 in [37℄. Later, 
omes the relaxation step whi
h proje
ts the resultingkineti
 density onto %; however, this doesn't 
ompensate for the pre
eding step.There is no me
hanism in this s
heme whi
h 
an eÆ
iently tame the variationsin the � variable of its numeri
al kineti
 density. This manifests itself throughseveral signs: when 
onsidering the de
ay of the L2 time residues,Rn = k%(tn; :)� %(tn�1; :)kL2 ; n 2 N� ;one easily sees on the top of Figure 6 that the ones of the time-splitting s
hemede
rease less qui
kly and in a more errati
 way 
ompared to the ones of the well-balan
ed s
heme (15). Moreover, by looking at the numeri
al kineti
 densities12
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ros
opi
 density (left) and 
ux (right) at time t = 3.
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Figure 4: Kineti
 density at time t = 3.
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Figure 5: Kineti
 densities at t = 5; 9:5; 25; 35 (left to right, top to bottom).in the x; � plane at later time t = 15 on Figure 7, one sees that many ripplesstill appear on the time-splitting solution w.r.t. the WB as a 
onsequen
e ofthe drawba
k explained formerly. It 
omes as no surprise that the resultingma
ros
opi
 density also displays more variation. Time-splitting s
hemes havebeen studied in [20℄ for a relaxing system in hyperboli
 s
aling admitting BV-bounds a

ording to a NC formalism related to the one we used presently.4 Asymptoti
-Preserving for di�usive regimeIn this se
tion, we shall always be 
on
erned with the res
aled problem (2) aswe now aim at modifying the Godunov s
heme (15) in order to make stableindependently of the smallness of " and moreover 
onsistent with the limitingdi�usion equation (3) as "! 0 with �x > 0 �xed.
14
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Figure 6: Residues (top) and ma
ros
opi
 densities (bottom) at time t = 15.
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Figure 7: Comparison of kineti
 densities at t = 15: WB (left) and TS (right).15



4.1 Splitting between Maxwellian and di�usive 
uxesTo 
ope with the di�usive s
aling in (2), we rewrite the stationary equation,��xf(x; �) + f(x; �) = 12 Z 1�1 f(x; �0)d�0; x 2 ���x2" ; �x2" � ;together the ADO approximation of Case's elementary solution:f(x;��k) = 12E(x=";��k;�) + �2 + �2 �x" � �k� : (21)Thus the M matrix has to be modi�ed a

ordingly,M" =  �1� � 
 ��1��1 �1 + � 
 ��1��1 exp(��x"� )�1 + � 
 ��1��1 exp(��x"� ) �1� � 
 ��1��1 ! ;with its two 
olumns reading like:M"k;N � 1; M"k=1;:::;N;2N = ��; Mk=1+N;:::;2N;2N = � + �x" :The interfa
e values 
ome from the solutions of the linear systems:M"� AB � = 2� fnj�1(�)fnj (��) � ; M"� AB � = 2� fnj (�)fnj+1(��) � :Looking at (15), it seems far less easy than in [22, 23℄ to separate inside theinterfa
e values ~fL=R;j+ 12 (�k) between a Maxwellian O(1) term and a di�usiveO(") one as their expli
it expression isn't available. However, we 
an pro
eedbased on the guidelines of the simple linear Goldstein-Taylor model: a

ordingto the 
omputation of the previous se
tion, the 
oeÆ
ient � in (19) is a good
andidate for a di�usive term. Thus, we propose the following de
ompositionof the ADO interfa
e values:1. the Maxwellian terms 2ML(��k) = E(��x="; �k;�)+� and 2MR(�k) =E(�x="; �k;�)+�+��x" whereE 
ontains the \damped modes" expressedwith exponential fun
tions whi
h are probably very small when "� �x,2. the di�usive terms 2DL(��k) = �j�kj and 2DR(�k) = ��j�kj, independenton �x, whi
h also have the ni
e feature of making the 
oeÆ
ient 13 easilyappear when the dis
rete equation on %nj is derived.By treating impli
itly the Maxwellian part and expli
itly the di�usive one, theGodunov s
heme (15) rewrites in the di�usive s
aling as follows:8>>>><>>>>: fn+1j (�k) = " fnj (�k)1 + �k�t"�x + �k�t"�x1 + �k�t"�x MR;j� 12 (�k)#� �2k �t�x �nj� 12" ;fn+1j (��k) = " fnj (��k)1 + �k�t"�x + �k�t"�x1 + �k�t"�x ML;j+ 12 (��k)#+ �2k �t�x �nj+ 12" : (22)16



