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Abstract. The problem of an impulsive loading of a long rigid-plastic string resting
on a rigid-plastic foundation is studied. A closed form solution is obtained by disre-
garding the longitudinal motion and considering an arbitrarily large transversal motion.
Expressions for the final shape of the string are derived in terms of the magnitude of the
applied impulse. It is found that the stress and the foundation reaction force are not
uniquely determined, while the shape of the string is.

Notation.

a = Cq/^oXq) = constant in Eq. (15),

Co = {N/Qo)lt2 = transversal wave speed,

i, j — unit vectors along ox,oy axes, respectively,

Io = Poto = applied impulse per unit length,

N = yield stress of the string,

P,Pq = pressure load, pressure amplitude,

q = foundation reaction force,

qo = yield limit of the foundation reaction force,

Q = dimensionless foundation reaction force,

r = r (X, t) = position vector,

= real numbers,

S = dimensionless stress in the string,
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t, to = time, maximum time the pressure p acts on the string,

T,T = different stress measures for the string,

w = diinensionless vertical displacement of the string,

X = initial coordinate along the string,

2A"0 = initial distance pressure p(X, t) acts on,

x = x(X,t), y = y(X,t), actual plane coordinates of the string,

z = dimensionless horizontal coordinate of the string,

£,£,£ = different strain measures,

r = dimensionless time measure,

C = dimensionless spatial coordinate along the undeformed string,

Qq = initial mass density per unit length of the string.

1. Introduction. The problem of plane motion of a long rigid plastic string resting
on a rigid plastic foundation is formulated and solved in this paper. We extend here the
earlier results presented in the references [2, 3] and [7-9, 11], where the reader may also
find detailed justification of the relation between a plastic string on plastic foundations
and cylindrical shells, submarine pipelines, etc., as well as references to earlier work on
related topics.

The stress and strain measure used here for the string are different from those com-
monly used in the earlier literature (before the seventies; see [1] and also Sec. 3.1 of this
work). However, when we apply our results to relatively small strains, which is the case
in the problem under investigation, the quantitative differences are insignificant.

We consider the string initially at rest along a straight line and glued to a plastic
foundation (which can move in one direction only, i.e., it can only be compressed). At
t = 0+ we apply an impulsive load resulting, for example, from a contact explosion, [3],
[8]. We assume that both the string and the foundation behavior are rigid-perfect plastic
as described in Fig. 1 and the accompanying text.

Our aim is to find a closed-form solution of the above problem. First, we show that the
impulsive loading problem can be transformed into a simpler but discontinuous initial-
value problem. The shock wave solution can then be constructed without any simplifying
assumption. This solution is written down in Fig. 3. Due to the assumption that the
string has a very large (infinite) Young's modulus, the solution implies a horizontal shock
wave across which the stress jumps to the yield stress.

Behind the shock wave the unloading follows and the problem becomes much more
complicated. In order to construct a closed-form solution we disregard the longitudinal
motion of the string. Then the vertical displacement of the string is found as a func-
tion of time and distance. The solution is piecewise smooth and depends on a single
dimensionless parameter, which is a function of the applied impulse and other material
parameters (see Fig. 6). As far as the distribution of stress and foundation reaction force
is concerned, there are many possible solutions, but all of them lead to the same shape
of the string. However, if a unique solution in stress and foundation reaction force is
required, a viscosity selection criterion similar to the one discussed in [10] may be added.
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2. Formulation of the problem. We consider the plane motion of a long (infinite)
string. The position vector f = f(X, t) of each string particle X at any time t > 0 is
given by

r = x(X,t)i + y(X,t)j, X 6 91, t > 0. (1)

We assume that the string is initially the straight line

r(X, 0) = Xi, X € JH. (2)

We use the strain measure
a \ 2 / <-» \ 2ox \ ( oyW!) = Uj + (aU _1- (3)

