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Transient Sonar Signal Classification Using

Hidden Markov Models and Neural Nets
Amlan Kundu, Member, IEEE, George C. Chen, Member, IEEE, and Charles E. Persons

Abstract-In ocean surveillance, a number of different types of coefficients (LPC), i.e., AR coefficients, are successfully used
transient signals are observed. These sonar signals are waveforms as the feature vector. However, sonar signals have their own
in one dimension (1-D). The hidden Markov model (HMM) characteristics. It has been found that no single technique
is well suited to classification of 1-D signals such as speech
[7], [8]. In HMM methodology, the signal is divided into a can adequately capture all feature information for all ocean

sequence of frames, and each frame is represented by a feature acoustic transients of interest [21-[61, [16]. So, it is expected

vector. This sequence of feature vectors is then modeled by that other features could lead to more interesting results.
one HMM. Thus, the HMM methodology is highly suitable for With this view in mind, we have experimented with the
classifying the patterns that are made of concatenated sequences HMM classifier and three different feature vectors in this
of micro patterns. The sonar transient signals often display an
evolutionary pattern over the time scale. Following this intuition, paper. The feature vector based on an AR model is a natural

the application of HMM's to sonar transient classification is candidate. As the Fourier power spectrum is widely used
proposed and discussed in this paper. Toward this goal, three by the NN community for their research, these features are
different feature vectors based on an autoregressive (AR) model, also considered [4]. Finally, wavelet-transform-based features
Fourier power spectra, and wavelet transforms are considered
in our work. In our implementation, one HMM is developed for are considered. Interestingly, some features based on specific

each class of signals. During testing, the signal to be recognized wavelet implementation have been used in [2], [3]. It is well

is matched against all models. The best matched model identifies known that sonar transients are nonstationary signals. The
the signal class. wavelet transform can properly represent such signals. In

The neural net (NN) classifier has been successfully used [21-[4] particular, Daubechics type wavelets are considered in our
for sonar transient classification. The same set of features as
mentioned above is then used with a multilayer perceptron NN work. These wavelets are finite duration filters and quite

classifier. Some experimental results using "DARPA standard easy to implement. Besides, these wavelets have not been
data set r, with HMM and MLP-NN dassification schemes are tried in the context of transient sonar signal classification.
presented. Finally, a combined NN/HMM classifier is proposed, It is our viewpoint that these three very different signal
and its performance is evaluated with respect to individual
classifiers. representations for feature extraction would reveal some of

the latent characteristics of the signal for better classification.

In speech, the spoken word manifests itself as a left-to-fight

1. INTRODUCTION concatenation of phonemes 17], 181, the fundamental speech

HE classification of transient sonar signals has been unit. The states in HMM are identified with the phonemes. As

widely studied [21-[6]. The transient classification prob- a result, a left-to-right HMM topology is often preferred in the
lem is deemed difficult for a number of reasons: I) Short application of HMM to speech recognition. This argument, in
duration of the transients makes the classical frequency analy- our view, may not hold in all applications of HMM to sonar
sis difficult; 2) wide intraclass variations due to large variations signal classification. We think of a particular sonar transient

in the structures and systems generating the transients; and as a macro pattern that has evolved as a sequence of micro
3) the effects of ambient ocean noise and the presence of patterns. We identify the "states" with the "micro patterns."
biologics and merchant ships lead to poorly separated class However, in the absence of any other a priori constraint, the
boundaries. The most common type of classifier used for this macro pattern may be composed of any sequential combination
task is the neural net [2]-[4] though other classifiers have of the basic micro patterns. In other words, a fully connected

been studied [2], [51, 16]. Fourier power spectral coefficients HMM topology, where the transition from any state to any
are widely used as feature vectors. Recently, the hidden other state is possible, could be more useful in such situations.
Markov model has been studied for sonar signal classification For the dataset used in our experiment, the fully connected

[51, [61, [241. In [51, 161, AR model parameters are used HMM topology performs consistently better than the left-
as feature vectors for the HMM classifier. It is relevant to to-right HMM topology. However, there are sonar signals
note here that the HMM was originally introduced by the where the utility of left-to-right HMM topology has been
speech community (71, [81. In speech, the linear predictive demonstrated [5].

