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Transient response of a capsule subjected to varying flow conditions:
Effect of internal fluid viscosity and membrane elasticity

A. Diaz
UMR CNRS 6600, UTC, Compie`gne, France

N. Pelekasis
Laboratory of Computational Fluid Dynamics, Chemical Engineering, University of Patras, Greece

D. Barthès-Biesela)

UMR CNRS 6600, UTC, Compie`gne, France

~Received 23 July 1999; accepted 13 January 2000!

The transientdeformation of an axisymmetric capsule freely suspended in a pure straining flow is
studied, for sudden or periodic variations of the intensity of the rate of strain. The particle Reynolds
number is supposed to be very small and the problem is solved numerically by means of the
boundary integral method. In the case of a sudden start of flow, the time response of the capsule can
be approximated by an exponential function, and is thus characterized by only two parameters: the
equilibrium deformationD` and the characteristic response timets . The respective influence of
viscosity ratio, membrane elasticity, and initial particle geometry is analyzed. The dynamic response
of the capsule subjected to periodic variations of the rate of strain is also studied. The response time
ts appears to be an appropriate parameter to estimate the capsule adaptability to changing flow
conditions. © 2000 American Institute of Physics.@S1070-6631~00!00605-X#
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I. INTRODUCTION

A capsule consists of an internal medium~pure or com-
plex liquid!, enclosed by a deformable membrane. Capsu
are frequently met in nature~blood cells! or in industrial
processes~pharmaceutical, cosmetic, or food industry!. In
natural as well as in industrial situations, capsules are o
suspended in a flowing liquid. In response to hydrodynam
forces, the particles deform and sometimes even break
One must be able to predict the behavior of a capsule in fl
in order to evaluate its suitability for a given application or
prevent breakup. The analysis of the motion and deforma
of a capsule involves the solution of two fluid mechan
problems~flow in the internal and in the external liquids!
coupled with a solid mechanics problem~deformation of the
interfacial membrane!. The suspending fluid and the partic
internal liquid are usually supposed to be incompressible
Newtonian. Owing to the small dimensions of the capsu
the particle Reynolds number is very small, so that
Stokes equations can be used. Even with this simplificat
the problem is nonlinear because it is of the free surface t
and also because the deformation of the membrane ma
large. Furthermore, several intrinsic physical properties
the capsule govern the process, such as geometry at
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membrane constitutive properties, and internal viscosity. T
respective influence of these parameters has yet to be
understood.

Over the years many studies have been devoted to
sule mechanics. Analytical solutions based on a perturba
expansion of the equations are available for initially sphe
cal capsules subjected to small deformations.1 Such solutions
have a limited range of validity and cannot deal with no
spherical capsules~e.g., red blood cells! undergoing large
deformations. In order to overcome those shortcomings,
rent research in the field has resorted to numerical mod
Such approaches are based on an integral formulation o
Stokes equations, which is particularly well adapted to f
surface problems. For computational reasons, almost
models have dealt with flow situations where the ratiol
between the internal and external fluid viscosity is uni
This restriction is not important if one is interested only
steady-state results and if the flow geometry is such tha
internal motion has stopped at equilibrium. This is the ca
in axisymmetric situations where an axisymmetric capsule
suspended in a pure straining motion2,3 or moves along the
axis of a cylindrical channel.4 The effect of membrane rhe
ology and initial geometry on the steady deformation o
capsule can then be assessed. In particular, it is possib
predict the burst of the capsule when the shear strength
ceeds a critical value. Three-dimensional~3D! flow situa-
tions have also been considered5,6 where the capsule is sus
pended in a simple shear flow withl51. The effect of the
il:
© 2000 American Institute of Physics
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viscosity ratiol on the motion of a capsule in a simple she
flow has been also investigated.7

All the aforementioned studies are mostly focused on
determination of asteadysituation, although the numerica
algorithms usually follow the transient behavior of a caps
after a sudden start of the flow. So there is only scant in
mation on the response time of a capsule. In particular,
effect of the particle physical properties has not been stud
in detail. In practical problems, however, a capsule may
subjected to a time varying flow~startup of flow, oscillatory
flow!. Furthermore, a steady flow may appear unsteady
reference frame linked to the particle. This is the case w
the capsule flows in a channel with a variable cross sec
~microcirculation, filtration, flow in a porous medium!. In
order to estimate the adaptation of the capsule shape to
local flow conditions, it is useful to know the particle intrin
sic response time and compare it to the residence time.

It is the objective of the present paper to study the tr
sient response of a capsule to a time-dependent external
field. The respective influence of internal viscosity, me
brane mechanical properties, and initial particle geome
~specifically the surface-to-volume ratio! is considered. A
pure straining flow situation is chosen for various reaso
First, it is already well documented for the casel51.2,3

Second, owing to the symmetry of the problem, the fi
steady state does not depend onl. This provides a usefu
check on the numerical precision of the results. Third, si
the problem is axisymmetric, its dimension is reduced
one, thus keeping the computational time within reasona
limits. It should also be noted that this flow situation is
approximation to the entrance problem of a small caps
convected toward a pore. Finally, the quantitative inform
tion obtained for this flow may serve as an estimate for ot
types of linear flows.

