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SIMULATION TRANSITOIRE DES ECOULEMENTS
DIPHASIQUES DANS LES CONDUITES

La simulation transitoire des écoulements diphasiques gaz-liquide
dans les conduites requiert des efforts de calcul considérables.
Jusqu'a récemment, la plupart des codes de simulation
commercialement disponibles étaient basés sur des modeles a
deux fluides mettant en ceuvre une équation de conservation de la
quantité de mouvement pour chaque phase. Toutefois, dans les
processus normaux de transport pétrolier dans les conduites, et
spécialement de transport de pétrole ou de gaz, la réponse
transitoire du systeme se révele étre relativement lente. Ainsi, il est
raisonnable de penser qu'une forme simplifiee des équations de
transport pourrait etre suffisante pour reproduire de tels
phénomenes transitoires. De plus, ce type de modele pourrait etre
résolu numériquement au moyen d'algorithmes moins colteux en
temps calcul.

TRANSIENT SIMULATION OF TWO-PHASE FLOWS
IN PIPES

Transient simulation of two-phase gas-liquid flow in pipes requires
considerable computational efforts. Until recently, most available
commercial codes are based on two-fluid models which include
one momentum conservation equation for each phase. However, in
normal pipe flow, especially in oil and gas transport, the transient
response of the system proves to be relatively slow. Thus, it is
reasonable to think that simpler forms of the transport equations
might suffice to represent transient phenomena. Furthermore,
these types of models may be solved using less time-consuming
numerical algorithms.

SIMULACION TRANSITORIA
DE LOS FLUJOS DIFASICOS EN LOS CONDUCTOS.

La simulacion transitoria de los flujos difasicos de gas liquido en
los conductos, precisa esfuerzos de calculo considerables. Hasta
hace poco tiempo, la mayor parte de los codigos de simulacion
comercialmente disponibles se fundaban en modelos de dos
fluidos que aplican una ecuacion de conservacion de la cantidad
de movimiento para cada fase. No obstante, en los procesos
normales de transporte de hidrocarburos por medio de conductos,
y especialmente al tratarse del transporte de petroleo y de gas, la
respuesta transitoria del sistema se manifiesta ser de forma
relativamente lenta. Por todo ello, parece razonable pensar que
una forma simplificada de las ecuaciones de transporte, podria ser
de forma suficiente para la reproduccion de tales fenobmenos
transitorios. Ademas, este tipo de modelo se podria resolver por
via digital mediante algoritmos menos costosos en cuanto a
tiempos de calculo.
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TRANSIENT SIMULATION OF TWO-PHASE FLOWS IN PIPES

INTRODUCTION

Transient smulations of gas-liquid flow in pipdines
involve elaborate computer codes, the design and use of
which demand tremendous effort. Several codes have
been proposed so far, and supported by the oil and gas
industry. Historically, OLGA is the first of these.
Developed in Norway (Bendiksen et al. 1987, 1991),
OLGA is a two-fluid model with an additional
momentum equation for the droplet field. The PLAC
code (Black et al. 1990), developed in England a few
years later, is aso a two-fluid model. At the Institut
francgais du pétrole, another approach based on drift
flux type models has been used. The resulting code
TACITE is meant to become a commercial product
(Pauchon et al. 1993, 1994). Another drift flux model,
TRAFLOW, developed by the Shell Oil Company,
should aso be mentioned.

In the case of OLGA and PLAC, the model develop-
ment and solution agorithms had been initiated earlier
by the nuclear industry. In the nuclear industry, fast
transients associated to Loss Of Coolant Accidents
(LOCA) are of mgor interest, while in the oil and gas
industry, the interest often lies in relatively slow
transients, associated with the transport and subsequent
release of slugs at receiving facilities. Under these
conditions, one may consider the momentum egquation
to be a steady state force balance, thus leading to
simpler and less elaborate calculations. Taitel et al.
(1989) put forward a simplified model in which the gas
mass flow rate is declared to be in steady state.
Unfortunately, this approach lacked the ability to
account for the trangport time aong the line for the case
of gasflow rate variation at theinlet.