Since the stress vector at any string cross section X is tangent to the string, we choose a
stress magnitude T(X,t) which is conjugated (with respect to the mechanical power) to
the strain measure (3). This means that the mechanical power is given by Te/qq, where
e is the strain rate and go is the initial mass density. There are other strain and stress
measures used in the literature on the subject; for instance, e, T related to e,T by

£ = VTT2!—1, T = TV 1 + 2 i (4)

are used in Cristescu [1], and of course we have Te/go = Tk/po-
The string is considered to have a rigid perfect-plastic behavior, i.e., we assume that

there is a yield stress N (the ordinate of the line AB in Fig. 1) such that the strain can
increase only if the path (i(X,t),T(X,t)) is along AB. Otherwise, the strain stays con-
stant, and the stress can decrease or increase along a segment BC. Initially C coincides
with O.

The plastic string is assumed to be "glued" to a plastic foundation (in the sense that
they cannot separate from each other and there is no friction between them) which acts
on the plastic string as a body force q(X,t). The reaction force q{X,t) is related to the

Fig. 1. Rigid perfect plastic behavior of the string and of the foun-
dation. L—Load, U—Unload, R—Reload.
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0 X

Fig. 2. String on a plastic foundation

vertical displacement y(X,t) of the string as in Fig. 1, i.e., there is a constant go (the
ordinate of the line AB in Fig. 1) such that the string ordinate —y(X, t) can increase only
if the path (—y(X,t),q(X,t)) is along AB; otherwise, —y{X,t) stays constant and the
foundation reaction force q can decrease or increase along a segment BC. The string may
therefore move only downwards, its upward motion being prevented by the permanent
(plastic) deformation of the foundation. For detailed discussion of the meaning and
engineering interpretation of the force q(X,t) see [2, 3, 9] and also Fig. 2.

We assume that at t — 0 on a string interval (—Xq,Xo), a uniform pressure p is
suddenly applied, held constant for a time to > 0, and then suddenly removed. In other
words, we assume that a downwards pressure

Iv f Po ^ e (~Xo,X0), t e (0,£o), ,p{X,t) = < (5)
\ 0 otherwise,

is acting on the string.
The balance law of momentum (see [1], Chap. 4, Sec. 2) gives

d2x d ( ~ dx \
0OW ~ 8X V dX) = '

g°dt2 dx\ ax) g^q p^

with p = p(X, t) given by (5).
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The system (6) together with the constitutive relations

f ~ e, q y (7)

described above and Eq. (3) furnish a complete system of equations for the unknowns
x(X,t),y(X,t),i(X,t),T(X,t), and q(X,t). The string is assumed to be initially unde-
formed and at rest along the OX-axis and subjected to a uniform stress To, 0 < To < N,
so that the initial conditions of the problem are

x(X,0) = X, „(*,») = 0, ^§1»)=0, ^>=0, (8)

T(X, 0) — T0 e [0, N], q(X,0) = 0, xem.

Introduce now the total impulse I{X) defined by

/oc fto cp(X, t) dt = JI p(X, t)dt= | Poto if X € (—Xq,Xq),
0 otherwise, (9)

and require po to be such that

lim poto — IQ = Const. (10)
to—*0

The initial-value problem (3), (5)—(8), where the function p(X,t) satisfies (10), is called
an impulsive loading problem.

The impulsive loading problem can be converted into an initial-value problem by
writing equation (6)2 in the integral form

/jt,
pX 2 rt2 pX 2 rt2

/ / Qoq(X,t) dX dt — / / QoP(X,t) dX dt,
*JX\ J11 J X\ J t\

which must hold for any Xi,X2 6 91, X\ < X2, and any t\,t2 € t\ < t2. Let us take
ti = 0—, ̂ 2 = to', then since q,T, and dy/dX are bounded, we find from (11) for to —* 0,
by taking (9) and (10) into account,

But X\,X2 are arbitrary, and by using (8) we get

dy{X, 0+) = _J(X) = | ~^° iiX £ (~xo>xo), ^
dt I 0 otherwise.
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For 0 < ti < £2 in (11) and to —> 0 we get Eq. (6)2 with the term —Qop(X,t) dropped
from the right-hand side.