The governing equations of the problem are presente
Sec. II, the numerical procedure is outlined in Sec.
whereas Sec. IV is devoted to the presentation and the
cussion of the numerical results.

II. PROBLEM STATEMENT

We consider a capsule that consists of a drop of a N
tonian incompressible liquid of viscositylm, enclosed by an
infinitely thin membrane~M!. The membrane is characte
ized by a surface elastic modulusEs and has negligible bend
ing resistance. The particle reference geometry is a sphe
with diameter 2A and radiusB ~Fig. 1!. The capsule is freely

FIG. 1. Axisymmetric capsule suspended in pure axial straining flow
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suspended in an unbounded Newtonian incompressible
with viscosity m. Far from the particle, the external flow i
axisymmetric and corresponds to an axial straining motion
intensityG,

vx
`5Gx, v r

`52 1
2 Gr, vf

`50, ~2.1!

in dimensional variables. The particle axis is aligned with t
flow axis, and the problem is axisymmetric. Cylindrical c
ordinates~r, f, x! are used. Nondimensional variables a
used throughout: lengths are scaled withL5(AB2)1/3, time
with a characteristic scalet0 to be defined later, velocities b
L/t0 , viscous stresses bym/t0 , and elastic tensions byEs .
Since the capsule has both elasticity and viscosity, it is p
sible to define an intrinsic time scale for the particle,

tc5lmL/Es .

The capillary number« is the ratio of external viscous force
to elastic forces and is thus defined by

«5mGL/Es .

A. Capsule deformation

In the reference configuration, the membrane points o
meridian curve are labeled by their cylindrical coordina
~X, R! and by the arc lengthS (S50 whereR50 andX5
2A). In the deformed configuration, the membrane poi
coordinates are @x(S,t),r (S,t)#, with arc length
s(S,t) (s(0,t)50). The principal directions of stress an
strain are along the meridian~indexs! and azimuth~indexf!
so that the equations describing the mechanics of the m
brane simplify significantly. Indeed, the membrane deform
tion may be defined in terms of the principal extension rat
ls andlf ,

ls5
ds

dS
, lf5

r

R
. ~2.2!

The capsule membrane is assumed to be the infini
thin limit of a ~3D! incompressible neo-Hookean materia
Correspondingly, the principal elastic tensions per u
lengthT are given by2

Ts5
1

3lslf
S ls

22
1

ls
2lf

2 D , ~2.3a!

Tf5
1

3lslf
S lf

2 2
1

ls
2lf

2 D . ~2.3b!

Finally, the equilibrium of the shell relates the elas
tensions to the tangentialqs and normalqn components of
the forceq exerted by the membrane on the fluids,

qs5
dTs

ds
1

dr

rds
~Ts2Tf!, ~2.4a!

qn5~KsTs1KfTf!, ~2.4b!

whereKs andKf are the principal curvatures ofM.
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B. Equations of motion

The motion of the inner and outer fluids obeys t
Stokes equations,

¹.v50, ¹.s50, ~2.5!

wherev is the velocity field and where the stress tensors is
given by Newton’s law. The associated boundary conditio
are:

~i! No flow perturbation far from the particle,
v→v` as uxu→`. ~2.6!

~i! No-slip and membrane impermeability forxPM ,
vint~x!5vext~x! ~2.7a!

5vM~x!, ~2.7b!

vM~x!5]x~S,t !/]t, ~2.7c!
wherevint(x) and vext(x) are the velocities in the in
ternal and external fluid. The velocityvM(x) of the
membrane points is simply the time derivative of th
positionx, expressed in terms of the Lagrangian va
ableS.
s
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~ii ! Dynamic equilibrium of the membrane,

a@sext2sint#.n52lq, ~2.8!

where@sext2sint# denotes the jump in fluid stresse
across the membrane,n is the unit normal vector
pointing toward the external fluid, andq is given by
~2.4a! and ~2.4b!. Parametera is the time scale ratio
a5tc /t0 . However, from~2.8!, it is clear thea may
also be viewed as a ratio between viscous and ela
forces.

The integral formulation of the Stokes equations leads t
relationship between the elastic forceq exerted by the mem-
brane on the fluids and the unknown velocity of the caps
interface.8 This formulation is more efficient than the corre
sponding differential form~2.5!, since only the velocity at
the boundaries~here the membrane! is determined instead o
the full velocity field in the whole flow domain. The axisym
metric integral formulation of the Stokes equations is giv
by Pozrikidis,9 where boundary conditions~2.6!, ~2.7a!,
~2.7b!, and~2.8! are already included,
~2.9!
ve
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whereC is a meridian curve ofM. The stresslet coefficient
(Dpx , Dpr , and Epr) and the Stokeslet coefficient
(Jpx ,Jpr) are given by Pozrikidis.9 Integral 1 is a regularized
form of the double layer integral taken in the principal val
sense. Integral 2 is also improper wheny5x, but may be
shown to converge since the singularity of the kernelJ is
logarithmic.