For the time being, we are not able to derive rigorous proofs for the s
heme (22)and we shall mainly rely on numeri
al eviden
e displayed in the subse
tion x4.3.Following [22℄, we 
an derive formally the 
onsisten
y of (22) with (3) assumingthat ea
h fnj (�k) is 
lose to Maxwellian. Indeed, (22) rewrites:8>><>>: fn+1j (�k) = fnj (�k)� �k�t"�x �fn+1j (�k)�MR;j� 12 (�k)�� �2k �t�x �nj� 12" ;fn+1j (��k) = fnj (��k) + �k�t"�x �ML;j+ 12 (��k)� fn+1j (��k)�+ �2k �t�x �nj+ 12" :We multiply ea
h equation for �� by the weights ve
tor ! and sum up:%n+1j � %nj�t � 13 �nj+ 12 � �nj� 12"�x =NXk=1 !k�k"�x �[MR;j� 12 (�k) +ML;j+ 12 (��k)℄� [fn+1j (�k) + fn+1j (��k)℄� : (23)The right-hand side be
omes small as "! 0 in the 
omputations shown in x4.3.Remark 2 The s
heme (22) is hopefully asymptoti
-preserving independentlyof the number of points N 
hosen in the Gaussian quadrature for the ADOmethod, and 
onsequently of the number of equations in the hyperboli
 systemobtained from the dis
retization in the � variable.On
e again, it is of interest to observe how behaves our Maxwellian/di�usivesplitting on the simple Goldstein-Taylor model; the matrix M" simpli�es toM" = � 1 �11 1 + �x" � ;and from the equation M"(� �)T = 2(uL vR)T solved at any interfa
e xj+ 12 ,j 2 Z, of the 
omputational domain, it 
omes:� = �22 +�x="(uL � vR) = �""+�x=2(uL � vR):And this is exa
tly the right term yielding the 
orre
t asymptoti
 di�usion whenmultiplied by �t="�x with " ! 0; moreover, this type of value would lead toa 
entered dis
retization of the se
ond derivative 13�xx% in (23). Thus we haveevery reason to believe that the aforementioned de
omposition still works in thegeneral 
ase where 2N velo
ities �� are 
onsidered.Proposition 1 Let f be de�ned as (21); if 
 = 1, there holds:8x 2 ���x2 ; �x2 � ; Z 1�1 �f(x; �)d� � ��3 :17



Proof. It pro
eeds by approximately integrating the pie
ewise 
onstant fun
-tion in (21) a

ording to the quadrature rule !; � introdu
ed in (9):Z 1�1 �f(x; �)d� = NXk=1!k�k[f(x; �k)� f(x;��k)℄:One part of the integral 
learly vanishes be
ause � 7! (� + �x=")� is odd on(�1; 1). Con
erning the exponential terms, we leave the part depending on x andre
all the normalization 
ondition (14) in order to 
ompute for any � 2 (�1; 1):PNk=1 !k�k�'(�; �k)� '(�;��k)� = 
2PNk=1 !k � �k1��k=� � �k1+�k=��= � 
�2 PNk=1 !k �2� 11��k=� � 11+�k=��= � 
�2 �2� 2
PNk=1 !k['(�; �k) + '(�;��k)℄� :At this point, inserting 
 = 1 ensures that this term vanishes. Thus remains:NXk=1!k�k [f(x; �k)� f(x;��k)℄ = ��2 NXk=1!k(2�2k) = ��3 : �Proposition 1 is somehow a restatement of equation (40) in [4℄; it explains whythe di�usive 
uxes appearing in the left-hand side of (23) are 
orre
t for 
 = 1and " small enough. The fa
t that neither �x nor " show up in the expressionof these 
uxes ensures the AP property and the 
onsisten
y of (22) with (3).4.2 Relation with a previous AP s
heme
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Figure 8: Errors on approximating �; � for various " with (24) and (25).In the previous de
omposition, we in
luded in the Maxwellian part the termsof the order of exp(��x="�) despite the fa
t they de
rease very qui
kly with". It is therefore very tempting to 
an
el them when deriving the s
heme (22);18



