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Transient Sonar Signal Classification Using
Hidden Markov Models and Neural Nets

Amlan Kundu, Member, IEEE, George C. Chen, Member, IEEE, and Charles E. Persons

Abstract—In ocean surveillance, a number of different types of
transient signals are observed. These sonar signals are waveforms
in one dimension (1-D). The hidden Markov model (HMM)
is well suited to classification of 1-D signals such as speech
(7], [8]. In HMM methodology, the signal is divided into a
sequence of frames, and each frame is represented by a feature
vector. This sequence of feature vectors is then modeled by
one HMM. Thus, the HMM methodology is highly suitable for
classifying the patterns that are made of concatenated sequences
of micro patterns. The sonar transient signals often display an
evolutionary pattern over the time scale. Following this intuition,
the application of HMM’s to sonar transient classification is
proposed and discussed in this paper. Toward this goal, three
different feature vectors based on an autoregressive (AR} model,
Fourier power spectra, and wavelet transforms are considered
in our work. In our implementation, one HMM is developed for
each class of signals. During testing, the signal to be recognized
is matched against all models. The best matched model identifies
the signal class.

The neural net (NN) classifier has been successfully used [2]-[4]
for sonar transient classification. The same set of features as
mentioned above is then used with a multilayer perceptron NN
classifier. Some experimental results using “DARPA standard
data set I’ with HMM and MLP-NN classification schemes are
presented. Finally, a combined NN/HMM classifier is proposed,
and its performance is evaluated with respect to individual
classifiers.

I. INTRODUCTION

HE classification of transient sonar signals has been

widely studied [2]~[6]. The transient classification prob-
lem is deemed difficult for a number of reasons: 1) Short
duration of the transients makes the classical frequency analy-
sis difficult; 2) wide intraclass variations due to large variations
in the structures and systems generating the transients; and
3) the effects of ambient ocean noise and the presence of
biologics and merchant ships lead to poorly separated class
boundaries. The most common type of classifier used for this
task is the neural net [2]-{4] though other classifiers have
been studied [2], [S], [6]. Fourier power spectral coefficients
arc widely used as feature vectors. Recently, the hidden
Markov model has been studied for sonar signal classification
[5]. (6], [24). In [5], {6]), AR model parameters are used
as feature vectors for the HMM classifier. It is relevant to
note here that the HMM was originally introduced by the
speech community (7], [8]. In speech, the lincar predictive
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coefficients (LPC), i.e., AR coefficients, are successfully used
as the feature vector. However, sonar signals have their own
characteristics. It has been found that no single technique
can adequately capture all featurc information for all ocean
acoustic transients of interest {2]-{6}, [16]. So, it is expected
that other features could lead to more interesting results.
With this view in mind, we have experimented with the
HMM classifier and three different feature vectors in this
paper. The feature vector based on an AR model is a natural
candidate. As the Fourier power spectrum is widely used
by the NN community for their research, these features are
also considered [4]. Finally, wavelet-transform-based features
are considered. Interestingly. some features based on specific
wavelet implementation have been used in [2], [3]. It is well
known that sonar transients are nonstationary signals. The
wavelet transform can properly represent such signals. In
particular, Daubechies type wavelets are considered in our
work. These wavelets are finite duration filters and quite
easy to implement. Besides, these wavelets have not been
tried in the context of transient sonar signal classification.
It is our viewpoint that these three very diffcrent signal
representations for feature extraction would reveal some of
the latent characteristics of the signal for better classification.

In speech, the spoken word manifests itself as a left-to-nght
concatenation of phonemes [7], [8], the fundamental speech
unit. The states in HMM are identified with the phonemes. As
a result, a left-to-right HMM topology is often preferred in the
application of HMM to speech recognition. This argument, in
our view, may not hold in all applications of HMM to sonar
signal classification. We think of a particular sonar transient
as a macro pattern that has evolved as a sequence of micro
patterns. We identify the “states” with the “micro patterns.”
However, in the absence of any other a priori constraint, the
macro pattern may be composed of any sequential combination
of the basic micro patterns. In other words, a fully connected
HMM topology, where the transition from any state to any
other state is posstble, could be more useful in such situations.
For the dataset used in our experiment, the fully connected
HMM topology performs consistently better than the left-
to-right HMM topology. However, there arc sonar signals
where the utility of left-to-right HMM topology has been
demonstrated (5].

Finally, we have studied the same set of features with
a MLP-NN classifier with the express objective of finding
out the complementary nature, if any, of these two classi-
fiers—MILP-NN and HMM. So far, a comprehensive study
involving NN and HMM and a number of feature sets has

0364-9059/94304.00 © 1994 {EEL
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Data .
ﬁ Feature Extraction lq
* DARPA Data ] = Autoregressive Coefficients
* Spectral Coefficients
* Wavelet Coefficients
Fig. 1. Block diagram representation of classification scheme.

not been undertaken. In a recent article, Miller er al. {1]
have pointed out the importance of exploring alternative
technologies to NN in order to make comparative performance
measurements and to obtain the best possible solutions to
signal processing and classification problems. We show in the
current paper that a combined classifier using HMM’s and
MLP-NN’s is likely to outperform the individual classifiers. It
is relevant to note here that the concept of a combined classifier
for robust classification is well known in pattern recognition
theory, and has already been tried with other classifiers for
transient sonar signal classification (2]. Fig. 1 gives the block
diagram of our scheme. Note that there is no preprocessing
involved in our system. This is a deliberate decision. The
preprocessing operations are often quite dependent on the
given signal. Usually, these operations try to enhance or
deemphasize certain aspects of the given signal for better
classification. A potential drawback of such operations is that
when the signal classes are changed, the old preprocessing
schemes are often invalid. Thus, to design an automatic system
for transient signal classification, we will not include any
preprocessing operations. This design without preprocessing
is expected to make our system suitable for a wide range of
sonar transients.