C. Type of flow

As was mentioned in Sec. I, the primary concern of t
study is the investigation of the capsule dynamic behav
Different types of transient motions are thus considered
the following, t* denotes the dimensional time andt the
dimensionless time defined ast5t* /t0 .

1. Sudden start of flow

The capsule is at rest and not deformed. At timet50, it
is subjected to a pure straining motion of constant inten
G5G0 . The obvious time scale is thent05G0

21. As a re-
sult, the flow field at infinity becomes in dimensionless for

vx
`5x, v r

`52 1
2 r , vf

`50, ~2.10!

anda may be expressed in terms of the capillary numbe«,
s
r.
n

y

,

a5l«5lmG0L/Es .

2. Relaxation after flow cessation

The capsule is first deformed by application of the abo
procedure. At timet50, the capsule has a given deformatio
D0 , the flow is stopped (G50), and the capsule is allowe
to relax back to its reference shape. The time scale is t
t05tc , thusa51, «50, andv`50.

3. Flow oscillations

The shear rate is assumed to increase and decreas
early with time, between the values 0 andGmax ~this protocol
is commonly used in shear viscometers!. Correspondingly,
the first cycle of oscillation is described by

G~ t* !5Gmaxt* /To , t* P@0,To#,
~2.11!

G~ t* !5Gmax~22t* /To!, t* P@To,2To#,

where 2To is the dimensional oscillation period. This cyc
may be repeated indefinitely. The time scale is set tot0

5tc , and thusa51. A measure of the variable flow streng
is given by the maximum capillary number«max
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5mGmaxL/Es. An additional parameter enters the proble
namely the time ratioT5To /tc . In nondimensional form,
the flow field at infinity then becomes

vx
`5~l«maxt/T!x, tP@0,T#,

vx
`5@l«max~22t/T!#x, tP@T,2T#, ~2.12!

with similar expressions forv r
` .

III. NUMERICAL PROCEDURE

The numerical algorithm is presented for case~1! and
can be easily extended to the other cases. At timet50, the
capsule is in its rest shape and the position of the memb
material points is recorded. The dynamic process is initia
by suddenly applying the straining flow. At any given tim
step, the calculation involves three phases. First, given
present position of the membrane material points, the me
properties (n,s,Ks ,Kf), local deformations (ls ,lf), elastic
tensions (Ts ,Tf), and load (qs ,qn) on the membrane ar
computed using~2.2! to ~2.4!. Next, Eq.~2.9! is solved for
the membrane velocityvM. Finally, the position of the mem
brane points is updated by means of the kinematic condi
~2.7c!. This iterative process is stopped when a steady sta
reached, that is when the time derivative of the capsule
formation is less than some small preset value~usually
1024). Further details on the procedure used for the ide
fication of the steady state of the system are given in the n
section.

Spatial discretization follows the boundary eleme
method ~BEM!. The arc lengthS in the reference state i
used as the independent space variable. The capsule me
C is first partitioned intoN two-node elements. TheN11
nodal points are unevenly spaced alongSwith a higher den-
sity in areas of large curvature. CubicB-splines are used a
basis functions to interpolate the position of the interfacx
5@x(S,t),r (S,t)# as well as the velocityvM,10

Fx~S,t !
r ~S,t ! G5 (

j 50

N12 F j j~ t !
r j~ t !GBSj~S!, ~3.1!

Fvx
M~S,t !

v r
M~S,t !G5 (

j 50

N12 F v̄x j~ t !
v̄ r j ~ t ! GBSj~S!, ~3.2!

whereBSj is a cubicB-spline centered on thej th node, and
wherej j ,r j ,v̄x j ,v̄ r j , are the interpolation coefficients. Th
coefficients corresponding toj 50 and j 5N12 are com-
puted in terms of the coefficientsj j ,r j ,v̄x jv̄ r j , ( j 51...N
11), by means of the following relations at the poles of t
capsule:

]x

]S
50,

]2r

]S2 50,
]vx

]S
50,

]2v r

]S2 50,

that follow directly from the axisymmetry of the problem.
Each basis functionBSj is nonzero over only four con

secutive elements, namely in the interval@Sj 22 ;Sj 12#,
whereSj is the arc length at thej th point. Over each of thes
four elements,BSj is a third-order polynomial. It is deter
mined by requiring continuity of the polynomial and of th
first and second derivatives at the boundaries of
,
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element.11 Cubic B-splines are respectivelyO(DS4),
O(DS3), and O(DS2) accurate in interpolating a smoot
function, its first and second derivatives~whereDS denotes a
typical element length!. The widely used Lagrange bas
functions areO(DS3) andO(DS2) in interpolating a smooth
function and its first derivative, but are unable to interpola
the second derivative. This is in fact the major advantage
B-splines over quadratic Lagrange basis functions. Conti
ity of the second derivative at the nodes of the interpolan
essential for applications to membrane mechanics proble
since second-order surface properties~curvature! are needed.
More details on the application ofB-splines in the boundary
element method can be found in Pelekasiset al.12

