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Thetransientdeformation of an axisymmetric capsule freely suspended in a pure straining flow is
studied, for sudden or periodic variations of the intensity of the rate of strain. The particle Reynolds
number is supposed to be very small and the problem is solved numerically by means of the
boundary integral method. In the case of a sudden start of flow, the time response of the capsule can
be approximated by an exponential function, and is thus characterized by only two parameters: the
equilibrium deformatiorD,, and the characteristic response time The respective influence of
viscosity ratio, membrane elasticity, and initial particle geometry is analyzed. The dynamic response
of the capsule subjected to periodic variations of the rate of strain is also studied. The response time
Ts appears to be an appropriate parameter to estimate the capsule adaptability to changing flow
conditions. ©2000 American Institute of Physids$$1070-663(00)00605-X]

I. INTRODUCTION membrane constitutive properties, and internal viscosity. The
respective influence of these parameters has yet to be fully
A capsule consists of an internal medifpure or com-  understood.
plex liquid), enclosed by a deformable membrane. Capsules Over the years many studies have been devoted to cap-
are frequently met in naturélood cell$ or in industrial  sule mechanics. Analytical solutions based on a perturbation
processeqpharmaceutical, cosmetic, or food industryn expansion of the equations are available for initially spheri-
natural as well as in industrial situations, capsules are oftefal capsules subjected to small deformatibSsich solutions
suspended in a flowing liquid. In response to hydrodynamidave a limited range of validity and cannot deal with non-
forces, the particles deform and sometimes even break ugPherical capsulege.g., red blood cellsundergoing large
One must be able to predict the behavior of a capsule in flowdéformations. In order to overcome those shortcomings, cur-
in order to evaluate its suitability for a given application or to "€Nt research in the field has resorted to numerical models.

prevent breakup. The analysis of the motion and deformatior?‘UCh approac;hes are_ba;ed on an integral formulation of the
of a capsule involves the solution of two fluid mechanicsStOkes equations, which is particularly well adapted to free

problems(flow in the internal and in the external liquids surface problems. For computational reasons, almost all

. . . . models have dealt with flow situations where the ratio
coupled with a solid mechanics problgaeformation of the

interfacial b Th ding fluid and th ticl between the internal and external fluid viscosity is unity.
interfacial membrane The suspending fluid and the particle This restriction is not important if one is interested only in

internal liquid are usually supposed to be incompressible angio 5 4y _state results and if the flow geometry is such that all
Newtonian. Owing to the small dimensions of the capsulejntermal motion has stopped at equilibrium. This is the case
the particle Reynolds number is very small, so that then axisymmetric situations where an axisymmetric capsule is
Stokes equations can be used. Even with this simplificationsyspended in a pure straining mofidror moves along the
the problem is nonlinear because it is of the free surface typgxis of a cylindrical channdiThe effect of membrane rhe-
and also because the deformation of the membrane may kgogy and initial geometry on the steady deformation of a
large. Furthermore, several intrinsic physical properties otapsule can then be assessed. In particular, it is possible to
the capsule govern the process, such as geometry at reptedict the burst of the capsule when the shear strength ex-
ceeds a critical value. Three-dimensioriaD) flow situa-
dAuthor to whom correspondence should be addressed; electronic mait.jons have also been considetéavhere the capsule is sus-
dbb@utc.fr pended in a simple shear flow witt=1. The effect of the
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suspended in an unbounded Newtonian incompressible fluid
with viscosity u. Far from the particle, the external flow is
axisymmetric and corresponds to an axial straining motion of
intensity G,

\

vy;=GX, v;=-3Gr, v,=0, (2.7

in dimensional variables. The particle axis is aligned with the
flow axis, and the problem is axisymmetric. Cylindrical co-
ordinates(r, ¢, x) are used. Nondimensional variables are
FIG. 1. Axisymmetric capsule suspended in pure axial straining flow. ;5o throughout: lengths are scaled wiiti (ABz)l/s, time
with a characteristic scalg to be defined later, velocities by
L/ty, viscous stresses hy/ty, and elastic tensions b, .
Since the capsule has both elasticity and viscosity, it is pos-
esible to define an intrinsic time scale for the particle,

B\\m\

4

viscosity ration on the motion of a capsule in a simple shear
flow has been also investigatéd.
All the aforementioned studies are mostly focused on th
determination of ssteadysituation, although the numerical te=AuL/Es.
algorithms usually follow the transient behavior of a capsule
after a sudden start of the flow. So there is only scant inforThe capillary numbes is the ratio of external viscous forces
mation on the response time of a capsule. In particular, th&o elastic forces and is thus defined by
effect of the particle physical properties has not been studied
in detail. In practical problems, however, a capsule may be £=uGL/Es.
subjected to a time varying floystartup of flow, oscillatory
flow). Furthermore, a steady flow may appear unsteady in A. Capsule deformation
reference frame linked to the particle. This is the case when . . .
: . . . In the reference configuration, the membrane points on a
the capsule flows in a channel with a variable cross section .". . A .
. . . e . . meridian curve are labeled by their cylindrical coordinates
(microcirculation, filtration, flow in a porous mediymin

order to estimate the adaptation of the capsule shape to tl%(AR) Ian(tjhbydtr}e arcdlengtl? (S=tQ wrlﬁreR=0bandX= it
local flow conditions, it is useful to know the particle intrin- ). In the deformed configuration, the membrane points

sic response time and compare it to the residence time. coordinates  are [x(S1),r(S)], with arc length

