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Abstract

Model order reduction (MOR) methods are more and more applied on many different

fields of physics in order to reduce the number of unknowns and thus the

computational time of large-scale systems. However, their application is quite recent in

the field of computational electromagnetics. In the case of electrical machine, the

numerical model has to take into account the nonlinear behaviour of ferromagnetic

materials, motion of the rotor, circuit equations and mechanical coupling. In this

context, we propose to apply the proper orthogonal decomposition combined with

the (Discrete) empirical interpolation method in order to reduce the computation time

required to study the start-up of an electrical machine until it reaches the steady state.

An empirical offline/online approach based on electrical engineering is proposed in

order to build an efficient reduced model accurate on the whole operating range.

Finally, a 2D example of a synchronous machine is studied with a reduced model

deduced from the proposed approach.

Keywords: Model order reduction, Proper orthogonal decompostion, Discrete

empirical interpolation method, Finite element method, Overlapping finite element

method, Synchronous machine

Background

Modeling electrical machines using the the finite element method (FEM) has proved

to be an efficient approach since it allows to solve magnetostatic and magnetodynamic

problems with complex geometries. When the design of the machine is almost invariant

along its depth, the use of a 2D FEM model is often recommended since it allows to

consider only a decent number of unknowns. For more complex geometries however,

a 3D FEM model may be required which leads to a huge computational cost. One may

also mention the use of analytical or hybrid 2D/3D FEM models for specific designs

which provide a significant speedup [1,2]. The modeling of electrical machines beside the

solution of partial differential equations requires taking into account the nonlinearities of

the materials, the motion of the rotor and the coupling with electrical circuit equations.

In order to model the motion of the rotor, several methods have been developed in

order to avoid any re-meshing process which can be computationally prohibitive. When

the rotation speed is constant, the locked-step method is very powerful since the motion

is considered by only permuting the unknowns at the surface of the rotor. When the
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rotation speed varies however, techniques like the moving band, the mortar FEM, or the

overlapping FEM should be used [3].

To take into account the electrical environment of themachine, circuit equations should

be coupled with a FEM model [4]. This approach leads however to a transient problem

governed by a system of differential algebraic equations. Therefore, the use of an implicit

time-stepping scheme, like the Backward Euler, is required in order to achieve stability.

Moreover, mechanical equations can be coupled to the FEM model, usually in a weak

sense by considering the different constant times with respect to the different equations

[5,6]. Therefore, the time-step of the numerical model must be chosen very small com-

pared to the length of the transient state duration, especially when one uses circuit and

mechanical couplings. In fact, the time-step is determined with respect to the smallest

time constant which corresponds to the electric time constant whereas the time interval

of the simulation is linked to the time constant associated with the mechanic equation.

The ratio between the electrical and the mechanical time constants can be of several

hundred leading to the need of a huge number of time-steps to simulate the transient

state.

Finally, this approach enables to deal with nonlinear ferromagneticmaterials. This point

is relevant sincemost of themachines have their operating point located into the nonlinear

area [4]. Therefore, a numerical scheme such as the fixed point method or the Newton-

Raphson have to be implemented in order to convert a nonlinear problem into a sequence

of linear problems.

Hence, the study of an electric machine requires to solve a nonlinear large-scale system

for a high number of time-steps. All those points contribute to make this problem very

expensive in terms of computational resources. Moreover, the aim of industrial appli-

cations often consists in reaching the steady state, which is the operating state of the

electrical machine.

To overcome this issue, projection-based model order reduction (PMOR) appears to be

a very interesting tool since it allows to dramatically reduce the number of unknowns. This

approach consists in performing a projection of the original problem onto a reduced basis.

This leads to a reduced system of equations with much less unknowns. Two subclasses of

methods may then be distinguished: the a priori and the a posteriori ones.

With a priori approaches, the reduced basis is not known before the simulation: it

is iteratively built from scratch. Then, the reduced solution is computed at each itera-

tion until the approximated solution converges to the full model solution. The proper

generalized decomposition is maybe the most famous a priori PMOR method and has

successfully been applied to a large class of engineering problems[7–9]. Moreover, this

method looks for a solution with a separable representation, allowing it to deal efficiently

with multiparameter problems.

