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Abstract— Recently, a finite horizon minimum variance con-
trol problem was proposed using feedback over a Gaussian
communication channel. Because only the terminal state is
penalized, it was shown that linear communication and control
strategies are optimal and achieve the information theoretic
minimum cost. However, because the transient state is not
penalized, the transient behavior can be poor. In the present
paper, we show that if there is at most one open loop unstable
plant pole, then the transient response will remain bounded
as the control horizon tends to infinity, and will approach a
value determined by the solution to a certain algebraic Riccati
equation.

I. INTRODUCTION

Recent years have seen considerable interest in control
problems using feedback obtained over a communication
channel; a partial list of references is given by [2]–[11].
In the present paper, we consider a finite horizon minimum
variance control problem proposed in [4], wherein a per-
formance penalty is imposed only on the terminal output
of the system. It is shown in [4] that for this problem the
optimum communication and control strategies are linear
and time-varying, and achieve an information theoretic lower
bound that holds for any causal and nonlinear strategies.
Because the transient response is not penalized, it may be
poor and even become unbounded in the limit as the control
horizon tends to infinity. Of course, imposing a penalty on
the transient response will improve its behavior. Except in
special cases, however, the resulting terminal response would
no longer be equal to its theoretical minimum. As discussed
in [4], with a terminal penalty only there is no conflict
between the tasks of communication and control, whereas
imposing a transient penalty introduces such a conflict. It
is thus of theoretical interest to determine conditions under
which the optimum terminal cost may be achieved with a
well-behaved transient response.

We shall show that, under appropriate hypotheses, the
transient response achieved by the optimal control and com-
munication strategies remains bounded, and can be deter-
mined from the solution to a constant coefficient Signal-
to-Noise Ratio (SNR) constrained Riccati equation [4]. In
general, one would expect the transient mean square values
of the system output and optimal estimation error to equal
the theoretical minimum only for scalar systems. We present
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a simple example showing that the optimal estimation error
variance may equal the theoretical minimum at all transient
times even though the system is second order. We also show
a simple second order example wherein the mean square
value of the system output converges to the variance of the
optimal estimation error. However, for the latter example, the
theoretical minimum is achieved only at the terminal time.

The remainder of the paper is outlined as follows. In
Section II we present preliminary results and review the
necessary background from [4]. Section III contains the main
results of the paper, namely a set of sufficient conditions
for the transient response to remain bounded as the terminal
time tends to infinity, and another set of sufficient conditions
for the response to become unbounded. We shall show that
the response will remain bounded provided that there is
at most one unstable open loop pole. Examples illustrating
tighness of the bounds for second order systems are given
in Section IV. Section V contains conclusions and further
research directions.

Notation and Terminology

We use upper case letters to denote random variables,
lower case letters to denote realizations of these random vari-
ables, subscripts to denote elements of a sequence, and super-
scripts to denote subsequences, e.g., xk , {x0, x1, . . . , xk}.
Denote the expected value of the random variable X by
E{X}. We use ‖ · ‖ to denote both the Euclidean vector
norm and the induced matrix norm. A linear system xk+1 =
Axk +Buk is stable if all eigenvalues of A have magnitude
strictly less than one.

II. PRELIMINARIES

Consider the linear system

xk+1 = Axk +Buk + Edk, (1)
yk = Cxk, (2)

with state xk ∈ Rn, control uk ∈ R, disturbance dk ∈ R,
and output yk ∈ R. Assume that the initial state x0 and dis-
turbance dk are realizations of zero mean Gaussian random
variables X0 and Dk, where X0 and Dk are independent for
all k, X0 has covariance Σ0|−1, and Dk is an independent
identically distributed (i.i.d.) sequence with variance σ2

d.
The Gaussian communication channel is modeled as

rk = sk + nk. (3)

where the channel noise nk is a realization of an i.i.d.
Gaussian random process with zero mean and variance
σ2
n, and is assumed to be independent of the initial state
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and process disturbance. The channel input sk must satisfy
an instantaneous power constraint E{S2

k} ≤ P for some
specified value P > 0.