It is the objective of the present paper to study the tran—s(s’t) (s(0.0=0). The principal directions of stress and

sient response of a capsule to a time-dependent external flog‘gilr?a?rtislgnga::;gnrgeglecigma?sx?Lgnrisgﬁnrgr?ilrgncﬂiﬁf)mem-
field. The respective influence of internal viscosity, mem- e equation 9
: ; - . brane simplify significantly. Indeed, the membrane deforma-

brane mechanical properties, and initial particle geometr){. . . o . :

. . . ion may be defined in terms of the principal extension ratios
(specifically the surface-to-volume ratigs considered. A

2 o . AgandX,,

pure straining flow situation is chosen for various reasons.
First, it is already well documented for the cases1.2° ds ;
Second, owing to the symmetry of the problem, the final  Ag

=d—S, )\qs:ﬁ.
steady state does not depend XnThis provides a useful
check on the numerical precision of the results. Third, since  The capsule membrane is assumed to be the infinitely
the problem is axisymmetric, its dimension is reduced bythin limit of a (3D) incompressible neo-Hookean material.

limits. It should also be noted that this flow situation is anjength T are given by

approximation to the entrance problem of a small capsule

(2.2

convected toward a pore. Finally, the quantitative informa- 1 ) 1
tion obtained for this flow may serve as an estimate for other Ts= 3N\ Ns— Aﬁ)(é) ' (2.33
types of linear flows.

The governing equations of the problem are presented in 1 1
Sec. Il, the numerical procedure is outlined in Sec. I, T¢=m<7\i— W) (2.3b
whereas Sec. IV is devoted to the presentation and the dis- té sTé
cussion of the numerical results. Finally, the equilibrium of the shell relates the elastic

tensions to the tangentialy and normalg,, components of

Il. PROBLEM STATEMENT the forceq exerted by the membrane on the fluids,

We consider a capsule that consists of a drop of a New- dT, dr
tonian incompressible liquid of viscosityu, enclosed by an 95=gs " ras Ts~Te) (2.49
infinitely thin membrangM). The membrane is character-
ized by a surface elastic modulks and has negligible bend- Gn=(KsTs+K4Ty), (2.4b)

ing resistance. The particle reference geometry is a spheroid
with diameter 2 and radiusB (Fig. 1). The capsule is freely whereKg andK,, are the principal curvatures o4.
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B. Equations of motion (i)  Dynamic equilibrium of the membrane,
The motion of the inner and outer fluids obeys the o 0= dnt]-n?—qu (2.8
Stokes equations, where[ o®— ¢'™] denotes the jump in fluid stresses
across the membrana, is the unit normal vector
V.v=0, V.o=0, (2.5 o @ . rma
pointing toward the external fluid, arglis given by
wherev is the velocity field and where the stress teneds (2.49 and(2.4b. Parametew is the time scale ratio
given by Newton’s law. The associated boundary conditions a=t./ty. However, from(2.8), it is clear theaw may
are: also be viewed as a ratio between viscous and elastic

(i) No flow perturbation far from the particle, forces.

VoV as e 29 The integral formulation of the Stokes equations leads to a
(i) No-slip and membrane impermeability fae M, relationship between the elastic forgeexerted by the mem-
V(%) = ve(x) (2.78  brane on the fluids and the unknown velocity of the capsule
=vM(x), (2.7b interface® This formulation is more efficient than the corre-
WW(x)=ax(S,t)/dt, (2.79 sponding differential form(2.5), since only the velocity at

wherev™(x) andve(x) are the velocities in the in- the boundarieghere the membranés determined instead of
ternal and external fluid. The velocity(x) of the the full velocity field in the whole flow domain. The axisym-
membrane points is simply the time derivative of their metric integral formulation of the Stokes equations is given
positionx, expressed in terms of the Lagrangian vari-by Pozrikidis} where boundary condition$2.6), (2.7a,
ableS. (2.7b, and(2.8) are already included,

(I=2)

8

oM (x)— fc{Dpx(x—y)[va(y) — oM (x)]+ D, (x—y)vM (y) —Ep,-(x—y)er(X)}dS(yz

integral 1

1 A
=v",(X)-g-= fc{lpx(x—y)qx(y)+Jp,-(x—y)qr(y)}ds(y) with p=x, r and xeC, (2.9
integral 2

whereC is a meridian curve oM. The stresslet coefficients a=\e=AuGL/Es.
(Dpx, Dpr, and Ep) and the Stokeslet coefficients