The remaining sections of this paper are organized as
follows: Section II describes the implementation of AR, FFT-
based, and wavelet-based features. Section III presents the
theory and implementation of HMM as applied to our clas-
sification problem. In this section, some discussions on the
implementation of NN are also included. Section [V discusses
some practical considerations in implementation. Section V
gives the detailed experimental results using DARPA standard
data set I. Section VI summarizes the conclustons.

II. FEATURE REPRESENTATION

As described in Section I, we have three different feature
representation schemes: one based on an autoregressive model,
one based on Fourier power spectra, and the other based on the
wavelet transform. In this section, these feature representation
schemes are briefly discussed.
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A. Autoregressive Model

In describing the AR model, we will use the notation r(!)
to denote the signal. The autoregressive model is a simple
prediction of the current signal value by a linear combination
of M previous signal values plus a constant term and an error
term:

M
r)=oa+ Y 6r(l-5)+ VBw  1=1,--,L @D
1=1

where:

r(l): current signal value; r(I — j): previous signal values;
f;: autoregressive coefficients to be estimated; M: model or-
der; a: constant to be estimated; /B: constant to be estimated;
w;: random number with zero mean and unit variance.

61,---,0m, a, B are the model parameters; 8 is the vari-
ance of prediction noise and reflects the accuracy of the
prediction.

It is noted from (2.1) that to predict r(1), we need M initial
values of r(l), i.e, (-M + 1), 7(-=M + 2),- -, 7(0). It is
easy to derive that:

6y Ry Riv S 77'[Ra
: — . X . : (22)
Oar g Rarar St Rom
X Sl SA, N S()
where

L
”!_1 = Il),, = Zr(l —i)'r(l -- ])' 1, ] = I,AI (2})
=1

I3

Sy or -, p= 001,

[

and

(%]

| . T |




KUNDU er i TRANSIENT SONAR SIGNAL CLASSIFICATION

Class A; Broadband 15 msec pulse

8Y

Class B; Two 4 msec pulses, 27 misec separation

Class C; 3 kHz tonal, 10 ms duration

Class E; 150 Hz tonal

Class F; 250 Hz tonal

§4 5 .x 388

L] F_J L] (] [} 1000

Class N; Ocean Ambient Noise

L] e L] L] L ] 1000

Fig. 2

If « is zero, (2.2) takes the form of Yule—-Walker equa-
tions. The R matrix is then Hermitian and Toeplitz (19].
A straightforward approach is to replace the autocorrelation
functions in by sample autocorrelations. Often, a more
efficient algorithm, known as Burg's algorithm, is used to
compute §,. For details regarding Burg's algorithm, please
see (19]. It should be noted that the choice of optimal model
order, M, is application-dependent and is usually determined
empirically.

B. Fourier Power Spectrum

From the given data segment, its FFT is computed. Before
FFT computation, each data segment is windowed with a
Kaiser-Bessel window function. The magnitude square of the
FFT coefficients gives the Fourier power spectrum of the
data.

An example of the different classes of signals used in our experiment.

C. Wavelet Transform

In the short-time Fourier transform, time and frequency
resolutions are fixed. Because of Heisenberg's principie, the
time and frequency resolution product cannot be better than a
threshold (1/4x). In the wavelet representation, it is possible
to achieve high time resolution at the cost of frequency
resolution, and vice versa. This is easily demonstrated by
making the frequency resolution proportional to frequency.
In the wavelet transform, this compromise leads to very high
time resolution for high-frequency signals, and high-frequency
resolution for low-frequency signals. Since the sonar signals
almost always display an cvolving frequency profile with
time, wavelet transform representation is philosophically very
appealing.

In the wavelet transform, the transform space is defined
by the basis functions, which arc all derived from one basic




’?\“

———— . o o,

w)

wavelet via scaling and translation; i.e., if 4(t) is the basic
wavelet and h,, -(t) is a generic wavelet basis function, then
{20], [21]:

ha, +(t) = 1/\/(a)h((t — 7)/a).