a �rst 
onsequen
e of this assumption is to get Maxwellian terms independenton �k . However, there is another interesting one: on Figure 8, we display thenumeri
al the behavior of the following approximations for the values � and �,� ' 22 +�x  (1 + �x) NXk=1!kfleft(�k) + NXk=1!kfright(��k)! (24)and � ' � 22 +�x  NXk=1!k�k (fleft(�k)� fright(��k))! ; (25)for " = 1; " = 0:01; " = 0:00001 as a fun
tion of time. Of 
ourse, for " � �x,the value �x is repla
ed by �x=" as we pass from the s
heme (15) to theAP one (22). One sees that these simple approximations improve when thekineti
 density be
omes slowly-varying in the velo
ity variable �. These valuesof � and � mean that two reasonable assumptions are made: one, the kineti
density is 
lose to its Maxwellian distribution and two, the exponential terms
orresponding to the 
ontinuous spe
trum are negligible. Then it 
an be 
he
kedthat, in the notation of (17), the following jump relations hold:~fL(��k) = 12 (� + ��k)= NX̀=1 !`fleft(�k)� 12 +�x=" NX̀=1 !`(fleft(�k)� fright(��k))� �k2 +�x=" NX̀=1 !`�`(fleft(�k)� fright(��k));= NX̀=1 !`fleft(�k)� " NX̀=1 1 + �k�`2"+�x!`(fleft(�k)� fright(��k))' NX̀=1 !`fleft(�k)� 2"�k2"+�x NX̀=1 !`(fleft(�k)� fright(��k))and~fR(�k) = 12 (�+ ��x="� ��k)= NX̀=1 !`fright(��k) + 1 +�x="2 +�x=" NX̀=1 !`(fleft(�k)� fright(��k))+�k ��x="2 +�x=" NX̀=1 !`�`(fleft(�k)� fright(��k));= NX̀=1 !`fright(��k) + NX̀=1 !` (1� �`)�x2"+�x (fleft(�k)� fright(��k))+" NX̀=1 !` 1 + �k�`2"+�x (fleft(�k)� fright(��k))' NX̀=1 !`fright(��k) + 2"�k2"+�x NX̀=1 !`(fleft(�k)� fright(��k))19