As for the a posteriorimethods, the reduced basis onto which the problem is projected,

is determined before the simulation. Several procedures allow to generate this basis. To

name but a few, the Arnoldi–Lanczos which proceeds by solving the problem in the

harmonic domain while the proper orthogonal decomposition (POD) combined with

the snapshot method requires well-chosen solution of the full model [10,11]. Those two

methods have often been used to study problems in engineering in very different fields

such as interconnected circuits [12] or for modeling aerodynamic problems [13]. Finally,

the reduced basis (RB) method proposes a complete reduction framework which allows
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to build efficiently a reduced basis and an error estimator, through a greedy algorithm.

The RB method is also particularly adapted to multiparameter problems.

All those methods have proved to be extremely robust and efficient for linear problems.

However, applying them in the nonlinear case appears to be much more challenging. For

instance, the Arnoldi–Lanczos procedure which relies on harmonic solutions cannot be

transposed easily to the nonlinear case since it requires nonlinear multiharmonic solver.

In mechanics, the PGD has been successfully applied to nonlinear problems when cou-

pled with the LATIN method (LArge Time INcrement method) [14]. Recently, it has

been applied in electromagnetic to solve nonlinear magnetostatic problems [15]. Until

now however, taking into account the motion with the PGD remains an open problem

preventing the modeling of an electrical machine. Nevertheless, the POD allows to deal

quite easily with nonlinearities but requires additional calls to the full model, cancelling

out partially its advantages [16]. However, the POD approach can be combined with the

(Discrete) empirical interpolation method (DEIM) which is an interesting way to avoid

the calls to the full model [17,18]. The POD–DEIM has been successfully applied in many

fields of engineering problems such as electrical networks [19], fluid mechanics [20] or

reservoir simulations for petroleum industry [21].

Although the PMOR approaches are quite recent in the field of electromagnetics,

they have already been successfully applied on electromagnetic devices such as electrical

machines in the nonlinear case without considering both electrical and mechanical cou-

pling simultaneously [6], conducting plates [22] or nonlinear three-phased transformers

[23].

In this article, a POD–DEIM approach is developed in order to study a synchronous

machine. The numerical model takes into account the nonlinear behaviour of ferromag-

netic materials, circuit and mechanical equations. This enables to study the start-up of a

machine until it reaches the steady state. To build an efficient reduced model valid on the

whole operating range of the electrical machine, an empirical “offline/online” approach is

used. This is based on the typical tests of electrical devices (at no load and in short-circuit)

[23].

First, the numerical model of the nonlinear magnetostatic problem based on the vector

potential formulation coupled with electrical and mechanical equations is presented. To

take into account the motion of the rotor, the overlapping finite element method [24] is

introduced.

Secondly, the proper orthogonal decomposition approach, which allows to project the

full model in a reduced-basis of small size, is combined with the (Discrete) empirical

interpolation method in order to compute nonlinear terms efficiently. Furthermore, an

empirical offline/online approach based on a posteriori electrical engineering knowledge

is presented.

Finally, a synchronous machine is studied with the reduced model which will be com-

pared to the full model in terms of accuracy and calculation time.

Numerical modeling of an electrical machine

Nonlinear magnetostatic field problem

Let us consider a nonlinear magnetostatic field problem in a domain D of boundary Ŵ

composed of a synchronous machine. We assume that the domain D is divided into two

parts: a static subdomain and a rotating subdomain Dθ of boundary Ŵθ . The nonlinear
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behaviour of the ferromagnetic materials of the rotor and the stator is considered. The

domain DNL of boundary ŴNL such that Ŵθ ∩ ŴNL = ∅ gathers all the region with non

linear materials. Four stranded inductors are considered. Only one inductor belongs to

the subdomain Dθ and the others to D\Dθ . We denote by ij the current associated with

the coil of the jth phase and i0 the current flowing into the inductor of the rotor.

When the rotor is steady, the Maxwell equations describing the magnetostatic field

problem reads:

curlH(x) =

3∑

j=0

ijN j(x) (1)

divB(x) = 0 (2)

where H denotes the magnetic field, B the magnetic flux density and N j the unit current

density vector flowing through the jth stranded inductor.

