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Closed-form solutions are presented for the transient response of rods in which 
strain softening occurs and the stress-strain laws exhibit non vanishing s~resses af!er 
the strain-softening regime. It is found that the appearance of any stram softenmg 
results in an infinite strain rate if the material is inviscid. For a stress-strain law with 
a monotonically decreasing stress the strains are infinite also. If the stress increases 
after the strain-softening portion, the strains remain finite and the strain-softening 
point moves through the rod. 

Introduction 

A negative slope is found in the constitutive equations for 
phenomena such as erosion in penetration, shear banding and 
other damage mechanisms. Yet, the understanding of the 
behavior of continua which are governed by such constitutive 
equations is very limited. In fact, Hadamard (1903) discarded 
the possibility of such continua by stating that the wavespeed 
is imaginary, so that the continuum cannot exist. Numerical 
solutions for such materials are also quite strange. For exam­
ple, Belytschko et al. (1984, 1985) have recently shown that in 
spherical geometries, strain-softening models can lead to 
numerical solutions characterized by many large peaks in 
strain, and that the locations of these peaks depend very much 
on the mesh size. However, constitutive models with strain 
softening are so prevalent and important in practice that their 
behavior must be understood. 

The only closed-form solutions for problems in which the 
stress tends monotonically to zero are those of BaZant and 
Belytschko (1985), who presented a transient solution for a 
one-dimensional rod problem. These solutions exhibited a 
localization of the strain softening to a domain of measure 
zero, a discontinuity in the displacement and a singularity in 
the strains at the point of strain softening. The argument of 
Hadamard was shown to be irrelevant since the strain soften­
ing does not occur in a finite domain. However, the energy 
dissipation in the strain softening domain was shown to 
vanish, which raised questions as the applicability of this con­
stitutive model to damage. 
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Fig. 1 Problem description: one·dlmensional rod of length 2L with 
velocities prescribed at both ends 

We consider here two different stress-strain laws in which 
the stress does not become a zero in the strain-softening 
branch of the stress-strain law. In the first material law, the 
slope of the stress-strain law after the onset of strain softening 
remains nonpositive; we call this law strain softening/perfect­
ly plastic. In the second material law, the slope of the stress­
strain law is negative for an interval and then reverses; we call 
this law strain softening-rehardening. It is found that if the 
stress decreases monotonically to any nonzero positive value 
after strain softening is initiated, a singularity appears in the 
strain, and the displacement is discontinuous. However, with 
the rehardening law, the strain remains finite and the strain 
softening point traverses through the material. 

Very few closed-form or numerical-transient solutions with 
strain softening in which the slope of the stress-strain curve re­
mains nonpositive have appeared in the literature. Some 
works relevant to this one are Bazant (1976), Aifantis and Ser­
rin (1983), Wu and Freund (1984), Sandler and Wright (1984), 
Belytschko et al. (1984, 1985), Willam et al. (1984), and 
Schreyer and Chen (1984). For materials with rehardening, ex­
cellent theoretical studies have been reported by James (1980). 

Problem Formulation 

Consider a bar of length 2L with a unit cross section and 
mass p per unit length as shown in Fig. 1. The axis of the bar 
coincides with the coordinate x; the origin of the coordinate 
system is the midpoint of the rod so the interval of x is [ - L, 
+L). The equation of motion is 
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Fig. 2 Stress·strain laws for problems 1 and 2 
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--=pu 

ax 
(1) 

where a is the stress, U (x,/) the displacement and superposed 
dots are time derivatives. The stress-strain law is taken to be 

av 
iT=E( a,€,€)ax-

v=u 

(2) 

(3) 

In the elastic part of the response, E>O and equations (1)-(3) 
can be combined to yield 

2 a2u .. 
C--=U ax2 

E 
c2 =_ 

P 

Initially, the bar is undeformed and at rest so 

u(x,O)=v(x,O)=O -L~x~L 

The boundary conditions are 

v(L,/) = voH(t) 

v( -L,/)= - voH(t) 

(4) 

(50) 

(5b) 

(5c) 

where H( ) is the Heaviside step function, Vo is a prescribed 
constant velocity, and ( is the time. 

Solutions 

The solution to the above system is elastic until the stress 
associated with the onset of strain softening is reached (we will 
not be concerned with any purely elastic solutions). Strain 
softening always occurs first at the midpoint, where the 
stresses of the two elastic waves are superimposed and would 
reach a stress of twice the intensity of the initial waves if the 
material remained elastic. 