Thus, the solution of the impulsive loading problem can be obtained by solving the
initial-value problem (3), (5)-(8) and then taking the limit when to —> 0 under the
condition (10) or by solving directly the initial-value problem

^ ^ = 0.dt2 dX \ dX
d2y d(~dy
dt2 dX V dX

o \ 2 / o \ 2ox \ ( oy
2f \ OX) +

£ ~ T, -y ~ q,
x(X,0) = X, y(X, 0) = 0,

dx(X,0) _ dy(X, 0) _ f -Io for X e (-X0,X0),
U,  7T, 

(13)

dt dt [0 otherwise,

T(X, 0) = T0 6 [0, TV], </(A'. 0)

Let us introduce the following dimensionless variables:

. X c0t (Nx m
C = TT-, T = TT-, Co = —

Ao Ao \ Qo,

C" -■ S=-^T, (14)
1qX% ' %Xl ' Qocl

Eo_~ 9 r _ Co y
X**'

The dimensionless form of Eqs. (13) is

£ n2v2®' ^ 1 A) — Y Io-Qo 0 Io Qo^-o

d'2z d („dz\ n
d'r2 dC Vdt} ~

^ ~ ^7 (s^)=Q,
dr2 dC, \ dC,

e ~ S, —w ~ Q,
z(C,0)=aC, io(C,0) = 0,

<9z(C,0)_n dw{(,0) _ for - 1 < C < 1,
0 — • o — ("7" ) — \
dr or [0 otherwise,

sic, 0) = So e [0,1], g(c,o) = o.
3. Solution of the problem. The initial data of the problem (15) have a jump

discontinuity at the points £ = ±1; therefore, shock waves will be formed. They must
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satisfy the following compatibility conditions (see for instance [1], Chap. 4, Sec. 13, and
also [4, 5]), obtained in a standard manner when we look for weak solutions of (15):

(16)

(17)

c[v\ + [Tu] = 0,

[w] + c[u\ = 0,

where
df

V = = (ZT,WT),

Or
« = = (zOwc)'

and c = d(/dr is the shock-wave speed.
Since the problem (15) is symmetric with respect to £, it is sufficient to construct the

solution for £ > 0, r > 0 only.
3.1. Solution of the Riemann problem with step data at ( = l,r = 0. The step-data

problem (15) at the point (( = 1, r = 0) is called a Riemann problem. The discontinuous
structure of the solution at that point can be obtained directly from (16). It may also be
obtained in the same way as discussed in [4] or [5]. In order to show some properties of
the solution, let us assume for a moment that instead of the rigid perfectly plastic model
of Fig. 1 we have an elastic perfectly plastic model. This model has for loading processes
the following stress-strain relation:

~ ( Ee if 0 < i < NIE,
T = \   (18)\ N if e > N/E,

where E = const. > 0 is Young's modulus. In terms of the stress and strain measures e
and T defined in [4] the above relation (18) leads to

_ _ j E(s + £2/2), 0 < £ < \J(1 + N/E) - 1 = £y, .jg.
1 N( 1 + e), £y < £■

It is known (see [6] and also [1]) that whenever we have a stress-strain relation of the
form T = N(1 + s),N = const., on some strain interval, problem (15) becomes linear on
that interval. However, when unloading is involved the linearity is lost.

Taking the above remark into account, the solution of the Riemann problem at the
point (1,0) can be directly determined from [4]. Then we take E —■> oo to get the rigid
perfect plastic model, and the solution of the Riemann problem in various regions of the
(C,i")-plane is given in Fig. 3 (see p. 334).