(Jpx:Jpr) are given by Pozrikidig.Integral 1 is a regularized 2 Relaxation after flow cessation
form of the double layer integral taken in the principal value

sense. Integral 2 is also improper whes X, but may be The capsule is first deformed by application of the above
shown to converge since the singularity of the kerdgs ~ Procedure. Attime=0, the capsule has a given deformation
logarithmic. Dy, the flow is stopped@=0), and the capsule is allowed

to relax back to its reference shape. The time scale is then
C. Type of flow to=tc, thusa=1, e=0, andv”=0.

As was mentioned in Sec. |, the primary concern of this
study is the investigation of the capsule dynamic behavior.
Different types of transient motions are thus considered. I3. Flow oscillations
the following, t* denotes the dimensional time amdhe

. . . : . The shear rate is assumed to increase and decrease lin-
dimensionless time defined ast*/t,.

early with time, between the values 0 aBg,,, (this protocol
is commonly used in shear viscometer€orrespondingly,

1. Sudden start of flow the first cycle of oscillation is described by

The capsule is at rest and not deformed. At time0, it G(t*)=Gnat* /Ty, t*e€[0,T.],
is subjected to a pure straining motion of constant intensity . . . (2.11
G=G,. The obvious time scale is thep=G,*. As a re- G(t*) =Gmal2—1/To), 1" €[To,2To],

Sult, the flow field at |nf|n|ty becomes in dimensionless form,where 2]'0 is the dimensional oscillation period_ This Cyc'e
may be repeated indefinitely. The time scale is setgto
=t., and thusa=1. A measure of the variable flow strength
and « may be expressed in terms of the capillary number is given by the maximum capillary numbek

V=X, v =-— 3, v=0, (2.10
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=uGmal/Es. An additional parameter enters the problem,elementt! Cubic B-splines are respectivelyO(AS?),
namely the time ratioT=T,/t.. In nondimensional form, O(AS®), and O(AS?) accurate in interpolating a smooth
the flow field at infinity then becomes function, its first and second derivativeghereA S denotes a
o_ typical element length The widely used Lagrange basis
vx=(Nemad/T)X,  te[0T], functions aréD(AS®) andO(AS?) in interpolating a smooth
vi=[Nemal2—t/T)]x, te[T,2T], (2.12  function and its first derivative, but are unable to interpolate
the second derivative. This is in fact the major advantage of
B-splines over quadratic Lagrange basis functions. Continu-
ity of the second derivative at the nodes of the interpolant is
IIl. NUMERICAL PROCEDURE essential for applications to membrane mechanics problems,
since second-order surface properfigsrvature are needed.

The numencal algorithm is presented for c.e(ié and More details on the application &-splines in the boundary
can be easily extended to the other cases. At tim@, the . 1
element method can be found in Pelekadisl.

capsu.le IS 1n |ts.rest shape and the pos!non of the .mgm_brane Then, theB-spline interpolation$3.1) and(3.2) are used
material points is recorded. The dynamic process is initiated

. L . . ~In EQ.(2.9). The integrals ove€ are decomposed into a sum
by suddenly applying the straining flow. At any given time )
NS . . of elementary integrals taken over one boundary element. As
step, the calculation involves three phases. First, given the . . : : .
. ) . .explained in Sec. ll, integral 1 has been regularized and is
present position of the membrane material points, the memﬁwerefore integrable via reqular quadratifeeg., five-point
properties §,s,Ks,K,), local deformationsXs,\ 4), elastic 9 9 q 9 P

tensions Ts.T,), and load s.q,) on the membrane are Gauss method Integral 2 is regular except over elements

computed using2.2) to (2.4). Next, Eq.(2.9) is solved for containing poinix, where it is logarithmically singular. Over

the membrane velocityM. Finally, the position of the mem- these elements, integration is performed through a 12-point

brane points is undated by means of the kinematic Condi,[iorl1og|arithmic quadrature. This ensures that the numerical error

point P yn IS due to the interpolation procedure rather than numerical
(2.79. This iterative process is stopped when a steady state IS 13 o e
reached, that is when the time derivative of the capsule d integration.” Requiring Eq(2.9) to be satisfied at each node

S eads to a matrix equation
formation is less than some small preset valusually

with similar expressions foy;” .