Manuscript received May 1993. This work has been supported by NRaD's Finally, we have studied the same set of features with
"wide area undersea surveillance" block program. The sponsor is T Golds- a MLP-NN classifier with the express objective of finding
berry. ONR 231 out the complementary nature, if any, of these two classi-

The authors are with the Naval Command. Control. and Ocean Surveillance
Center. RDT&E Division. Coie 732. San Diego. CA 92152-51'X)1 fiers-lMP-NN and lMM. So far, a comprehensive study

IEFIE Log Number 9215413. involving NN and M1MM and a number of feature sets has

(1364 9059/94$0400 () 1994 Ilf-t:"
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Data Decision
Feature Extraction Classification

DARPA Data I - Autoregressive Coefficients - Neural Network Confusion Matrices

"* Spectral Coefficients - Hidden Markov Model

"* Wavelet Coefficients
Fig. I. Block diagram representation of classification scheme.

not been undertaken. In a recent article, Miller et al. [1] A. Autoregressive Model
have pointed out the importance of exploring alternative In describing the AR model, we will use the notation r(l)
technologies to NN in order to make comparative performance to denote the signal. The autoregressive model is a simple
measurements and to obtain the best possible solutions to prediction of the current signal value by a linear combination
signal processing and classification problems. We show in the of M previous signal values plus a constant term and an error
current paper that a combined classifier using HMM's and term:
MLP-NN's is likely to outperform the individual classifiers. It
is relevant to note here that the concept of a combined classifier r(l) = ±+ '0jr(l j) + V/wi I = 1,.. ., L (2.1)
for robust classification is well known in pattern recognition j= 1

theory, and has already been tried with other classifiers for ) 1

transient sonar signal classification [2]. Fig. 1 gives the block where:
diagram of our scheme. Note that there is no preprocessing r(l): current signal value; r(l - j): previous signal values;
involved in our system. This is a deliberate decision. The O9: autoregressive coefficients to be estimated; M: model or-
preprocessing operations are often quite dependent on the der; a: constant to be estimated; v'-.: constant to be estimated;
given signal. Usually, these operations try to enhance or wl: random number with zero mean and unit variance.
deemphasize certain aspects of the given signal for better 01,', 0M, a,, 13 are the model parameters; /3 is the vari-
classification. A potential drawback of such operations is that ance of prediction noise and reflects the accuracy of the
when the signal classes are changed, the old preprocessing prediction.
schemes are often invalid. Thus, to design an automatic system It is noted from (2. 1) that to predict r(1), we need M initial
for transient signal classification, we will not include any values of r(l), i.e., r(-M + 1), r(-M + 2),.. ,r(O). It is
preprocessing operations. This design without preprocessing easy to derive that:
is expected to make our system suitable for a wide range of _R . Rim S- Ro 1

The remaining sections of this paper are organized as [ (2.2)

follows: Section II describes the implementation of AR, FF1'- 0
M R.jAI R1^• SM |ROM

based, and wavelet-based features. Section III presents the 0 K ... SM N L So
theory and implementation of HMM as applied to our clas- wherc
sification problem. In this section, some discussions on the
implementation of NN are also included. Section IV discusses uL
some practical considerations in implementation. Section V I? '• -rU - tr(1 - , , j = 1,... M (23)
gives the detailed experimental results using DARPA standard 1-I

data set I. Section VI summarizes the conclusions.

, - z), t - . 1, . A! (2.4 )
II. FEATURE REPRESENTATION

As described in Section 1, we have three different feature :n
representation schemes: one based on an autoregressive model, 2

one based on Fourier power spectra, and the other based on the 1 0() ,(1 (25)
wavelet transform. In this section, these feature representation I
schemes are briefly discussed. ) I (2I
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Fig 2 An example of the different clases of signals used in our experiment.