We shall describe now some properties of the solution. In Fig. 3 the O^-axis is a shock
wave across which stress jumps from So G [0,1] to S = 1. AB and BC are shock waves
in two opposite directions (with speeds c — — 1 and c — 1, respectively). In the triangle
OAB and below BC for £ > 1, the solution can be calculated and is presented in Fig.
3. The values F(1,0+), etc., are the one-sided limit values at £ = 1, r = 0 between the
shocks AB and BC. We note that both shock waves are loading waves since across them
the strain jumps from zero to

I2
2e(l,0+) = u-u-a2 = -£ > 0. (20)
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D

P0 = (hV

v(l, 0+) = (0, -/(1/2), 5(1, 0+) = 1
5(£,x)=l, \ «(1, 0+) = (a, IJ2), Q( 1, 0+) = 1 / 5(£,x)=l,
m(C, X) = (a, 0) y/ Q(C, X) = 0,
v(C,x) = (0,-/0), \ / u(Q, x) = (a, 0)
w(C, x) = x2/2 - 7qT, \ / v(£, T) = (0.0),
Q(t x) = 1. \ / w(t x) = 0.

O v({ 0) = (0, 0), B = (1, 0) v(i;, 0) = (0, 0),
M(C, 0) = (a, 0), 0(£, 0) = 0, u(l 0) = (a, 0), g(C, 0) = 0,

5(C,0) = 50. 5(C,0) = 50.

Fig. 3. Solution before and just after shocks

3.2. Solution in the open region above ABC of Figure 3. The second wave structure
for the system (15) implies there exists also a second-order wave at point B, namely the
vertical line BD. A simple calculation using the jump relations across AB. BC, and
BD at the point B (see Appendices B and C) leads to the one-sided limit values of the

second-order partials of r at 5(1,0).
Thus, the common value of

dr d^f
<<1-0+' = <flc'5c^><1'0+'

in regions "3" and "4" (of Fig. 3) is

(e(l, 0+))3'4 = -- ^/() + (/J + 4a2) (1,0+)^ ^ (21)

and, if it is strictly positive, then S = 1 in regions "3" and "4", at least in a neighbor-
hood of (1,0), and (§?(1, 0+))4 = 0, which is impossible according to (21). Therefore,
(e(l, 0+))3,4 = 0 and

(22»

i.e., regions "3" and "4" are unloading regions (with S < 1 and e = 0) at least in a
neighborhood of (1,0). In what follows we shall prove that the unloading extends in the
whole region above ABC.
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Due to the complexity of the unloading process, in order to get a closed form solution
we shall neglect the horizontal motion of the string by making the following simplifying
hypothesis:

z(£, t) = a( for all ( £ t > 0 (23)

(which can only be satisfied approximately since otherwise by (15)i we get that the stress
is constant with respect to £). Then problem (15) takes the form

dwr d
" a<( <' = "•

W(C,0) = 0, wT((,0) =
~h for |C| < 1,
0 for |C| > 1, (24)

-1 (ituS*S ~ e  i id( J '
Q ~ —w.

In order to obtain the solution in regions "3" and "4" we need to find wT and w£ on
AB in region "4" and on BC in region "3", i.e., we need to determine (u>r(l — r,r),
tuc(l — t,r))4 and (u>T(l + t,t), w^(l + r,r))3,r > 0. For that let us consider the points
P0(l, t) on BD, Pi (1 — r, r) on AB, and P2(1 + t,t) on BC (see Fig. 3); we integrate Eq.
(24)i on the triangles BPqP\ and BP2P0, respectively. We obtain, by using the jump
relations across AB and BC,

fJo

fJo

S(l,a)da = J-q{^2~ TWr(1 + t,t)

S(l, a) da = - t2 + rw4( 1 - r,r)),
(25)

since d2w/d(dr = 0 in the regions "3" and "4". From (25) we get

w?;(\ + t,t) = w*{ 1 - r,r) = ~r -
(26)

wc(1 + t,t) = — - -r, w^(l -r,r) = — - -r.