One has to add a constitutive law in order to link the B field with the H field: H = νB,

with ν the magnetic reluctivity. For the isotropic ferromagnetic materials (in DNL), the

reluctivity depends on the value of the norm of B: ν = ν(‖B‖). In order to apply a fixed

point technique to solve this nonlinear equation, one can introduce a virtualmagnetization

vector H fp(B) such that:

H = νfpB + H fp(B) (3)

H fp(B) = (ν(‖B‖) − νfp)B (4)

To ensure the uniqueness of the solution, boundary conditions have to be added. In this

article, we assume that:

B · n = 0 on Ŵ (5)

To solve the previous problem, the vector potential formulation can be used. From (2),

the vector potential A is defined such that:

B(x) = curlA(x) (6)

Then, a strong boundary condition is added:

A × n = 0 on Ŵ (7)

which satisfies (5).

Combining (1), (3), (6) and (7), the vector potential formulation of the nonlinear mag-

netostatic problem reads:

curl
(
νfpcurlA(x)

)
=

3∑

j=0

ijN j(x) − curlH fp(A(x)) (8)

Finally, the domain D is discretized using a 2D mesh composed of N nodes. In the 2D

case, the vector potential A is assumed to be orthogonal to the plane of the study of

normal n⊥: A(x) = A(x)n⊥. Thus, A is expressed as linear combination of nodal shape

functions (Fig. 1). Let XA,k denote the value of A(x) on the kth node. We introduce XA
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Fig. 1 Electrical machine

the vector of size N of entries (XA,k )k=1...N . Then, applying the Galerkin method to solve

(8) leads to the following non linear system of equations.

MXA =

3∑

j=0

F jij − GNL(XA) (9)

with M the stiffness matrix of size N × N which is symmetric definite, and F and GNL

two vectors of size N .

Motion through the overlapping method

In order to model the rotation of Dθ , the overlapping method is used. This methods

allows to take into account the motion of a sub-domain efficiently along a thin non-

meshed domain. Therefore, in order to apply this method to our problem, a non-meshed

domainDr is introduced betweenDθ andD\Dθ of boundaries Ŵ−
θ and Ŵ+

θ respectively, as

shown on Fig. 2.

Basically, the overlapping method consists in computing interactions between Dθ and

D\Dθ insideDr [24,25]. This can be done by extending the finite element functions of each

domain onto Dr by ensuring continuity properties. Since Dr is a non-meshed domain, no

extra unknowns are added to the problem.

To achieve that, the nodal basis functions of the nodes belonging to Ŵ+
θ are firstly

extended to Ŵ−
θ . For simple boundary surfaces such as circles, this extension is done by

Fig. 2 Settings of the overlapping domain
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projecting the support of the nodal function along the normal vector of the boundary Ŵ+
θ ,

as seen on Fig. 3a. Then, Fig. 3b shows how the nodal functions of Ŵ−
θ are extended in the

same way to Ŵ+
θ . Finally, the support of the nodal functions from Ŵ+

θ intersects with the

support of the nodal functions ofŴ−
θ , and therefore, an interaction of the two sub-domains

can be computed. This interaction area is represented in dashed lines on Fig. 3c. More

details of this method can be found in [25].

Since the shape functions associated to the nodes along Ŵ+
θ and Ŵ−

θ now depend on the

parameter θ , equation (9) reads:

M(θ )XA =

3∑

j=0

F jij − GNL(XA) (10)

under the assumptions that Ŵ+−
θ ∩ ŴNL = ∅.

Circuit andmechanical coupling

The coupling of the rotatingnonlinearmagnetostatic problemwith circuit andmechanical

equations are studied in this section.