In this paper, we wish to study the behavior of
various types of models under afew transient scenarios.
Three different models were implemented, namely:

— A Two Huid Modd (TFM), based on one momentum
conservation equation for each phase.

— A Drift Flux Model (DFM), based on one momentum
conservation equation and an algebraic dip relation.

— A No Pressure Wave (NPW) model, based on an dge-
braic relation for the pressure drop and an algebraic
diprelation.

It is to be expected that these three models have very
different analytica properties. For instance, while TFM
and DFM are hyperbolic models, the NPW modd is a
mixed parabolic/hyperbolic. Therefore, the numerical
schemes in use will be different from one model to
another.

First, we seek to analyze the differences in response
due solely to the model equations. For the purpose of
our study, the pipeline is visualized as a 1D element of
length L. The coordinate along the pipeis caled x. We
also assume that the pipe properties such as inclination
6 with respect to the horizontal, diameter D, roughness,
etc. are constant with respect to x. Temperature is
constant as well, and no mass transfer occurs between
the two phases. The responses of the three transport
models are compared to selected transient scenarios,
which exemplify typical operational transient scenarios.

Then, we examine the three codes from the stand-
point of computing efficiency. The latter reflects the
trade-off between computing time and accuracy of the
model. As for accuracy, it is defined in terms of the
operating variables which are most significant for the
end user, that is, the peak in outlet liquid flowrate
subsequent to an increase in theinlet gas flowrate.

1 THE TWO-FLUID MODEL

In dispersed flow, the contrast between the two
phasic velocities is small. Understandably, it is
anticipated that the added value of the two-fluid model
will be more apparent in the stratified regime. This is
why we shall emphasize the stratified configuration in
our presentation of TFM.

1.1 Transport Equations

TFM is governed by a set of four partia differentia
eguations, the first two of which express mass
conservation:

0 0
E[pGRG]"'&[pGRsVG]:O (1)

d d
E[pLRL]"'&[pLRLVL] =0 (2)
and the last two of which represent momentum balance:

9 9 )
E[pe I%svc;] + &[pe R;VG + RGAPG] (3)

+ F{G%Pch +T, —p.R.0sn6

9 9 )
a[pLRLVL] +&[DLRVL + RLAPL] (4)

+ RLaixP=TL -1, -p_Rgsno.
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TRANSIENT SIMULATION OF TWO-PHASE FLOWS IN PIPES

In Equations (3) and (4), P denotes the interface
pressure and depends on masses (pg R, o, R ), while
Ve p and R are respectively the velocity, the density
and the volume fraction of phase k&{G,L}.The
variadbles T, and t, are the interfacial and wall moment-
um exchange terms, 6 is the flowline inclination to
the horizontal. Moreover we assume the constitutive
lavR;+R =1

The quantities AP and AP, correspond to the static
head around the interface (De Henau and Raithby,
1995) defined as.

AP, =P, -P=—p, 1co “2’)
( )}gDcose ®

AP =P -P= pJ——COS(%)
(6)

"R T2
 being the wetted angle.

( )}gDcose

o

Scheme 1
Definition of wetted angle.

The densties are assumed to be given by p, = % and

0
P- ZPL where a, is the speed of sound in

PL= pE
phasek, and (p?, P°) isareference state of theliquid
phase.