Then, theB-spline interpolations~3.1! and~3.2! are used
in Eq. ~2.9!. The integrals overC are decomposed into a sum
of elementary integrals taken over one boundary element
explained in Sec. II, integral 1 has been regularized an
therefore integrable via regular quadrature~e.g., five-point
Gauss method!. Integral 2 is regular except over elemen
containing pointx, where it is logarithmically singular. Ove
these elements, integration is performed through a 12-p
logarithmic quadrature. This ensures that the numerical e
is due to the interpolation procedure rather than numer
integration.13 Requiring Eq.~2.9! to be satisfied at each nod
leads to a matrix equation

L F v̄x

v̄ r
G5H. ~3.3!

Matrix L @dimensions (2N12)3(2N12)# contains the
stresslet coefficientsDpx ,Dpr ,Epr , and vectorH ~dimen-
sions 2N12) contains the contributions from the far fie
velocity v` and from integral 1. The latter can be evaluat
at each time step since the load componentsqx and qr are
known. The good conditioning of the matrixL to be inverted
is guaranteed by the fact that the integral equation is of
second kind.14 Equation~3.3! is solved by Gauss elimination

After the membrane velocity is computed, the positi
of the membrane points is updated by integrating the ki
matic condition~2.7c! by means of a fourth-order explici
Runge–Kutta~RK! scheme. Numerical stability is ensure
when the time stepDt is lower thanK(DS)2, whereK is a
coefficient that depends onl and«.

Spatial accuracy of the numerical method was verifi
by means of mesh refinement using a time stepDt50.005,
low enough to ensure stability for all considered mesh
Increasing the number of nodes from 31 to 61 and from 61
121 shows that the numerical error isO(DS2). For example,
for a spherical capsule and«50.05, the computed stead
deformed shapes are identical up to the third significant d
for 61 and 121 points. Despite the more complicated form
the kernels and the different flow regimes encountered h
the present scheme exhibits the same stability and accu
characteristics as the one presented by Pelekasiset al.12 In
their algorithm, a fourth-order RK scheme is also employ
in conjunction with the boundary element method w
B-splines forming the set of basis functions, for the soluti
of free surface problems in the potential flow regime. This
an indication of the range of validity and robustness of
boundary integral formulation.
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As the capillary number« increases, the magnitude o
deformation increases as well, but the accuracy in the c
verged shapes does not exhibit any significant deteriora
until « approaches the critical value«c beyond which no
steady state exists. It should also be noted that for 61 po
a typical case («50.05,l52,A5B51) takes 30 min CPU
to run on a PC Dell pro200.

IV. RESULTS

A. Definition of deformation

The deformation of an axisymmetric capsule is me
sured by parameterD(t),

D~ t !5
a~ t !/A2b~ t !/B

a~ t !/A1b~ t !/B
, DP@0;1#, ~4.1!

wherea(t) andb(t) are, respectively, the capsule half diam
eter and radius at timet. This definition reduces to the clas
sical Taylor deformation for droplets when the capsule
initially spherical.

The time evolution ofD(t) is obtained numerically, but i
turns out that in case~1! an exponential fit may be performe
on all the numerical results with a correlation coefficientR2

larger than 0.98~Fig. 2!,

D~ t* !5D`~12e2t* /ts!. ~4.2!

Consequently, the dynamic response of the capsule ma
characterized with only two parameters: the deformation
steady stateD` and the dimensional response timets . Simi-
larly, for capsule relaxation~case 2!, an exponential fit of the
numerical results can also be performed,

D~ t* !5D0e2t* /tr, ~4.3!

wheret r is a dimensional relaxation time (R2.0.98). The
results presented here have been obtained for the case w
D0 is the steady deformation corresponding to a cons
capillary number«0 .

The analytical model of Barthe`s-Biesel and Rallison
which is restricted to initially spherical capsules subjected
small deformations, also finds that the deformation is an
ponential function of time. However, for a capsule with

FIG. 2. Evolution of the deformation versus time of an initially spheric
capsule for different viscosity ratiosl(«50.05). For l55, comparison
between exponential fit and numerical results.
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Mooney–Rivlin membrane, there are two characteristic
sponse times. The ratio between those two times is roug
10 for l50 and 5 forl55. Consequently, except during th
initial instants, the time response of the capsule is essent
governed by the smallest of the two characteristic times. T
analytical values for the steady deformationD`a and for the
dimensionless characteristic timeG0ta needed for the cap
sule to reach steady state are then given by

D`a575«/4, ~4.4a!

G0ta5«
3~19l116!~2l13!

5~19l124!2A5277l2114 256l19792
,

«!1. ~4.4b!