Circuit coupling

We suppose that the first inductor is supplied by a direct current i0 and the others are

connected to electric loads composed of resistorsR and inductancesL. In these conditions,

the currents {ik , k = 1, . . . , 3} are three new unknowns of the problem. Then, circuit

equations must be added to the initial problem:

dφk

dt
(t) + L

dik

dt
(t) + Rik (t) = 0, ∀k = 1, . . . , 3 (11)

with φk the linkage magnetic flux associated with the kth inductor. The magnetic fluxes

are express as a function of the vector potential such that:

φk (t) =

∫

D
N k (x) · A (x, θ , t) dx = F t

kXA, ∀k = 1, . . . , 3 (12)

The potential A is now time-dependent. Therefore, its discrete counterpart XA also

depends of the time variable t. Then, by introducing X the new unknown vector such as

X = [XA(t); i1(t); i2(t); i3(t)], the numerical model can be written from (10)–(12) as the

following system of differential algebraic equations:

K
dX

dt
(t) + M(θ )X(t) = i0F0 − GNL(XA(t)) (13)

Fig. 3 Overlapping finite element interaction. a nodal function of Ŵ+
θ projected onto Ŵ−

θ . b nodal function

of Ŵ+
θ projected onto Ŵ−

θ . c interaction between the two nodal functions
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with K and M squared matrices of size N + 3, F and GNL two vectors of size N + 3.

To solve this system without stability issues, the use of a backward scheme is preferable.

Therefore, applying an Euler Backward scheme on (13) with a time-step τ leads to:

(
K

τ
+ M(θ )

)
Xk =

K

τ
Xk−1 + i0F0 − GNL(X

k
A) (14)

where Xk = X (t = kτ ).

Mechanical coupling

The mechanical coupling links the angular velocity of the rotor � = dθ
dt with the electro-

magnetic torque TEM(A). The mechanical equation reads:

J
d�

dt
+ f � = TEM(A) − TMech (15)

with J the inertial momentum of the rotor, f a friction constant and TMech the load.

The computation of the electromagnetic torque TEM(A) derives from the virtual work

principle. It can be written as a quadratic function of A [26]. In a discrete setting, one can

write:

TEM(XA) = X t
AMTXA (16)

with MT a sparse matrix of size N . Applying an explicit Euler scheme on (15) and using

(16) leads to the discrete mechanical equation:

�k+1 = �k (1 +
f τ

J
) +

1

J
(X t

AMTXA − TMech) (17)

and then θk+1 = θk + τ�k+1. In the study of electrical machine, the time constant τMech

of the mechanical equation (17) is much larger than the one arising from the circuit

coupling τElec. Thus, an explicit time-scheme for (17) is used. Like any explicit method,

the approach is consistent if the time-step τ is chosen sufficiently small in order to capture

the dynamics of the system [5,6,27] which is the case in practice since the time-step τ is

chosen according to τElec which is much smaller than τMech.

Numerical solution

The nonlinear system of equations (14) can be solved by using a fixed-point approach, or

more efficiently, theNewton-Raphson (NR) algorithm. Thosemethods allow to transform

a nonlinear problem into a sequence of linear problems. Therefore, in order to find the

nonlinear solution Xk of (14) at the kth step, one has to solve several linear problems

of solution Xk
j , such that limj→∞ Xk

j = Xk . When applying the NR algorithm, only few

iterations are required to reach convergence in practice. At the kth time-step, the residual

vector Rk of size N + 3 is defined such that:

Rk (U ) =

(
K

τ
+ M(θk )

)
U + GNL(U ) −

K

τ
Xk−1 − i0F 0 (18)
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Moreover, the Jacobian matrix of the problem at the kth time-step is:

J k (U ) =
K

τ
+ M(θk ) + JNL(U ) (19)

where JNL(U ) denotes the Jacobian operator related to the nonlinear term GNL(.).

Then, the jth linear problem from the NR method reads:

J k (Xk
j−1)(X

k
j − Xk

j−1) = −Rk (Xk
j−1) (20)

which allows to compute Xk
j from Xk

j−1. A stop criterion comparing ηkj = ||Xk
j − Xk

j−1||

with a user-defined parameter ǫ < 1 is used to determine whether the algorithm has

converged or not.

Finally, the different steps describing the numerical scheme of the nonlinear coupled

problem are summarized in Fig. 4.

Model order reductionmethods

The nonlinear coupled problem (14)–(17) has a high computational cost. Indeed, solving

the nonlinear equation (14) requires a high number of unknowns and several Newton-

Raphson iterations for each time-step. Moreover, adding the mechanical equation (17)

to the problem makes the simulation time interval much larger versus the time-step τ

defined from the smallest time constant τElec related to the electrical behaviour of the

rotating machine. Moreover, the electromagnetic torque TEM has a very high oscillating

frequency. Therefore, we propose to apply a MOR approach to the problem (14)–(17)

through the proper orthogonal decomposition combined with the (Discrete) empirical

interpolation method.

