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ABSTRACT

Ocean simulations are in part determined by topographic waves with speeds and spatial scales dependent on
bottom slope. By their very nature, discrete z-level ocean models have problems accurately representing bottom
topography when slopes are less than the grid cell aspect ratio Dz/Dx. In such regions, the dispersion relation
for topographic waves is inaccurate. However, bottom topography can be accurately represented in discrete z-
level models by allowing bottom-most grid cells to be partially filled with land. Consequently, gently sloping
bottom topography is resolved on the scale of horizontal grid resolution and the dispersion relation for topographic
waves is accurately approximated. In contrast to the standard approach using full cells, partial cells imply that
all grid points within a vertical level are not necessarily at the same depth and problems arise with pressure
gradient errors and the spurious diapycnal diffusion. However, both problems have been effectively dealt with.
Differences in flow fields between simulations with full cells and partial cells can be significant, and simulations
with partial cells are more robust than with full cells. Partial cells provide a superior representation of topographic
waves when compared to the standard method employing full cells.

1. Introduction

There are at present three main strategies for building
ocean general circulation models. Each centers around
a different way of discretizing the vertical coordinate.
The first involves discretizing a vertical column of ocean
into levels. The vertical levels may have differing thick-
ness but all grid points within a given level are at the
same depth. The most widely used family of these z-
level models is based on Bryan (1969) with the most
recent member1 being the Geophysical Fluid Dynamics
Laboratory (GFDL) Modular Ocean Model (MOM) 2.
Apart from the simplicity and computational efficiency
of a z-level discretization, it has the advantage that ac-
curate pressure gradients are easy to calculate, a non-
linear equation state may easily be included, and regions
of weak stratification are easily modeled. The disad-
vantages are that topographic gradients less than the grid
aspect ratio and bottom boundary layers are not well
resolved unless very high vertical resolution is used,
which in most cases is not feasible. Additionally, steep

1 Approximately 350 researchers are officially registered to use the
GFDL MOM with about 130 officially registered to use the most
recent version GFDL MOM 2 (Pacanowski 1996).
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topographic gradients greater than the grid aspect ratio
are not resolved unless very high horizontal resolution
is used.

A second approach is to build a vertical coordinate
from stratification by dividing the water column into
layers of constant density. Such isopycnal coordinate
ocean models (Bleck and Smith 1990; Hallberg 1995)
can accurately approximate any topography. However,
they are not able to easily handle a nonlinear equation
of state and resolution degrades when density stratifi-
cation is weak.

A third approach is to divide the water column into
a fixed number of vertical regions with each being as-
signed some fraction of the total depth. These are the
sigma-coordinate models (Blumberg and Mellor 1987;
and Haidvogel et al. 1991), which can also accurately
approximate any topography. However, they can have
problems with ‘‘pressure gradient errors’’ and spurious
diapycnal diffusion in regions where the bottom slopes
steeply.

Gerdes (1993) attempted to resolve the inability of
the z-level model to accurately incorporate topography
by constructing a ‘‘hybrid’’ model, where the bottom
level was a sigma surface, but the interior levels were
at constant depths. Although he obtained substantial im-
provement in topographic wave propagation, he did not
find an easy way to remove pressure gradient errors or
spurious diapycnal diffusion in regions of steep topog-
raphy.

Recently, Adcroft et al. (1997) proposed a finite-vol-
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FIG. 1. An example comparing actual and discretized bottom to-
pography for a given horizontal resolution: (a) using full cells and
(b) using partial cells.

ume approach using a z-level model based on a C-grid
discretization in which the bottom-most cells were
‘‘shaved’’ to fit the topography. The shaving was quite
general and could be applied to any or all faces of a
grid cell thereby resolving lateral as well as bottom
boundaries. He also compared this method to a special
form of shaving, which kept the bottom cell faces hor-
izontal. To our knowledge, this method was first ex-
plored by M. Cox (now deceased) over a decade ago
but his results were never published, and according to
M. Cox (1987, personal communication) the model was
dropped because of being overly complex. We also sus-
pect that Cox was discouraged over the resulting pres-
sure gradient errors. In this paper, we explore the im-
provement in response resulting from a partial cell ap-
proach, which minimizes both pressure gradient errors
and spurious diapycnal diffusion. This approach has
been added as an option to the GFDL MOM 2, which
is a discrete z-level model based on a B-grid discreti-
zation. No attempt has been made to better approximate
lateral boundaries. Essentially, the partial cell approach
represents a ‘‘piecewise-sigma’’ coordinate, which is
embedded within each model level. Therefore, slow
variations in topography are treated using the piecewise-
sigma coordinate and rapid variations with the level
coordinate. This is distinct from a true sigma coordinate
model where sigma levels are continuous from the sur-
face to the bottom of the ocean.

It is important to state that the partial cell method is
not intended to capture the downslope flow associated
with dense overflows such as the Denmark Straits, Fae-
roe Bank Channel, or Straits of Gibraltar. The reason is
that the thickness of the bottom cell in many locations
will exceed the thickness of the Ekman layer. As a result,
stress-driven dynamics will not dominate over pressure
gradient forces, and water that does flow downslope will
experience high levels of entrainment as discussed by
Winton et al. (1998) and also Baringer and Price (1997).
An explicit parameterization of the bottom boundary
layer such as given in Gnanadesikan (1998, manuscript
submitted to J. Phys. Oceanogr., hereafter G98) can
remedy this problem. Beckmann and Doescher (1997)
have also added a bottom boundary layer but their for-
mulation, unlike G98 and the one proposed by Killworth
and Edwards (1998, manuscript submitted to J. Phys.
Oceanogr.), is not energetically consistent.

The structure of this paper is as follows: section 2
compares the ability of the partial cell and full cell to
resolve bottom topography. Section 3 discusses the im-
plementation of partial cells within a B-grid with em-
phasis on advection, diffusion, pressure gradients, and
the equation of state. Energetic consistency for partial
cells on a B-grid is demonstrated in the appendix. Sec-
tion 4 considers wave propagation over a sloping bottom
in an idealized zonally re-entrant channel. Section 5
compares the use of partial cells and full cells on a
simulation of the Indian Ocean using a vertical dis-

cretization with 15 vertical levels and realistic topog-
raphy. Section 6 concludes by summarizing the results.

2. Resolving bottom topography

In the standard implementation of GFDL MOM 2,
topography is discretized by finding the nearest vertical
model level that most closely matches the depth of the
topography at each longitude and latitude grid point
within the model domain. The ocean bottom is then
defined in terms of the number of vertical levels (grid
cells) from the ocean surface down to this deepest ocean
level. Figure 1a is an example of a typical section of
bottom topography compared with the resulting discre-
tized bottom. The solid line represents the ‘‘true’’ bot-
tom, which the full cell discretization is trying to cap-
ture. Ocean cells within vertical levels are indicated with
grid points and land cells are shaded. The partial cell
discretization is indicated in Fig 1b where the bottom-
most ocean cell in each column is partially filled with
land while keeping the bottom cell face horizontal. Note
that topography is significantly better approximated
when partial cells are used. Most of the change in
regions of steep slopes is captured by changes in the
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FIG. 2. An example comparing actual and discretized bottom to-
pography using the same number of vertical levels but twice the
horizontal resolution of Fig. 1. (a) using full cells and (b) using partial
cells.

number of vertical levels. Even so, partial cells give a
better estimation of the true slope in these regions as
well.