It is, however, quite surprising to find that this simp
exponential time dependence persists even when the pro
is fully nonlinear, i.e., when the membrane, which is a fr
surface characterized by a nonlinear behavior, is subjecte
large deformations. This might be due to the fact that
external flow is linear. However, in spite of the simple tim
dependence,the evolution of deformation cannot be dete
mined without a numerical computation. The parameterD`

remains an unknown complicated function of capillary nu
ber and initial shape. The same holds fort r and ts which
depend, in addition, on the viscosity ratio.

The steady state has already been studied by Liet al. for
capsules with different membrane constitutive laws and
tial shapes. In particular, they find that there is a critic
value«c of the capillary number past which no steady sta
exists. Therefore, in this work we will focus on the transie
phase of the capsule deformation.

B. Validation of results

The capsule deformation is computed in case~1!, for a
spherical capsule (A5B51) and for different values of«
and l, with « remaining below the critical value«c;0.08.
The elongational flow has constant intensityG0 . Throughout
this series of tests 61 nodal points are used along the cap
meridian with a time step adapted to the valuesl and«. A
global estimate of the precision of the numerical method
given by the final volume variation between the initial a
steady deformed shapes, which should be zero in princi
In all cases, the volume variation was less than 0.04% of
capsule initial volume.

The numerical results are also compared against the
lytical predictions~4.4a! and ~4.4b!. For «51023, the nu-
merical results are in good agreement with the analyt
predictions~Table I!. At steady state, the symmetry of th
problem implies that the internal liquid is at rest. Cons

l

TABLE I. Comparison between numerical and analytical solutions for
final deformation and response time for a spherical capsule ande51023.

l G0ts G0ta D` D`a

0.2 0.0076 0.0078 0.0181 0.018 75
1 0.0115 0.0120 ’’ ’’
5 0.0310 0.0331 ’’ ’’
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quently, the steady deformation should not depend onl,
which is indeed the case as can be seen from Table I, at
within the accuracy of the numerical calculation and of t
exponential fit.

The time evolution of the deformation of a spheric
capsule is shown in Fig. 2 for«50.05. It is clear that the
deformation converges to the same steady value for diffe
viscosity ratios. As« increases, it is also found that th
steady deformation does not depend onl ~Fig. 3!. It also
agrees with the results previously obtained by Liet al. for
spherical capsules withl51. Figure 3 also shows that, fo
small deformations, the numerical and asymptotic results
in good agreement within about 15% up to«50.005. In
agreement with Liet al., a critical value«c of the capillary
number («cP#0.08;0.09]) is also found past which n
steady state exists. Then for«.«c , the capsule continuousl
extends until burst occurs. Also apparent in Fig. 3 is a
ticeable trend of the curves to deviate from each other a«
approaches«c . This is not due to numerical error, but mig
be a consequence of the exponential fit that is used to d
mine D` . As «→«c , a steady state no longer exists and
exponential fit may no longer be appropriate.

C. Transient response

1. Response to a sudden start of flow

An initially spherical unstressed capsule is subjected
sudden start of a flow with constant capillary number« and

FIG. 3. Steady-state deformation versus« for an initially spherical capsule
and for different viscosity ratiol.

FIG. 4. Dimensionless response time versus capillary number« for an ini-
tially spherical capsule and for different viscosity ratiosl.
ast
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intensityG0 . Figure 4 shows the variation of the dimensio
less response timeG0ts versus« for different values ofl.
The capsule response time is a nonlinear function of«. It
increases sharply withl and «, and consequently with in-
creasing viscosity of the internal and external fluids. T
behavior is due to the complex interaction between the
drodynamic stresses that deform the membrane and the
tic tensions that resist the deformation. Furthermore, Fig
shows that small deformation theory overestimates the
ues of the response time. The range of validity of the a
lytical solution for t is found to be the same as for the d
formation. Figure 5 shows the ‘‘intrinsic’’ response tim
ts /tc as a function of« for the same range of values ofl.
Whenl,5 and when« is small,ts /tc decreases sharply a
« increases. More specifically, when« increases from 0.001
to 0.05, the relative decrease ofts /tc is roughly 60%. For a
given capsule, this indicates a significant reduction in
dimensional response timets with increasing flow strength
As « further increases from 0.05 to 0.08, the maximum re
tive variation ofts /tc is 15%. Whenl is larger than 5, it has
no influence onts /tc andts is thus proportional to the vis
cosity of the internal fluid.

Figure 5 indicates that the capsule response time is
termined by the larger of two time scales, namelyG0

21 and
tc . WhenG0 is small,G0

21 is large and determines the ca
sule response: hence the significant influence of« on the
response time for«,0.05. AsG0 ~and«! increases, the rela
tive magnitude of the intrinsic time scale increases,tc /G0

21

5l«, until it dominates the dynamics of the flow, makingts

almost independent on the characteristics of the exte
flow.