Proper orthogonal decomposition

ThePODapproach allows to significantly reduce the number of unknowns of the equation

system. Indeed, the POD belongs to the projectionmodel order reductionmethods which

consist in seeking an approximation of the large-scale solution X r into a small reduced

basis �.

Fig. 4 Numerical resolution scheme
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Projection-basedmodel order reduction

Into the projection-based model order reduction framework, the solution Xk of the non-

linear equation (14) is approximated as:

Xk ≈ �Xk
r (21)

where Xk
r denotes the reduced solution and is a “small” vector of size m, with m << N .

�, the reduced basis, is a rectangular matrix in R
(N+3)×m.

Injecting (21) into (14) gives the system of equations:

(
K

τ
+ M(θ )

)
�Xk

r =
K

τ
�Xk−1

r + i0F0 − GNL(�Xk
r ) (22)

However, the latter system is rectangular. Therefore, one can perform a Ritz-Galerkin

projection by multiplying (22) with �
t . Finally, the reduced system of sizem reads:

(
K r

τ
+ Mr(θ )

)
Xk
r =

K r

τ
Xk−1
r + i0F r − GNL,r(�Xk

r ) (23)

with K r = �
tK� ∈ R

m×m, Mr(θ ) = �
tM(θ )� ∈ R

m×m , F r = �
tF0 ∈ R

m and

GNL,r(�Xk
r ) = �

tGNL(�Xk
r ) ∈ R

m. Thus, those equations lead to a reduced Newton-

Raphson iteration:

J kr (�Xk
r,j)(X

k
r,j+1 − Xk

r,j) = −Rk
r (�Xk

r,j) (24)

with

J kr (�Xk
r,j) =

K r

τ
+ Mr(θ

k ) + JNL,r(�Xk
r,j)

J kNL,r(�Xk
r,j) = �

tJ kNL(�Xk
r,j)�

Rk
r (�Xk

r,j) = �
tRk (�Xk

r,j)

The key of those projectionmethods is to find a reduced basis� fromwhich the reduced

system (23) provides an approximation of the full system (14) as good as possible.

Determination of the reduced basis through the proper orthogonal decomposition

Theproper orthogonal decomposition, introduced in 1967 for fluidmechanic applications

[28], is one of the most used model order reduction method [10,11]. This approach

requires snapshots, i.e. solutions of the problem for different parameter values, in order to

build a reduced basis. Those snapshots can be computed numerically or extracted from

experimental data.

Then, given a set of l snapshots S = {X1
A,X

2
A, . . . ,X

l
A} ∈ R

N×l , one has to perform upon

it a singular value decomposition (SVD). Let r be the rank of the matrix S with r < l and

r < N , then the SVD of the snapshot matrix is written:

S =
(
U1 U2

) (
� 0

0 0

) (
V t

1

V t
2

)
(25)
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whereU1 and V 1 are matrices in R
N×r and R

l×r respectively, whose columns are ortho-

normal (U t
1U1 = V t

1V 1 = I r).� is a diagonalmatrix of size r which contains the so-called

singular values {σi, i = 1 . . . r} such that σ1 > σ2 > · · · > σr > 0. Thus, the reduced basis

which allows to approximate XA is �A = U1.

Truncation of the reduced basis

Truncation plays an essential part on methods like the POD which are based on the SVD.

Indeed, we have seen that the SVD allows to find the rank r of the snapshot matrix S in

(25). However for numerical problems, the snapshot matrix S is likely to be full rank since

its singular values are never equal to the spurious zero because of the numerical noise.

Therefore, it is often advised to truncate the basis, i.e. to reduce the size of the reduced

basis, according to a truncation criterion. In the literature, several methods have been

proposed.

A very popular approach consists in keeping the p first modes amongst l which corre-

spond to singular values larger than a user-defined small constant ǫ:

�A = U1(:, 1 . . . p)/σi > ǫ, i = 1 . . . p

An other truncation method proceeds by considering the cumulative sum so that it

verifies for a fixed ǫ:

�A = U1(:, 1 . . . p)/

(
1 −

∑p
i=1 σi

∑l
i=1 σi

)
< ǫ

In this paper, a truncation based on the orthogonality condition is used. Indeed, the

matrixM⊥ = U t
1U1 withU1 given by (25) should be equal to the identity matrix of size r.