In regions where bottom slope is less than grid cell
aspect ratio (Dz/Dx or Dz/Dy), there are serious prob-
lems with full cells. Either these regions are entirely
missed or are erroneously compressed into a steep slope
separating regions with zero slope. The reason is that
full cells capture slopes by forcing a change in the num-
ber of vertical levels between the surface and the ocean
bottom. The latitude and longitude where a change in
the number of levels occurs is determined by vertical
grid resolution. Therefore, changing vertical resolution
causes the location of these erroneous steep slopes to
move! Partial cells have no such problems. Note how
grid points follow the topography in Fig 1b. In effect,
a piecewise sigma coordinate has been added within
each vertical level by partial cells. The sigma coordinate
is piecewise continuous because it is disconnected be-
tween vertical levels. For instance, horizontal gradients
(i.e., pressure gradients) within a vertical level are con-
strained to work only with grid points within the level
and not with grid points from other levels.

The case where horizontal resolution in Fig 1 is dou-
bled but vertical resolution remains unchanged is given
in Fig 2. Comparing Fig. 1a and Fig. 2a indicates that
full cell discretized bottom topography does not signif-
icantly improve with increasing horizontal resolution.
In fact, it remains about the same. In contrast, Fig. 1b
and Fig. 2b indicates that the partial cell representation
of topography continues to improve as horizontal res-
olution is increased. Note that the region of steepest
slope would require still higher horizontal resolution to
be accurately resolved. Since partial cells allow infinite
resolution of topography in the vertical, topographic fea-
tures are guaranteed to be resolved at the scale of the
horizontal grid size. In practice, the minimum thickness
of a partial cell should be limited to prevent transmitting
information farther than one grid cell width in one time-
step. This is not a problem for vertical velocity at the
base of T-cells (tracer cells) (because the boundary con-
dition is a zero vertical velocity on the bottom face of
all deepest ocean T-cells) but can be for vertical velocity
at the base of U-cells (velocity cells) (vertical velocity
is related to the topographic slope at the base of U-
cells). For simulations in this study, a minimum thick-
ness of 5 m was used for partial cells unless otherwise
noted. In general, for a fixed vertical resolution, as hor-
izontal resolution increases, differences between full
cell and partial cell topographic slopes grow larger.
Clearly, along with topographic slopes, lines of constant
f/H and the ocean volume as well are better approxi-
mated with partial cells.

3. Implementing partial cells within a B-grid
model

In the GFDL MOM 2 and its predecessors, resolution
along any coordinate direction was only allowed to be

a function of position along that coordinate. If this con-
dition is relaxed to allow deepest ocean cells to have
arbitrary thickness, then a partial cell bottom results
where vertical cell thickness additionally becomes a
function of latitude and longitude. To account for this
generalization in the discrete equations, the area of each
cell face must be taken into account when fluxing quan-
tities cross a cell face. However, since the generalization
is made only for the vertical coordinate, only the ef-
fective height of a cell face is necessary. The essential
point is to approximate horizontal advective and dif-
fusive operators by accounting for changes in cell thick-
ness. A prescription for implementing this information
into the finite-difference primitive equations (Bryan
1969) is given next.

Let the size of a grid volume element in spherical
coordinates (l, f, z) on an Arakawa staggered B-grid
for a T-cell and U-cell be represented as

T T T T T T T T(Dx cosf , Dy , Dh ) 5 (aDl cosf , aDf , Dz ) (1)
U U U U U U U U(Dx cosf , Dy , Dh ) 5 (aDl cosf , aDf , Dz ) , (2)

where a is the radius of the earth and the superscripts
refer to T-cells and U-cells. In general, the grid cell size
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along any principle direction (longitude, depth, or lat-
itude) is a function of position along that direction but
not of the orthogonal directions. On the discrete grid,
principal directions are discretized by index ‘‘i,’’ which
increases with longitude; ‘‘k,’’ which increases with
depth; and ‘‘j,’’ which increases with latitude. For any
tracer a defined at the grid point within a T-cell, the
discrete prognostic equation in terms of full cell ad-
vective operator Adv(a) and diffusive operator Diff(a)
is given by:

t t21d (a) 5 2Adv(a ) 1 Diff(a ) (3)t

1 1
lAdv(a) 5 d (U a ) 1l t21 t21T Tcosf cosf

f zU3 d (V cosf a ) 1 d (W a )f j21 j21 j21 z k21 k21

(4)

1 1
Diff(a) 5 d (A d a ) 1l h l t212 T Tcos f cosf

U3 d (A cosf d a ) 1 d (kd a ) (5)f h j21 f j21 z z k21

f
U TU 5 u Dy /Dy (6)j21 j21

l
U U TV 5 y cosf Dx /Dx (7)i21 i21

1
d (W ) 5 2 (d U 1 d V ), (8)z k21 l i21 f j21Tcosf

where only indices other than i, k, j are exposed to aid
readability. At land boundaries, an insulating condition
is used (i.e., the normal gradient of any tracer at the
boundary is set to zero with the aid of masking arrays,
which are not shown.). In the above equations, u and y
are prognostic zonal and meridional velocities defined
within U-cells, Ah and k are horizontal and vertical dif-
fusion coefficients, and U, V, and W are face-centered
advective velocities for T-cells. For clarity, the arrange-
ment of variables and indices on an Arakawa B grid is
given in Fig. 3. The finite-difference derivative and av-
erage operators for any quantity b within a grid cell
with subscripts i, k, j are expanded with all indices ex-
posed as

d b [ d (b ) 5 (b 2 b )/Dx (9)l l i,k, j i11,k,j i,k, j

d b [ d (b ) 5 (b 2 b )/Dy (10)f f i,k, j i,k, j11 i,k, j

d b [ d (b ) 5 (b 2 b )/Dz (11)z z i,k, j i,k, j i,k11, j

t t11 t21d b [ d (b ) 5 (b 2 b )/2Dt (12)t t

l l
b [ b 5 (b 1 b )/2 (13)i,k, j i11,k,j i,k, j

f f
b [ b 5 (b 1 b )/2 (14)i,k, j i,k, j11 i,k, j

z z
b [ b 5 (b 1 b )/2, (15)i,k, j i,k11, j i,k, j

where time is discretized as t 5 nDt for positive values
of integer n and discrete time step size Dt . Operators
can be applied to any grid cell. For example, a longi-

tudinal average of a quantity b defined at the grid point
within cell i 2 1, k, j is given by 5 (bi,k,j 1

l
bi21,k,j

bi21,k,j)/2. Note that is defined at the eastern face
l

bi21,k,j

of cell i 2 1, k, j, which is coincident with the western
face of cell i, k, j. Within derivative operators, the grid
spacing Dx, Dy, and Dz is symbolic. Actual grid spacing
must be chosen with regard to where the quantity within
the derivative is defined. In Fig. 3a, for example, the
derivative d(Ui21,k,j) 5 (Ui,k,j 2 Ui21,k,j)/D but d(ai,k,j)Txi

5 (ai11,k,j 2 a i,k,j)/D . The corresponding T-cell op-Uxi

erators for partial cells are given by:

1 1
lAdv(a) 5 d (U9 a ) 1l i21 i21T T T TDh cosf Dh cosf
f zU3 d (V9 cosf a ) 1 d (W a )f j21 j21 j21 z k21 k21

(16)

1 1
TDiff(a) 5 d (z A d a ) 1l i21 h l i21T 2 T T TDh cos f Dh cosf

Tf U3 d (z A cosf d a ) 1 d (kd a )f j21 h j21 f j21 z z k21

(17)
f

U U TU9 5 u Dh Dy /Dy (18)j21 j21 j21

l
U U U TV9 5 y cosf Dh Dx /Dx (19)i21 i21 i21

1
d (W ) 5 2 (d U9 1 d V9 ), (20)z k21 l i21 f j21T TDh cosf

where DhT is the thickness of a T-cell as indicated in
Fig. 3b. The variables z Tl and z Tf are effective cell face
heights defined as the minimum height of two adjacent
T-cells in longitude and latitude, respectively. For lon-
gitude index i, latitude index j, and depth index k, the
effective heights of the eastern face and northernTlzi,k,j

face of cell Ti,k,j are given by:Tfz i,k,j

Tl T Tz 5 min(Dh , Dh ) (21)i,k, j i,k, j i11,k,j

Tf T Tz 5 min(Dh , Dh ). (22)i,k, j i,k, j i,k, j11

The lateral derivatives within Diff(a) need special at-
tention and will be dealt with later. In comparison with
Diff(a), the factors z Tl and z Tf are missing from Adv(a)
because they cancel the same factors, which otherwise
would appear in the denominator of the right-hand-side
of equations for U9 and V9. Also, U9 and V9 are velocities
weighted by the height of the cell face (that portion of
the face that is in the ocean) on which they are defined
in Eqs. (18) and (19) as opposed to simply face-centered
velocities in Eqs. (6) and (7).