The channel input is assumed to depend causally on the
plant output sequence

sk = fk(yk), (4)

and the control input to depend causally on the sequence of
channel outputs

uk = gk(rk), (5)

where the encoder (4) and the decoder (5) are potentially
nonlinear and time varying.

We shall often need to invoke the following lower bound
on channel signal to noise ratio:

P/σ2
n > −1 +

m∏
i=1

|φ2i |, (6)

where {φi, i = 1, . . . ,m} is the set of unstable eigenvalues
of A. The authors of [5] show that (6) is a necessary condi-
tion for the existence of a causal, but potentially nonlinear
and time-varying, encoder and decoder such that the resulting
feedback system is mean square stable.

Denote the conditional expectation of the plant state
Xk+1 given the channel output history Rk−1 = rk−1

by x̂k|k−1 = Erk−1{Xk}, the associated state estimation
error by x̃k|k−1 = xk − x̂k|k−1, and the error covariance
matrix by Σk|k−1 = E{X̃k|k−1X̃T

k|k−1}. Similarly, denote
the conditional estimate of the system output by ŷk|k−1, and
the conditional output estimation error by ỹk|k−1.

Our problem is to choose encoding and decoding se-
quences fk(yk) and gk(rk), k = 0, . . . , N , to minimize the
mean square value of the system output at terminal time
k = N + 1, subject to the channel input power constraint
E{S2

k} ≤ P . The cost function is thus given by

J∗N+1 = inf
fk,gk

k=0,...,N

E{Y 2
N+1}. (7)

In the present paper we will also be concerned with the
transient regulation cost at times k < N+1. Toward that end,
it is a standard result that the variance of the plant output is
bounded below by that of the conditional estimation error:

E{Y 2
k+1} ≥ E{Ỹ 2

k+1|k}, k = 0, . . . , N. (8)

It is shown in [4] that the lower bound (8) can be achieved
with equality at the terminal time N + 1 by setting

uN = −(CB)−1CAx̂N |N . (9)

Using arguments from information theory, it is also shown
in [4] that a theoretical lower bound on the estimation error
variance, which must be satisfied by any encoder and decoder
of the form (4) and (5), is given by

E{Ỹ 2
k+1|k} ≥ N(Yk+1|Rk), (10)

where N(Yk+1|Rk) is the average conditional entropy power
of Yk+1 averaged over the channel output sequence Rk = rk:

N(Yk+1|Rk) =

(
σ2
n

P + σ2
n

)k+1

CAk+1Σ0|−1A
(k+1)TCT

+ σ2
d

k∑
j=0

(CAk−jE)2
(

σ2
n

P + σ2
n

)k−j
. (11)

Finally, it is shown in [4] that the lower bound (10)
can be achieved with equality using linear control and
communication strategies. This is done in several steps. First
it is assumed that the encoder has access to the plant state
and the control input, as well as to feedback from the channel
output, and linear control and communication strategies are
proposed that yield the minimal estimation error. Second, the
assumption that the encoder has feedback from the channel
output and access to the control input is removed. Third, the
assumption of access to the plant state is replaced, under
appropriate hypotheses, by an observer that does not require
knowledge of the plant input. We now summarize the first
two of these steps; for the third, the reader is referred to [4].

A. Step 1

If the control signal uN satisfies (9), then the problem of
minimizing the terminal cost reduces to one of estimation,
and setting uk = 0, k = 0, . . . , N − 1, results in the
problem of estimating the state of an uncontrolled plant over
a channel with feedback. Our approach to this problem is
depicted in Figure 1, wherein we define a time-varying linear
combination of states zk , Hkxk, and consider the channel
input

sk = λkz̃k|k−1, (12)

where ẑk|k−1 = E{Zk|rk−1} and z̃k|k−1 = zk − ẑk|k−1. For
given sequences Hk and λk, the conditional state estimate
satisfies the recursion x̂k+1|k = Ax̂k|k−1 + ALkrk, with
initial condition x̂0|−1 = 0. The sequences of estimator gains
Lk and error covariance matrices Σk+1|k are given by