It is convenient to rewrite Equations (1)-(4) in amore
abstract way as:

0 0 0
E[W] +&[f(W)] +r(W)&[P] =q(w) ()
where the vector:
w' =(PsRs: PR PcRVG: PLR V) (8)

represents conservative variables, as a function of
which the vectors:

fr =(PcRVes PLR VL pGRBVGZ + RAR;; 9
p.RV?+RAR) ©
r'=(0; 0; R;; R) (10)

q' =(0; 0; 15 + 7, - psR:gsingG;
T -1, -p R gsno) (11)

are computed. It is also possible to transform (7) into
the quasi-linear form:

q(w)

]+ Aw) = [w] - (12)

Under appropriate conditions (Masdlla, 1997), eg. if

V. -V |<c, (13)
where ¢, is a pseudo-sound-velocity of the mixture, the
matrix A(w) hasfour real eigenvaues.

A(w) =2, (W) = Ag(w) = A, (W)

as well as a base of eigenvectors. This property is
commonly known as hyperbolicity. This hyperbalicity is
depends on the relation (13). Note that, should the dtatic
head terms AP and AP, be missing in Equations (3)
and (4), then hyperbolicity would be lost as soon as
Vg = V.

From the standpoint of physics, the extreme
eigenvalues A, and A, are associated with acoustic
waves and, therefore, can be very large, especialy
when the mixture is mainly composed of liquid. The
intermediate eigenvalues A, and A, are associated with
void fraction waves, and their orders of magnitude,
which are close, are about those of fluid velocities.

1.2 Numerical Scheme

The resolution algorithm is based on afinite volume
method, adapted to the non-conservative form (12). The
reader is referred to Masella's Thesis (1997) for amore
detailed description of the numerical implementation.

Let us divide the pipeline into a sequence of uniform
cels M, =[x _y0 X , 150l thelength of each of whichis
AX. The unknowns are located at the center of the cells.
Let w, be the one associated to the cell M.
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Discretization in space is based on a finite volume
formulation of non-linear system (12) and reads

E[W] + hi+1/2 — hi—1/2 +T Pi+1/2 - Pi—1/2
dt AX ' AX

=a,  (14)

where h,_,, and P,_,, are obtained via a linearized
Riemann problem at the interface x,, .. This smplified
Riemann problem, defined from the surrounding states
w; and w,,,, involves a rough Godunov solver and is
referred to as the VFRoe solver (Masdla et al., 1996).
Letw,,, , bethe solution a the interface of the rough
Riemann problem. Then h,, , and P,,, , are defined by:

hi+1/2 = f(Wi+1/2 ) and I:?44/2 = P(Wi+1/2) (15)

The quantity r; can be put equal to r(w,).

We can note that the discretization of the non-
conservative system (12) is obtained without any non-
conservative reformulation like in Sainsaulieu 1995 and
Toumi et al., 1996, but by a direct integration of the
non-conservative system on each cell. A similar
approach was used by Louis, 1995.

Note that the VFRoe scheme has been tested
(Gallouet et al., 1996; Masella et al., 1996) with
success on some hyperbolic conservative systems, such
as Euler's and has given good results. These are quite
comparable with the well-known Roe scheme.

The time discretization is explicit with respect to the
intermediate eigenvalues and linearly implicit with
respect to the extreme eigenvalues.

One of the trickiest problems here is to deal with
the boundary conditions. Usualy, two inlet mass flow
rates and one outlet pressure are imposed. However, if
A(W) <0 <Ay (W) = Ag(w) = Ay(w) at the inlet, then a
further inlet datum must be supplied. At first sight, a
condition on the gas volumetric fraction Ry or on the
gas mass fraction o = p R;/ (pgRs + p R) seemsto
be relevant. Nevertheless, it comes as a surprise that
such a choice does not aways give rise to acceptable
results, and in reality, the source terms must be taken
into account.

As a matter of fact, most two-fluid type codes
impose a von Neuman type boundary condition (De
Henau and Raithby, 1995) such as:

9
«R1=0 (16)

Others merely extrapolate the value of the liquid
fraction. The staggered mesh approach used in OLGA,

with velocities defined at the mesh boundaries and
pressure and void fraction defined within the cells, ale-
viates the need to specify an extra boundary condition.