The procedure of constructing a solution once strain soften­
ing is attained depends on the following hypothesis: strain 
softening is limited to a single point Xs (a set of measure zero) 
and at that point the strain instantaneously increases at least to 
where the stress attains a minimum value along the stress­
strain curve, so after strain-softening € ~ €b (see Fig. 2). 

Remark 1. This hypothesis was demonstrated in Bazant 
and Belytschko (1985). While this step may need more 
rigorous proof, it enables all of the governing equations to be 
satisfied; furthermore, it is borne out by numerical solutions. 

Problem 1: Strain Softening-Rehardening. In the first 
problem, the stress-strain law is shown in Fig. 2(0). The stress­
strain law can be characterized as follows: 

initial conditions: a=€=O; S=aa 

algorithm: if €>€a and S>ab and 15>0 
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Fig. 3 Wavefronts in problem 1 and the strain distribution «t) 

then iT=E- 15, 8 = iT 

otherwise iT=E+€, 8=0 

(6a) 

(6b) 

In the above, S is a state variable for the material. An alter­
native algorithm can be written in difference form: 

difference algorithm: 

for €~€a 
for €a<€<€b 
for €b<€ 

(6c) 

(6d) 

(6e) 

It is assumed that Evo/c>aa12, so that when the two waves 
meet at X= 0, strain softening is initiated, so that equation 
(60) applies. Since it is hypothesized that at the strain soften­
ing point the strain jumps instantaneously, the stress then in­
stantaneously takes on a value which we will call as, as~ab' 

We then have 2 boundary-value problems (BVP): 

BVP(A)-L~x:sO: 

Equations (4) and (50), 0'(0,/) = as (70) 

BVP(B) Ox:sL: 

Equations (4) and (5b), 0'(0,/) = as (7b) 

where (3 is a time to be determined as part of the solution. 
Since these two BVPs are symmetric with respect to the origin, 
we consider only BVP(A). 

It will be shown in the following that a solution to this 
problem can be found if as assumes any value in the range 

(8) 

see Fig. 2. We will parametrize this family of solutions by the 
strain in the initial reflected wave, the strain in domain 2 in 
Fig. 3, which is denoted by €2' 

The structure of the solution is shown in Fig. 3. In domain 
1, behind the initial elastic wavefront, the velocity, stress, and 
strain are given by 

(9) 

Transactions of the ASM E 



(subscripts on the left-hand variables designate the domain to 
which the variables pertain). 

It will be shown that the reflected elastic wave moves faster 
than the wave associated with strain softening, so that we have 
elastic behavior in domain 2; hence 

(10) 

Also, as can be seen from Fig. 2(a), since as?!.ab' the stress­
strain law gives 

Combining equations (I6b) and (16c) to eliminate the 
stresses and using equation (16a) to then eliminate E3' we ob­
tain the following equation for s 

where 

A 
C(Eb- E*) 

2(2vo - CE2) 

(2Ia) 

(2Ib) 

(11) Hence 

and since as?!. ab' 

(12) 

where E* = ablE. The remainder of the solutions will be con­
structed by using the jump conditions 

[u] =s[El [a] =pS2[E] (13) 

where [ ] designates a jump and s is the velocity of the 
discontinuity. 

From the velocity jump condition between domains 1 and 2, 
we obtain 

s=C( -A +"'1 +A2) 

and it follows immediately that if A > 
inequality S<C. The condition that A; 

2vo -CE2 >0 

which must be satisfied if strain softening. 

(22) 

en by the triangle 
~atisfied if 

(23) 

;tiated. 
Thus we have a one-parameter family of so. 

problem in which the parameter E2 is restricted b} 
- this 

U2- UI=C(E2- EI) 

which, upon the use of equations (9), gives 

(I4a) An interesting case, which we will see is usually obtained in 
numerical solutions of these equations, corresponds to E2 = E*. 

Equations (20) then becomes 

(14b) 

The displacement field in domains 1 and 2 is then given by 

2x 
u(x,t)= -vo<~--> +(CE2-Vo)<~> (15) 

C 

where ~ = t- (L -x)1e and <I> =IH( ). Hence u(O,t) = 
(CE2 - 2vo) < t - Lie>. Therefore, if the displacement field is 
to remain continuous at x=O, another wave must emanate 
from that point; the only exception is the unusual situation 
where CE2 = 2vo ' which will be examined later. The speed of 
this wave will be denoted by S and it represents the interface 
between domains 2 and 3 in Fig. 3. 