Lk = λkΣk|k−1H
T
k /(λ

2
kHkΣk|k−1H

T
k + σ2

n), (13)

Σk+1|k = AΣk|k−1A
T

− λ2kAΣk|k−1HT
k HkΣk|k−1AT

λ2kHkΣk|k−1HT
k + σ2

n

+ σ2
dEE

T , (14)

with initial condition Σ0|−1.
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Fig. 1. Estimation over a channel with feedback.
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Proposition 1 Consider the communication channel with
feedback depicted in Figure 1. Choose the channel input
sk, k = 0, . . . , N, to satisfy (12), where

Hk , CA
N+1−k. (15)

Assume that1 Σ0|−1 > 0, and choose λk such that

λ2k = P/HkΣk|k−1H
T
k . (16)

Then the variance of the estimation error at time k = N + 1
satisfies (10) with equality. �

The fact that E{Ỹ 2
N+1|N} satisfies (10) with equality implies

that the linear estimation scheme depicted in Figure 1
achieves the information theoretic optimum, and cannot be
outperformed by any causal nonlinear estimation scheme.

B. Step 2

We now show that, through use of an appropriately defined
control input, the estimation error variance (10) obtained in
Proposition 1 can also be achieved without the feedback path
around the channel in Figure 1.

Proposition 2 Consider the plant (1)-(2) and the commu-
nication channel (3). Define the sequence Hk as in (15),
and assume that both Σ0|−1 > 0 and Hk+1B 6= 0, for
k = 0, . . . , N . Let the channel input sequence be given by

sk = λkzk, zk = Hkxk, k = 0, . . . , N, (17)

where λk is chosen as in (16). Choose the control sequence

uk = −Fkx̂k|k, (18)

where the control gain is defined by

Fk , (Hk+1B)−1Hk+1A, (19)

and the state estimate x̂k|k satisfies

x̂k|k = x̂k|k−1 + Lk(rk − λkHkx̂k|k−1), (20)
x̂k+1|k = Ax̂k|k +Buk, (21)

with initial condition x̂0|−1 = 0 and estimator gain and
covariance matrix

Lk =
1

λk

Σk|k−1HT
k

HkΣk|k−1HT
k

P
P + σ2

n

, (22)

Σk+1|k = AΣk|k−1A
T

− P
P + σ2

n

AΣk|k−1HT
k HkΣk|k−1AT

HkΣk|k−1HT
k

+ σ2
dEE

T .

(23)

Then at the terminal time E{Y 2
N+1} = E{Ỹ 2

N+1|N}, where
E{Ỹ 2

N+1|N} is given by (10) with k = N .
The mean square value of the system output is given by

E{Y 2
k+1} = Jk+1, where

Jk+1 = CΣk+1|kC
T + C(A−BFk)Γk|k(A−BFk)TCT ,

(24)

1As noted in [4, Remark 5], the assumption that Σ0|−1 > 0 implies that
HkΣk|k−1H

T
k > 0, k = 0, . . . , N .

Fk is defined by (19), and Γk|k , E{X̂k|kX̂T
k|k} satisfies the

recursion

Γk+1|k+1 = (A−BFk)Γk|k(A−BFk)T

+
P

P + σ2
n

Σk|k−1HT
k HkΣk|k−1

HkΣk|k−1HT
k

, (25)

with initial condition Γ0|0 = λ20Σ0|−1HT
0 H0Σ0|−1/(P+σ2

n).
�

The preceding results are illustrated in [4, Example 5.7].
In that example, which considers a second order system with
two unstable eigenvalues, it is seen that the transient response
becomes very large. Furthermore, simulations reveal that the
transient response increases without bound as the terminal
time tends to infinity.