A careful investigation into different terms in
Equations (3) and (4) revealsthat, in dow transients, the
prevailing terms are the pressure drop and the source
terms. When al remaining terms are neglected,
Equations (3) and (4) degenerate into:

T +T - (PR +p.R)GSNO -~ [P1=0 (17

RG(TL -7 _pLRLgSine)

-R (T +7T, - psR.gsino)

This suggests to directly impose (18) as the third
boundary condition at the inlet.

The next two figures illustrate what has just been
said about boundary conditions. Two numerica runs
were performed for a pipe of length L = 10 000 m. At
the inlgt, the flowrates are 10 kg/s (liquid) and 0.1 kg/s
(gas). At the outlet, the pressure is maintained at 1 bar.
Since three eigenvalues are positive at the inlet, a third
boundary condition is required. We attempt to impose
R;=06.

In the first run, the diameter is equal to D = 0.25 m,
which corresponds to large friction terms. It can be seen
from Figure 1 that the inlet value R = 0.6 is immedia-
tely dissipated and as a consequence, does not exercise
any influence over the inner state of the mixture. This
phenomenon is insengitive to the mesh size.

(18)
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Figure 1

Profile in space of the gas volumetric fraction for several
mesh sizes (25, 50, 100 and 200 cells), with D = 0.25 m
(zoom up to 5000 m).
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In the second run, the diameter is increased to
D = 0.75 m, so as to reduce the magnitude of friction
terms. From Figure 2, it is now obvious that the inlet
vaue R; = 0.6 is perfectly compatible with the inner
state.

0.67

0.66 -

0.65

0.64 -

0.63 -

Gas vol fraction (0.1)

0.62

0.61 A

0.60 T T T T

0 2000 4000 6000 8000 10 000

Position (m)
Figure 2
Profile in space of the gas volumetric fraction for several mesh
sizes (25, 50, 100 and 200 cells), with D = 0.75 m.

2 THE DRIFT-FLUX MODEL

The Drift Flux Modédl is derived from the Two-Fluid
Mode! by neglecting the static head terms AP and AP,
in the last two Equations (3) and (4) and replacing the
two momentum equations by their sum. The main
advantages of this 3-equation model are:

— The equations are in conservative form, which makes
it easier to discretize by finite volume methods;

— The interfacial friction term v, is cancelled out in the
momentum equation, athough it appears in an add-
itional algebraic relation called dip law;

— One does not have to work out a third boundary
condition at theinlet;

— It is generdly hyperbolic depending on the form of
the dip law.

2.1 Transport Equations

Adding (3) and (4) together yidds
d 0
E[pe &VG +P. RLVL] + &[pe &VGZ +P. RLVL2 + P] (19)

ST T _(pGRG +pLRL)Sin6

The interfacial exchange term =, is no longer present
in the above equation. Thisleads usto consider DFM, a
new model which consists of three partid differentia
Equations, i.e. (1), (2) and (19). In order for DFM to be
cast into the strictly conservative form:

S+ [ (w)] - g(w) (20)

where the flux and the source:
fT = (pGRGVG; pLRLVL; pGR;VGZ + Py RLVL2 + P) (21)

9" =(0; 0; te +7, —(psRs +p. R )ISNG) (22
areto depend only on:
W' = (pRe; PLR PRV + P R V) (23)

it is necessary to introduce an algebraic relation called a
closurelaw or dip model.

In stratified flow, the slip relation is obtained by
combining the two momentum conservation Equations
(3) and (4) in such afashion that the pressure gradient
vanishes. By neglecting derivatives with respect to time,
static head and inertia terms in this combination, we
end up with:

+(pG _pL)gSine=O (24)

For other flow regimes, the closure law may be much
more sophi gticated.
It is convenient to rewrite (19) in the quasi-linear
form:
ad A d
E[W] + (W)&[W] =q(w) (25)
in which A is the Jacobian matrix of f with respect
to w. If hyperbolicity holds, there are three eigenvalues
A, = A, = A, and abase of eigenvectors. As is the case
for TFM, the extreme eigenvaues are associated with

acoustic waves, whereas the intermediate eigenvaue is
associated with avoid fraction wave.