A similar set of operators exists for quantities within
U-cells and the operations parallel those given for trac-
ers. Since topography and geometry are constructed by
material surfaces defined to lie on faces of T-cells, the
vertical thickness of a U-cell with coordinate Ui,k,j is
given as the minimum of the four surrounding T-cell
thicknesses:
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FIG. 3. Arrangement of variables and indices on an Arakawa B-grid including grid lengths that define the resolution of T-cells and U-
cells. The longitudinal index is ‘‘i’’ and the latitudinal index is ‘‘j.’’ The depth index is ‘‘k.’’ (a) Arrangement in the horizontal plane. (b)
Thickness of T-cells indicating vertical velocities at the top and bottom face. (c) Relationship between thickness of partial T-cells and U-
cells in one dimension (longitude).
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U T T T TDh 5 min(Dh , Dh , Dh , Dh ).i,k, j i,k, j i11,k,j i,k, j11 i11,k,j11

(23)

The relationship between thicknesses of partial T-cells
and U-cells is illustrated along one dimension (longitude
only) in Fig. 3c. Effective cell heights are also defined
for the U-cells. For longitude index i, latitude index j,
and depth index k, the effective heights of the eastern
face and northern face of cell Ui,k,j are givenUl Ufz zi,k,j i,k,j

by:
Ul U Uz 5 min(Dh , Dh ) (24)i,k, j i,k, j i11,k,j

Uf U Uz 5 min(Dh , Dh ). (25)i,k, j i,k, j i,k, j11

Because the lateral boundary condition is no-flux for
tracers but no-slip for velocity, the horizontal viscosity
h21= · (h=(u)) has zonal and meridional components
given by:

Aml UlVisc 5 d (z d u )l i21 l i21U 2 UDh cos f

Am T Uf1 d (cosf z d u )f j21 j21 f j21U UDh cosf
2 U U1 2 tan f 2 sinf

l1 A u 2 A d (y )m m l i212 2 2 Ua a cos f

1 S(u) (26)

Amf UlVisc 5 d (z d y )l i21 l i21U 2 UDh cos f

Am T Uf1 d (cosf z d y )f j21 j21 f j21U UDh cosf
2 U U1 2 tan f 2 sinf

l1 A y 1 A d (u )m m l i212 2 2 Ua a cos f

1 S(y), (27)

where Am is the lateral viscosity coefficient.2 The above
form differs from Bryan (1969) due to the inclusion of
effective cell face heights z Ul and z Uf and a sink term
due to a no-slip lateral boundary condition. The sink
terms is given by:

U Ul U UlA Dh 2 z Dh 2 zm i21S(b) 5 2 1 b
U 2 U U T T[ ]Dh cos f Dx Dx Dxi11

T U Ufcosf (Dh 2 z )A j11m2
U U U T[Dh cosf Dy Dyj11

T U Ufcosf (Dh 2 z )j211 b,
T ]Dy

(28)

2 The formulation is for constant Am. Variable Am requires additional
terms.

which is zero where U-cell thickness is constant (i.e.,
DhU 5 z Ul) within a vertical level but acts as a bottom
drag

2 U U US(b) } (A /D x )b · · · assuming Dx 5 Dy , (29)m

where U-cell thickness varies within a vertical level.
The constant of proportionality [(DhU 2 z Ul)/DhU] rep-
resents the fraction of cell face height over which a no-
slip condition is applied. Again, subscripts have been
suppressed except where different than i, k, j.

The advective terms for momentum are similar to the
ones for advection of tracers except that effective cell
face heights are for U-cells rather than for T-cells. In
the interior, equations are second-order accurate (Tre-
guier et al. 1996) but reduce to first order at bottom
boundaries because the thickness of partial cells breaks
the analytical-based stretching of grid cell thickness in
the vertical. Although the equations drop from second
order in the interior to first order for nonfull cells at the
bottom, a leading-order error in the position of the to-
pography has been corrected. Globally, the solution re-
mains second-order accurate.

a. Horizontal pressure gradients

When density is only a function of depth r(z), hor-
izontal gradients of density at a constant depth are zero.
The hydrostatic assumption implies that pressure p is
proportional to the vertical integral of density and there-
fore horizontal pressure gradients at a constant depth
are also zero (in the absence of barotropic pressure gra-
dients). This is the case when using full cells because
all grid points within any vertical level are at the same
depth.

Partial cells complicate matters because all grid points
within a vertical level are not necessarily at the same
depth. The depth surface defined by grid points within
a vertical level remains horizontally flat in the ocean
interior but becomes deformed near land boundaries.
This deformation of the depth surface must be taken
into account by applying a correction when computing
horizontal pressure gradients. Without loss of generality,
consider only the zonal pressure gradient within a ver-
tical level written in spherical coordinates as

1 ]p
2 )a cosfr ]lo z5constant

T1 ]p ]p ]Z (l)
5 2 1 , (30)1 ) ) 2a cosfr ]l ]z ]lTo z (l) z5constant

where ZT(l) is the surface defined by the depth of grid
points within a vertical level. The left-hand-side of Eq.
(30) is the zonal pressure gradient evaluated along a
surface that is locally flat. The first term on the right-
hand-side of Eq. (30) is the pressure gradient along the
surface ZT(l) and the last term is a correction, which
is nonzero only where the surface is not horizontal. The
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correction has a positive sign because ZT(l) is measured
as positive downward from the ocean surface, whereas
the vertical coordinate z is positive upward. Substituting
the hydrostatic assumption

0

p(z) 5 rg dz9 (31)E
z

into the right-hand-side of Eq. (30) yields:

1 ]p
2 )a cosfr ]l0 z5constant

0 Tg ] ]Z (l)
5 2 r dz9 2 r| ,E z5constant1 2[ ]a cosfr ]l ]lT0 Z (l)

(32)

where g is acceleration due to gravity, rO is the mean
ocean density, r is density, and the barotropic surface
pressure gradient ]rs/]l has been dropped. The key
point is that in a full cell discretization, ]ZT(l)/]l 5 0
because the vertical coordinate does not vary with spa-
tial position. In the partial cell case, a correction must
be applied where cells become partial. Refer to Fig. 4,
which illustrates two vertical columns of T-cells where
the bottom cell in one of the columns is a partial cell
and therefore grid points in level ‘‘k’’ are not all at the
same depth. Let density r be defined at the grid points
indicated by ‘‘black dots’’ with indexing as shown. In
general, if density is a function of z only, there should
be no horizontal pressure gradients and therefore no
flow.