The effect of capsule initial geometry is assessed
comparing the dynamic behavior of four isovolumic sph
roids: oblate (A/B50.46,0.75), prolate (A/B51.33), and
spherical (A5B51). For given values of« and for moder-
ately large values ofl(l,5), the intrinsic response time
ts /tc decreases asA/B increases~Tables II and III!. This is
due to the fact that an initially prolate profile is closer to t
corresponding equilibrium profile~elongated along thex
axis! than oblate or spherical shapes. A comparison betw
the initial and deformed profiles at equilibrium is shown

FIG. 5. Intrinsic response time versus capillary number« for an initially
spherical and for different viscosity ratiosl.
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Fig. 6 for«50.05,l51.0, andA/B50.75, 1.0, 1.33, respec
tively. It should also be noted that the effect of initial sha
on the response time is more important for small capill
numbers («50.01) than for larger values («50.05). The
same trend is also observed for the steady deformationD`

~Tables II and III!. This indicates a partial loss of memory,
far as the capsule initial configuration is concerned, when
relative importance of the viscous stresses is increased.

2. Capsule relaxation

The relaxation timet r /tc and the response timets /tc

are compared on Fig. 7 forl51 and for an initially spherica
capsule. For small deformations,«,0.005, the two times are
roughly equal to the value predicted by the small pertur

FIG. 6. Initial capsule profile and steady deformed profile for«50.05 and
~a! A/B51, ~b! A/B50.5, and~c! A/B51.33 ~solid line: initial profile,
dashed line: steady profile!.

TABLE II. Dimensionless response time and steady deformation for f
isovolumic capsules with different aspect ratios and fore50.01.

A/B50.46 A/B50.75 A/B51 A/B51.33

ts /tc(l50.2) 45.9 38.2 28.0 22.5
ts /tc(l51) 14.2 11.4 8.47 6.54
ts /tc(l55) 8 6.46 4.50 3.32
D` 0.31 0.19 0.14 0.10
y

e

-

tion theory. For larger deformations the relaxation timet r is
significantly larger thants . Figure 7 clearly illustrates the
fact that capsule deformation following a sudden start
flow and capsule relaxation are two different processes.
deed, during relaxation, it is only the energy stored in
membrane that is used to move both the internal and exte
liquids. In the case of a sudden start of flow, energy is c
tinuously provided to the system~capsule plus suspendin
fluid!, resulting in the motion of the two liquids and mem
brane deformation. A similar difference betweent r andts is
also observed for other values ofl.

3. Periodic variation of strain

An initially spherical capsule is now placed in the tra
sient flow given by~2.11!. The capillary number oscillate
between 0 and«max, with period 2To ~Fig. 8!. A dimensional
analysis of the problem shows that there are now four
evant time scales, namelytc ,Gmax

21 , the momentum diffusion
time scaleL2/n (n denotes the kinematic viscosity of th
external fluid!, and the oscillation period 2To . A measure of
the relative importance of momentum diffusion in the tw
liquids and momentum imparted to the system due to
oscillatory variation of the rate of strain is the Womersl
number,

Wo5L/~nTo!1/2.

Here, it is assumed thatWo!1, so that transient inertia ef
fects are also neglected. Consequently, the problem is
quasisteady.

The history of capsule deformation is shown on Fig.
for A/B51, To /tc55.26,l51. After a transient phase, th
capsule reaches a dynamic equilibrium where the global
formation D(t) oscillates about a mean value,Dmean. The
internal fluid viscosity causes a time delayd, between the
variations of capillary number and of deformation. Corr

FIG. 7. Intrinsic response and relaxation time for an initially spherical c
sule and forl51.

r

TABLE III. Dimensionless response time and steady deformation for f
isovolumic capsules with different aspect ratios and fore50.05.

A/B50.46 A/B50.75 A/B51 A/B51.33

ts /tc(l50.2) 23.6 18.4 18.0 17.8
ts /tc(l51) 7.01 5.53 5.26 5.51
ts /tc(l55) 3.92 2.93 2.63 2.47
D` 0.64 0.51 0.46 0.43
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spondingly, the dynamic response of the capsule may
characterized by the following parameters: the number
cycles Nc needed to reach dynamic equilibrium, the me
deformationDmean, the oscillation amplitude, and the pha
shift d/To .

As an example, let us consider a spherical capsule w
viscosity ratiol51 and subjected to oscillations with«max

50.05 ~Table IV!. It should be noted that the Womersle
number can be expressed as a function of the particle R
nolds number Re5GmaxL

2/n and the problem parameters,

Wo5Re
1

l«

tc

T0
.

For a given value ofT0 /tc and for a given capsule, the hy
pothesisWo!1 remains valid for any values of Re and«max

such that: Re/«max!To /tcl.
In the case whereTo /tc@1 ~e.g.,To /tc5100), the time

variations are slow enough for the capsule to adapt and t
always in dynamic equilibrium with the external flow@Fig.
9~a!#. Over one period, the capsule deformation varied
tween 0.05 and a maximum value equal toD`(«max) within
2%. ConsequentlyDmeanis equal to 1/2D`(«max) within 9%.