Now, by integration of (24) 1 and taking into account (26) we obtain

w3(C, t) — j (3 + 2/0)(C - r- l) + |((l+r)2 — C2),

S3(C'T)=22J0++3(l2-OC' = Ce(l,l + r), r>0,

r C-l (27)
™ (C,t) = -(3r — 470) H -—(£ — 1 + 4/o),

■S4(C,r)=2/°J:1~2J~C, Q4(C>r) — 1) Ce(l-r,l), r>0,
0 — 1 + (,

and this solution is valid as long as wT < 0, i.e., for r G [0,2Jo/3] in both regions. For
r = 2J0/3 we have 2Jq/3) = 0 and, since 2J0/3) = 3/4 > 0, the velocity wT
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MO, 1)
-9"

m4

M's

m5

m:

"6"

W£ = 0
wt = t-/0,
w(£, x) = x2/2 - /qT,
G=i,s= i-

D

"7"

M'2

m3

= wT = 0,

O B = (1, 0)

Fig. 4. The solution structure for 7o in (0,1]

remains equal to zero for r > 2/o/3 in both regions (i.e., the string motion stops there),
since the string is not allowed to move upwards. Now, depending on the magnitude of
the applied impulse 7q, the value r = 2/o/3 may be smaller or larger than the value
r = 1 when the shock wave AB meets its symmetric shock wave AB' with B' = (—1,0)
(see also Fig. 5), and the two cases lead to different solutions. On the other hand, for
2/o/3 < 1 (i.e., 7o < 3/2) the shock wave AB disappears at r = Jo (i.e., all the jumps
across it vanish) and the solution will be different depending on whether the shock AB
disappears before meeting the shock AB' at r = 1 (i.e., for /o < 1) or not (i.e., for
Jo > 1). We have therefore to consider three cases, namely Iq € (0,1], 10 £ (1,3/2], and
Jo > 3/2.

The case Io £ (0,1]. The solution (27) is valid only for r € [0, 2/0/3]. To extend the
solution for larger times we consider the points M\ = (1 — 2/o/3,2/o/3), Mo = (1,2/o/3),
M2 = (1 + 2/o/3,2/o/3), Ms = (00,2/0/3) in Fig. 4. According to (27) 1 we have
^(A/2) = (A/2) = 0, while S3(C,t) has different limit values at A/2 on each line
£ — (1 + 2/o/3) = m(r — 2/o/3), with m G [l,oo), so that these values Si(M2\m) vary
from 53(A/251) = 1 to 5',!(A/2; 00) = 1/3.

Now, if we study in some detail the structure of the rarefaction and shock waves under
the simplifying hypothesis (23), i.e., z(£, r) = a( for all ( £ fH, r > 0, we find that there
are infinitely many solutions for the Riemann problem at the point A/2, but they only
differ in the stress distribution, while for all of them we get the same w in regions "7"
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^(C,r) = ^(C,!/o),
w7t{C,t) = 0, for C G (1,1 + f Jo), T > §/o,

5(C,t)=0 for C > 1 + |/o, t > |/0. (29)

A unique solution for the Riemann problem at A/2 may be obtained if we construct the
solution according to the shock and rarefaction wave structure without the additional
hypothesis (23). This solution consists of a shock wave M2M3 and two second-order
waves, namely the lines A/2A/0, M2M2, and leads to the same solution (28)-(29) for w in
regions "7" and "8".

At the point M\ (see Fig. 4) we have again a Riemann problem. A similar argument
to that used to solve the Riemann problem at the point (1,0) shows there is only one
shock wave at M\, namely M1M5. The horizontal line M\Mq and the vertical line M\M[
are both second-order waves. The solution in regions "5" and "6" is

w^(C,t) = w\(C, 1 -C) = Iq - 1 + C»
w5t(Ct) = 0, for C 6 (1 - r, 1 - 2/o/3), r > 270/3,

wbc(C,r) = <4(C, 2/o/3),
w«{C, r) = 0, for < G (1 - 2/0/3,1), r > 2/0/3.