2.2 Numerical Scheme

In this section, the basic ideas of the numerical
scheme are outlined. Further details are to be found in
Faille and Heintzé (1996).

Once again, let us divide the pipeline into regular
cells M; = [X_y/», X,10l, Whose size is denoted by Ax.
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The unknowns are located at the center of the cells. Let
w; be the one associated with the cell M,. Discretization
in space reads:

h ..-h
a[WI] + |+1I2AX i-1/2 - qi (26)
with:
1 1
iy = E[f (w;) + f(Wi+1)] 5 Diyo (Wi —wy) (27)

Inthisformula, D,,,,, is adiffusion matrix that hasto
be built up from w; and w,,, to ensure sufficient
stability. Extension to second order accuracy is
achieved via the MUSCL strategy. Scheme (26)-(27)
may appear to be more stable than standard Godunov-
type schemes using approximate Riemann solvers
(Godlewski and Raviart, 1996) at sides x;,,,, hamely
when some discontinuity, such as pipe dope change, at
sdex,,,, occurs.

The time discretization is explicit with respect to the
intermediate eigenvalue and linearly implicit with
respect to the extreme eigenvalues.

3 THE NO-PRESSURE-WAVE MODEL

Experience with numerical simulations has shown
that, in most transients of interest to the oil and gas
trangport industry, pressure waves do not have a strong
effect on the initiation and transport of void waves.
Hence, in a bolder step toward simplification, we would
like to rule out the very existence of acoustic waves
from the model equations.

3.1 Transport Equations

Preiminary numerical investigations into the order
of magnitude of different terms in (18) suggest that,
in slow transients, it is legitimate to neglect the
inertia terms. Doing so amounts to replacing the
mixture momentum Equation (19) by a local static
force balance.

%[p]ﬂenr(pg& +pR)gSNG - (2g)

The NPW model is made up of (1), (2) and (28). The
three partia differential equations are complemented by
an dgebraic dip law.

Let usintroduce superficia velocities

Us=RoVg (29)
U=RV. (30)
U= Ug+ U, (31)
and let us consider
vi=(R. P UY (32

as principa unknowns. This choice of variables turns
out to be very handy for tackling the limiting case of
incompressible flows. The eguations of NPW can be
summarized as.

%[e(v)] + %{f(v)] - q(v)

(33)
with:
e'=(pgRs p R 0) (34)
fT=(pcRs Ve PLR. VL P) (35
9" =00t +7 — (PR + P R) gsin6)  (36)
The dip law isformally expressed as.
Us=% (R, P U (37)

where the function ¥ may admit the pipe angle of
inclination 6 as a parameter.

Viviand (1996) shows that this model is a good
approximation of the DFM as long as the phasic
velocities are small compared to the sound wave
velocities, which is true for most applications. He aso
proves that NPW aways has a single finite eigenvalue,
equal to:

M) = o L9 39

The characteristic equation associated to this

eigenvalue can be written as:
d d
1I"(v)-]— A— =1"(v)-

v) { v+ aX[v]} W9 (39

IT (v) being an appropriate left eigenvector. Besides,

there exists an agebraically-double eigenvalue equal to

. On this ground, the model is qualified as mixed

hyperbolic/parabolic. The number of characteristic

equations associated with oo is usualy one, i.e. (28), but
may reach two for specia thermodynamic laws.
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3.2 Numerical Scheme

In this section, the basic ideas of the numerical
scheme are outlined. Further details are to be found in
Patault and Tran (1996).