When ¢ and 7 are continuous, there are infinite possibilities
for a and 7. Consequently, the transformation of a signal z(t)
using these basis functions, and subsequent reconstruction of
z(t) from the transform, is a simpler task. The interesting
task is to appropriately discretize the time-scale parameter a
and 7 such that a true orthonormal basis function is obtained.
The solution depends on the choice of wavelet k(t). So, our
problem is:

discretize hj (t) = a;"ﬂh(ao'"t ~- kT)

where T is the sampling period of the discrete signal. Of
course, if we choose ag =~ 1 and T small, we are close to the
continuous case. For implementation advantage, our interest is
in the dyadic wavelet that has ay = 2, ie.,

hj k(t) = 279/2R(277t — kT)

where j and k belong to the set of natural numbers. The
Daubechies wavelets are a class of discrete orthonormal dyadic
wavelets, An M-order Daubechies wavelet {20] is given by
M coefficients denoted by C;, 3 = 0,---,M — 1. Then,
the convolution of the signal with a FIR filter of length M
(Cj, 7 = 0,---M — 1) gives the smooth component. On
the other hand, the convolution of the signal with a FIR
filter of length M and coefficients (—1)"7Cpet-js § =
0,--- M -1 gives the detail component. After one pass of this
algorithm, the smooth and detail components are decimated
by 2. The smooth components are then transformed again,
and the procedure continues until we have only two smooth
components left. The output, at this stage, is the wavelet
transform of the original signal. The coefficients in Daubechies
wavelets are obtained from orthonormality conditions and
“smoothness constraints.” For an M-order wavelet, these
conditions and constraints lead to exactly M linear equations.
Thus, M coefficients are uniquely detefmined. For more
discussions and details about the coefficients, see [20], [21].
For an excellent exposition related to theory and applications
of wavelet transforms, please see [23].

D. Feature Selection

The feature representation schemes described so far trans-
form the original signal into feature space. Since some features
may be more useful than others, only the important features
should bz selected for a compact representation of the signal
for classification purposes. This is a necessary data reduction
stage. The idca behind this stage is that only a few features
can discriminate one class from the others.

In our scheme, the signal is divided into a number of
overlapping frames. For the AR-model-based feature represen-
tation, the AR coefficients arc taken as the feature vectod, Since
relatively few AR cocefficients are needed to represent a frame,
AR feature representation is already in very compact form, For
FFT power spectrum and the wavelet transform, the spectral

.
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and transform cocfficients with relatively higher magnitude
arc selected as features. For instance, 256-point real data
will give 128 distinct FFT power spectral coefficients. For a
particular signal class, all such FFT power spectral coefficients
are analyzed, and the top few, say L of them, in terms of
magnitude, are selected as features for that signal class. The
union of all individual feature sets, each nne belonging to
one signal class, gives the global feature vector set for all
signals. A similar procedure is used to select the feature vector
from wavelet transform coefficients. The details regarding the
number of frames in a signal template, the percentage of
overlap among successive frames, and the number of features
in each feature vector are described in Section V.

HI. CLASSIFIER DESIGN

In our work, we have used two classifiers: HMM and
MLP-}N. In this section, these two classifiers are described.

A. Continuous Density HMM

A first order N-state Markov chain is defined by an N x N
state transition- probability matrix A and an N x 1 initial
probability vector I1, where:

A = {ai;}, aij = Pr(geq1 = jlge = i);
i,7=1,2,---,N
= {m}; 7 = Pr(q =1), 1=12---,N
Q = {q.} — state sequence. g€{1,2,---,N},
t=1,2---,T

N—number of states
T—Ilength of state sequence.

By definition, Z;\;l aij=1fori=1,2,---,N and Eﬁ.—x
m; = 1. A state sequence Q is a realization of the Markov
chain with probability:

T
Pr(QlA, TT) = 74, [ [6qe-1ar- 3.1

t=2

A hidden Markov model is a Markov chain whose states
cannot be observed directly, but can be observed through a
sequence of observation vectors {7]. Each observation vector,
also called a symbol, manifests itself as states through cer-
tain probability distributions, In other words, each observed
vector is generaled by an underlying state with an associated
probability distribution. For solving our problem, we will
consider only the observations with continuous probability
density. A continuous density HMM is characterized by the
state transition probability A, the initial state probability 1T,
and an IV x 1 observation density or symbol probability density
vector 13, where:

B = {by(or)},
b;j(0¢) = a posteriori density of observation o, given ¢ = 3

O = {0} - observation sequence.  t=1,%.---. T
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In many practical problems, 1t is reasonable to assume
that the observation density i1s Gaussian. In this case, the
density 1s completely specified by the mean and covariance
of of, ie, by{o) = N(uj;, V), where 4, and V, are the
conditional mean vector and the conditional covariance matrix,
respectively, of o, given state ¢ = j. It should be noted
that, in our application, the states of an HMM may not
have specific physical meaning. They may just reflect some
clustering properties of the observation vectors in the feature
space.

We can more compactly denote the parameter set by A =
(4, I1, B). Then, an HMM is completely specified by A. Three
problems associated with HMM are of our concemn:

1) Based on what optimization criterion should our model
be built?

2) Given the model and an observation sequence O =
{01, 02,---,0r}, how can we classify the observation effi-
ciently? This is the classification problem.

3) Given a number of observation sequences of a known
class, how can we obtain the optimal model estimate A7 This
is the training problem.