Let us consider now the point A/5 = (1 — /o,/o) G BM\ (see Fig. 4), where w\(A/5) =
w5(A/s) = 0 (i.e., where the string motion stops completely; see also Fig. 3 and formula
(30)i). We also have w^(M^) = (A/5) = 0 and (M5) = w^.(Ms) — 0, as it happened
at point A/2, and 5 has infinitely many limit values at A/5 in region "5". Thus we get
at A/5 a similar Riemann problem to that at A/2, and the same argument we used at
A/2 leads to the following solution: the horizontal line A/4A/5 is a stress shock wave; the
vertical line A/5A/5 is a second-order wave, and in region "9" and beyond we have

wr(C,T) = 0 for all C > 0, t > Io,
w®(C,r) = 0 for C G (0,1 - I0), r > I0.

The string (vertical) motion stops at the value t — t* (in this case r* = Iq) when the
velocity wt(C,t*) = 0, and wt(£,t) remains equal to zero for r > t* in the whole string;
the final shape of the string is therefore given by w(C,t*), as the plastic behavior of the
foundation prevents any other modification of w.

The final shape of the deformed string in this case is given by

w(CJq) =

11
2 C G [0,1 - Io),

!(C2 - 1) + (Io - l)(c - 1), C G [1 - Io, 1 - 2/0/3),

~~q + Sr"(C — 1 + 4/o), C G [1 — 2/o/3,1), (32)

1(1 - C2) + ^(C - 1) - f, C G [1,1 + 2/0/3),
0, £ > 1 + 2/q/3.
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Fig. 5. The solution structure for /o > 1

The case Io € (1,3/2]. In this case the construction of the solution follows the same
steps as in the case of Io < 1. The only difference is that while the point My (where
w^(Mi) = 0) still lies on AB between B and A (as t(Mi) = 2/0/3 < 1), the point
(where w\(M§) = = 0) is pushed on AB beyond point A (as t(M5) = /q > 1).
Thus regions "1" and "5" in this case extend along AB up to r = 1, and region "9"
disappears. Therefore, we have now the same expressions for the solution in all the
regions "1" through "8", in the whole domain {£ £ <K, r € (0, 1)} as in the case /(> < 1
(see Fig. 5).

Let us remember that problem (24) is symmetric in £ and, therefore, at the point
A — (0,1) the shock wave AB meets its symmetric shock wave AB'. We have, according
to (30),

w^(A) = (.A) = 0, w^(A) = -w5q (A) = /o — 1 > 0. (33)

The shock wave structure resulting from (16) does not allow the two shocks AB and
AB' to continue for r > 1, since beyond them at point A we get a strictly positive
particle velocity wT\ then AA' has to be a shock wave at A (according to (D.4) or (D.3)
of Appendix D and (33)), and the two one-sided limits of stress with respect to the shock
AA' must be equal to zero. The solution of the Riemann problem at the point A consists
then of two horizontal shock waves AC and AC across which only S jumps from 5 = 1
to S — 0 and the vertical shock wave AA' across which only w^ jumps from 1 — /<> (for
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C = 0—) to Jq — 1 (for C = 0+). Therefore, we have

wc((,t) = w(((,l) for C G SK-{0}, r > 1,
wt((,t) = 0 for C G 9^, r > 1,

and the final shape of the string is given by

i(C-l)2 + /o(C"l), CG [0,1-2/o/3),

i(C-i)2 + f(C-i)-|, CG [1-2/0/3,1),

-Kc -1)2 + f(c -1) - f, c g [1,1 + 2/0/3),
0, c > 1 + 2/0/3.

(34)

f(C,/o) = < (35)

The case /q > 3/2. The construction of the solution being the same in this case as
for the previous ones, we remark that the point M\ is now pushed on AB beyond A
(as t{M\) — '2Iq/3 > 1); thus, the regions "3" and "4" extend along BMo. and BA,
respectively, up to r = 1, and regions "5" to "8" disappear (see Fig. 5). Now, at point
^4, the shock wave AB separates regions "1" and "4" and the shock wave AB' separates
regions "1"' and "4"'; we have

W((A) = 27°4 1 = -wt'(A),

wj{A) = wf (A) = 3 42I°.