For intermediate values of the oscillation frequen
~e.g., To /tc55.26), it takes a finite number of cycles

FIG. 8. Deformation and capillary number versus time for«max50.05, l
51 andTo55.26tc andA/B51.

TABLE IV. Dynamic response of a spherical capsule for period of osci
tion of the external flow in the range@0.1tc ;100tc#. Here,l51, A/B51,
andemax50.05. The value ofts corresponds to the one obtained for a su
den start of flow withe5emax.

To /tc To /ts Dmean d/To

Oscillation
amplitude

~% of Dmean) Nc

0.1 0.019 0.280 20.6 0.2 .200
0.5 0.095 0.280 20.5 1.5 60
2.5 0.475 0.280 20.45 7.5 8
5 0.95 0.280 20.4 15 3.5

10 1.9 0.276 20.35 28 1.5
25 4.75 0.267 20.16 53 0.5

100 19 0.25 20.06 80 ¯
e
f

n

th

y-

be

-

reach dynamic equilibrium (Nc>4). The mean deformation
is almost equal toD`(1/2«max) and the oscillation amplitude
is of the order of 14% ofDmean@Fig. 9~a!#.

WhenTo /tc!1 ~e.g.,To /tc50.5), the time variations of
« are too fast for the capsule to follow them, and it thus tak
a large number of cycles (Nc560) to reach dynamic equi
librium @Fig. 9~b!#. The capsule barely deforms between tw
consecutive cycles and the dynamic response curve oscil
about the steady deformation corresponding to a sudden
of flow with 1/2«max. At dynamic equilibrium, the amplitude
of the oscillation is 1.5% of Dmean. Then Dmean

>D`(1/2«max) and the timetd necessary to reach this dy
namic equilibrium is about equal tots(1/2«max).

Furthermore, a capsule can sustain, without break
shear rates greater than the stationary critical shear
«c(«cP#0.08;0.09]) provided thatT0 /tc is small. Figure
10~a! shows deformation versus time forT0 /tc50.1, «max

50.14, 0.16, 0.19. The first two values of«max are such that
«max,2«c . Then the capsule reaches a dynamic steady s
and oscillates around a final steady deformation. The c
«max50.19 corresponds to a value larger than 2«c . The dy-
namic deformation curve diverges and the capsule will ev
tually burst. Figure 10~b! shows a comparison of the tran
sient responses to a steady shear rate«50.08 and to a
dynamic shear rate«max50.16 andT0 /tc50.1. The dynamic
equilibrium deformation is slightly smaller thanD`(1/2«max)
and td is about twicets(1/2«max). It is clear that the maxi-
mum transient shear rate that a capsule can sustain wit

FIG. 9. ~a! Global deformation versus time for an initially spherical capsu
for l51 and for different oscillation timeTo . ~b! Global deformation ver-
sus time for an initially spherical capsule,l51, «max50.05, and To

50.5tc .

-
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breaking depends on the value ofT0 /tc . A detailed study
has not been done, so it can only be concluded that the v
of «max must be smaller than 2«c .

Table IV shows that, asTo /tc increases from 0.1 to 100
there is a gradual decrease ofDmean. This is due to the fact
that D` is a nonlinear function of« ~Fig. 3! and thus
1/2D`(«max),D`(1/2«max). Also, the oscillation amplitude
increases and the number of cycles decreases whenTo /tc

increases. Another important aspect concerns the phase
which measures the delay between the capsule deforma
and the externally imposed shear rate. The capsule dyna
response results from two interrelated effects: an elastic
sponse due to the membrane and a viscous response d
the internal fluid. The smallerd, the larger the relative im-
portance of the elastic response. For a given capsule~with a
given tc), the time delayd increases whenTo /tc increases.
This is to be expected, since for small values ofTo /tc , the
capsule barely deforms and there is almost no internal fl

FIG. 10. ~a! Global deformation versus time for«max50.14, 0.16, 0.19, and
T050.1tc ~initially spherical capsule,l51). ~b! Global deformation versus
time for «max50.16'2«c and T050.1tc compared to global deformation
versus time for«5«max/2 ~initially spherical capsule,l51).

TABLE V. Dynamic response of a spherical capsule for«max50.05. Cap-
sules 1, 2, and 3:To510mA/Es . Capsules 4, 5, and 6:To5ts .

l To /tc To/ts
Dmean d/To

Oscillation
amplitude

~% of Dmean) Nc

Capsule 1 1 10 1.9 0.276 20.35 28 1.5
Capsule 2 3.7 2.7 0.95 0.28020.4 16 3.5
Capsule 3 8.9 1.12 0.475 0.28020.45 8 8
Capsule 4 0.2 18 1 0.279 20.4 16 2.5
Capsule 5 1 5.26 1 0.278 20.4 16 2.5
Capsule 6 5 2.63 1 0.278 20.37 16 2.5
ue

hift
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ic
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motion and thus no viscous effects. For large values
To /tc , there is a significant internal motion, and thus co
paratively large viscous effects.