And this mat
hes the results in [24℄: the simpli�
ations in the ma
ros
opi

uxes follow the 
omputations in pp. 234{236. Thus, by treating impli
itly thesti� terms, we obtain the equations of the s
heme (34) with the integral termsrepla
ed by �nite sums involving the Gaussian quadrature rule:8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
fn+1j (�k) = fnj (�k)� �k�t"�x  fn+1j (�k)� NX̀=1 !`fn+1j (��k)!+ 2�2k�t�x(2"+�x) NX̀=1 !`�fnj�1(�k)� fnj (��k)�;fn+1j (��k) = fnj (��k) + �k�t"�x  NX̀=1 !`fn+1j (�k)� fn+1j (��k)!� 2�2k�t�x(2"+�x) NX̀=1 !`�fnj (�k)� fnj+1(��k)�:We 
an exploit the rigorous stability results from [24℄ at least in this spe
ial 
asewhere drasti
 simpli�
ations have been made in the ADO approximate solutionassuming that the kineti
 density is very 
lose to Maxwellian. This also providesus with another manner of deriving the AP s
hemes studied in this earlier paper.Remark 3 A big di�eren
e between the present work and the former one [24℄is that, despite 
onsidering the numeri
al approximation of the same problems(1) and (2), the treatment of the stationary equations is quite di�erent. Indeed,in [24℄, we approximated this steady-state problem by �nite di�eren
es; in sharp
ontrast, we treat it exa
tly by means of the method of elementary solutions, andwe approximate only the 
ontinuous part of the spe
trum by means of a �nitesum with a Gaussian quadrature rule. So the WB s
heme (15) 
an be 
onsideredas a potentially mu
h sharper version of the one proposed earlier in x2 of [24℄.4.3 Numeri
al resultsWe now present some numeri
al results from the s
heme (22) in the paraboli
s
aling (2) with the \nearly Maxwellian" initial data:� f0(x; �) = exp(�"(�2 � x2))�x2[�1=3;1=3℄;f0(x; �) = exp(�"�2 � x2)�x2[�1=3;1=3℄; x 2 [�1; 1℄;where �A stands for the indi
ator fun
tion of a set A. The paraboli
 CFL
ondition has been used, namely �t = 0:45�x2, we took again N = 15 and 127points to grid the x interval. Tests have been 
arried out up to t = 0:05 with" = 0:01 and " = 0:00001. For this smaller value of ", we display on Figure9 the ma
ros
opi
 density % and the 
ux J obtained out of the kineti
 densityfnj (��) 
omputed with (22); espe
ially, the density is 
ompared to the dire
tsolution of the equation (3) 
omputed by means of a standard 
entered s
heme.The 
onsisten
y 
an be 
onsidered satisfa
tory. On Figure 10, we display thekineti
 distribution for " = 0:01 at time t = 0:05; 
learly, it 
an be 
onsideredas \pra
ti
ally Maxwellian" even if " is snaller but still of the order of �x.20
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Figure 9: Ma
ros
opi
 density (left) and 
ux (right) at time t = 0:05 for "� �x.5 Con
lusion and outlookAn original well-balan
ed Godunov s
heme for the linear kineti
 equation (1)has been presented and its numeri
al results have been 
ompared to the onesgenerated by a more 
lassi
al time-splitting dis
retization. Moreover, it hasbeen shown that it is possible, like in simpler 2-velo
ities models, to reformulatethe s
heme in order to make it asymptoti
-preserving in the di�usive s
aling(2), thus displaying 
onsisten
y with the limiting di�usion equation (3) inde-pendently of the grid parameters as soon as the usual paraboli
 CFL restri
tionis met. This approa
h is by no means limited to this parti
ular radiative transferequation; namely, 2 main extensions emerge rather spontaneously:1. more elaborate kineti
 models: one 
an 
hoose to treat any 
ollision opera-tor for whi
h the formalism of Case's elementary solutions 
an be applied.This 
lass 
ontains for instan
e the BGK models studied by Cer
ignani[12, 13, 14℄ and treated numeri
ally in the stationary regime by Siewert etal. [4℄. Another very interesting dire
tion is to treat Boltzmann equationsfor 
harged parti
les: in this 
ase, one has to follow the results by Dalitz21
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Figure 10: Perturbed Maxwellian kineti
 density at time t = 0:05 for " ' �x.[16, 18℄ where the elementary solutions are derived in several meaningfulsituations. It is reasonable to believe that these solutions 
an handle anunsteady ele
tri
 �eld ruled by the Poisson equation in the same man-ner than the well-balan
ed s
heme in [21℄ is stable in the presen
e of thedi�usion equation for the 
hemoattra
tant substan
e.2. numeri
al 
oupling between a kineti
 and a di�usive region in the 
ompu-tational domain: even if it looks easy to 
ouple the simple s
hemes derivedin [22℄ (as they are pra
ti
ally the 2 versions of the same dis
retization),the result isn't satisfa
tory be
ause mass gets lost at the jun
tion as longas the kineti
 density is not Maxwellian in the kineti
 region. It wouldtherefore be interesting to �x this issue, as it has been done in [45℄ forstationary problems.We 
lose this text metioning that there exists other approa
hes to numeri
al
al
ulations in radiative transfer, see for instan
e [19, 31, 39, 41℄. There existsan alternative to Case/ADO method to 
ompute stationary solutions, namelythe iterative s
heme proposed by Bobylev and Stru
kmeier [7℄.Referen
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