10™4). Further details on the procedure used for the identi- Wy

fication of the steady state of the system are given in the next w, =H. 3.3

section. . : . .
Spatial discretization follows the boundary eIementMatr'X L [d|m_e_n3|ons (Rl+2)x(2N+2)] °°”ta”?3 the

method (BEM). The arc lengthS in the reference state is s_tresslet coefficient® Dy ,Epr, and vectorH (dimen-

used as the independent space variable. The capsule meridisol'ﬂns. ZNZZ) contam; the contributions from the far field
C is first partitioned intoN two-node elements. Thii+ 1 velocity v© and from integral 1. The latter can be evaluated

nodal points are unevenly spaced al@wgith a higher den- ‘Et each_lflr:ne stedp sm(cj:.? th? Ioafdtr?omp?gxetm?nc_i Ar atred
sity in areas of large curvature. Culiesplines are used as hown. The good conditioning of the matitxto be inverte

basis functions to interpolate the position of the interface IS guaranteeg by th'e fact that the integral equatilor) IS .Of the
M 10 second kind: Equation(3.3) is solved by Gauss elimination.

=[x(S,t),r(S,t)] as well as the velocity", - "
[X(S0.1(SH] as well as velocty After the membrane velocity is computed, the position

X(S,t) "7 &(t) of the membrane points is updated by integrating the kine-
r(S,t) = ,Zo pj(t)}Bﬁ(S)* (3.1) matic condition(2.7¢ by means of a fourth-order explicit

Runge—Kutta(RK) scheme. Numerical stability is ensured
v¥(St) " wy(t) when the time stept is lower thanK(AS)?, whereK is a
oM(st) ZJZO oy (1) BS(S), (32 coefficient that depends onandze.

Spatial accuracy of the numerical method was verified
whereBS; is a cubicB-spline centered on thigh node, and by means of mesh refinement using a time sip-0.005,
whereé; ,pj,wyj, w,;, are the interpolation coefficients. The Jow enough to ensure stability for all considered meshes.
coefficients corresponding tp=0 and j=N+2 are com- |ncreasing the number of nodes from 31 to 61 and from 61 to
puted in terms of the coefficient,p;,wyjorj, (j=1..N 121 shows that the numerical error@§AS?). For example,
+1), by means of the following relations at the poles of thefor a spherical capsule ane=0.05, the computed steady

capsule: deformed shapes are identical up to the third significant digit
X 92r o 920 for 61 and 121 points. Despite the more complicated form of
S 0, i 0, a_SX =0, Ezr =0, the kernels and the different flow regimes encountered here,

the present scheme exhibits the same stability and accuracy

that follow directly from the axisymmetry of the problem. characteristics as the one presented by Pelelasis'? In

Each basis functio®BS; is nonzero over only four con- their algorithm, a fourth-order RK scheme is also employed,
secutive elements, namely in the intervies; ,;S;,,], in conjunction with the boundary element method with
whereS; is the arc length at thgth point. Over each of these B-splines forming the set of basis functions, for the solution
four elementsBS is a third-order polynomial. It is deter- of free surface problems in the potential flow regime. This is
mined by requiring continuity of the polynomial and of the an indication of the range of validity and robustness of the
first and second derivatives at the boundaries of thdoundary integral formulation.
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TABLE |. Comparison between numerical and analytical solutions for the
final deformation and response time for a spherical capsulesariD 2.

N GoTs Go7a D. D.a

0.2 0.0076 0.0078 0.0181 0.018 75
1 0.0115 0.0120 ” ”

5 0.0310 0.0331

Mooney—Rivlin membrane, there are two characteristic re-
sponse times. The ratio between those two times is roughly
10 forA=0 and 5 forn =5. Consequently, except during the

initial instants, the time response of the capsule is essentially

FIG. 2. Evolution of the deformation versus time of an initially spherical governed by the smallest of the two characteristic times. The

capsule for different viscosity ratios(e=0.05). For\=5, comparison
between exponential fit and numerical results.

analytical values for the steady deformatidn, and for the
dimensionless characteristic tint&, 7, needed for the cap-
sule to reach steady state are then given by

As the capillary numbee increases, the magnitude of
deformation increases as well, but the accuracy in the con-
verged shapes does not exhibit any significant deterioration
until e approaches the critical value. beyond which no
steady state exists. It should also be noted that for 61 points,

D..o=75¢/4, (4.43
3(19\+16)(2\ +3)
OTaZS 1
5(19\ + 24) — 5277\ >+ 14 256\ + 9792
e<1. (4.4b

a typical case £=0.05A=2,A=B=1) takes 30 min CPU
to run on a PC Dell pro200.