The velocity-strain jump condition gives 

S(E3 - E2) = U3 - u2 = 2vo -CE2 (I6a) 

where the last equality is obtained by noting U3 = 0 because of 
symmetry and using equation (I4b). The stress jump condition 
gives 

(I6b) 

and the stress-strain law in the strain softening domain gives 

a3-ab=E(E3-Eb) (16c) 

Equations (16) are solved as follows: we can put equation 
(16c) in the form 

a3 - a2 =pc2(E3 - Eb -E2 + E*) 

and using equations (16b) and (17) yields 

S2 (E3 - E2) =c2[E3 - Eb -E2 + E*] 

(17) 

(18) 

Using equation (16a) to eliminate S from equation (18) yields a 
quadratic equation for E3 

2 (2Vo ) 2 E3-E3(2E2+Eb-E*)+E2(E2+Eb-E*)- --;--E2 =0 (19) 

which gives a one-parameter of solutions for E3 

2E2+Eb-E* [1 *2 (2Vo )2]1/2 
E3= + -(Eb- E ) + ---E2 

2 4 C 
(20) 

in terms of the parameter E2' Only the solution with the 
positive sign on the radical has been selected in the above since 
it is necessary that E3 > Eb; this inequality is violated with the 
negative sign. 
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Eb+E* [(Eb-E*)2 ( 2Vo 0)2]112 
E3 =---+ + ---E 

2 4 C 
(25) 

The strain E3 can then be shown to be bounded by 

1 2vo 
T(2E2 +Eb +E*):S;E3 :s;-c-+ (Eb -EO) (26) 

Note that if 2Vo -CE*, equation (2Ib) shows that A-co and 
from equation (22), S-O. 

The solution for -L:s;x< -s is then 

2x 
u(x,t)= -vo<~--> +(CE*-Vo)<~> 

C 

Vo ( 2x) (0 Vo) E=-;;H ~ --;; + E --;; H(O 

For -s:s;x:s;O 

U=E3XH<~> 

E=E3H<~> 

(27a) 

(27b) 

(27c) 

(27d) 

The character of the solution is shown in Fig. 3. A noteworthy 
feature which distinguishes it from an elastic-plastic solution is 
the unloading wave emanating from the center. 

Remark 2. Although the point of strain softening moves 
in the solution, this does not contradict the statement in Ba­
zant and Belytschko (1985) (for the case in which ab = 0 and 
E:s; 0 in the softening domain) that the strain softening/elastic 
interface must be stationary. In the case considered here with 
ab;eO and E becoming positive again after softening, the 
strain softening occurs instantaneously and the point subse­
quently becomes elastic. Thus, the interface s(t) can be con­
sidered to be between two elastic domains. 

Remark 3. Note that if equation (16a) is satisfied, s>O as 
required, since E3 > E2' 

Remark 4. The solution poses some peculiar mathematical 
difficulties, for at the points X= ±s the stress takes on the 
values in the range aa:s;a:s;as twice in one point in time; thus 
whether it is differentiable, and whether a,x in the governing 
equation (1) is defined, is not clear. 

Remark 5. The propagation of the jump discontinuity and 
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Fig. 4 Strain and displacement distributions at time t = 15 for problem 
2 lor the case when Ub = 0.3 

subsequent loading may require that U3 = T(1:3»Ua , Under 
certain conditions this requirement is not met. 

Solution 2. The same BVP is solved with the stress-strain 
law shown in Fig. 2(b). The constitutive algorithm is as 
follows: 

initial conditions: u=I:=O 8=ua, (28a) 

if u=8= Ub and e>O, 0-=0 (28b) 

ifub~8~ua' u=Sande>O, o-=E-e (29a) 

otherwise o-=E+ e (29b) 

The difference algorithm of equation (6d-e) with T(I:) 
redefined as in Fig. 2(b) may also be used. 