However, due to numerical computations and noise, this equality does not hold andM⊥

is not diagonal:

M⊥ = Mǫ ⇒ M⊥ �= I r

However, the matrix M⊥ is almost diagonal with magnitude 1 for the first p modes but

produce extra-diagonal terms for the last modes:

Mǫ ≈

(
Ip �1

�
t
1 �2

)

with

�1 �= 0

�2 �= I r−p

This means that the smaller the singular value is, the less orthogonal its corresponding

mode is, which implies that the less relevant the mode is. Therefore, we propose to use

the following truncation approach, based on the value of:

�A = U1(:, 1 . . . p)/|1 − M⊥(i, i)| < ǫ, i = 1 . . . p
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Structure preserving approach

SinceX ismade fromtwodifferent sets of unknowns,XA and the currents [i1(t), i2(t), i3(t)],

a structure-preserving approach is used. Basically, it consists in constructing reduced basis

for each kind of unknowns. However, since the number of circuit coupling equations

remains small versus the number of nodes N , only the unknowns XA are approximated

in a reduced basis. Therefore, the full reduced basis � from (21) is written:

� =

(
�A 0

0 Ini

)
(26)

with Ini defining the identity matrix of size ni.

(Discrete) Empirical interpolation method

Although the number of unknowns has been dramatically reduced though the POD

approach, the computational cost of the nonlinear termGNL,r(�Xk
r ) remains prohibitive.

Indeed, one has to express first this quantity in the full basis, and secondly, project it onto

the reduced basis. Therefore, we propose to apply the (Discrete) empirical interpolation

method which allows to compute some nonlinear terms only on DEIM-chosen points,

and then to interpolate the remaining entries of GNL.

Given a snapshot collection SNL of the nonlinear term GNL, a POD basis �NL ∈ R
N×s

is calculated using the same approach as the one presented in the previous section. Then,

the (D)EIM algorithm [18] allows to generate a selectionmatrix P = [ec1 , . . . , ecr ] ∈ R
N×s

where {ecj , j = 1 . . . r} denotes the unit vector associated to the cthj component. Then, the

nonlinear term is approximated as:

G̃NL(U ) = �NL

(
Pt

�NL

)−1
PtGNL(U ) (27)

while the algorithm ensures that Pt
�NL is invertible. Thus, only PtGNL(U ) has to be

computed. For finite element problems, the value of any vector at a certain point only

depend on itself and its neighbours. Then, the computational cost of PtGNL(U ) is highly

reduced compared with the one of GNL(U ).

Furthermore, one may apply the POD projection onto the (D)EIM approximation.

Therefore, the POD-(D)EIM approximation of the nonlinear terms reads:

G̃NL,r(U ) =
(
�

t
�NL

) (
Pt

�NL

)−1
PtGNL(U ) (28)

and the nonlinear Jacobian associated to the (D)EIM approximation is:

J̃NL,r(U ) =
(
�

t
�NL

) (
Pt

�NL

)−1
PtJNL(U )� (29)

Note that the matrix
(
�

t
�NL

)
in (28–29) is of size r × s with r << N and s << N .

Applications

A 2Dmodel of a nonlinear synchronous generator is studied. The geometry and the mesh

of the domain are presented in the Fig. 1. The rotor is driven by a constant torque TMech

and is supplied with a direct current i0. Moreover, the motion of the rotor is taken into

account through themechanical coupling (17) and the overlapping finite elementmethod.
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Since the time constant of themechanical equation (17) ismuch larger than the one arising

from the circuit equation (11), a high number of time-steps is required to reach the steady

state. In our example, we have nt = 104 time-steps. The 2Dmesh of this machine is made

of 23,492 triangles and 12,097 nodes.