IV. RESULTS

A. Definition of deformation

It is, however, quite surprising to find that this simple
exponential time dependence persists even when the problem
is fully nonlinear, i.e., when the membrane, which is a free
surface characterized by a nonlinear behavior, is subjected to
large deformations. This might be due to the fact that the

The deformation of an axisymmetric capsule is mea-gxternal flow is linear. However, in spite of the simple time

sured by parametdd(t),

a(t)/A—b(t)/B

= Zm/aromys: POl

4.9

dependencethe evolution of deformation cannot be deter-
mined without a humerical computatiofhe parameteD.,
remains an unknown complicated function of capillary num-
ber and initial shape. The same holds ferand 5 which

wherea(t) andb(t) are, respectively, the capsule half diam- depend, in addition, on the viscosity ratio.

eter and radius at time This definition reduces to the clas-

The steady state has already been studied kst hi. for

sical Taylor deformation for droplets when the capsule iscapsules with different membrane constitutive laws and ini-

initially spherical.

tial shapes. In particular, they find that there is a critical

The time evolution ofD(t) is obtained numerically, but it Valuee of the capillary number past which no steady state
turns out that in Casa) an exponentia| fit may be performed exists. Therefore, in this work we will focus on the transient

on all the numerical results with a correlation coefficigdt
larger than 0.98Fig. 2),

D(t*)=D.(1—e /7). (4.2

phase of the capsule deformation.

B. Validation of results

The capsule deformation is computed in c&bg for a

Consequently, the dynamic response of the capsule may Bgherical capsuleA=B=1) and for different values o
characterized with only two parameters: the deformation ahnd \, with & remaining below the critical value,~0.08.

steady stat® ., and the dimensional response time Simi-
larly, for capsule relaxatiofcase 2, an exponential fit of the
numerical results can also be performed,

D(t*)=Dge '™, (4.3

where 7, is a dimensional relaxation timeR¢>0.98). The

The elongational flow has constant intensiy. Throughout

this series of tests 61 nodal points are used along the capsule
meridian with a time step adapted to the valaeande. A
global estimate of the precision of the numerical method is
given by the final volume variation between the initial and
steady deformed shapes, which should be zero in principle.

results presented here have been obtained for the case whéneall cases, the volume variation was less than 0.04% of the
Dy is the steady deformation corresponding to a constantapsule initial volume.

capillary numberg.
The analytical model of BartlseBiesel and Rallison,

The numerical results are also compared against the ana-
lytical predictions(4.4a and (4.4b. For e=10"3, the nu-

which is restricted to initially spherical capsules subjected tanerical results are in good agreement with the analytical
small deformations, also finds that the deformation is an expredictions(Table l). At steady state, the symmetry of the
ponential function of time. However, for a capsule with aproblem implies that the internal liquid is at rest. Conse-
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FIG. 3. Steady-state deformation versufor an initially spherical capsule 0 002 0.04 0.06 008 ' o1
and for different viscosity ratia.. <

FIG. 5. Intrinsic response time versus capillary numbdor an initially
quently, the steady deformation should not dependhpn spherical and for different viscosity ratias
which is indeed the case as can be seen from Table I, at least
within the accuracy of the numerical calculation and of the

exponential fit. _ _ intensityG,. Figure 4 shows the variation of the dimension-
The time evolution of the deformation of a spherical |ess response time, 7 versuse for different values ofx.
capsule is shown in Fig. 2 for=0.05. It is clear that the The capsule response time is a nonlinear functiors.oft
deformation converges to the same steady value for differentcreases sharply with and e, and consequently with in-
viscosity ratios. Ase increases, it is also found that the ¢reasing viscosity of the internal and external fluids. This
steady deformation does not depend JoriFig. 3). It also  pepavior is due to the complex interaction between the hy-
agrees with the results previously obtained byetial. for — gyogynamic stresses that deform the membrane and the elas-
spherical capsules with=1. Figure 3 also shows that, for iz tensions that resist the deformation. Furthermore, Fig. 4
small deformations, the numerical and asymptotic results argno\ys that small deformation theory overestimates the val-
in good agreement within about 15% up $0=0.005. In  yeg of the response time. The range of validity of the ana-
agreement with Liet al, a critical valuee of the capillary  ytical solution for = is found to be the same as for the de-
number e ]0.08;0.09]) is also found past which no fomation. Figure 5 shows the “intrinsic” response time
steady state exists. Then for-¢., the capsule continuously 7/t. as a function ofs for the same range of values bf

extends until burst occurs. Also apparent in Fig. 3 is @ NOyyhen\ <5 and where is small, 7./t, decreases sharply as
ticeable trend of the curves to deviate from each othes as . increases. More specifically, whenincreases from 0.001

approaches.. This is not due to nu'merical error, but might 1 0 05 the relative decrease afit. is roughly 60%. For a

be a consequence of the exponential fit that is used to detegen capsule, this indicates a significant reduction in the

mineD... Ase—e., a steady state no longer exists and angimensjonal response time, with increasing flow strength.

exponential fit may no longer be appropriate. As & further increases from 0.05 to 0.08, the maximum rela-
) tive variation ofr/t. is 15%. When\ is larger than 5, it has

C. Transient response no influence onr/t, and 7 is thus proportional to the vis-

1. Response to a sudden start of flow cosity of the internal fluid.

An initially spherical unstressed capsule is subjected to a  Figure 5 indicates that the capsule response time is de-