Let Pl(k) represent the discretization of the right-
hand-side of Eq. (32). In terms of grid distances and
cells indicated in Fig. 4:

1
lP (k) 5 2 (d (p ) 2 gr d (zt )), (33)l l i,k i,k l i,kr cosf0

where zti,k is the depth of tracer grid points measured
from the ocean surface. Discrete pressure pi,k is defined
from the hydrostatic assumption as the vertical integral
of rg and gradients of pressure along the surface given
by zti,k for a constant vertical level index ‘‘k’’ are dis-
cretized as

k
zW Wd (p ) 5 gDh d (r ) 1 gd r Dh . (34)Ol i,k i,0 l i,1 l i,m21 i,m211 2m52

As indicated in Fig. 4, the distance between a grid point
at zti,k and zti,k21 is given by . If it is assumed thatWDhi,k

r 5 r(z), then Pl(k) reduces to

g
P (k) 5 2l 2r cosf0

l
l lW3 r d (zt ) 1 Dh d (r ) 2 r d (zt ) ,1 2i,k21 l i,k i,k21 l i,k i,k l i,k

(35)

which is zero when grid points within level k are all at
the same depth. In general, Pl(k) ± 0 if either cell at
level k is a partial cell. However, if r(z) is assumed to
vary linearly with depth, the first two terms on the right-
hand-side of Eq. (35) can be combined to equal the
negative of the third term resulting in Pl(k) 5 0. A
proof of the energetic consistency of the pressure term
with partial cells is given in the appendix.

b. Equation of state

We have just demonstrated that linear variations in
density with depth will not result in pressure gradient
errors. In GFDL MOM 2 and its predecessors, r is ap-
proximated as a deviation from a reference density,
which is itself a function of depth. The reference density
is based on horizontally averaged temperatures and sa-
linities from the Levitus climatological atlas (1982) that
have been interpolated to discrete depths of the grid
points within full cell model levels. The density anomaly
is computed as a third-order polynomial approximation
to the UNESCO equation of state (Bryan and Cox 1972).
Using the UNESCO formula directly is significantly
more computationally expensive than the polynomial
approximation; partly because UNESCO depends on in
situ temperature, whereas the model uses potential tem-
perature. The resulting polynomial coefficients and re-
lated reference data are only appropriate for use with
potential temperature and salinity defined at the depth
of grid points within discrete model levels.

Since pressure varies linearly with depth below a few
hundred meters in the ocean, there is an error in trying
to use this polynomial approximation at the grid points
within partial cells. The reason is that grid points within
partial cells are not at the same depth as full cell grid
points within the same vertical level. As a result, density
anomalies are in error and can drive spurious flows.
Consider a linear stratification of temperature and sa-
linity with depth in an ocean at rest and a nonlinear
equation of state. There should be no motion. Yet, non-
zero velocities that are not insignificant can spontane-
ously develop.

These error velocities are in part due to an incorrect
estimation of the pressure effect with depth inside of
partial cells; the other part is due to nonlinearities in
the equation of state. By accounting for the actual depth
of the grid point within partial cells, the maximum error
velocity can be significantly reduced. Various methods
were tried and gave essentially the same result. The
method currently in use relies on the fact that the gen-
erated polynomial coefficients and reference data are
independent of longitude, latitude, and time. They are
only a function of depth. Referring to Fig. 4, the method
amounts to vertically interpolating polynomial data de-
fined at depths zti11,k and zti11,k21 to the depth of the
open circle at zti,k. The interpolated coefficients and ref-
erences are then used along with potential temperature
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FIG. 4. Relationship between grid points, variables, and indices in partial cells and full cells. Two vertical columns
of T-cells with one partial bottom cell indicated.

and salinity defined in the partial cell at the depth zti,k

to determine the density ri,k.
Figure 5 is an example of spontaneously generated

error velocities due to partial cells. A Gaussian topo-
graphic bump was placed within a rectangular domain
108 on a side with 18 horizontal resolution and nine
vertical levels of uniform 500-m thickness (except for
partial cells at the bottom). The fluid was linearly strat-
ified (potential temperature varied from 258C at z 5 0
to 08C at z 5 4500 m with a salinity of 35 ppt) and
initially at rest on an f plane at 458 N. With zero surface
forcing and a zero vertical diffusion coefficient, the state

of rest persists when using full cells but does not when
using partial cells. The upper-left panel shows a slice
through the center of the topographic rise. The mag-
nitude of the error velocity using uncorrected density
coefficients is given in the upper right panel for a depth
of 3250 m after 25 days of integration. The maximum
value is about 0.45 cm s21. The corresponding result
using corrected density coefficients is given in the low-
er-left panel and a time history of the maximum error
velocity magnitude at 3250 m for both cases is given
in the lower-right panel. The maximum amplitude error
velocity is reduced by an order of magnitude when using
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FIG. 5. (upper left) A longitudinal vs depth slice through a Gaussian-shaped bottom topography. (upper right) Magnitude of error velocity
in cm s21 at a depth of 3250 m after 25 days of integration with uncorrected density coefficients. Contour interval 5 0.01 cm s21. (lower
left): Magnitude of error velocity in cm s21 at a depth of 3250 m after 25 days of integration with corrected density coefficients. Contour
interval 5 0.01 cm s21. (lower right) Maximum error velocity magnitude in cm s21 at a depth of 3250 m for uncorrected (solid line) and
corrected (dashed line) density coefficients as a function of time.

corrected density coefficients. Ultimately, the size of
this error velocity depends on stratification and depth
variations within partial cells.

It should be noted that in the level above a partial
cell there is a zero pressure gradient error. Pressure gra-
dient errors can exist only where levels intersect bottom
topography. Compared to partial cells within GFDL
MOM 2, a true ‘‘sigma coordinate’’ model will have
pressure gradient errors in all levels above the bottom.

c. Spurious diffusion

As noted in the previous section, in the absence of
forcing, a fluid at rest should remain at rest when density
is a function of potential temperature r 5 r(a, z) and

potential temperature a is a linear function of depth.3

This is indeed the case in a discrete z-level model when
full cells are employed, because at a fixed depth hori-
zontal pressure gradients are zero and dl(a) 5 df (a)
5 0 so lateral diffusion is also zero. If a bottom slope
exists in a discrete z-level model, to ensure the fluid
remains at rest, the vertical diffusivity coefficient must
also be set to zero since dz(a) 5 constant in the interior
but dz(a) 5 0 at the bottom boundary due to the in-
sulating bottom boundary condition.

3 In a laboratory experiment, fluid creep will result along sloping
insulating sidewalls due to molecular motions. Apart from these mo-
tions, however, no motion should be introduced due to the numerical
discretization of diffusion.
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FIG. 6. A latitude vs depth slice through the zonally re-entrant
channel indicating T-cells, grid points, and topography: (a) full cells
and (b) partial cells.

Since grid points within a constant depth level of
partial cells follow the ocean terrain, lateral diffusion
in the surface containing the grid points has a projection
in the vertical resulting in spurious vertical (diapycnal)
diffusion, which gives rise to horizontal pressure gra-
dients and motion. This happens whenever coordinate
surfaces are not aligned along surfaces of constant
depth. Refer again to Fig. 4 and let tracer a be linearly
stratified potential temperature discretized to grid points
indicated by ‘‘black dots’’ with indexing the same as
shown for r. Note that the horizontal derivative of tem-
perature at level k 2 1 is zero (dl(ai,k21) 5 0) but
nonzero in the level containing the partial cell (dl(ai,k)
± 0). Since a linear stratification with depth implies that
temperature is colder with increasing depth, lateral dif-
fusion will cause ai,k to cool and ai,11,k to warm. This
spurious diapycnal diffusion is initiated solely because
grid points within the same vertical level are at different
depths. Note that lateral mixing does not propagate this
error across levels.

By using a i11,k21 and ai11,k to linearly interpolate tem-
perature to the location of the ‘‘open circle’’ in Fig. 4
and using this interpolated value to construct a lateral
diffusive flux in the diffusive operator Diff(a), the spu-
rious diapycnal diffusion is largely eliminated. A similar
vertical interpolation is not used for lateral viscous terms
in the momentum equation because velocity components
do not enter the density equation.