Problem 1—Optimization Criterion: Suppose we are given
a model A and an observation sequence O = {0y, 02, --,0T}.
Then, the density function of O is given by:

T
p(Ol’\) = ZWQIbQI (Ol)Ham—Wr bm(ot)' (32)
Q =2

A direct choice of optimization criterion is the maximum
likelihood criterion that maximizes P(O|]A). The estimation
of the parameters by this criterion can be solved using the
Baum-Welch reestimation algorithm [7]. The algorithm is an
iterative procedure that guarantees a monotonic increase of the
likelihood function for a given set of training samples.

Another optimization criterion is to maximize the state-
optimized likelihood function defined by:

P(0. Q7[A) = maxp(0, Q1)
T

= ”l(g‘XWQIbQI(Ol)Haq(— racbg (o) (33)
t=2

where Q° = {q], 47, -, 9%} is the optimal state sequence
associated with the state-optimized likelihood function, and ¢;
is the tth state in this optimal state sequence. Equation (3.3)
is the density of the optimal or most likely state sequence
path among all possible paths. The estimation of the param-
eters using this cniterion is given by the segmental K-means
algonithm [9). [10]. This algorithm is an iterative procedure
that guaranteces, under some conditions described later, the
monotonic increase of the state-optimized likelihood function
for a given set of training samples.

Comparing (3.2) and (3.3), we find out that (3.2) involves
computation along all possible state paths, while (3.3) tracks
only the most likely path. Therefore, the computation required
by (3.3) is much less than that of (3.2). Also, since by, (o)
often has a large dynamic range, overflow or underflow is more
likely to happen in evaluation of (3.2) than in evaluation of
(3.3). Furthermore, in a particular application, if the data fit the
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model very well, all the observation samples of one class are
likely 1o have few domunant state sequences. It means that the
optimal state sequence in (3.3) carrics a lot of information that
may discriminate one class from another. For these reasons,
we have chosen maximization of (3.3) as our criterion.

Problem 2—Classification: To solve our signal classifica-
tion problem, we creatc one HMM for each class. For a
classifier of P classes, we denote the P’ models by A,
p=1,2,---, P. When a signal O of unknown class is given,
we calculate:

p" = argmaxp(O, Q7Ap) (3.4)
and classify the signal as belonging to class p*.

Now we can immediately see one of the advantages of
HMM. The model for one class is independent of the model for
any other class, i.e., the training for one class is not related to
the training for any other class. It follows that when a new class
is added to the classifier, we need only to train for this new
class, but do not have to retrain for any other class. In general,
this advantage is not associated with a neural net classifier.

For a given A, an efficient method to find p(O, Q*|A) is the
well-known Viterbi algorithm {11}, [12] as described below.

Viterbi Algorithm

Step 1. Initialization
For1 < i < N,

61(¢) = m.bi(01) (3.5)
YP1(3) = 0. (3.6)
Step 2. Recursive computation
For2<t<T,forl <j<N,
6!(]) = llsn‘a-SxN[bt—d(l)at]]b](O!) (37)
Pe(7) = arglxgxtziéxhllh,,l(i)a‘]]. 3.8)
Step 3. Termination
e -
Pt = llsnlz;xN[(s, (2)] 3.9
qr = argllgllléth((ST(l)]. (3.10)

Step 4. Tracing back the optimal statc sequence
Fort=T-1T-2,--1

G = Vear(gran). (31D

P* is the state-optimized likelihood function, and Q° =
{g1, g3, -.qy} is the optimal state sequence.

In practice, as ¢ increases, the value of () could be very
large or very small so that an overflow or underflow may occur
during computation on a computer. To avoid this problem,
we take the logarithm of all probabilitics and densities, and
replace all multiplications by additions. Obviously, the result
of tracting the optimal state sequence 1s not affected by this
modification. If any particular valuc is zero, we set it to a very
small number such that it does not affect the result.




Problem 3—Training: In creating the model for cach class,
we should guarantee that the parameters we obtain are the
optimum for a given set of training samples. Since our decision
rule is the state-optimized likelihood function, it requires
that the estimated parameter A be such that p(O, Q‘l;\) is
maximized for the training set. It is shown in [9] that the
segmental K-means algorithm [10] converges to the state-
optimized likelihood function for a wide range of observation
density functions, including the Gaussian density we have
assumed. The algorithm is described below.

1) Cluster all training vectors into N clusters using the min-
imum distance rule with random initial clustering centroids.
Each cluster is chosen as a state and numbered from | to N.
The tth vector, oy, of a training sequence O is assigned to state
i, denoted as o, € 1, if its distance to state 7 is smaller than its
distance to any other state j, j # ¢. The distance measure we
have used is the unweighted Euclidean distance. This step is to
get a good initialization for the complete training procedure.

2) Calculate the mean vector and covariance matnx for each
state. For 1 < 1 < N,

i = N Ot (3.13)

- 1
Vi= 57 2 (0 = )" (00 = i) (3.14)

1 .
o€t

where /V, is the number of vectors assigned to state z.
3) Calculate the transition and initial probabilities. For
1<i<N,

Number of occurrences of {o; € ¢}
= — . (3.15)
Number of training sequences

Forl <i< Nand1 < j3 <N,

a,

_ Number of occurrences of {0, € 7 and 044 € 7} for all ¢
Number of occurrences of {o, € ¢} for all t

(3.16)

4) Calculate density functions of each training vector for
each state. For 1 < j < N,

i:,(u,) e

(27.')”1/2 "1 1/2

1 N .
exp -E(o, - ;L])Vj 1({)’_”)): . (3.7

Here M5 s the dimension of the feature vector.