. . H H ol
sudden start of a flow with constant capillary numbeand ~ termined by the larger of two time scales, namély™ and
t.. WhenGg is smaII,Ga1 is large and determines the cap-

sule response: hence the significant influences ain the
response time fog <0.05. AsG, (ande) increases, the rela-

W tive magnitude of the intrinsic time scale increasg¢G, *

]
1
i
| =\eg, until it dominates the dynamics of the flow, making
11 E 2 almost independent on the characteristics of the external
05 ] L 02 flow.
' V8 ‘“”'f The effect of capsule initial geometry is assessed by
Got, 06 - Ajo comparing the dynamic behavior of four isovolumic sphe-
i e =20 roids: oblate A/B=0.46,0.75), prolate A/B=1.33), and
! —o— eq. (44b) spherical A=B=1). For given values of and for moder-
: forA=1 ately large values ok (A<5), the intrinsic response time
' 7,/t. decreases ah/B increasegTables Il and Il). This is
0 0.02 0.04 0.06 008 ' ou due to the fact that an initially prolate profile is closer to the
€ corresponding equilibrium profildelongated along the
FIG. 4. Dimensionless response time versus capillary numalfer an ini- axis) than oblate or spherical shapes. A comparison between

tially spherical capsule and for different viscosity ratias the initial and deformed profiles at equilibrium is shown on
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24 TABLE IIl. Dimensionless response time and steady deformation for four
isovolumic capsules with different aspect ratios and€er0.05.

a)

A/B=0.46 A/B=0.75 A/B=1 A/B=1.33

Tolte(A=0.2) 236 18.4 18.0 17.8

rolte(A=1) 7.01 5.53 5.26 5.51
o/te(A\=5) 3.92 2.93 2.63 2.47
D.. 0.64 0.51 0.46 0.43

tion theory. For larger deformations the relaxation times
significantly larger thanrg. Figure 7 clearly illustrates the
fact that capsule deformation following a sudden start of
flow and capsule relaxation are two different processes. In-
deed, during relaxation, it is only the energy stored in the
membrane that is used to move both the internal and external
liquids. In the case of a sudden start of flow, energy is con-
tinuously provided to the systerftapsule plus suspending
fluid), resulting in the motion of the two liquids and mem-
brane deformation. A similar difference betwegrand 7 is

also observed for other values »f

b)

© 3. Periodic variation of strain

An initially spherical capsule is now placed in the tran-
sient flow given by(2.11). The capillary number oscillates
between 0 and .., with period 2T, (Fig. 8). A dimensional
analysis of the problem shows that there are now four rel-
evant time scales, namely, G, the momentum diffusion
time scaleL?/v (v denotes the kinematic viscosity of the
external fluid, and the oscillation periodT,. A measure of
FIG. 6. Initial capsule profile and steady deformed profilefer0.05 and  the relative importance of momentum diffusion in the two

(@ A/B=1, (b) A/IB=0.5, and(c) A/B=1.33 (solid line: initial profile, quuids and momentum imparted to the system due to the
dashed line: steady profjle . - L
oscillatory variation of the rate of strain is the Womersley
number,

Fig. 6 fore=0.05,,=1.0, andA/B=0.75, 1.0, 1.33, respec- Wo=L/(vTy)Y2
tively. It should also be noted that the effect of initial shape o o
on the response time is more important for small capillar ere, it is assumed thafo<1, so that fransient |nert|a_ef- .
numbers £=0.01) than for larger valuess( 0.05). The fects_are also neglected. Consequently, the problem is still
same trend is also observed for the steady deformddipn quasmteady. L .
(Tables Il and Il). This indicates a partial loss of memory, as The history of capsule deformation is shown on Fig. 8

far as the capsule initial configuration is concerned, when théOr A/B=1, To/t;=5.26, )‘.: L Aft_er a transient phase, the
relative importance of the viscous stresses is increased. capsu[e reaches a_dynamlc equilibrium where the global de-
formation D(t) oscillates about a mean valuB,,¢, The
) internal fluid viscosity causes a time delay between the
2. Capsule relaxation variations of capillary number and of deformation. Corre-
The relaxation timer, /t. and the response timey/t,
are compared on Fig. 7 far=1 and for an initially spherical

capsule. For small deformations< 0.005, the two times are

roughly equal to the value predicted by the small perturba- lz'\—_d
0%

T/t
....... start of flow T,/tc

TABLE II. Dimensionless response time and steady deformation for four 61 e e —— relaxation %/t
isovolumic capsules with different aspect ratios andder0.01. 4