In constructing the solution for this material law, we note 
that the stress at the strain-softening point becomes Ub after 
the jump in the strain, so the elastic solution in domains 1 and 
2 becomes 

1:2 = 1:*, U2 = Ub (30a) 

2x 
U(X,t) = -vo<~--> +(CI:*-vo)<~> (30b) 

C 

The size of the strain-softening domain is characterized by s 
with s(t= 0) = 0, and from (30b), the elastic solution at s= 0 is 
given by 

L 
u(O,t) = (CI:* - 2vo)< t--> 

C 
(31) 

If strain softening has occurred, CI:* - 2vo < 0, so since the 
stresses in both the elastic and strain-softening domain are Ub, 
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Fig. 5 Strain and strain displacement distributions at time t = 15 for 
problem 2 for the case when ub = 0.8 

there is no mechanism for developing a wave to eliminate the 
displacement discontinuity. The only way to satisfy the boun­
dary value problems (7) is to allow a discontinuity in the 
displacement at x=O and an associated infinite strain. Hence 
equation (30b) holds in the left-hand plane with s = 0 and the 
magnitude of the displacement discontinuity is 2 CI:· - 4vo and 
the strain field is given by 

Vo ( L+X) (Vo ) ( L-X) dx,t)=-;-H t--
c
- - -;--1:0 H t--

c
-

(32) 

where o( ) is the Dirac delta function. 
The energy dissipation due to nonlinear material behavior in 

the region -s~x~s, where s tends to zero, results strictly 
from the Dirac delta term in equation (32) and is given by 

W=2Ub(CI:*-2vo) (33) 

This agrees with the result of Bazant and Belytschko (1985) 
when Ub -0, i.e., the dissipation vanishes when the stress goes 
to zero in the strain-softening domain. When Ub ~O, a finite 
dissipation of energy can be achieved, but it is solely due to the 
plastic response and equivalent to that of an ideal plastic 
material with yield stress U b • 

Figures 4 and 5 show the strain and displacement fields for 
problem 2 in the left-hand plane. Both the analytic solution 
and the finite element solution are shown. In these examples, 
c= 1, EVo/cua = 0.6, and Ub = (0.3, 0.8) in Figs. 4 and 5, 
respectively. For the finite element solution, 40 elements were 
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Table 1 Parameters for problem 1 - Figs. 6-8 

ta = 1.0 (J a = 1.0 
tb = 1.2 (Jb =0.2 
Vo =0.8 L=50 
no. of elements for (0:sx:sL)=80 
c = 1.0 
Courant number -0.7 
s (for closed form solution) = 0.704 
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Fig. 6 Strain for example of problem 1 
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used on the left-hand plane and the Courant number was 0.6. 
Whereas the analytic solution predicts an infinite strain at 
X= 0, the strain in the finite element solution is finite but much 
larger than the surrounding strains. The analytic and finite ele­
ment solutions otherwise agree quite well except at the 
wavefront generated by strain-softening (at x= 5 in the 
figures). 

Figure 6 shows the strains in the right-hand plane for a finite 
element solution for problem I; the corresponding analytic 
solution with tz = t* is also shown. The problem parameters 
are listed in Table I. Several features are noteworthy: (I) the 
finite element solution exhibits the unloading wave (at which 
t = 0.2) which precedes the strain-softening wave 05; (il) the 
finite element solution correctly captures the wave speed 05; (iii) 
the strains behind the wave s(t) are extremely noisy, which 
probably reflects the difficulty the numerical solution has in 
reproducing the complex stress path associated with the 
wavefront (see Remark 4). 

The noise significantly exceeds that found in finite element 
solutions of elastic wave propagation problems (see Holmes 
and Belytschko, 1976). Figure 7 shows the same solution with 
a five-point "averaging" digital filter described in Holmes and 
Belytschko (1976) applied to the strains and stresses. The 
filtering technique more clearly brings out the similarities of 
the finite element and analytic solutions. Figure 8 shows the 
displacements at 3 times, which again illustrates the presence 
of the unloading wave and the excellent agreement of the 
closed form and numerical solutions. 

Capturing the unloading wave in a numerical solution does 
require some care. We used a time-step control so that during 
a time step no element can pass more than 10 percent beyond 
the point (€b' Ub) in the stress-strain law. Attempts to obtain 
the same fidelity by reducing the Courant number (time step) 
to about 0.1 were unsuccessful because at such low Courant 
numbers the wavefronts are excessively dispersed. 