The solution of the Riemann problem at A consists again of two horizontal shock waves
AC and AC' across which the stress jumps from the value S — 1 to the value 5 = 0 and
a vertical shock wave AA' across which only w^ has a jump; the stress remains equal to
zero for ( = 0, r > 1. We have another Riemann problem at point C; its solution consists
of the shock wave CF and possibly of the horizontal shock wave AC. We still have i — 0
for r > 1, and thus wT depends on r only, and Q = 1 for r > 1 as long as wT < 0.

Now, let t > 1, A! = (0, r) with wt(£,t) < 0; we integrate Eq. (24)i on the domain
AGFA', and we get

2wr(C, 1) - (1 + t)wt(C,t) = ~\{t2 + 2r - 3),

T 2(1+t) ' C G [0,1 + t), t € [1, \/l + 2/o — 1),

r(C,T)=<(o, C> 1+T, re [1, VI+2/0-1), (36)
0, C G 1H, r > v/r+2/o — 1;

wc(C,l), C G [0,2), t > 1,
^ . .-^(C,C-1), C G (2, VTT27o), r>C-l,

<0, CG (2,VTT27o), r G (1,C - 1),
0, c > v/TT27o, t > 1.
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(0. 0)

vv = -2/9

w = -5/6

-1.53

Fig. 6. Final string shape for different Iq

The final shape of the string will then become

' i(C - l)2 + f (C - 1) - I - ^ In , C G [0,1),

w(CJo) = <
C e [1,2),

,  .
_£ + I±p_ .1^ in (v5+25) ? CG[2,vT+27o),

. 0, C > i/l + 2/q.

In Fig. 6 the final shape of the string is plotted for three different values of Jo, i.e.,
Jo = 2/3,4/3, and 2. These values fall into the three different intervals on which the final
form of the string has different expressions. By (14)g, Jo = °^o/q, and for /(J we can
substitute poto. Clearly, for the string to deform we need an applied pressure larger than
the yield limit of the foundation reaction force, i.e., qo < p$, and we can see the meaning
of the three cases (Jo 6 (0, l],/o € (1,3/2], Jo > 3/2). We remark that, for J0 < 1, there
is a flat portion in the middle of the string. For larger values of J0, i.e., Jo > 1, a slope
discontinuity appears in the middle of the string, and this angle becomes sharper when
J0 increases. This behavior is mainly due to the constitutive relation for q and the fact
that the string is "glued" on the foundation.
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Appendix A. The system (15) has no rarefaction waves. Indeed, let Pq =
(Co,r0) be a point and let us denote A = (£ — Co)/(T — ro)- Then a rarefaction wave at
P0 will be described by the functions u(X),v(X), S(X) verifying (15) 1.2 and (17), i.e.,

s dv d , . . dv ,du ,. ,
XdX + d\{Su) = ^0)' dA + dA = (AJ)

which leads to

<s -A2>f + if -M- <A2>
The inner product of (A.2) by w (as |u| > 0) gives

Now, the constitutive relation S ~ £ = ^(|u|2 — a2) does not allow 5 and \u\2 to vary
in the same time; therefore, we always have = 0 and ^(|w|2) = 0, and there is no
rarefaction wave.

For the system (24), rarefaction waves are possible only at points _Pq = (Co,To) where
wc(Po) = 0. Indeed, in this case (A.2) becomes

1 ,,, .osdwr dS-(S-A^ + »{-=0

and, for w^(Po) ^ 0, the conclusion is the same as above; however, when w^(Pq) = 0,
~ IDC = 0 and only frarefaction waves may appear, but = 0 and only ^ 0.