4. Stratified topographic waves in a channel

To explore the effect of a partial cell bottom on tran-
sient response, consider an idealized zonally re-entrant
channel that is 108 long 3 108 lat on an f plane at 458N
with a 18 horizontal resolution. The channel is 4500 m
deep in the south and the bottom shallows northward at
a rate of 100 m deg21 to a depth of 3500 m in the north.
There is no variation of ocean depth with longitude and
there are nine vertical levels of constant 500-m thick in
the vertical. In the partial cell channel, the bottom-most
ocean cell is allowed to vary and becomes as thin as
50m. A latitude-depth section illustrating T-cells, grid
points, and topography for the full cell and partial cell
channel is given in Fig. 6. The gentle slope is resolved
with partial cells but not with full cells. Note the arti-
ficial topographic ridges in the the full cell discretiza-
tion, which are missing with partial cells.

If we assume linear, hydrostatic, Boussinesq equa-
tions,

]u 1 ]p
2 f y 5 2 (36)

]t r ]x0

]y 1 ]p
1 f u 5 2 (37)

]t r ]y0

]p
5 2rg (38)

]z

]r ]r
5 2w (39)

]t ]z

]u ]y ]w
1 1 5 0 (40)

]x ]y ]z

and apply them to the re-entrant channel, then in the
quasigeostrophic limit, the solution (Rhines 1970) is
given in terms of propagating waves of the form

r 5 A sin(kx 2 vt) sin(npy/Ly) sinh(lz), (41)

where k is a zonal wavenumber. n is a meridional wave-
number, Ly 5 108, z is depth, and

N
2 2 2 2 1/2l 5 (k 1 n p /L ) 5 (42)y f

2S kNbv 5 . (43)
f l tanh(lD)

The phase speed for any of these waves is c 5 v/k, the
topographic slope is Sb, and D is the depth of the slope.
Initially there is no forcing, no motion, and the strati-
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FIG. 7. Solution after 100 days of integration. (upper panels) Streamfunction in Sv. (lower panels) Vertical velocity at a depth of 3500 m
in cm day21.

fication is a linear function of depth with a frequency
given by N 5 0.003 s21.

In the first experiment, an initial density perturbation
of the form

r 5 0.5 sin(2px/Lx) sin(py/Ly) tanh(lz) (44)

was introduced to initialize one of these topographic
waves. GFDL MOM 2 was employed to solve the above
system of equations using a full nonlinear equation of
state, constant horizontal diffusion coefficients for trac-
ers and momentum (1 3 107 cm2 s21), a vertical dif-
fusion coefficient of 1.0 cm2 s21, a vertical viscosity
coefficient of 20.0 cm2 s21, and a second-order centered
advective scheme. Sidewall boundary conditions for
momentum were no-slip and along the bottom a free-
slip condition was used. The model was integrated for
100 days and instantaneous data were saved once per
day. The upper panels in Fig. 7 show the horizontal
streamfunction after 100 days of integration for two

cases: one with a full cell bottom and the other with a
partial cell bottom. Comparing streamfunctions, the ini-
tial perturbation in the full cell case has broken up into
two double Kelvin waves, each running along a topo-
graphic ridge indicated in Fig 6a. By contrast, the partial
cell case produces a signal which, like the initial per-
turbation, is dominated by a single maximum in the
middle of the basin. Note that the amplitude of the
streamfunction in the full cell case is substantially re-
duced in comparison to the amplitude in the partial cell
case. This is because horizontal viscosity acts more
strongly on smaller spatial scales than larger ones. The
difference in spatial scale is also apparent in the vertical
velocity fields at a depth of 3500 m as shown in the
lower panels of Fig. 7. However, since vertical velocity
is computed as the divergence of horizontal velocity,
small horizontal spatial scales in the full cell case imply
large vertical velocities with the same small horizontal
scale. Therefore, where topographic slopes are resolved,
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FIG. 8. Vertical structure and phase speed of a single wave after 100 days of integration. (upper panels) Vertical structure of the zonal
velocity anomaly in cm s21 after 100 days of integration. (lower panels) Phase speed of a single wave. Streamfunction anomaly in Sv as a
function of longitude and time.

vertical velocity fields are smoother (less small-scale
noise) with partial cells than with full cells.

A comparison of the vertical structure of the zonal
velocity anomaly (time mean from last 50 days re-
moved) is given in the upper panels of Fig. 8 and in-
dicates significant baroclinic differences. In the full cell
case, the wave has small meridional scale and is ver-
tically trapped with a maximum at the bottom. In the
partial cell case, the wave exhibits a larger meridional
scale with less vertical trapping. The wave propagation
is shown in the lower panels of Fig. 8 in terms of stream-
function anomaly (time mean from last 50 days re-
moved). The phase speed of the wave in the full cell
case is 109 cm s21, which implies a basin crossing time
of about 7.5 days. By contrast, the phase speed of the
wave in the partial cell case is 43 cm s21, extremely

close to the theoretical value of 42 cm s21 for a linear
wave. The basin crossing time is about 21 days. The
damping of the wave with time is apparent in the full
cell case but not in the partial cell case. Again, this is
a consequence of scale selectivity of horizontal viscos-
ity.

In the next experiment, an initial density perturbation
with 25 horizontal wavelengths was allowed to evolve
from rest for 100 days in a re-entrant channel 1008 wide.
The resulting solution was Fourier transformed to ex-
tract frequencies and construct a dispersion relation. The
dispersion relation for both full cell and partial cell cases
along with the analytical result are plotted in Fig. 9.
The partial cell case accurately approximates the ana-
lytic dispersion relation for topographic waves, whereas
the full cell case does not. Additionally, at high wave-
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FIG. 9. Dispersion relation for topographic waves: analytical (solid
line), partial cells (crosses), and full cells (open circles).

numbers, the full-cell dispersion relation has negligible
group velocity and therefore does not propagate energy.
To achieve the same accuracy as the model with partial
cells, the full cell model would have required 20 levels
of 50-m thickness between a depth of 3500 and 4500 m.

5. Simulating the Indian Ocean with full cells and
partial cells

To test the effect of the partial cell bottom in a realistic
domain, a 18 horizontal resolution version of the Indian
Ocean was constructed. There are many places where
partial cells might have an impact on the simulation of
the World Ocean. In particular, areas such as the North
Atlantic near the Labrador Sea, the far north in the Arc-
tic basin, near Antarctica, the Pacific with its gentle
east–west slope, marginal sea areas, or any other areas
where the bottom slope is not resolved well by changes
in vertical levels. The Indian Ocean was chosen because
it has varied topography yet the domain is small enough
and at a low enough latitude that the approach to equi-
librium is relatively fast. If significant differences exist
between full cell and partial cell simulations in this area,
then it may reasonably be expected that partial cells will
result in differences in the above-mentioned areas as
well. These differences will be even more pronounced
at higher latitudes where the influence of topography is
larger due to a smaller Rossby radius in the ocean.

Vertical resolution was chosen to resolve the upper
100 m with an arbitrary specification of four uniformly
thick 25-m levels. Below 100 m, vertical resolution was
stretched with a cosine function to a thickness of 975
m at a depth of 5600 m. The above specification resulted
in 15 vertical levels between the ocean surface and 5600
m with the following thickness distribution: 25, 25, 25,
25, 34.6, 72.3, 144.7, 245.8, 367.5, 500, 632.5, 754,

855.3, 927.6, and 965.3 m. Using this distribution, to-
pography was generated for the domain by averaging
the National Geophysical Data Center’s ETOPO5 da-
taset (ETOPO5 1988) onto a 18 horizontal grid reso-
lution and discretizing to the nearest vertical level. The
partial cell discretization is given in Fig. 10. Note the
gentle slope of the topography in the Arabian Sea (158N,
658E) and Bay of Bengal (158N, 908E). For comparison,
the discretized full cell version of the same topography
with 15 vertical levels is shown in Fig. 11. Note the
artificial compression of topographic slopes into regions
of sharp gradients separated by flat basins.