5) Use the Viterbi algorithm and the new probabilities to
trace the optimal state sequence Q° for cach training sequence.
A vector is reassigned a state if its onginal state assignment 18
diffcrent from the tracing result, t.c.. assign o € 1 if ¢; = 7.

6) If any vector is reassigned a new state in Step S, use
the new state assignment and repeat Step 2 through Step S:
otherwise stop.
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B. Multilayer Perceptrons

Multilayer perceptrons (MLP) are feedforward nets with one
or more layers of nodes between the input and output layers.
The lowest layer is the input layer, which does not have any
processing capability. The highest layer is the output layer,
and any layer between the input and output layers is called
the hidden layer. All the nodes in a layer are connected to the
nodes in the layer above it, and there is no connection within
a layer or from the higher layer. For example, a three-layer
perceptron is shown in Fig. 4. The perceptron processing unit
performs a weighted sum of its input values q;

I K
T; = f Zaiwij e = f § T;V5k
i=0 7=0

where {w,;}, {v;x} are the weight matrices and f(-) is usually
a nonlinear function such as the sigmoid function

fx) = 1/(1 + 7).

Generally, the multilayer perceptrons are trained with the
error backpropagation (EBP) algorithm [15] which is an it-
erative gradient algorithm designed to minimize the mean
square error (MSE) between the desired output y; and actual
output y,. Sometimes, a momentum term is also included in
the training procedure. The details of this algorithm can be
found in {14]. In addition to MLP’s, other neural networks
such as Kohonen feature maps have also been used in pattern
recognition. A good introduction to the neural nets is given by
Lippmann [13], and an excellent exposition of the NN is given
by Hecht-Nielsen [17]. For a useful survey on NN's and their
foundations, paradigms, applications, and implementations,
see {18], [22].

IV. IMPLEMENTATION CONSIDERATIONS

A. Training of Classifiers

Each signal template, ie., exemplar, is divided into a
sequence of partially overlapping segments. Each segment 1s
then represented by one feature vector. The sequence of featurc
vectors is used as one training/testing observation sequence for
the HMM. For the MLP-NN, the whole sequence of fcature
vectors is used as the training vector. For example, if there
are 20 four-dimensional vectors 1n the sequence, these 80
features are used as training feaures for the MLP-NN, and the
MLP-NN is designed with 80 input nodes. The MLP-NN has
one hidden layer. and it is trained using the backpropagation
algorithm and sigmotdal nonlinearity. The HMM's are trainced
using scgmental k-means algorithm [11] as described in the
previous section. For each signal class, one HMM is designed.
During recognition, the test signal is matched against all
modeis to find the best match. The matching is done by the
Viterbi algorithm [1], [12]. Fig. 3 depicts the implementation
of HMM. For more details about the number of points in cach
signal template, the number of frames n a signal template,
the percentage of overlap among successive frames, and the
number of signal classes, refer to Section V.

Kl



KUNDU ef al.: TRANSIENT SONAR SIGNAL CLASSIFICATION

Feat Hidden A = (4,B,11)
class ¢ cature Markov -
Extraction Modeling
(@)
—d )‘1 Pl
Py
Az
Test sample Feature L———~
— Comparison HMM A,
Extraction . —
m® = arg max P
L Ava i -
P‘
Lo Au M
(b)

Fig. 3.

q; Xj Yk

Fig. 4. A three-layer perceptron.

The AR coefficients are computed using Burg’s algorithm,
The gain coefficient is not used due to a scaling problem.
The range of the “gain” coefficient is much much larger than
the AR coefficients. The gain is given by /B [(2.1)]. There
are sophisticated techniques to overcome this problem and get
better results. For instance, in [5] a product-code HMM is used
that can take the gain coefficient into account. Daubechies-4
and Daubechies-20 wavelet coefficients are used to compute
the wavelet transform. As explained in Section II, for ecach
signal, only a few wavelet coefficients with high magnitude
are used as features. Similarly, for each signal, only a few

Implementation of the HMM classifier. (a) Training phase. (b) Testing.

FFT power spectral coefficients with high magnitude are used
as features. The union of the coefficients for all different signal
types constitutes the feature vector.

B. Initial Clustering Center and Local Maxima for HMM

In Section III, we have assumed that the feature vectors
have a normal distribution within each state. The global
convergence property of the segmental K-means algorithm
is based on this assumption. Although this is a practical and
reasonable assumption, when the number of training samples
is not sufficiently large, the data may not conform to this
assumption very well. A better solution to this problem is
replacing the Gaussian density by a mixture of Gaussian
densities, but this will greatly increase the complexity of the
model and therefore will be computationally very costly. If
we do not change our model but carefully choose the initial
cluster centers in Step 1 of the training algorithm (Section
II) [11], we may still reach the global maximum. Thus, in
the training procedures, we will try different initial cluster
centers and select the set of parameters that results in the
largest average P* over all training samples of that class.