The pipeline is divided into regular cells M, = [X_, .,
X, the size of which is denoted by Ax. The
unknowns are located at the center of the cells. Let v, be
the one associated to the cell M;. Unlike the two
previous schemes, the NPW equations are discretized in
acentered way a the sides ., , - In other words:

1d f(Via) = (V)
2 dt [e(v;) +e(v,,)]+ AxX
(40)

[a(v;) +a(v;,,)]

N

Time discretization of (40) is totally implicit. The
fina scheme isfirst order accurate in time, and second
order in space.

Equation (40) has to be modified over a cell across
which the sign of the eigenvalue A\ changes, to track
shocks and rarefaction waves. An algorithm, inspired
from Chattot and Mallet (1987), is set up to build the sys-
tem of equations to be solved at each time step, according
to the characteristic vel ocity sign configuration.

4 COMPARISONS OF THE MODELS

To compare the response of the three models, wefirst
define areference test case. Thisisdonein Table 1. For
this test case, we display the theoretical response of
each transport model. By theoretical response, we mean
the limit response obtained by decreasing the mesh size
Axto 0.

TABLE1

Definition of the reference test case

Next, we compare the response of the three codes to
the experimental measurements. We also plot the
computing time as a function of the accuracy for each
model response.

Finally, we look at the response of NPW and DFM in
a scenario giving rise to the severe slugging
phenomenon. In this case, the differences in response
are explained by arguments involving the transport
models and the numerical schemes.

4.1 Transient Response of Models
for the Reference Case

Let us start by describing the actua values of para-
metersfor the reference case.

Figure 3 compares the transient response of DFM and
NPW for Ax = 2m. Below this value of the mesh sze,
no significant improvement in the accuracy of the solu-
tion for each modd is observed. Therefore, we assmilate
the curvesto the“analytical” solutions of the models.

1.5

-1.2

- 0.9

- 0.6

- 0.3

-0

Q, at outler (m®/h)

--0.3

T T T T _06
0 50 100 150 200 250 300

Time (s)

Figure 3
Comparison between DFM and NPW on outlet liquid flow rate.

Length 420m
Pipe geometry Diameter 3"
Configuration Horizontal
Inlet gas flowrate From 0.0048
t0 0.0354 kg/sin20 s
Transient scenario Inlet liquid flowrate 0.191 kg/s
Outlet pressure 1.68 bar
Composition Air/Kerosen
Gas density 2.418 kg/m?3
Fluid definition Liquid density 813 kg/m?
and properties Gas viscosity 0.76 10°m¥s
Liquid viscosity 0.22 105 m?/s
Superficial tension 0.03 N/m?

Note that the initial state is obtained solving each
system TFM, DFM and NPW neglecting time differen-
tial terms and keeping boundary conditions constant.

To avoid discrepancies due to the dip modd, we use
in both cases a Zuber and Findlay (1965) slip model,
which is an alternative to the slip model defined in
Equation (24). The curvesin Figure 3 exhibit very little
difference in the transient response of the two models.
This corroborates the theoretical prediction by Viviand,
according to which pressure waves play aminor rolein
the propagation of theliquid.
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Figure 4a

Comparison between DFM and TFM for outlet liquid flow
rate
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Figure 4b

Comparison between DFM and TFM for liquid volume
fraction.

Figure 4 compares the transient responses of DFM
and TFM, using a dtratified dip model as specified in
Equation (24). One must bear in mind the fact that
TFM includes a pressure difference term due to the
liquid fraction gradient, which is not included in DFM.

Although the transient imposed on the system is
quiterapid (a20-second ramp in inlet gas flow rate), the
responses of DFM and TFM are quite similar. This
result tends to indicate that TFM’s decoupling of the
phase velocities does not significantly affect the
transient response of the model. In other words, it isthe
source termsthat actually control the transient response.

g 15
n
S
o 14 4 | | "
© . A
= A
2 134 - "
2 NME BN pmAgA
= A
B 12- "
*(5) A & DFM
IS A A NPW
S 11 4
IS
£ N
&
= 10 : : :
10 100 1000 10000 100 000
Computing time (s)
Figure 5

Comparison of computing efficiency between DFM and NPW
model.