As an initial condition, there was no motion and po-
tential temperatures and salinities were taken from the
Levitus atlas (1982) for January. A sponge zone was
applied next to the artificial wall at the southern bound-
ary where the solution was damped back to monthly
varying data from Levitus (1982) on a timescale that
varied linearly from 15 days at the wall to no damping
at 58 away from the wall. The model was forced by
monthly Hellerman and Rosenstein wind stress (1983)
and the surface temperatures and salinities (those within
level one) were damped back toward the monthly vary-
ing temperature and salinity from the Levitus atlas
(1982) on a timescale of 30 days. Constant horizontal
and vertical mixing was used: lateral viscosity and dif-
fusivity coefficients were both set to 1 3 107 cm2 s21,
the vertical viscosity coefficient was 10 cm2 s21, and
the vertical diffusivity coefficient was 0.1 cm2 s21. In-
tegration was for five years using a second-order cen-
tered advection scheme and 9-point numerics for solving
the streamfunction equation. Instantaneous data were
saved every 10 days throughout the intergration. The
streamfunction solution contains a null mode, which is
dynamically unimportant and has been removed from
the figures by applying a 3-point running mean filter in
latitude and longitude. The simulation repeated itself
after the third year and all results are shown for year
five.

From previous results in the zonally re-entrant chan-
nel, it is anticipated that differences will exist between
full cell and partial cell simulations in regions of gently
sloping topography. The Arabian Sea and Bay of Bengal
are two such regions. A 3-month average of the stream-
function starting in March of the fifth year is shown in
Fig. 12. The upper-left panel is from the 15-level partial
cell simulation and the lower-left panel is from the 15-
level full cell simulation. These will be referred to as
cases 15p and 15f. The maximum streamfunction value
is roughly 6 Sv (Sv [ 106 m3 s21) in both and, quali-
tatively, patterns are similar. However, quantitatively
there are 50% differences in the Bay of Bengal near
(868E, 158N) and (858E, 68N) and similar differences
can be found in the Arabian Sea. Which simulation is
more realistic?

We are not aware of any measurements that will de-
finitively show which case is closer to reality. However,
it can be demonstrated that the full cell simulation is
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FIG. 10. Discretized topography defined on T-cells for the Indian Ocean basin using partial cells with a 18 horizontal resolution grid and
15 vertical levels. Contour interval is 250 m.

not as robust as the partial cell simulation by perturbing
the vertical resolution from 15 to 16 levels and repeating
the simulations with partial and full cells. The new sim-
ulations will be referred to as cases 16p and 16f. By
adding one extra vertical level below 100 m, the ocean
interior is not significantly better resolved; however, the
positioning of the vertical levels is now different. As
will be shown, this has implications for the discretized
ocean bottom and the resulting simulations. The distri-
bution of thickness for the 16 vertical levels was de-
termined as before except that the vertical stretching
was changed to give an 896.6-m thickness at 5600-m
depth. This yielded 16 vertical levels with the following
thickness distribution: 25, 25, 25, 25, 32.4, 61.4, 117.5,
196.8, 293.9, 402.3, 514.4, 622.7, 719.0, 799.2, 855.2,
and 884.3 m.

The difference in streamfunctions between case 16p
and case 15p is given in the upper-right panel of Fig.
12. The lower-right panel gives the difference between
cases 16f and 15f. The difference in the full cell sim-
ulations is about four times greater than the difference
in the partial cell simulations. A vertical section through

the Arabian Sea along 628E long is given in Fig. 13. A
3-month average of the amplitude of the horizontal ve-
locity |vel| from the fifth year of integration is plotted
for cases 15p and 15f along with differences from the
16-level simulations given as (case 16p minus case 15p)
and (case 16f minus case 15f ). To compute these dif-
ferences, the 16-level results were linearly interpolated
to the 15-level grid points before subtracting. It should
be noted that the bottom-most gridpoint values in the
partial cell cases are treated as if they were defined at
the depth of the full cell grid points by the plotting
program. This leads to an artificial stretching of isolines
within deepest ocean grid cells. Results are consistent
with the streamfunction differences indicating a lack of
robustness for the full cells. However, the difference in
the full cell simulations is substantially greater than four
times the difference in partial cell simulations near the
bottom. Although bottom flows are small, they represent
nonnegligible water mass transport due to the large
cross-sectional areas involved. Also, substantial differ-
ences in full cell cases extend well above the bottom.

The difference in the discretized bottom topography
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FIG. 11. Discretized topography defined on T-cells for the Indian Ocean basin using full cells with a 18 horizontal resolution grid and 15
vertical levels. Contour interval is 250 m. Some basin depths are as follows: the Arabian Basin (108N, 658E), Central Indian Basin (108S,
808E), and Somali Basin (08N, 518E) are 4635 m deep. The Bay of Bengal (88N, 858E) is 3707 m deep and the Cocos Basin (208S, 1008E)
is 5600 m deep.

between the 16-level and 15-level partial cell case is
zero over most of the domain. At a few isolated loca-
tions, there is a difference of a few meters because of
the restriction that no partial cell is allowed to be thinner
than 5 m for computational reasons. The difference be-
tween the 16-level and 15-level full cell case is given
in Fig. 14. Typically, at basin depths the differences (16
level minus 15 level case) are between 100 and 200 m.
However, positive differences can be as large as 253 m
and negative ones as large as 2884 m. Both extremes
can be found scattered randomly throughout the domain
with spatial scales near the horizontal grid size.

The reason for a nonzero difference between the par-
tial cell cases is illustrated in Fig. 15. Figures 15a and
15b depict how a sloping ocean bottom is discretized
by two different distributions of vertical levels using
full cells. Grid points within bottom-most ocean U-cells
are connected by dashed lines (although the U-cells are
not shown) and the discretized bottom is given by the
depth from the ocean surface to the bottom face of the

deepest ocean T-cells. In Fig. 15a, the bottom slope is
compressed into two flat areas of different depth sep-
arated by a cliff and in Fig. 15b, the discretized bottom
is completely flat and at a different depth than in Fig.
15a. Clearly, the discretized bottom depth is sensitive
to the positioning of the bases of the vertical levels and
is therefore not convergent with changes in vertical res-
olution. Figures 15c and 15d illustrate the case using
partial cells. Note that the discretized bottom depth is
convergent because it is the same in both Figs. 15c and
15d. However, the depth of the bottom-most ocean grid
cell points is not convergent. Also note the discrete jump
in bottom gridpoint depth where the bottom slope forces
a change in levels as shown by the broken dashed line
in Fig. 15d. Horizontal pressure gradients within bottom
cells (defined at the open circles) will be different in
Figs. 15c and 15d and result in differences of the mag-
nitude shown in the upper-right panels of Figs. 12 and
13.

Moving toward the central and southern part of the
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FIG. 12. Sensitivity in the horizontal streamfunction to changes in vertical levels in the northern part of the Indian Ocean. All results are
for 3-month means from the spring of year 5. (upper left) Partial cell 15-level case. Contour interval is 1.0 Sv. (upper right) Partial cell 16-
level case minus partial cell 15-level case. Contour interval is 0.5 Sv. (lower left) Full cell 15-level case. Contour interval is 1.0 Sv. (lower
right) Full cell 16-level case minus full cell 15-level case. Contour interval is 0.5 Sv.