A/B=0.46 A/B=0.75 A/B=1 A/B=1.33

0 T T T T 1
T6/te(A=0.2) 459 38.2 28.0 225 © 002 004 006 008 01

Tslte(N=1) 14.2 11.4 8.47 6.54 e
Ts/tc(A=5) 8 6.46 4.50 3.32
D.. 0.31 0.19 0.14 0.10 FIG. 7. Intrinsic response and relaxation time for an initially spherical cap-

sule and forn=1.
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FIG. 8. Deformation and capillary number versus time #gf,,=0.05, N 025 1
=1 andT,=5.26; andA/B=1. b 024

sudden start with £=€p,,/2

0.15 -

spondingly, the dynamic response of the capsule may be ;|
characterized by the following parameters: the number of

: e 0.05 -
cyclesN. needed to reach dynamic equilibrium, the mean o
deformationD ean the oscillation amplitude, and the phase 0 ‘ ‘
shift 5/-'-0_ 0 10 20 30 40 50

As an example, let us consider a spherical capsule with e

viscosity ratioh =1 and subjected to oscillations Wit#},.x  FIG. 9. (a) Global deformation versus time for an initially spherical capsule,
=0.05 (Table V). It should be noted that the Womersley for \=1 and for different oscillation tim&, . (b) Global deformation ver-
number can be expressed as a function of the particle Reyus time for an initially spherical capsulé,=1, &mq=0.05, andT,

nolds number ReG,,,L%/v and the problem parameters, =08,
1 t,
W,=Re— —. . - -
re To reach dynamic equilibriumN.=4). The mean deformation

is almost equal t®.,(1/2¢ 59 and the oscillation amplitude
is of the order of 14% 0D e [Fig. A@)].
WhenT,/t.<1 (e.g.,T,/t,=0.5), the time variations of
¢ are too fast for the capsule to follow them, and it thus takes
large number of cyclesN;=60) to reach dynamic equi-

variations are slow enough for the capsule to adapt and to tﬁébrium [Fig. (b)]. The capstle barely deforms between two

always in dynamic equilibrium with the external floWig. " I d the d . ilat
9(a)]. Over one period, the capsule deformation varied peSONSeculive cycles and the dynamic response curve osciliates

tween 0.05 and a maximum value equaDo(s ) Within about the steady deformation corresponding to a sudden start

206. Consequenti,o.nis equal to 1/D. (¢ q) within 9%. of flow with 1/2¢ 5. At dynamic equilibrium, the amplitude

g ) 0
For intermediate values of the oscillation frequencycfc the oscillation is 1.5% Of Dmear Then Dimean

_ . - =D..(1/2e,,) and the timery necessary to reach this dy-
(e.g., T,/t.=5.26), it takes a finite number of cycles to namic equilibrium is about equal ta(1/2,.).

Furthermore, a capsule can sustain, without breaking,
TABLE IV. Dynamic response of a spherical capsule for period of oscilla- Shear rates greater than the stationary critical shear rate
tion of the external flow in the rande.1t;;100]. Here,A=1, A/B=1, g (e, ]0.08;0.09]) provided thafl,/t, is small. Figure
and eyq,=0.05. The value of- corresponds to the one obtained for a sud- 10(a) shows deformation versus time faly /t.=0.1, €max

For a given value off ;/t; and for a given capsule, the hy-
pothesisW o<1 remains valid for any values of Re angl .,
such that: Ref,,,<To/tA.

In the case wher&,/t.>1 (e.g.,T,/t.=100), the time

den start of flow withe = émay- =0.14, 0.16, 0.19. The first two values of, ., are such that
Oscillation emax<2¢c. Then the capsule reaches a dynamic steady state
amplitude and oscillates around a final steady deformation. The case
Tolte  Tol7s Dmean 9T, (% of Dinean N¢ emax=0.19 corresponds to a value larger than. 2 The dy-
0.1 0019 0280 —06 0.2 ~200 namic deformation curve diverges and the capsule will even-
0.5 0.095 0.280 -05 15 60 tually burst. Figure 1(®) shows a comparison of the tran-
25 0475 0280 —045 7.5 8 sient responses to a steady shear @te0.08 and to a
5 095 0280 -—04 15 35 dynamic shear rate,=0.16 andT,/t.=0.1. The dynamic
10 1.9 0.276  -0.35 28 15 - AT
o 475 0267 —016 53 0 equilibrium deformation is slightly smaller thédh,, (1/2¢ 5y
100 19 025  —0.06 80 and 74 is about twicerg(1/2e o). It is clear that the maxi-

mum transient shear rate that a capsule can sustain without
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FIG. 10. (a) Global deformation versus time fer,,,=0.14, 0.16, 0.19, and
To=0.1t, (initially spherical capsuley=1). (b) Global deformation versus
time for £,,,,=0.16~2¢, and Tq=0.1t, compared to global deformation
versus time fore = e ,,,/2 (initially spherical capsulexy=1).
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FIG. 11. Capillary numbest versus deformation for a capsule with viscosity
ratio =1, for £,,=0.05,T,/7,=0.95, andT,/7,=4.75 (A/B=1).

motion and thus no viscous effects. For large values of
T,/t., there is a significant internal motion, and thus com-
paratively large viscous effects.