III. PROPERTIES OF THE TRANSIENT RESPONSE

We now analyze the transient response of the estimation
error and regulation cost, and state conditions under which
this response remains bounded as the horizon tends to
infinity. To do so, we must study properties of the SNR
constrained Riccati equation (23). Although SNR constrained
Riccati equations are studied extensively in [4], the analysis
therein is performed for constant coefficient difference equa-
tions and the corresponding algebraic Riccati equations (cf.
[4, eqns. (74)-(75)]). By way of contrast, we must now work
with the SNR constrained Riccati equation (23) that has a
time-varying coefficient Hk given by (15). Under appropriate
hypotheses, we shall show that for any finite value of k, and
in the limit as N →∞, the Riccati equation (23) converges
to one having constant coefficients. We then show that under
additional hypotheses, including the assumption that A has
at most one unstable eigenvalue, the solution to the constant
coefficient Riccati equation converges to a steady state value
that determines the transient behavior of the solution to the
original Riccati equation (23).

Denote the eigenvalues of A by {φi : i = 1, . . . , n}.
Assume throughout the paper that, for simplicity, these
eigenvalues are distinct. Hence A has a complete set of
right eigenvectors vi and left eigenvectors wi; the latter are
row vectors with the property that wiA = φiwi. The modal
decomposition of A thus has the form A =

∑n
i=1 φiviwi.

Recall that left and right eigenvectors have the properties that
wivj = 1, i = j and wivj = 0, i 6= j.

Our next two results, taken together, describe the behavior
of the covariance matrix (23) in the limit as both k →∞ and
N − k →∞. Proposition 3 provides the latter limit, and the
former is given in Proposition 4. In order to demonstrate
convergence as N → ∞, it is useful to note that the
various sequences defined by (15)-(16), (19), and (22)-(25)
all depend implicitly upon the value of N used to define
the terminal cost (7). When convenient, we shall write, for
example, Σ∞k+1|k = limN→∞Σk+1|k.

Proposition 3 In addition to the hypotheses of Proposi-
tion 2, assume that (A,B) is reachable and that A has
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a unique real eigenvalue φ1 with largest magnitude. Then
for any finite value of k, and in the limit as N → ∞, the
Riccati equation (23) with HN

k given by (15) converges to
the constant coefficient Riccati equation

Σ∞k+1|k = AΣ∞k|k−1A
T

− P
P + σ2

n

AΣ∞k|k−1w
T
1 w1Σ∞k|k−1A

T

w1Σ∞k|k−1w
T
1

+ σ2
dEE

T , (26)

with initial condition Σ∞0|−1 = Σ0|−1. The associated control
gain FNk (19) and estimator gain LNk (22) converge to

F∞ = φ1(w1B)−1w1, (27)

L∞k =
1

λk

Σ∞k|k−1w
T
1

w1Σ∞k|k−1w
T
1

P
P + σ2

n

(28)

Furthermore, E{Ỹ 2
k } → CΣ∞k+1|kC

T , and E{Y 2
k+1} →

J∞k+1, where

J∞k+1 = CΣ∞k+1|kC
T+C(A−BF∞)Γ∞k|k(A−BF∞)TCT ,

(29)

and Γ∞k|k satisfies

Γ∞k+1|k+1 = (A−BF∞)Γ∞k|k(A−BF∞)T

+
P

P + σ2
n

Σ∞k|k−1w
T
1 w1Σ∞k|k−1

w1Σ∞k|k−1w
T
1

, (30)

with Γ∞0|0 = Γ0|0.

Proof: Define

H̄N
k =

1

φN+1−k
1

HN
k , (31)

and note that the Riccati equation (23) may be rewritten as

Σk+1|k = AΣk|k−1A
T

− P
P + σ2

n

AΣk|k−1H̄NT
k H̄N

k Σk|k−1AT

H̄N
k Σk|k−1H̄NT

k

+ σ2
dEE

T . (32)

It follows from the modal decomposition of A that

Ak = φk1(v1w1 + βk∆k), (33)

where β = φ2/φ1 satisfies |β| < 1, and ∆k is a bounded
sequence. Together (15), (31), and (33) yields H̄N

k =
Cv1w1 + βN+1−kC∆k, and we see that

lim
N→∞

H̄N
k = Cv1w1. (34)

Substituting (34) into (32) yields (26). It is straightforward
to show from (26) and the assumption Σ0|−1 > 0 that
w1Σ∞k|k−1w

T
1 > 0, k = 0, . . . , N . The assumption that

(A,B) is reachable implies that w1B 6= 0, and thus that
(27) is well defined.