Indian Ocean bounded by the equator and latitude 308S
and longitudes 408–908E, the gentle slopes found in the
north are replaced by more steeply varying topography.
Since steep slopes are captured by changes in vertical
levels rather than by piecewise continuous partial cells
within a level, it is expected that the differences between
full cell and partial cell simulations and the robustness
of the partial cell simulations will not be as great as in
the northern regions. Figure 16 gives the results for the
streamfunction from a 3-month average in the spring of
the fifth year for cases 15p and 15f along with the dif-
ferences (case 16p minus case 15p) and (case 16f minus
case 15f ). The streamfunction reaches 30 Sv near 108S,
458E, which is about five times larger than in the north-
ern areas. The difference in streamfunctions between
15f and 15p is about 5 Sv or only about 15% of the 30
Sv. This difference between full cell and partial cell

simulations is much less than in the northern regions.
The robustness of the partial cell solution has decreased
relative to the northern region as indicated by larger
contour values in the upper-right panel of Fig. 16. The
worst area is near Madagascar (528E, 208S) where dif-
ferences are 1.5 Sv on a streamfunction value of about
10 Sv. However, this is about the same percentage as
in the Arabian Sea. East of the Madagascar Plateau
(658E, 208S), there are similar differences over a broad
area. The lower-right panel in Fig. 16 indicates that the
differences between full cell cases are about twice those
in the partial cell cases. Locally, there are many areas
where the differences in full cell simulations exceed
those in the partial cell simulations by more than a factor
of two.

The root-mean-squared value of the streamfunction
difference between cases 16p and 15p over the entire
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FIG. 13. Sensitivity in the amplitude of horizontal velocity along 628E to changes in vertical levels. All results are for 3-month means
from the spring of year 5. (upper left) Partial cell 15-level case. Contour interval is 0.5 cm s21. (upper right) Partial cell 16-level case minus
partial cell 15-level case. Contour interval is 0.25 cm s21. (lower left) Full cell 15-level case. Contour interval is 0.5 cm s21. (lower right)
Full-cell 16-level case minus full-cell 15-level case. The topography is for case 16f. Contour interval is 0.25 cm s21.

domain as a function of time is given in Fig. 17. Also
plotted are the rms of the difference between cases 16f
and 15f along with the rms of the difference between
cases 15f and 15p. Consistent with previous results, the
rms of the full cell differences is about three times larger
than between partial cell cases. It is interesting to note
the large difference between full cell cases during the
first six months of the simulation, which is absent in
the partial cell cases. Initially, there are large waves
induced by the steps in the full cell discretized topog-
raphy, which are eroded by friction.

The suite of four simulations 15f, 15p, 16f, and 16p
were repeated using the same mixing parameterization
but with twice the horizontal resolution (½8). The results
of the double resolution simulations for the Arabian Sea
and Bay of Bengal are given in Fig. 18. In comparison

with the 18 simulations in Fig. 12, the double resolution
full cell simulations have become less robust with larger
differences on smaller scales, which are a result of larger
topographic gradients (Dx and Dy are half as large as
in the 18 case, whereas the cliffs are about the same
height). Overall, the rms of the streamfunction differ-
ences are comparable to the 18 simulations. This is to
be expected because the total number of ocean points
scales as the square of the grid size but the number of
points involved with cliffs scales with a power less than
the square of the number of points.

6. Conclusions

The representation of topography significantly affects
the way in which information propagates in ocean gen-
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FIG. 14. Difference between discretized topography on T-cells using 15 and 16 vertical levels with full cells on a 18 horizontal resolution
grid. Contour interval is 100 m. Some differences (16-level case minus 15-level case) are as follows: 81 m in the Arabian Basin (108N,
658E), Central Indian Basin (108S, 808E), and Somali Basin (08N, 518E): 153 m in the Bay of Bengal (88N, 858E) and less than 1 m in the
Cocos Basin (208S, 1008E).

eral circulation models. This paper has outlined a partial
cell approach in which topography can be accurately
introduced into z-level ocean models without introduc-
ing spurious flows due to pressure gradient errors or
spurious diapycnal diffusion. The results have impli-
cations for determining energy propagation in oceanic
general circulation models at both coarse and fine hor-
izontal resolution.

The partial cell method has been added as an option
to the GFDL MOM 2, which allows the model to ac-
curately simulate topographic waves without requiring
unduly high resolution in the vertical. For the cases
described in this paper, the computational overhead for
employing partial cells was about 10% greater than the
time required for full cell simulations. For the full cell
simulation to achieve the same accuracy as the partial
cell simulation in resolving topographic slopes, signif-
icantly more levels would be required. This makes using
full cells far less computationally efficient than using
partial cells. However, coarse vertical resolution with
partial cells does not achieve the same accuracy as high

vertical resolution using full cells in all respects. For
instance, high vertical resolution in the interior may
resolve internal processes that would be missed by
coarse vertical resolution and partial cells.

Within partial cells, the horizontal pressure gradient
must be discretized carefully. Otherwise, pressure gra-
dient errors can lead to nonnegligible flows. Fortunately,
the bulk of the error can be removed by assuming a
linear dependence of pressure with depth. The remaining
error, which is typically much smaller, is due to non-
linearities in the equation of state. It should be noted
that in the level above a partial cell there is a zero
pressure-gradient error. Pressure gradient errors can ex-
ist only where levels intersect bottom topography. Com-
pared to GFDL MOM 2, a true sigma coordinate model
will have pressure gradient errors in all levels above the
bottom. Lateral diffusion can also lead to erroneous flow
with partial cells. This error can be significantly reduced
by using a vertical interpolation within lateral deriva-
tives to guarantee that no motion is induced within a
linearly stratified fluid at rest.
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FIG. 15. Sensitivity in discretizing a sloping bottom to changes in
positioning of vertical levels. (a) Using full cells. (b) Using full cells
with a different arrangement of vertical levels. (c) Same as in (a) but
with partial cells. (d) Same as in (b) but with partial cells.

In coarse vertical resolution ocean models, the dis-
cretization of topography makes a significant difference
in how information propagates. Full cell models with
poorly resolved topography propagate information ac-
cording to an inaccurate dispersion relation with small-
scale, relatively fast Kelvin wave–like modes, which are
bottom trapped and closely follow artificial topographic
ridges created by vertical discretization of the topog-
raphy. By contrast, models with partial cells resolve
topography better and approximate the correct disper-
sion relationship thereby allowing for slower, larger
scale, less vertically trapped topographic waves to trans-
mit information.

Apart from having an inaccurate dispersion relation,
simulations using full cells are less robust than those
using partial cells. This is because the depth of the ocean
bottom is convergent (independent of the vertical co-
ordinate) with partial cells but not with full cells. Al-
though the depth of grid points within partial cells are
not convergent, the rms differences in simulations with
perturbations in the vertical coordinate are about three
times larger in full cells than in partial cells. Locally,
full cell simulations can be less robust than partial cell
simulations by more than a factor of three.

With increasing horizontal resolution, full cell sim-
ulations continue to be less robust to perturbations in

the vertical coordinate than their partial cell counter-
parts. The maximum differences grow as horizontal res-
olution is increased in full cell simulations because ar-
tificial topographic gradients increase. This is not true
for partial cell solutions. However, the robustness of
partial cell simulations may locally degrade to the level
of full cell simulations, where changes in topography
are accounted for by changes in the number of levels
rather than by changes in partial cell thickness within
a given level.

Although the equations drop from second order in the
interior to first order for nonfull cells at the bottom, a
leading-order error in the position of the topography has
been corrected. Globally, the solution remains second-
order accurate. It is concluded that, to a much greater
extent, partial cells are relatively insensitive to vertical
grid spacing, whereas full cells are not.