Appendix B. Second-order waves at the point B — (1,0). Let C : Q = £(r) be

a second-order wave at B, between AB and BC, and let c = j^(0) be its slope at this
point; then c2 < 1. Furthermore, since Q, S, w^, wT do not jump across C at point B, we
have the following jump relations for the system (15):

[Vrl " ffScJu - [«c]l = (0,0), [[zTr]] + clfyl = (0,0),
ptrl + c[uc]] = (0,0), [[Sr]]+cpy]=0. ('}

Let us assume that c / 0; then, by means of (B.l)2_4 relation (B.l)i becomes

(C2-l)[[t?rJ-[[5r]]w = (0,0) (B.2)

and
(c2-1)«[[{?t]]-[[5t]]|w|2 = 0; (B.3)

besides, let us also remark that, according to the constitutive relation, S+ 7^ 0 (or
S~ 0) implies u ■ = 0 (or u ■ u~ = 0) and also u ■ uT — i > 0 everywhere.

We may have the following cases:
a) If [[SV]] = 0 then by (B.2) we get [[itr]] = (0,0), and by (B.l) all jumps vanish and

there is no wave.
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/3) If J5t] 7^ 0 then:
Pi) If S+ 7^ 0 and S~ ^ 0, then u- [[wT]] = 0, which is impossible according to (B.3);
fa) If St / 0, S~ = 0, we have u-u+ — 0, u-u~ > 0 (u-u~ cannot be zero according

to (B.3)), and from (B.3) we get <S+ > 0; but i~ = u ■ u~ > 0 implies 5 = 1 on C in
the neighborhood of point B; therefore, 5+ > 0 implies S has to strictly increase in time
from the value S = 1 on C, which is impossible.

/?3) If S+ = 0, S~ ^ 0, we have e+ = u ■ > 0, u ■ u~ — 0, and from (B.3) we
obtain S~ < 0; but e+ > 0 implies S = 1 on C in a neighborhood of point B, and S~ < 0
means S has strictly decreased in time to a value S = 1 on C, which is again impossible.

In conclusion, there is no possible second-order wave at the point B with slope c ^ 0.
The second-order wave analysis at point B for the system (24) follows the same argu-

ment as above and starts from (B.2)i, i.e.,

(c2 - 1)[Kt] - [[SVJwc = 0.

We reach the same conclusion as before provided wj?'4 7^ 0, and, as 0))3;4
= Jo/2, there is no second-order wave with c / 0 at point B for the system (24).

Appendix C. The one-sided limit values at (1,0) of the derivatives of u, v, S.
Let us denote these one-sided limit values at (1,0) by

ViT — uT{ 1,0) in region i, etc.,

S* = ST(1,0) in region i, etc.

For the system (15), across both shock waves AB, BC we have the jump relations

H-%l = (o,o) (c.i)

with D = — 1 for AB and D = 1 for BC (where D is the shock wave speed). Then
differentiation of (C.I) along the shock gives

ffty+2mi + 02fftf<]l = (O,O), (C.2)

while from (15) 1,2, we get

KB ~ PcE = M + (0i M)- (c-3)
Across the second-order wave BD we have the jump relations

I'«rl = |] - (0.0), [ST]]=0,
[[^c]]"3,4 + [[«<]] = (0,0).

Then from (C.2)-(C.4) we obtain

a.J _ „-r3,4 _ /"cl 1 1 ^C4

(C.4)

rCr - UT - I 2aC 4 4 JC= " M07 + 7S • (C.5)
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Appendix D. Shock waves with zero speed (contact discontinuities). The
jump relations (16) for shock waves, for the system (15) when the shock speed c = 0,
lead to

m - o, m = o. (d.i)
Relation (D.l)2 may be written as

S+\u\+^-=S~\u\-^ = A,

and there are two possibilities.
1) If A 7^ 0, then

u
= 0 and S,+ |-u| + = S jtj) . (D.2)

2) If A = 0, then

+ 0. (D.3)S+ = S =0 and f|u|]] ̂  0.

The same jump relations (D.I) for the system (24) reduce to

M = o, lSw(}} = o

and therefore
S+wf = S~w~. (D.4)
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