Proposition 4 In addition to the hypotheses of Proposi-
tion 3, assume that (A,E) is reachable, that A has at most
one unstable eigenvalue, m ≤ 1, and that the channel
SNR satisfies the bound (6). Then, in the limit as k →

∞, the sequence Σ∞k+1|k defined by (26) converges to the
unique positive semidefinite solution to the algebraic Riccati
equation

Σ∞ = AΣ∞AT − P
P + σ2

n

AΣ∞wT1 w1Σ∞AT

w1Σ∞wT1
+ σ2

dEE
T .

(35)
Furthermore, w1Σ∞wT1 > 0, and the eigenvalues of A −
λ∞AL∞w1 lie inside the open unit disk, where

L∞ =
1

λ∞
Σ∞wT1
w1Σ∞wT1

P
P + σ2

n

, (36)

and (λ∞)2 = P/w1Σ∞wT1 . The sequences J∞k+1 and
Γ∞k+1|k+1 defined by (29)-(30) converge to

J∞ = CΣ∞CT +C(A−BF∞)Γ∞(A−BF∞)TCT , (37)

Γ∞ = (A−BF∞)Γ∞(A−BF∞)T

+
P

P + σ2
n

Σ∞wT1 w1Σ∞

w1Σ∞wT1
. (38)

Proof: These results follow from [4, Propositions 7.1
and 7.6], provided we can show that (A,w1) is detectable.
If A has only stable eigenvalues, this is trivial. Otherwise,
by the orthogonality property of left and right eigenvectors,
(A,w1) is detectable if and only if A has exactly one unstable
eigenvalue.

We now illustrate the results of Proposition 4.

Example 5 Consider

A =

[
1.1 1
0 0.8

]
, E = B =

[
0

1.5

]
, C =

[
1 1

]
,

(39)
where σ2

d = 1,P = 10, σ2
n = 5. Figure 2 contains plots

of E{Y 2
k+1} and E{Ỹ 2

k+1|k}, together with the information
theoretic lower bound (10). Note that both the transient
estimation error variance and regulation cost remain bounded
even though the plant is open loop unstable. Also plotted
are the steady state values of the estimation error covariance
CΣ∞CT and regulation cost J∞ obtained from (35) and
(37). �

The next result shows that, if A has two real and distinct
unstable eigenvalues, then the sequence Σ∞k+1|k diverges.

Proposition 6 Assume that (A,E) is reachable, that the
bound (6) is satisfied, and that A has at least two real
unstable eigenvalues with |φ1| > |φ2| > 1. Assume also
that Σ0|−1 > 0. Then the sequence Σ∞k+1|k defined by (26)
diverges.

Proof: It follows from [1, p. 81] that the constant
coefficient Riccati equation (26) may be rearranged as

Σ∞k+1|k = (A−AL∞k wT1 )Σ∞k|k−1(A−AL∞k wT1 )T

+AL∞k σ
2
n(AL∞k )T + σ2

dEE
T , (40)
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Fig. 2. The transient responses of E{Y 2
k+1} and E{Ỹ 2

k+1|k} converge to
J∞ and CΣ∞CT , where J∞ is given by (37) and Σ∞ is given by (35).

from which it follows that

Σ∞k+1|k ≥ (A − AL∞k wT1 )Σ∞k|k−1(A − AL∞k w1)T . (41)

Note that (A−AL∞k wT1 ) has an eigenvalue φ2, and let w2k

denote its associated left eigenvector. Assume with no loss
of generality that ‖w2k‖ = 1, ∀k, and define a sequence
ηk , w2kΣ∞k|k−1w

T
2k. Then ‖Σk+1|k‖ ≥ ηk+1 ≥ φ22ηk, and

thus ‖Σk+1|k‖ ≥ φ2(k+1)
2 η0 →∞ as k →∞.