V. EXPERIMENTAL RESULTS

A. Signal Description

We have used DARPA standard data set 1 for our experi-
ments. This data set provides seven classes of signals to test
our algorithm. A typical example, one from each class, is
shown in Fig. 2. We denote these signal classes as:

Class A: Broadband 15-ms pulse

Class B: Two 4 ms pulses, 27 ms separation

Class C: 3 kHz tonal, 10 ms duration
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TABLE 1
CONrUSION MATRIX, HMM CLASSIFIER, AND
AR CotsrFICENT FEATURES (SIXTH-ORDER)

Chosen Class

True Class
A 17 1 0 ] 1 0 4
B 0 15 0 ¢ 1 0 0
c 0 0 22 0 0 0 0
D 0 0 2 20 0 0 0
B 1 0 0 0 15 5 i
B 0 0 0 0 9 3 0
N 0 3 0 0 2 6 11

* 6th-order AR model

* 6-state HMM,; 8-state is worse

* Recognition accuracy = 73.3 %

+ AR model may not be a good fit for this data

* AR model has problem modeling a pure sinusoid

Class D: 3 kHz tonal, 100 ms duration

Class E: 150 Hz tonal, 1 s duration

Class F: 250 Hz tonal, 8 s duration

Class N: Ocean ambient noise.

We have created 45 templates, i.e., exemplars, for each
class, of which 23 are used as training templates and 22
as test templates. Each signal template contains 1024 data
points. The sampling rate for the signal,is 24.576 kHz. For
this sampling rate, 1024 data points are enough to capture
the essential characteristics of all transient types including the
Class B type signal, which has the most time spread. This
1024-point signal template is divided into 21 frames of 256
data points with an overlap of 218 points (approximately 85%)
between two successive frames. Once the feature vectors are
computed from each frame, the signal template is represented
by a featurc vector sequence. The training/testing sets include
exemplars from five different SNR groups. The lowest SNR
is 24 dB3 down with respect to the highest SNR. The first
group is the reference, i.e., 0 dB, group. The other groups are
created adding background noise to this reference group, and
the SNR values for these groups are ~6, —12, --18, and —24
dB, respectively, with respect to the reference O dB group,
The SNR is computed as the ratio of the peak signal power to
background noise power expressed in dB. As a result, some
very noisy excmplars are included in our experiments. Most
classifiers can handle signals with relatively high SNR quite
well, but fail with Jow SNR signal. A meaningful evaluation
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TABLE 1
ComusioN MATRIX, HMM CLASSIFIER, AND
AR CotFACENT FEATURES (TENTH-ORDER)

Chosen Class

True Class
A 17 1 0 0 1 0 3
B 0 17 0 0 1 0 4
c 2 0 18 2 0 0 0
b 0 0 2 20 0 0 0
B 0 1 0 0 14 7 0
P 0 1 3 0 5 11 2
N 0 2 0 0 6 7 7

* 10th-order AR model
¢ 6-state HMM

* Recognition accuracy = 67.5%

of a classifier is possible only when the classifier can classify
low SNR exemplars with high accuracy. Another important
distinction in our experiment is that we have included ocean
noise as a separate class. In DARPA data set I, ambient noise
has a frequency spectrum that substantially overlaps with that
of types A, B, E, and D signals. Thus, the inclusion of ambient
noise as a separate class makes our classification problem
much harder.

We have tried a different number of states for HMM, from
N = 21to N = 12, and a different number of nodes, from
10 to 30, in the hidden layer of the MLP-NN. We have also
compared the results of AR models of different orders, from
M = 2to M = 10. Only the best results are reported in the
paper and the accompanying tables. Table I shows the number
of errors in classifying the total 154 test exemplars using AR
features and HMM'’s. The best result is obtained with the
six-state HMM, and sixth-order AR model. As stated before,
the gain coefficient is not used mainly because of the scale
problem. Table II gives the result of the same experiment with
ten-order AR model. The recognition accuracy, i.e., percentage
of correctly classified test exemplars, in both these experiments
is rather poor. This poor showing of AR-model-based features
could be attributed 1o two possible explanations: 1) the AR
model may not be a good fit for DARPA data set I; 2) the
AR model implemented with Burg's algovithm has a problem
modeling a pure sinusoid [19]. It can be clearly seen that the
AR model has great difficulty in discriminating type E and type
F signals—two single-frequency tonals with close frequencics.
We have also found that the AR order beyond 6 is not helpful
as the extra poles try to match the spurious peaks duc to ocean
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TABLE i
CONFUSION MATRIX, FIMM CLasstiack, AND FIST 1EATURLS

Chosen Class

True Class

A 21 0 0 0 1 [ 0
B 0 19 2 0 1 0 0
c (1] 0 22 [} 0 0 0
D 0 1] 0 2 0 0 0
B 0 0 0 0 21 O t
R 0 [} 0 0 [ 21 1
N 0 7 0 0 3 0 12

* 30 FFT features

* 8-state HMM

* Recognition accuracy = 89.6 %
« Recognition accuracy = 95.5 % when class for ocean noise

is excluded.

noise. It is conceivable that some performance improvement is
still possible with AR-model-based features [5]; however, as
we will show, the FFT power spectral features and Daubechies
wavelet based features hold more promise for our classification
task. Please note that the results reported in {2} and [6] are also
not favorable for AR-model-based features.