Table V compares the response of spherical caps
with same radiusA, same elastic modulusEs , but with dif-
ferent values of the internal viscositylm. These capsules ar
placed in the same fluid~viscosity m! and subjected to the
same maximum rate of strain («max50.05). The response
time ts of each capsule for a sudden start of flow with inte
sity «max can thus be determined. As was shown earlier,ts

depends onl. For capsules 1, 2, 3 the oscillation period is s
to To510mA/Es and thus the ratioTo /ts varies roughly
from 0.5 to 2. WhenTo /ts decreases, the mean deformati
does not change much, but the phase shift andNc increase
whereas the oscillation amplitude decreases. The results
identical to those obtained forl51 for the same value o
To /ts ~Table IV!. For capsules 4, 5, 6, the oscillation perio
To is adapted so that the ratioTo /ts is equal to unity. The
dynamic response of these three capsules is then iden
The conclusion is that rather than the ratioTo /tc , it is the
ratio To /ts that controls the capsule response. Given the
riod of the external flow, the phase shiftd increases with
increasing capsule viscosity or increasing values ofl ~Table
V!. One can also anticipate thatd will increase with increas-
ing value of«max, given the rest of the problem paramete
since this amounts to decreasing capsule elasticity.

It is possible to plot the capsule deformation versus c
illary number ~Fig. 11!. The corresponding graphs are si
nificantly different depending on the value ofTo /ts . For
large values~e.g.,To /ts54.75), the equilibrium is reache
within one cycle, and the hysteresis area is large.
To /ts5O(1), equilibrium is reached after three cycles, a
the hysteresis area is smaller than in the previous case.

V. CONCLUSION

The numerical model allows prediction of the transie
response of a capsule to a change of flow conditions. T
study has focused on the role of geometry and internal
cosity.

It is of interest to compare the present results to so
results obtained by Ramanujan and Pozikidis7 for a capsule
suspended in a simple shear flow. To facilitate the comp

FIG. 11. Capillary number« versus deformation for a capsule with viscosi
ratio l51, for «max50.05,To /ts50.95, andTo /ts54.75 (A/B51).
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son, the superscripts el and ss refer, respectively, to the e
gational flow~2.1! and to a simple shear flow in thex-y plane
(vx5Gssy, vy5vz50). Ramanujan and Pozikidis use esse
tially the same technique as we do, but their model is th
dimensional. The time evolution of deformation is show
after sudden start of flow, forl51 andl50.2 ~their Figs. 4
and 5, respectively! and for different values of the capillar
number«ss. It is possible to fit approximately an exponenti
function to the deformation curves obtained for moder
values of«ss. This allows the estimation of a response tim
tss ~for large values of«ss, a deformation overshoot is ob
served and there is no exponential fit!. Of course, a simple
shear and a pure straining motion correspond to very dif
ent flow situations and it is thus difficult to compare t
responses of a given capsule when it is subjected to e
flow field. For example, identical values of the capilla
numbers«ss and «el in, respectively, simple shear flow an
elongational flow, lead to different values of the capsule
formation. In order to compare the two flow situations, it w
decided to consider capsules with thesame steady deforma
tion. Assuming also that the two particles are identical,
time scale ratio is equal to the capillary number ratio for
two flows,

t0
el/t0

ss5Gss/Gel5«ss/«el.

The comparison between simple shear and elongationa
sponse time is shown in Table VI, where it should be kep
mind that the simple shear values have been estimated
graphical results and are thus not very precise. It is v
interesting to note that this ratio remains almost constant
is of order 1. This means that the elongational model mi
be relevant to estimate the transient response characteris
a given capsule subjected to more complicated flows at l
for small values of the capillary number and the viscos

TABLE VI. Comparison between the response times of a capsule subje
to the sudden start of different shear flows. The superscript ss and el
respectively, to simple shear flow or to elongational flow. The simple sh
results are estimated from the graphs of Ramanujan and Pozrikidis.

D` Gsstss ess Geltel eel tel/tss

l51
0.16 0.3 0.025 0.084 0.01 0.7
0.26 0.41 0.05 0.14 0.02 0.85
0.38 0.7 0.1 0.23 0.04 0.8

l50.2
0.26 0.3 0.05 0.09 0.02 0.75
0.4 0.5 0.1 0.15 0.04 0.75
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ratio. The great advantage of the elongational model is th
is axisymmetric and simple to use and that it runs quickly
an average computer. However, for larger values of«, due to
the nonlinear nature of the problem, significant differences
the capsule dynamics might arise between the two differ
flow configurations. It would be interesting to investigate th
point further. Another important result is that, for period
variations of the rate of strain, the response of the capsu
controlled by the ratioTo /ts . The response timets appears
to be the appropriate parameter to estimate the capsule a
ability to changing flow conditions. Finally, this model ca
obviously be extended to complex membrane constitu
behavior.
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