Table V compares the response of spherical capsules
with same radiu®\, same elastic modulusg, but with dif-
ferent values of the internal viscosiky:. These capsules are
placed in the same fluidviscosity u) and subjected to the
same maximum rate of straire{,,=0.05). The response
time 75 of each capsule for a sudden start of flow with inten-
Sity emax Can thus be determined. As was shown earlgr,
depends on. For capsules 1, 2, 3 the oscillation period is set

breaking depends on t'he value Bf/t.. A detailed study ¢, T,=10xA/E, and thus the ratioT, /7, varies roughly
has not been done, so it can only be concluded that the valygym 0.5 to 2. WhenT, /7, decreases, the mean deformation
0f £max Must be smaller thaneZ . does not change much, but the phase shift Bpdncrease
Table IV shows that, a§,/t. increases from 0.1 to 100, whereas the oscillation amplitude decreases. The results are
there is a gradual decrease®df,.,, This is due to the fact identical to those obtained for=1 for the same value of
that D., is a nonlinear function ofs (Fig. 3 and thus T,/7s (Table IV). For capsules 4, 5, 6, the oscillation period
1/2D ., (& mad <D.(1/22 ha0. Also, the oscillation amplitude T, is adapted so that the ratih, /s is equal to unity. The
increases and the number of cycles decreases Whén,  dynamic response of these three capsules is then identical.
increases. Another important aspect concerns the phase shifhe conclusion is that rather than the rafig/t., it is the
which measures the delay between the capsule deformatigatio T,/ 74 that controls the capsule response. Given the pe-
and the externally imposed shear rate. The capsule dynamiod of the external flow, the phase shiftincreases with
response results from two interrelated effects: an elastic réncreasing capsule viscosity or increasing valuek ¢Table
sponse due to the membrane and a viscous response dueMp One can also anticipate thawill increase with increas-

the internal fluid. The smalled, the larger the relative im-
portance of the elastic response. For a given capsuté a
givent,.), the time delays increases wheii,/t; increases.

This is to be expected, since for small valuesrigft., the

ing value ofepay. given the rest of the problem parameters,
since this amounts to decreasing capsule elasticity.

It is possible to plot the capsule deformation versus cap-
illary number (Fig. 11). The corresponding graphs are sig-

capsule barely deforms and there is almost no internal fluigificantly different depending on the value ®f,/75. For

TABLE V. Dynamic response of a spherical capsule £gf,=0.05. Cap-
sules 1, 2, and 3T,=10uA/Eg. Capsules 4, 5, and @,=r7.

Oscillation
amplitude
A To /tc Tolq-S Dmean 5/T0 (% of Dmear) Nc
Capsulel 1 10 1.9 0.276 —0.35 28 15
Capsule 2 3.7 27 095 0.280-0.4 16 35
Capsule 3 8.9 1.12 0.475 0.280-0.45 8 8
Capsule4 0.2 18 1 0.279-0.4 16 25
Capsule5 1 526 1 0.278 -0.4 16 2.5
Capsule 6 5 263 1 0.278 —0.37 16 25

large valuede.g., T,/7,=4.75), the equilibrium is reached
within one cycle, and the hysteresis area is large. For
T,/7s=0(1), equilibrium is reached after three cycles, and
the hysteresis area is smaller than in the previous case.

V. CONCLUSION

The numerical model allows prediction of the transient
response of a capsule to a change of flow conditions. This
study has focused on the role of geometry and internal vis-
cosity.

It is of interest to compare the present results to some
results obtained by Ramanujan and PoziKidis a capsule
suspended in a simple shear flow. To facilitate the compari-
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TABLE VI. Comparison between the response times of a capsule subjectegqtio. The great advantage of the elongational model is that it

to the sudden start of different shear flows. The superscript ss and el refefs axisymmetric and simple to use and that it runs quickly on
respectively, to simple shear flow or to elongational flow. The simple shear, t H for | | afue t
results are estimated from the graphs of Ramanujan and Pozrikidis. an average computer. However, for larger values, @ue to

the nonlinear nature of the problem, significant differences in

D.. G®°r°® €% Ger € 778 the capsule dynamics might arise between the two different
N1 flow configurations. It would be interesting to investigate this

0.16 0.3 0.025 0.084 0.01 0.7 point further. Another important result is that, for periodic

0.26 0.41 0.05 0.14 0.02 0.85 variations of the rate of strain, the response of the capsule is

0.38 0.7 01 0.23 0.04 0.8 controlled by the ratidl,/ 7. The response time, appears

A=0.2 to be the appropriate parameter to estimate the capsule adapt-

0.26 0.3 0.05 0.09 0.02 0.75 o : o ; )

0.4 05 01 0.15 0.04 0.75 ablll_ty to changing flow conditions. Finally, this model_ca_n
obviously be extended to complex membrane constitutive
behavior.
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