In one sense, it is surprising that differences between
full cell and partial cell simulations are as large as they
are given that the Rossby radius is largest near the equa-
tor; topography should have little influence. For this
reason, it is anticipated that differences will be larger
at high latitudes where the ratio of Rossby radius to
topographic scales is smaller. Also, in combination with
a bottom boundary layer, partial cells may alter the
course taken by bottom water as it flows off shelves and
along the bottom of the abyss. This may be of particular
importance in regions that have gentle slope.
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version of Ferret will accommodate sigma coordinates
and therefore partial cells as well.

APPENDIX

Energy Conservation

The arguments given by Bryan (1969) for conser-
vation of second moments (in the advection terms) rely
on integrating over cell faces. Therefore, they are valid

4 A very useful analysis package for gridded data that can accom-
modate the B-grid discretization of GFDL MOM 2. URL: http://
www.pmel.noaa.gov/ferret/home.html.

5 A standard method for producing self-documenting data. Infor-
mation is available from URL http://www.unidata.ucar.edu.
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FIG. 16. Sensitivity in the horizontal streamfunction to changes in vertical levels in the Central and Southern Indian Ocean. All results
are for 3-month means from the spring of year 5. (upper left) Partial cell 15-level case. Contour interval is 5.0 Sv. (upper right) Partial cell
16-level case minus partial cell 15-level case. Contour interval is 0.5 Sv. (lower left) Full cell 15-level case. Contour interval is 5.0 Sv.
(lower right) Full cell 16-level case minus full cell 15-level case. Contour interval is 0.5 Sv.

for partial cells and will not be repeated here. What will
be demonstrated is that a change in kinetic energy due
to horizontal pressure forces is exactly balanced by a
change in potential energy when density is a linear func-
tion of temperature and salinity.

Let the ocean be divided into a three-dimensional array
of volume elements, which are referenced in longitude,
depth, and latitude by indices i, k, j. Assume all variables
are indexed by i, k, j unless otherwise noted. On an Ar-
akawa staggered B-grid, U-cells are arranged such that the
grid point within a U-cell with index i, j is at the northeast
corner of a T-cell with index i, j. Zonal velocity u and
meridional velocity y are defined within U-cells. Pressure
P and density r are defined within T-cells. Refer to Fig.
4 for an illustration of the grid points and indexing.

The change in kinetic energy (KE) due to pressure forc-
es DKE is given by udl(pf) and ydf(pl) summed over

all volume elements. This can be expressed as two sum-
mations: the first summation ‘‘DKE1’’ accounts for pres-
sure changes when all points within a given level are at
the same depth; the second summation ‘‘DKE2’’ accounts
for the variation of grid points with depth within the same
level:

DKE 5 DKE 1 DKE (45)1 2

1 1
f lDKE 5 2 u d (p ) 1 yd (p )O1 l fU[ ]r cosfi,k, j0

U U U U3 Dx cosf Dy Dh (46)

g 1 f l
l fDKE 5 1 u r d (zt) 1 yr d (zt)O2 l fU[ ]r cosfi,k, j0

U U U U3 Dx cosf Dy Dh , (47)
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FIG. 17. Root-mean-squared value of the difference in streamfunctions between various cases
taken over the entire domain as a function of time. Case 16p, case 15p (dashed line). Case 16f
minus case 15f (solid line). Case 15f minus case 15p (dotted line).

where the depth of grid points zt is also indexed by i,
k, j. Since velocity is zero on all boundaries, the deriv-
ative and averaging operators can be rearranged within
the summations. Rearranging the derivatives within
DKE1 yields

1
f lUDKE 5 [d (u )p 1 d (y cosf )p ]O1 l i21 f j21 j21r i,k, j0

U U U3 Dx Dy Dh . (48)

Rearranging the averages leads to

1 f
U TDKE 5 [d (u )Dy DxO1 l i21, j21 j21r i,k, j0

l
U U T U1 d (y ) cosf Dx Dy ]pDh .f i21, j21 j21 i21

(49)

Note that if horizontal advective velocities on the east-
ern and northern face of a T-cell are defined as

f
U U TU 5 u Dy Dh /Dy (50)j21 j21 j21

l
U U U TV 5 y Dx Dh cosf /Dx , (51)i21 i21 i21

then the summation can be rewritten as

1
T T UDKE 5 [d (U ) 1 d (V )]pDx Dy Dh . (52)O1 l i21 f j21r i,k, j0

Continuity for each cell is expressed as

1
(d (U ) 1 d (V )) 1 W 2 W 5 0, (53)l i21 f j21 k21Tcosf

which further simplifies DKE1 to

1
T T UDKE 5 2 pd (W )Dy Dx Dh . (54)O1 z k21r i,k, j0

Rearranging the derivative yields

1
T T WDKE 5 W d (p )Dy Dx Dh , (55)O1 k21 z k21 k21r i,k, j0

where is the distance between a grid point at levelWDhk21

k and k 2 1 as indicated in Fig. 4. Using the hydrostatic
equation dz(pk) 5 g rk

z reduces DKE1 to

g z T T WDKE 5 2 W r Dy Dx Dh . (56)O1 k21 k21 k21r i,k, j0

The second summation DKE2 accounts for the vari-
ation in depth of grid points within the same vertical
level. The first term in DKE2 can be written as

g f
l U U UDKE 5 2 ur d (zt) Dx Dy Dh . (57)O2a lr i,k, j0

Rearranging the averaging yields
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FIG. 18. Sensitivity in the horizontal streamfunction to changes in vertical levels in the northern part of the Indian Ocean with ½8 horizontal
resolution. All results are for 3-month means from the spring of year five. (upper left) Partial cell 15-level case. Contour interval is 1.0 Sv.
(upper right) Partial cell 16-level case minus partial cell 15-level case. Contour interval is 0.5 Sv. (lower left) Full cell 15-level case. Contour
interval is 1.0 Sv. (lower right) Full cell 16-level case minus full cell 15-level case. Contour interval is 0.5 Sv.

g f
lU U UDKE 5 2 u Dh Dy r d (zt)Dx , (58)O2a j21 j21 j21 lr i,k, j0

which with the aid of Eq. (50) can be rewritten as

g
l U TDKE 5 2 Ur d (zt)Dx Dy , (59)O2a lr i,k, j0

for which rearranging the derivative yields

g
l T TDKE 5 d (U r )ztDx Dy . (60)O2a l i21 i21r i,k, j0

A similar manipulation reduces the second term in DKE2

to

g
f T TDKE 5 d (V r )ztDx Dy . (61)O2b f j21 j21r i,k, j0

Combining DKE1, DKE2a, and DKE2b, gives the result
that the change in kinetic energy due to pressure gra-
dients is

g
l f T TDKE 5 (d (U r ) 1 d (V r ))ztDx DyO l i21 i21 f j21 j21r i,k, j0

z T T T W2 W r Dx cosf Dy Dh . (62)k21 k21 k21

If density is linear in temperature and salinity, then an
equation may be written for the time rate of change of
density,

dt(r) 5 2Adv(r). (63)

The change in potential energy ‘‘DPE’’ is given as
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DPE 5 DPE 1 DPE1 2

T T T T5 2 ztAdv(r)Dx cosf Dy Dh (64)O
i,k,j

1
l f2 zt (d (U r ) 1 d (V r ))O l i21 i21 f j21 j21T T1Dh cosfi,k,j

z T T T T1 d (W r ) Dx cosf Dy Dh .z k21 k21 2
(65)

The change in potential energy due to the horizontal
advection of density is

l f T TDPE 5 2 zt(d (U r ) 1 d (V r ))Dx Dy ,O2 l i21 i21 f j21 j21
i,k, j

(66)

which is the negative of DKE2 and the vertical piece
from Eq. (65) can be rearranged to

z W T T TDPE 5 W r Dh Dx cosf Dy , (67)O1 k21 k21 k21
i,k, j

which is the negative of DKE1.
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