If n is zero, (2.2) takes the form of Yule-Walker equa- C. Wavelet Transform

tions. The R matrix is then Hermitian and Toeplitz 119]. In the short-time Fourier transform, time and frequency

A straightforward approach is to replace the autocorrelation reouinaefxd.BcsefHeebrgspnilth
functions in R by sample autocorrelations. Often, a more time and frequency resolution product cannot be better than a
efficient algorithm, known as Burg's algorithm, is used to t al

compute 0O. For details regarding Burg's algorithm, please

,see (191. It should be noted that the choice of optimal model t civ ihtm eouina h oto rqec
order, Ml, is application-dependent and is usually determined resolution, and vice versa. This is easily demonstrated by

empirically. making the frequency resolution proportional to frequency.

In the wavelet transform, this compromise leads to very high
time resolution for high-frequency signals, and high-frequency

B. Fourier Power Spectrum resolution for low-frequency signals. Since the sonar signals

From the given data segment, its FFT is computed. Before almost always display an evolving frequency profile with

FFT computation, each data segment is windowed with a time, wavelet transform representation is philosophically very
Kaiser-Bessel window function. The magnitude square of the appealing.

FFT coefficients gives the Fourier power spectrum of the In the wavelet transfor-m, the transform space is detined

data. by the basis functions, which are all derived from one baJsit
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wavelet via scaling and translation; i.e., if h(t) is the basic and transform coefficients with relatively higher magnitude
wavelet and haI- (t) is a generic wavelet basis function, then are selected as features. For instance, 256-point real data

[201, [211: will give 128 distinct FfT power spectral coefficients. For a
particular signal class, all such FFT power spectral coefficients

are analyzed, and the top few, say L of them, in terms of
When dmagnitude, are selected as features for that signal class. The

for a and ir. Consequently, the transformation of a signal r(t) union of all individual feature sets, each one belonging to

using these basis functions, and subsequent reconstruction of one signal class, gives the global feature vector set for all

x(t) from the transform, is a simpler task. The interesting signals. A similar procedure is used'to select the feature vector

task is to appropriately discretize the time-scale parameter a from wavelet transform coefficients. The details regarding the

and T such that a true orthonormal basis function is obtained, number of frames in a signal template, the percentage of

The solution depends on the choice of wavelet h(t). So, our overlap among successive frames, and the number of features

problem is: in each feature vector are described in Section V.

discretize hi, t&(t) =aoj/2h(ao-t - kT) IIl. CLASSIFIER DESIGN

where 7' is the sampling period of the discrete signal. Of In our work, we have used two classifiers: HMM and
course, if we choose ao 1 and T small, we are close to the MLP-I"N. In this section, these two classifiers are described.
continuous case. For implementation advantage, our interest is
in the dyadic wavelet that has ao = 2, i.e., A. Continuous Density HMM

h1 , k,(t) = 2- 1 2h(2-t - kT) A first order N-state Markov chain is defined by an N x N

state transition probability matrix A and an N x 1 initial
where j and k belong to the set of natural numbers. The
Daubechies wavelets are a class of discrete orthonormal dyadic probability vector 171, where:

wavelets. An M-order Daubechies wavelet [201 is given by A - {aij}, aij = Pr(q+ 1 = jq =i);

M coefficients denoted by Cj, j = M...,M- 1. Then,
the convolution of the signal with a FIR filter of length M i,j=1,2,. ,N
(Cj, j = 0,---M - 1) gives the smooth component. On 11 = {7ri}; wrj =Pr(q, =i), i = 1, 2,...,N

the other hand, the convolution of the signal with a FIR Q = {qt} - state sequence. qt E {1, 2,-..,N},
filter of length M and coefficients (-1)-j'CMIj, j t 1, 2,---,T
0,... M - 1 gives the detail component. After one pass of this
algorithm, the smooth and detail components are decimated N-number of states
by 2. The smooth components are then transformed again, T-length of state sequence.
and the procedure continues until we have only two smooth
components left. The output, at this stage, is the wavelet
transform of the original signal. The coefficients in Daubechies By definition, •'L 1 a,, = 1 for i = 1, 2, -- , N and El=
wavelets are obtained from orthonormality conditions and 7ri = 1. A state sequence Q is a realization of the Markov
"smoothness constraints." For an M-order wavelet, these chain with probability:
conditions and constraints lead to exactly M linear equations. T