Table IIl shows the number of errors in classifying the
total 154 test exemplars using FFT power spectral features
and HMM's, The best result is obtained with the eight-state
HMM'’s. The recognition accuracy is now close to 90%.
When the ocean ambient noise is excluded, the recognition
accuracy is over 95.5%. Tables IV and V show thc number
of errors in classifying the total 154 test exemplars using
wavelet-transform-based features and HMM's. The best re-
sult is obtained with an eight-state HMM's, The recognition
accuracy is now above 90%.

Table VI shows the number of errors in classifying the total
154 test exemplars using FFT power spectral features and
MLP-NN. The best result is obtained with 20 nodes at the
hidden layer, The recognition accuracy is now above 90%.
Tables VII and VIII show the number of errors in classifying
the total 154 test exemplars using wavelet-transform-based
features and MLP-NN. Once again, the recognition accuracy
is above 90%. In particular, the MLP-NN classifier and
Daubechies-20 transform feature combination has achieved the
best individual performance—93.5% classification accuracy.

We have also experimented with left-to-right HMM's, Table
IX shows the number of errors in classifying the total 154 test

o~
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TABLE IV
CONFUSION MATRIX, HIMM CLASSIFTER, AND DAURLCHIES 4 FrAtuRLS

Chosen Class

True Class

A 20 3 0 0 0 0 i
B 4 17 0 0 0 0 1
c 0 0 22 0 0 0 0
D 0 0 0 22 0 0 0
B 0 0 0 0 21 0 1
r 0 0 0 0 0 21 i
N 0 4 0 0 0 0 18

* 30 features

« 8-state HMM

* Recognition accuracy =91.5 %

TABLE V

ConNrustioN MATRIX, HMM CLASSIFIER, AND DAUBECHIES-20 FEATURES
Chosen Class
A B C D E F N
True Class
A 20 1 0 0 0 0 1
B 3 17 0 0 0 0 2
c 0 0 22 0 0 0 0
D 0 0 0 22 0 0 V]
B 0 0 0 0 21 0 1
P 0 1 0 v 0 21 0
N 0 5 0 0 0 0 17
* 30 features
* §-state HMM

« Recognition accuracy = 90.9 %

exemplars using wavelet-transform-based features, The best
result {s achieved with Daubechies-4 transform features, and
is reported In Table IX. This best result—88.9% classification
accuracy—is somewhat inferior to the results achieved by



TABLE VI
CoNFUSION MATRIX, NN CLASSIFIER, AND FUT FEATURES

Chosen Class

True Class

A 18 2 0 0 0 [} 2
B 1 19 0 0 0 0 2
c 0 v} 2 0 0 0 0
D o 0 0 2 0 0 0
E [ 0 0 0 20 0 2
P 0 1 0 0 [ 21 0
N 0 3 0 0 1 0 8

» 30 features

+ 20 nodes for the hidden layer

» Recognition accuracy = 90.9 %

TABLE VII
CONFUSION MATRIX, NN CLASSIFIER, AND DAUBECHIES4 FEATURES
Chosen Class
A B C D E F N
True Class
A 20 1 o -0 1] 0 1
B 2 18 0 0 0 0 2
c 0 0 22 0 0 0 0
D 0 0 0 2 0 0 0
B 0 0 0 0 21 0 1
9

p 0 0 0 0 0 22 0
N 1 6 0 0 0 0 15

* 30 features
* 20 nodes for the hidden layer

« Recognition accuracy = 90.9 %

fully connected HMM's. Another important point is that the
initialization process as described in Section HI is only good
for fully connected HMM's. For left-to-right HMM's, the
initialization process needs to be defined in terms of an
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TABLE VI
CoNFUSION MATRIX, NN CiASSIFIER, AND DAUBECHIES-20 FEATURLS

Chosen Class

True Class

A 20 0 0 0 1] o 2
B 0 2 0 0 2 0 0
c 0 0 22 0 0 0 0
D 0 0 0 22 0 0 0
B 0 0 0 0 20 0 2
P 0 0 0 U 0 22 0
N 1 0 0 0 2 1 18

* 30 features

* 20 nodes for the hidden layer

* Recognition accuracy = 93.5 %

initial gness of A and B probability parameters. This latter
initialization process is considerably more difficult, and needs
more intimate knowledge of the data.

B. Combined Classifier

From the confusion matrices given by Tables III-VIII, it
is clear that every feature/classifier combination has a some-
what different performance. A pertinent question is—can we
combine the evidence of ali the feature/classifier combinations
to yield results that would be superior to any specific fea-
ture/classifier combination? Such a combined classifier would
also be more robust. One simple way to combine the featurc
vectors is to extract AR, FFT-based, and wavelet coefficients
from each frame, and then form a large vector which would
be the input to either a HMM or MLP-NN based classifier. In
our case, this solution would mean a 66-dimensional floating
point feature vector for each frame. This tremendous increase
in computational complexity can be avoided by intelligent use
of the classifier. A product-code HMM as described in {5] can
incorporate all three different feature vectors in one classifier
without substantial increase in the complexity. Unfortunately,
these three feature scts arc not independent of each other as
required by the theory of product-code HMM.