We next consider what happens when there exist eigen-
values |φ1| > |φ2| = 1, and show that the response to the
disturbance input grows without bound.

Lemma 7 Suppose that

A =

[
φ1 0
0 φ2

]
, E =

[
e1
e2

]
, (42)

with |φ1| > |φ2| = 1. Assume that e1 and e2 are both
nonzero, and that the bound (6) is satisfied. Then the
sequence Σ∞k+1|k defined by (26) diverges.

Proof: Denote the individual elements of Σ∞k+1|k by
σ∞k+1|k(i, j), i, j = 1, 2. It is straightforward to show from
(26) that

σ∞k+1|k(1, 1) =
φ21σ

2
n

P + σ2
n

σ∞k|k−1(1, 1) + σ2
de

2
1, (43)

σ∞k+1|k(1, 2) =
φ1φ2σ

2
n

P + σ2
n

σ∞k|k−1(1, 2) + σ2
de1e2, (44)

σ∞k+1|k(2, 2) = φ22σ
∞
k|k−1(2, 2)

− P
P + σ2

n

φ22σ
∞
k|k−1(1, 2)2

σ∞k|k−1(1, 1)
+ σ2

de
2
2. (45)

The assumption that the bound (6) is satisfied implies that
(43)-(44) have steady state solutions given by

σ∞(1, 1) =
σ2
de

2
1

1− φ2
1σ

2
n

P+σ2
n

, σ∞(1, 2) =
σ2
de1e2

1− φ1φ2σ2
n

P+σ2
n

. (46)

Substituting (46) into (45) and rearranging yields

σ∞k+1|k(2, 2) = φ22σ
∞
k|k−1(2, 2)

+

(
1− φ22(P/σ2

n + 1− φ21)P/σ2
n

(P/σ2
n + 1− φ1φ2)2

)
σ2
de

2
2. (47)

Under our assumptions, φ22 = 1. Then it is easy to verify
that the second term on the right hand side of (47) is equal
to zero if and only if P/σ2

n = −1, which is not possible.
Hence σ∞k+1|k(2, 2)→∞ as k →∞.

IV. TIGHTNESS OF THE BOUNDS

Combining the bounds (8) and (10) yields

E{Y 2
k } ≥ E{Ỹ 2

k|k−1} ≥ N(Yk|Rk−1). (48)

The results of [4] described in Propositions 1-2 show that
both these bounds may be achieved with equality at the
terminal time k = N + 1. This fact is unusual since the
control and communication schemes used to achieve these
bounds are linear whereas the bounds (48) hold for any
nonlinear encoder and decoder of the form (4) and (5). In
general, one would not expect either bound to be tight at
transient times. As discussed in [5], an exception to this
general rule is obtained in the case of first order systems,
where linear time invariant schemes satisfy both bounds in
(48) with equality at each time step.

We now prove analytically that the rightmost bound in (48)
may be tight at each time step for a second order system with
one eigenvalue equal to zero.

Proposition 8 Consider the system

A =

[
φ1 0
0 0

]
, E =

[
e1
e2

]
, C =

[
c1 c2

]
. (49)

At each time step k, the estimation error CΣk+1|kCT , where
Σk+1|k is given by (23), satisfies the lower bound (10) with
equality.