Model order reduction strategy

In order to build an accurate reduced system, a collection of snapshots has to be chosen

in such a way that they contain most of the different behaviours of the system. For our

problem, we impose that at least, the snapshots collect a full mechanical period so that the

reduced basis contains an entire rotation. Thus, applying a “direct” reduction approach

where one collects the snapshots during the firstm time-steps and then begin the reduced

scheme at the (m + 1)th time-step may lead to a high computational cost. Indeed, in our

settings, a full mechanical period requires approximately 2000 time-steps.

Moreover, applying a greedy procedure to construct m basis vectors over the full time

interval would require solving m times the reduced system on every time-step, which is

also very resource-demanding.

However, in the field of electrical engineering, a synchronous machine is easily char-

acterized through two simple tests procedures: a no-load and a short-circuit test. During

those tests, there are no more mechanical coupling: the rotation speed is set to a constant

value �0. Thus, the electromagnetic torque TEM of high oscillating frequency is no more

related to the problem, and allows to take a quite important time-step in order to compute

a full mechanical rotation with a reduced number of snapshots (in our case 122). Further-

more, the short-circuit test considers the case where both the value of R and L is zero in

the circuit equation (11) whereas the no-load case consists in not taking into account the

circuit coupling. Therefore, the only parameter left in those two test cases is the rotation

angle θ .

Finally, those two sets of snapshots are used to construct a dynamic reduced system

which accurately approximate the electrical machine, for any value of R, L and TMech in

(11) and (17). The MOR strategy is summarized on Fig. 5.

Offline procedure

Each of the two tests procedures has been computed with m = 122 snapshots uniformly

distributed in [0, 2π ] with respect to the rotation angle: θk = 2kπ
121 , k = 0 . . . 121. One has

Fig. 5 Offline/online strategy
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to note that the half of the electrical machine presents symmetry conditions. Therefore,

in order to maximize the information collected in the snapshots, one has to make sure

that the divisor in θk (i.e. 121 in our case) is odd. Indeed, taking even divisor implies gath-

ering snapshots which have symmetry conditions and therefore redundant information.

In practice, this redundancy is highlighted by observing the slope of the singular values

obtained from the snapshots S and SNL, according to (25): the steepest it is, the less rele-

vant the snapshots are. This is shown on Fig. 6 where the singular values are plotted for

snapshots computed with odd divisor (θk = 121) and even divisor (θk = 120). Indeed,

above 40modes approximately, the singular values of the even divisor case are at least one

order of magnitude smaller than the odd divisor case.

The 2× 122 = 244 snapshots obtained from the two tests procedures are concatenated

in order to build the two reduced basis � and �NL. The truncation has been applied

according to the orthogonality criterion (“Truncation of the reduced basis” section) with

ǫ = 10−7. Finally, the two reduced basis � and �NL are respectively of size 71 and 160.

Figure 7 shows the interpolation points selected by the (D)EIM algorithm. One can see

that the (D)EIM points are located around the air gap for the stator and the rotor. This is

relevant since the magnetic field magnitude varies much more on the surface of the rotor

and also on the stator tooth tips than inside the rotor and in the stator yoke and teeth.

Fig. 6 Singular values decay of S and SNL with odd and even divisors

Fig. 7 (D)EIM points
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Online procedure

Once the reduced system has been built, the online computation involving themechanical

and the circuit coupling is performed by applying a constant torque TMech = 47N.m in

(15) on 104 time-steps.

Verification

The reduced system is tested on a short-circuit case and a no-load case, butwith amechan-

ical coupling. The results are compared with a full FEMmodel. Figure 8 shows the evolu-

tions of the electromotive force (EMF) at the terminals of each inductors of the stator. The

EMF are computed by the derivative of the magnetic linkage fluxes. For both tests, the

EMF evolutions obtained from the reduced model are close to those from the full model.

Adaptivity of the reduced basis

The reduced model is tested with different values of R and L in the circuit equation

(11). The evolutions of the currents obtained from the reduced model and the full model

associated with the stranded inductors of the stator are presented on Figs. 9, 10, 11, 12

and 13. We can see that the currents from the reduced model are close to the references.