Thus. M coefficients are uniquely detehnined. For more Pr(QjA, I) = lrqllaqq. (3.1)
discussions aad details about the coefficients, see [20], [21].
For an excellent exposition related to theory and applications t=2

of wavelet transforms, please see [231. A hidden Markov model is a Markov chain whose states

cannot be observed directly, but can be observed through a
1). Feature Selection sequence of observation vectors [7]. Each observation vector,

The feature representation schemes described so far trans- also called a symbol, manifests itself as states through cer-
form the original signal into feature space. Since some features tain probability distributions. In other words, each observed
may be more useful than others, only the important features vector is generated by an underlying state with an associated

should bh selected for a compact representation of the signal probability distribution. For solving our problem, we will
for classification purposes. This is a necessary data reduction consider only the observations with continuous probability
stage. The idea behind this stage is that only a few features density, A continuous density HMM is characterized by the

can discriminate one class from the others. state transition probability A, the initial state probability 11,

In our scheme, the signal is divided into a number of and an N x 1 observation density or symbol probability density

overlapping frames. For the AR-model-based feature rrpresn- vector B, where:

tation, the AR coefficients are taken as the feature vecto,. Since
relatively few AR coefficients are needed to represent a frame,
AR feature representation is already in very compact form. For b,(ot) = po.terinri density of observation o+ given q1
FlPT1 power spectnum and the wavelet transform, the spectral 0) {ot} - observation sequence. t = I, 1..-.,''
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In many practical problems,, it is reasonable to assume model very well, all the observation samples of one class are

that the observation density is Gaussian. In this case, the likely to have few dominant state sequences. It means that the

density is completely specified by the mean and covariance optimal state sequence in (3.3) carries a lot of information that

of o,, i.e., b,(o,) = N(i, V,), where /it and V, are the may discriminate one class from another. For these reasons,

conditional mean vector and the conditional covariance matrix, we have chosen maximization of (3.3) as our criterion.

respectively, of ot given state qt = j. It should be noted Problem 2-Classification: To solve our signal classifica-

that, in our application, the states of an HMM may not tion problem, we create one HMM for each class. For a

have specific physical meaning. They may just reflect some classifier of P classes, we denote the P models by Ap,

clustering properties of the observation vectors in the feature p = 1, 2, -- ., P. When a signal 0 of unknown class is given,

space. we calculate:

We can more compactly denote the parameter set by A == O QIAp) (3.4)

(A, H, B). Then, an HMM is completely specified by A. Three p

problems associated with HMM are of our concern:1) Based on what optimization criterion should our model and classify the signal as belonging to class p*.
be built? Now we can immediately see one of the advantages of

2) Given the model and an observation sequence ? = HMM. The model for one class is independent of the model for
{oi, o2,) , 0i"}, how can we classify the observation effi- any other class, i.e., the training for one class is not related to
ciently? This is the classification problem. the training for any other class. It follows that when a new class

3ivntly? ahis numbher ofaobseration sequnes. ois added to the classifier, we need only to train for this new3) G iven a num ber of observ ation sequences of a know nb u d o n t h v to r ra n f r ny t er c s .In g e al

class, how can we obtain the optimal model estimate .? This class, but do not have to retrain for any other class. In general,

is the training problem. this advantage is not associated with a neural net classifier.

Poblem ]-Optimization Criterion: Suppose we are given For a given A, an efficient method to find p(O, Q*I A) is the
a model A and an observation sequence 0 = {01, 02,..., OT}. well-known Viterbi algorithm [11), [12] as described below.

Then, the density function of 0 is given by: Viterbi Algorithm

Step 1. Initialization
T For 1 < i < N,

p(OIA) = Dl.q, bq, (oi)fIaq,,q, bq, (Ot). (3.2)

Q t=2 
61(i) = 7r,b 1(ol) (3.5)

A direct choice of optimization criterion is the maximum

likelihood criterion that maximizes P(O IA). The estimation 01b(i) = 0. (3.6)

of the parameters by this criterion can be solved using the Step 2. Recursive computation

Baum-Welch reestimation algorithm [7). The algorithm is an

iterative procedure that guarantees a monotonic increase of the

likelihood function for a given set of training samples. 6tb) = max [bt-(I)a,,1b1(ot) (3.7)