A convergence study was made in the Lz-norm for this solu­
tion using meshes of 40 to 320 elements. The rates of con­
vergence were quite sensitive to the time step and amount of 
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Fig. 8 Displacements for example of problem 1 

artificial viscosity. The rates of convergence varied from hO.6 

to h1.5 , which is substantially below the h2 rate in linear, static 
problems for this element. 

Discussion and Conclusions 

Closed-form transient solutions have been developed for 
rods with strain softening, a negative slope in the stress-strain 
curve. Two types of stress-strain curves were considered, one 
where the stress increases again and one where it remains con­
stant after the strain softening. Finite element solutions were 
also obtained for representative problems. The following con­
clusions are drawn: 

If the stress remains constant after the strain softening, a 
discontinuity appears in the displacement. 

2 If the stress increases after strain softening, no dis~on­
tinuity appears in the displacement, but the strain-softening 
point moves through the rod with jump discontinuities in the 
stresses and strains at a speed that is slower than the elastic 
wavespeed. 

3 Finite element solutions reproduce the salient features of 
these solutions but exhibit excessive noise and slow rates of 
convergence. 

4 When the stress remains constant, the displacement 
discontinuity is associated with a finite dissipation of energy; 
when the stress monotonically decreases to zero, the failure of 
the material associated with the discontinuity in displacements 
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requires no energy to be dissipated because it occurs on a set of 
measure zero. 

Acknowledgment 

The authors wish to express their gratitude for the support 
to the US Army Research Office under Contract 
DAAG29-84-K-OOS7 and the US Air Force Office of Scientific 
Research under Grant 83-0009. 

References 

Aifantis, E. C., and Serrin, J. B., 1983, "Equilibrium Solutions in the Micro­
mechanical Theory of Fluid Microstructure," Journal of Colloid and Interface 
Science, Vol. 96, pp. 530-547. 

BaZant, Z. P., 1976, "Instability, Ductility and Size Effects in Strain­
Softening Concrete," ASCE Journal of the Engineering Mechanics Division, 
Vol. 102, EM2, pp. 331-344. 

Bazant, Z. P., and Belytschko, T., 1985, "Wave Propagation in a Strain­
Softening Bar; Exact Solution," Journal of Engineering Mechanics, Vol. III, 
No.3, pp. 381-389. 

Belytschko, T., and Bazant, Z. P., 1984, "Strain-Softening Material and 
Finite Element Solutions," Proc. ASME Symp. on Constitutive Equations; 

5181 Vol. 54, SEPTEMBER 1987 

Macro and Computational Aspects, William, K., ed., held at ASME Winter An­
nual Meeting, New Orleans, LA, pp. 253-272. 

Hadamard, H., 1903, Lecons sur la Propagation des Ondes, Herman et Cie, 
Paris, France, Chapter VI. 

Holmes, N., and Belytschko, T., 1976, "Postprocessing of Finite Element 
Transient Response Calculations by Digital Filters," Computers and Structures, 
Vol. 6, pp. 211-216. 

James, R. D., 1980, "The Propagation of Phase Boundaries in Elastic Bars," 
Arch. Rat. Mech. Anal., Vol. 73, pp. 125-158. 

Sandler, I., and Wright, J., 1983, "Summary of Strain-Softening," 
Theoretical Foundations for Large-Scale Computations of Nonlinear Material 
Behavior, DARPA-NSF Workshop, Nemat-Nasser, S., ed., Northwestern 
University, Evanston, Ill., pp. 225-241. 

Schreyer, H. L., and Chen, Z., 1984, "The Effect of Localization on the 
Softening Behavior of Structural Members," Proc. ASME Symp. on Con­
stitutive Equations; Macro and Computational Aspects, presented at the Winter 
Annual Meeting of the ASME, New Orleans, pp. 193-203. 

Willam, K. J., Bicanic, N., and Sture, S., 1984, "Constitutive and Computa­
tional Aspects of Strain-Softening and Localization in Solids," Proc. ASME 
Symp. on Constitutive Equations; Macro and Computational Aspects, 
presented at the Winter Annual Meeting of the ASME, New Orleans, LA, pp. 
233-252. 

Wu, F. H., and Freund, L. B., 1984, "Deformation Trapping Due to Ther­
moplastic Instability in One-Dimensional Wave Propagation," Journal of 
Mechanics and Physics of Solids, Vol. 32, No.2, pp. 119-132. 

Transactions of the ASME 


