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Abstract—When modeling magnetic components, the
permeance-capacitance analogy avoids the drawbacks of
traditional equivalent circuits models. The magnetic circuit
structure is easily derived from the core geometry, and the
energy relationship between electrical and magnetic domain
is preserved. Non-linear core materials can be modeled with
variable permeances, enabling the implementation of arbitrary
saturation and hysteresis functions. Frequency-dependent losses
can be realized with resistors in the magnetic circuit.

The magnetic domain has been implemented in the simulation
software PLECS. To avoid numerical integration errors, Kirch-
hoff’s current law must be applied to both the magnetic flux and
the flux-rate when solving the circuit equations.

I. INTRODUCTION

Inductors and transformers are key components in modern
power electronic circuits. Compared to other passive com-
ponents they are difficult to model due to the non-linear
behavior of magnetic core materials and the complex structure
of components with coupled windings.

This paper compares different approaches to model mag-
netic components by means of equivalent circuits with lumped
elements. It highlights the advantages of the permeance-
capacitance analogy over the traditional coupled-inductor
model and the reluctance-resistance analogy.

Using the permeance-capacitance analogy it is shown how
variable permeances are employed to model saturation of the
core material. The saturable core model can be extended to
model frequency-depending losses and hysteresis.

Finally, the implementation of the magnetic domain in the
commercial simulation software PLECS is described. The
system equations must be set up by applying Kirchhoff’s
current law to both flux-rate and flux in order to avoid
numerical integration errors.

II. EQUIVALENT CIRCUITS FOR MAGNETIC COMPONENTS

To model complex magnetic structures with equivalent cir-
cuits, three different approaches exist: Coupled-inductors, the
resistance-reluctance analogy and the capacitance-permeance
analogy.

A. Coupled inductors

In the coupled inductor approach, the magnetic component
is modeled directly in the electrical domain as an equivalent
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Fig. 1. Transformer implementation with coupled inductors

circuit, in which inductances represent magnetic flux paths
and losses incur at resistors. Magnetic coupling between
windings is realized either with mutual inductances or with
ideal transformers.

Using coupled inductors, magnetic components can be
implemented in any circuit simulator since only electrical
components are required. This approach is most commonly
used for representing standard magnetic components such as
transformers. Fig. 1 shows an example for a two-winding
transformer, where L,; and L,o represent the leakage induc-
tances, L., the non-linear magnetization inductance and Ry
the iron losses. The copper resistances of the windings are
modeled with Ry and R».

However, the equivalent circuit bears little resemblance to
the physical structure of the magnetic component. For exam-
ple, parallel flux paths in the magnetic structure are modeled
with series inductances in the equivalent circuit. For non-trivial
magnetic components such as multiple-winding transformers
or integrated magnetic components, the equivalent circuit can
be difficult to derive and understand. In addition, equivalent
circuits based on inductors are impossible to derive for non-
planar magnetic components [4].

B. Reluctance-resistance analogy

The traditional approach to model magnetic structures
with equivalent electrical circuits is the reluctance-resistance
analogy. The magnetomotive force (mmf) F' is regarded as
analogous to voltage and the magnetic flux ® as analogous
to current. As a consequence, magnetic reluctance of the flux
path R corresponds to electrical resistance:
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Fig. 2. Implementation of magnetic interface

The magnetic circuit is simple to derive from the core geome-
try: Each section of the flux path is represented by a reluctance
and each winding becomes an mmf source.

To link the external electrical circuit with the magnetic
circuit, a magnetic interface is required [1]. The magnetic
interface represents a winding and establishes a relationship
between flux and mmf in the magnetic circuit and voltage v
and current ¢ at the electrical ports:

do
v=N— 2)
i=% 3)

N is the number of turns. If the magnetic interface is imple-
mented with an integrator it can be solved by an ODE solver:
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Fig. 2 outlines a possible implementation of the magnetic
interface in a circuit simulation software.

Although the reluctance-resistance duality may appear nat-
ural and is widely accepted, it is an unfortunate choice for
multiple reasons:

o Physically, energy is stored in the magnetic field of a
volume unit. In a magnetic circuit model with lumped
elements, the reluctances should therefore be storage
components. However, with the traditional choice of mmf
and flux as magnetic system variables, reluctances are
modeled as resistors, i.e. components that would usually
dissipate energy. It is also confusing that the magnetic
interface is a storage component.

o To model energy dissipation in the core material, induc-
tors must be employed in the magnetic circuit, which is
even less intuitive.

o Magnetic circuits with non-linear reluctances generate
differential-algebraic equations resp. algebraic loops that
cannot be solved with ODE solvers.

o The use of magnetic interfaces results in very stiff system
equations for closely coupled windings.

C. Permeance-capacitance analogy

To avoid the drawbacks of the reluctance-resistance anal-
ogy the authors are advocating the alternative permeance-
capacitance analogy [2]-[5]. Here, the mmf F' is again the
across-quantity (analogous to voltage), while the rate-of-
change of magnetic flux d is the through-quantity (analogous
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Gyrator symbol and implementation

to current). With this choice of system variables, magnetic
permeance P corresponds to capacitance:

dF
dt
Hence it is convenient to use permeance P instead of the
reciprocal reluctance R to model flux path elements. Because
permeance is modeled with storage components, the energy
relationship between the actual and equivalent magnetic circuit
is preserved. The permeance value of a volume element is
given by

=P (5)
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where o = 47 x 107" N/A? is the magnetic constant, s,
is the relative permeability of the material, A is the cross-
sectional area and [ the length of the flux path.

Dissipator components (analogous to electrical resistors)
can be used in the magnetic circuit to model losses. They
can be connected in series or in parallel to a permeance
component, depending on the nature of the specific loss. The
energy relationship is maintained as the power

(6)

Pioss = F(p )

converted into heat in a dissipator corresponds to the power
loss in the electrical circuit.