We have devised a simple classificr, henceforth called the
majority classifier, that would take the output of each specific
feature/classifier combination and assign the test exemplar the
class with the majority votes only when the vote exceeds
a threshold. Since we have six votes per test exemplar, we
choose a threshold of 3 and 4. If the majority votc is below
this threshold, that test exemplar is not classified. The detailed
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TABLE IX
CoNFUSION MaTrRiX, L-R HMM CLassirier, AND DAUBECHIES-4 FEATURES

Chosen Class

True Class
A 20 2 0 0 0 0 0
B 2 18 0 0 1] 0 2
c 0 0 2 0 0 0 0
D 0 0 0 22 0 0 0
E 0 1 0 0 20 0 i
F 0 i 0 0 0 21 1
N 1 6 0 0 0 0 15
* 30 features
* 8-state HMM

« Recognition accuracy = 88.9 %

experimental results are given in Tables X and XI. When
the threshold is 4, only two test exemplars are misclassified,
but 12 are not classified. When the threshold is 3, five test
exemplars are misclassified, but only three are not classified.
It is very clear that the exemplars that would otherwise be
classified erroneously are now classified as “nonclassified” by
the combined classifier. Also, very few test exemplars are
misclassified by the combined classifier. Thus, in the case
of a definitive decision, the combined classifier has close to
100% recognition accuracy. For test signals with low SNR,
the combined classifier would not make a wrong decision. For
the lack of consistent evidence, it would term the signal as
“nonclassified.”

It is possible to implement the classified-versus-
nonclassified decision for the individual classifier by finding
an optimum threshold. For a HMM classifier, the computation
of this optimal threshold requires some knowledge about the
distribution of the observation sequence corresponding to
optimal Viterbi state sequence given the HMM parameters.
For an MLP-NN, the distribution at the output node is
needed. While these distributions are very difficult to find,
the majority classifier simplifies the threshold computation
problem enormously especially when the output of each
classifier/feature combination is given equal weight. Also,
the best performance for a classifier/feature combination is
given by the NN/Daubechies-20 combination. In this case,
10 out of 154 exemplars are wrongly classified. In the case
of a majority classifier with threshold 3, five exemplars are
wrongly classified and three exemplars are not classified.
Even if we consider the “nonclassified” exemplars as wrongly
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TABLE X
FuseD CONFUSION MATRIX, MAJORITY VOTE NEtbhiD. 4
Chosen Class
A B C D E F N X
True Class
0 0 0 0 0 2
A 20 0
7 0 0 0 0 0
B 0 1 5
22 0
c [+} 0 0 0 0 0
D 0 0 0 2 0 (o} 0 0
0 0 0 21 0 |
E 0 0
21
F ] 0 0 0 0 0 1
N 0 1 0 0 0 0 17 4

* Misclassified = 2
* No decision= 12

* X means no decision

TABLE XI
FUSED CONFUSION MATRIX, MAJORITY VOTE NEEDED=3
Chosen Class
A B C D E F N X
True Class
1
A 20 0 (1} 0 0 0 1
1 0 1
B 2 9 0 0 0 0
0 22 0 0 0
c [0} 0 0
4}
b 0 0 0 22 0 0 0
0 1 0
E 0 0 0 0 2t
E 0 0 0 0 0 2 0 0
1 0 0 0 20 1
N 0 0

* Misclassified = 5
* No decision=3

* X means no decision

classified, the performance of the majority classifier is still
superior to any individual classifier.

It is interesting to compare our data and results 1o those
of Ghosh et al. [2] and Desai ef al. [3]. Although, the same
DARPA data set is used in [2], [3). only four signal types
are considered in {3]. In [2], noise as a scparate class 1§
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not considered. As we have mentioned before, the addition
of ocean noise as a scparate class makes the classification
of DARPA data set 1 very difficult. Another important point
is that, in our technique, no preprocessing is used; but such
processings are used in {2], [3]. Also, the experiments in [2]
use signals from DARPA data set I test data set. Since we have
no access to the “truthing” of these data, we have focused
our experiment on DARPA data set 1 training data set. The
“truthing” of all the signals in this set is known. Thus, a proper
comparison is not possible at this point though our technique
has performed quite well, which validates our approach. Also,
a number of conclusions from our work confirm two main
observations made in [2]. These are: 1) both FFT- and wavelet-
based features are promising; and 2) a combined classifier is
likely to yield better results.

VI, CONCLUDING REMARKS AND Fuﬂgze RESEARCH

Based on the experimental results, the following conclusions
are in order:

1) Both FFT- and wavelet-based features are promising.

2) To a certain extent, the wavelet-based features comple-
ment the FFT-based features.

3) To a certain extent, the HMM classifier complements the
NN classifier.

4) The combined classifier has the best result. Also, the
combination is very robust. Only a simple combination is de-
scribed in the paper. Other possible combinations of HMM/NN
classifier should be explored.

5) For longer sighals, HMM-based classification could prove
more effective. The longer signals are likely to have more
sequence information. The exploitation of this sequence infor-
mation is the rationale for using HMM.

6) Features based on other wavelets, such as Gabor
wavelets, may prove more effective. This is another interesting
future research topic.
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