This implies that the reduced system is dynamic in the sense that it adapts to values of

R and L for which no snapshots were computed. By taking into account the snapshots

computation, the speedup obtained with model order reduction is approximately 35.

a b

c d

Fig. 8 Electromotive forces (EMF) related to the three phases computed with the FEM and the MOR

approaches for the two typical tests procedures. a Transient state of the no-load test. b Transient state of the

short-circuit test. c Steady state of the no-load test. d Steady state of the short-circuit test
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a b

Fig. 9 Currents computed with the FEM and the MOR approaches for an online computation with R = 5k�

and L = 2H during the transient state (a) and the steady state (b)

a b

Fig. 10 Currents computed with the FEM and the MOR approaches for an online computation with

R = 600� and L = 0H during the transient state (a) and the steady state (b)

a b

Fig. 11 Currents computed with the FEM and the MOR approaches for an online computation with

R = 10k� and L = 0H during the transient state (a) and the steady state (b)

Conclusions

The POD approach has been combined with the (D)EIM in order to study an electrical

machine. The numerical model is based on a nonlinear magnetostatic problem through

the vector potential formulation coupled with circuit and mechanical equations. The
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a b

Fig. 12 Currents computed with the FEM and the MOR approaches for an online computation with R = 0�

and L = 0.5H during the transient state (a) and the steady state (b)

a b

Fig. 13 Currents computed with the FEM and the MOR approaches for an online computation with R = 0�

and L = 5H during the transient state (a) and the steady state (b)

nonlinear problem has been solved by using the Newton-Raphson approach and the

motion of the rotor with the overlapping finite element method. In order to obtain an

efficient reduced model on the whole operating range of electrical machines, an empirical

“Offline/Online” approach has been developed. With the proposed approach, the start-

up of a synchronous machine until it reaches the steady state has been studied. On this

example, the reduced model appears to be more efficient with respect to the computation

cost than the reference model especially when the time-step is very small. In terms of

accuracy, the global quantities can be approximated with a low number of unknowns

and thus, the computation time is significantly reduced. Our future works will focus on

POD-(D)EIM error estimators in order to build robust and adaptive reduced systems of

electrical machines.
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20. Ştefănescu R, Navon Ionel Michael. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water

equations model. J Comput Phys. 2013;237:95–114.

21. Ghasemi M, Yang Y, Gildin E, Efendiev Y, Calo VM. Fast multiscale reservoir simulations using pod-deim model

reduction. In SPE reservoir simulation symposium, 2015.

22. Pierquin A, Henneron T, Clénet S, Brisset S. Model-order reduction of magnetoquasi-static problems based on POD

and Arnoldi-based Krylov methods. IEEE Transact Magn. 2015;51(3):1–4.

23. Henneron Thomas, Clenet Stephane. Model order reduction of non-linear magnetostatic problems based on POD

and DEI methods. IEEE Transact Magn. 2014;50(2):33–6.

24. Tsukerman IA. Overlapping finite elements for problems with movement. IEEE Transact Magn. 1992;28(5):2247–9.

25. Krebs G, Henneron T, Clenet S, Le Bihan Y. Overlapping finite elements used to connect non-conforming meshes in

3-D with a vector potential formulation. IEEE Transact Magn. 2011;47(5):1218–21.

26. Ren Z, Razek A. Local force computation in deformable bodies using edge elements. IEEE Transact Magn.

1992;28(2):1212–5.

27. Vassent E, Meunier G, Foggia A, Reyne G. Simulation of induction machine operation using a step by step finite

element method coupled with circuits and mechanical equations. IEEE Transact Magn. 1991;27(6):5232–4.

28. Lumley J. The structure of inhomogeneous turbulent flows. Atm Turb Radio Wave Prop. 1967; 166–178.


	Transient simulation of an electrical rotating machine achieved through model order reduction
	Abstract
	Background
	Numerical modeling of an electrical machine
	Nonlinear magnetostatic field problem
	Motion through the overlapping method
	Circuit and mechanical coupling
	Circuit coupling
	Mechanical coupling

	Numerical solution

	Model order reduction methods
	Proper orthogonal decomposition
	Projection-based model order reduction
	Determination of the reduced basis through the proper orthogonal decomposition
	Truncation of the reduced basis
	Structure preserving approach

	(Discrete) Empirical interpolation method

	Applications
	Model order reduction strategy
	Offline procedure
	Online procedure
	Verification
	Adaptivity of the reduced basis


	Conclusions
	References