Windings form the interface between the electrical and the
magnetic domain. A winding of N turns is described with the
equations below. The left-hand side of the equations refers
to the electrical domain, the right-hand side to the magnetic
domain.

o= Nb ®)
i= ©)

Because a winding converts through-quantities (@ resp. ¢) in
one domain into across-quantities (v resp. F') in the other
domain, it can be implemented with a gyrator, in which N
is the gyrator resistance R [5]. Fig. 3 shows the symbol for
a gyrator and its implementation in the simulation software
PLECS.

The gyrator component could be used with regular capac-
itors to build magnetic circuits. However, neither the gyrator
symbol nor the capacitor adequately resemble a winding
respectively a flux path. Moreover, any direct connection
between the electrical and magnetic domain made by mistake
would lead to non-causal systems that are very difficult to
debug.



III. MAGNETIC CIRCUIT DOMAIN IN PLECS

The permeance-capacitance analogy has been implemented
in PLECS by means of a special domain. The available
magnetic components include windings, constant and variable
permeances as well as dissipators. By connecting them accord-
ing to the physical structure the user can create equivalent
circuits for arbitrary magnetic components. The transformer
from Fig. 1 will look like in Fig. 4 when modeled in the
magnetic domain.
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Fig. 4. Transformer implementation in the magnetic domain

P,1 and P, represent the permeances of the leakage flux
path, P, the non-linear permeance of the core, and Gy
dissipates the iron losses. The winding resistances R; and Ro
are modeled in the electrical domain.

A. Modeling non-linear magnetic material

Non-linear magnetic material properties such as saturation
and hysteresis can be modeled using the variable permeance
component. The permeance is determined by the signal fed
into the input of the component. The flux-rate through a
variable permeance P(t) is governed by the equation

. d dfr d
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The control signal must provide the values of both P(t) and
4P(t).

When specifying the characteristic of a non-linear per-
meance, we need to distinguish carefully between the total
permeance Piot(F) = ®/F and the differential permeance
Paigg(F) = dP/dF.

If the fotal permeance Pio(F) is known the flux-rate &
through a time-varying permeance is calculated as
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In this case, the control signal for the variable permeance
component is

[ P(t)
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In most cases, however, the differential permeance Pgig (F')
is provided to characterize magnetic saturation and hysteresis.
With
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B. Saturation curves for soft-magnetic material

Curve fitting techniques can be employed to model the
properties of ferromagnetic material. Here, two functions
for modeling the non-linear primary saturation curve in soft
magnetic materials are presented.

1) coth fit: The first function, referred to as the coth fit, was
adapted from the Langevian equation for bulk magnetization
without interdomain coupling [6]—[8] and is given as follows:

SH a
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Calculating the derivate of B with respect to H yields:
dB tanh® (H/a) —1  a )
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2) atan fit: The second function, referred to as the atan fit,
has been proposed in [9]:
2 H
B = =By tan~! (”) + ot H
T 2a
dB _ Bsat
dH a(1+(gH/a)2)
Both fitting functions have three degrees of freedom which

are set by the coefficients fisat, Bsat and a. pgat is the fully
saturated permeability, which is usually

a7

+ Hsat (1 8)

Hsat = Ho (19)

B, defines the knee of the saturation transition between
unsaturated and saturated permeability as illustrated in Fig.
5:

Bsat = (B - /’LsatH) Hes (20)

The coefficient a can be determined using the unsaturated
permeability fiynsat at H = O:

a = Bsat/ (Munsat - ,U/sat) (21)
Fig. 5 illustrates the saturation characteristics for both
fitting function. The saturation curves differ only around the
transition between unsaturated and saturated permeability. The
coth fit expresses a slightly tighter transition.
With the relationships ® = B+ A and ' = H -1 the control
signal Pgqig for the variable permeance is easily derived from
(16) and (18).
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Fig. 5. Saturation characteristics of coth and atan fitting functions

C. Solving magnetic circuit equations

The system equations of the equivalent circuit are deter-
mined by Kirchhoff’s current and voltage laws. At each node,
the sum of directed flux-rates in all branches n is zero:

Zn:cbk. =0
k=1

Around any closed circuit loop, the directed sum of the mmf

is zero:
n
E F.=0
k=1

However, since Kirchhoff’s current law was not applied to the
magnetic flux itself, Gauss’s law of magnetism

# B-dA=0
2%

o the sum of all directed fluxes at simulation start was not
Zero, or
¢ an error accumulated during the numerical integration.

(22)

(23)

(24)

would be violated, if

Therefore, the solver needs to enforce Kirchhoff’s current law
for the flux

> k=0

k=1

explicitly. In case of linear systems with constant permeances
Pk, this can simply be achieved by including

> 0p=> Pr-Fr=0
k=1 k=1

in the system equations.
To solve circuits with variable permeances Py (t) the resid-
ual flux &, must be computed for every node

(25)

(26)

n

Dres = Z(I)k(Fkat) =0
k=1

27)

and iteratively minimized by tweaking Fj. For all variable
permeances the flux ®; must be provided. Thus, the input
signal of a saturable permeance becomes:

P(t) Paitr Piot + 35 Prot - F
P | = 0 = 0
(I)(t) Ptot - F Ptot - F

(28)

IV. CONCLUSIONS

The permeance-capacitance analogy implemented in PLECS
provides a powerful modeling domain for magnetic circuits.
The structure of the magnetic circuit can be derived easily
from the core geometry. Any non-linear characteristic of the
core material can be modeled using the variable permeance
component. By applying Kirchhoff’s current law to both the
flux-rate and the flux itself, the solver can integrate the
magnetic circuit equations without accumulating numerical
errors.
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