In Figure 5 we try to characterize the computing
efficiency of the different codes. For this purpose, we
define the “computing efficiency” as the relation
between the computing time and the peak height in the
liquid outlet flowrate. This maximum in the liquid
outlet flowrate is important for pipeline design because
it characterizes the outlet liquid flowrate surge into
the separator following an increase in the inlet gas
flowrate. The estimation of this liquid surge will
eventually control the outlet separator volume design
recommendation.

The diagram in Figure 5 shows that for a given
accuracy, the mixed explicit/implicit solution used in
the DFM code is faster than the implicit resolution in
the NPW code.

4.2 Comparison with Experimental Data

Next we compare the code responses with
experimental data (Vigneron, 1995) taken for the same
test case. Figure 6 compares the experimental results
with the transient response of the DFM using a slip
model which takes into account the different flow
regimes which can be encountered.

Figure 6a. Comparison between measured and
computed liquid fraction using DF model.

The large amplitude oscillations observed during the
transient period signal the occurrence of the dug flow
regime. The recognition of this flow regime has
important implications for the pressure drop
calculation.
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Figure 6a Figure 6b
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24 TABLE 2
23 ! “\\ — DM Definition of the severe slugging test case
= N R TFM
8 221 - - - . Experiment Length 60mand 14 m
E o244 1 Pipe geometry Diameter 2"
5 . Configuration Horizontal and vertical
© 2.0 1 ! 1
o b Inlet gas flowrate 0.000196 kg/s
§ 1.97 b . Transient scenario Inlet liquid flowrate 0.07854 kg/s
® 418 ommsl Outlet pressure 1.0 bar
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- Gas density 1.0 kg/md
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Figure 7 Superficial tension 0.07 N/m?

Comparison between experimental and computed pressure
using the DFM and TFM models with an imposed stratified
configuration.

Figure 7 compares the same experimental results
with the transient response of the DFM and TFM with
the dip mode assuming a stratified flow configuration.

From Figures 6b and 7, one can see the important
effect of the flow regime prediction and subsequent dip
relation on the pressure transient response of the model.

4.3 Severe Slugging Case

Lastly, we compare the DFM and the NPW models
for asevere dugging test case.

Table 2 defines the severe dugging test case. Figure8
shows the comparison between the two codes.

Slight differences are observed in the period and
amplitude of oscillations. However these can be
attributed to the differences in treatment of the outlet
boundary conditions. As can be seen, the DFM solution
agorithm at the outlet does not alow for liquid going
back into the pipeline during the reflux period. This
problem is resolved by introducing a fictitious cell at
the outlet in which we assume single phase gas flow.

CONCLUSION

Extensive numerical tests have been carried out in
order to compare the analytical response of the three
following models:

— A Two Fluid Modd with one momentum equation
for each phase;
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Comparison between the DFM and the NPW models for
pressure at riser bottom for a severe slugging case.
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Comparison between the DFM and the NPW models for
outlet liquid flow rate for a severe slugging case.

— A Drift Flux Model with only one momentum
equation for the mixture;

— A No Pressure Wave model reducing the momentum
equation to aforce balance.

On one hand, different hydrodynamic dip laws have
been incorporated into these models. The results clearly
show that the choice of the former has an critical effect
on the dynamic response of the latter.

On the other hand, comparison between the different
trangport models confirms the fact that the source terms
in the momentum equation do dominate the transient
response of the model. This holds true for al models, but
becomes overwhelmingly apparent in the case of TFM.

The computing efficiency as defined from the end
user's perspective, that is, the peak in outlet liquid flow-
rate subsequent to an increase in the inlet gas flowrate,
has been analyzed for DFM and NPW. For a given
accuracy, the DFM explicit/implicit solution is faster
than the implicit solution employed in the NPW code.
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