Proof: Denote the elements of Σk+1|k by
σk+1|k(i, j), i, j = 1, 2. Substituting (49) into (23), it
is not hard to show that

σk+1|k(1, 1) =

(
φ21σ

2
n

P + σ2
n

)
σk|k−1(1, 1) + σ2

de
2
1, (50)

σk+1|k(1, 2) = σ2
de1e2, σk+1|k(2, 2) = σ2

de
2
2. (51)

Iterating (50) and using (51) yields

CΣk+1|kC
T =

(
σ2
n

P + σ2
n

)k+1

c21φ
2(k+1)
1 σ0|−1(1, 1)+

σ2
dc

2
1e

2
1

k∑
j=0

φ
2(k−j)
1

(
σ2
n

P + σ2
n

)k−j
+σ2

d(2c1c2e1e2+c22e
2
2).

(52)
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On the other hand, substituting (49) into (11) also yields
(52), and it follows that the variance of the linear estimation
error is identical to the theoretical lower bound.

To see why the linear estimation scheme achieves the
information theoretic optimum for a second order plant,
consider the linear estimation scheme over a channel with
feedback depicted in Figure 1. In this figure, the channel
input is given by sk = λkHkx̃k|k−1, k = 0, . . . , N , where
Hk is given by (15). Note from the structure of Hk that the
channel input depends only on the first plant state, and not
the delay state. An inspection of Figure 1 reveals that the
estimate of the delay state is simply kept equal to zero, and
does not depend on the channel output. Hence, the problem
of optimal transmission over the Gaussian channel reduces
to that of transmitting the state of a scalar plant.

We next observe that the leftmost bound in (48) may be
satisfied with equality asymptotically, in the sense that

J∞ = CΣ∞CT (53)

in Proposition 4. For motivation, we note that combining
(18), (20), and (21) yields

x̂k+1|k = (A−BFk)
(
x̂k|k−1 + Lk(rk − γkHkx̂k|k−1)

)
.

If the hypotheses of Proposition 3 are satisfied, then for
sufficiently large values of N , Fk ≈ F∞ defined by (27). It
follows that A − BF∞ will have one eigenvalue at zero
and the remainder at φk, k = 2, . . . , n. The latter are
stable by the hypotheses of Proposition 4, which also implies
that Lk ≈ L∞ given by (36). It is straightforward to find
examples for which F∞L∞ = 0. In this case, since the
eigenvalues of A − BF∞ are stable, x̂k+1|k → 0, and thus
the leftmost bound in (48) will be satisfied with equality.

Example 9 Consider

A =

[
φ1 0
0 φ2

]
, E =

[
e1
e2

]
, B =

[
b1
b2

]
.

Then L∞ is proportional to
[
σ∞(1, 1) σ∞(2, 1)

]T
, with

values given by (46). One may show that setting

e2 = (e1b2φ1)/(b1φ2)

(
1− φ1φ2σ

2
n

P + σ2
n

)
/

(
1− φ2σ2

n

P + σ2
n

)
yields F∞L∞ = 0. Figure 3 contains plots of the resulting
sequences for φ = 1.1, φ2 = 0.9, b1 = b2 = 1, e1 =
1, C =

[
1 1

]
,P = 10, σ2

n = 5. With this set of parameters,
(53) is satisfied, and thus the transient response of E{Y 2

k+1}
converges to that of E{Ỹ 2

k+1|k} at intermediate times. �

V. CONCLUSIONS AND FURTHER DIRECTIONS

In this paper we have analyzed the transient response of a
control and communication scheme first proposed in [4] in
the limit as the control horizon becomes very large. We have
presented both sufficient conditions for the transient response
to converge to a finite value obtained from a constant
coefficient Riccati equation, and sufficient conditions for the
transient response to diverge. We have also studied cases
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Fig. 3. Plots of E{Y 2
k+1}, E{Ỹ

2
k+1|k}, and N(Yk+1|Rk) for terminal

time N + 1 = 61. For the chosen parameters, J∞ = CΣ∞CT .

wherein equality is achieved in one of the two fundamental
bounds that relate the mean square value of the system output
to the mean square estimation error and the information
theoretic minimum. It remains to obtain a set of necessary
and sufficient conditions for convergence of the transient
response to a finite value; to do so would require a more
thorough treatment of complex eigenvalues.
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