Another optimization criterion is to maximize the state- i<t<N

optimized likelihood function defined by:
i(. IA =mxp0,Qj) / t (j) =arg max [V,_i(i)a,j]. (3.8)p(O, Q*[A) =m axp(O, QJA) 1 <t <N%

T Step 3. Termination

= I1MXltq 1 bq,(Oi)H a, q, bq, (ot) (3.3) P* = max [6rJ)i (3.9)
Q- e=2 I-<,<N

where Q -- { q;, -,',q.} is the optimal state sequence

associated with the state-optimized likelihood function, and q* q- = arg max (bT(0). (3.10)

is the ith state in this optimal state sequence. Equation (3.3)

is the density of the optimal or most likely state sequence Step 4. Tracing back the optimal state sequence

path among all possible paths. The estimation of the param- Fort = - 1.T-2,.,

eters using this criterion is given by the segmental K-means q;= t+(q•*+) (3.11)

algorithm [91, [101. This algorithm is an iterative procedure

that guarantees, under some conditions described later, the F* is the state-optimized likelihoo)d function, and Q" -

monotonic increase of the state-optimized likelihood function {q,, .. ,..., q } is the optimal state sequence.

for a given set of training samples. In practice, as t increases, the value of •"t(3) could be very

Comparing (3.2) and (3.3), we find out that (3.2) involves large or very small so that an overflow or underftow may occur

computation along all possible state paths, while (3.3) tracks during computation on a computer. To avoid this problem,

only the most likely path. Therefore, the computation required we take the logarithm of all probabilities and densities, and

by (3.3) is much less than that of (3.2). Also, since bq,(ot) replace all multiplications by additions. Obviously, the result

often has a large dynamic range, overflow or underftow is more of tracting the optimal state sequence is not affected by this

likely to happen in evaluation of (3.2) than in evaluation of modification. If any particular value is zero, we set it to a very

(3.3). Furthermore, in a particular application, if the data fit the small number such that it does not affect the result.
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Problem 3-Training: In creating the model for each class, B. Multilayer Percepirons
we should guarantee that the parameters we obtain are the Multilayer perceptrons (MLP) are feedforward nets with one

optimum for a given set of training samples. Since our decision or more layers of nodes between the input and output layers.
rule is the state-optimized likelihood function, it requires The lowest layer is the input layer, which does not have any

that the estimated parameter A be such that p(O, Q*iA) is processing capability. The highest layer is the output layer,
maximized for the training set. It is shown in [91 that the and any layer between the input and output layers is called
segmental K-means algorithm [10] converges to the state- the hidden layer. All the nodes in a layer are connected to the

optimized likelihood function for a wide range of observation nodes in the layer above it, and there is no connection within
density functions, including the Gaussian density we have a layer or from the higher layer. For example, a three-layer
assumed. The algorithm is described below, perceptron is shown in Fig. 4. The perceptron processing unit

1) Cluster all training vectors into N clusters using the min- performs a weighted sum of its input values ai

imum distance rule with random initial clustering centroids.

Each cluster is chosen as a state and numbered from I to N. K

The tth vector, ot, of a training sequence 0 is assigned to state X3 = f Iaiwj Yk = f ETjTjk

i, denoted as ot E i, if its distance to state i is smaller than its

distance to any other state j, j 5$ i. The distance measure we

have used is the unweighted Euclidean distance. This step is to where {w,, }, {Vjk} are the weight matrices and f(.) is usually

get a good initialization for the complete training procedure. a nonlinear function such as the sigmoid function

2) Calculate the mean vector and covariance matrix for each = 1/0 + ex).

state. For 1 < i < N,

S1•Generally, the multilayer perceptrons are trained with the
i2 =-• Eot (3.13) error backpropagation (EBP) algorithm [15] which is an it- F

oEZ erative gradient algorithm designed to minimize the mean

square error (MSE) between the desired output yZ and actual

output yk. Sometimes, a momentum term is also included in

-(ot -i)t(o -I2, (3.14) the training procedure. The details of this algorithm can be
oEi found in [14]. In addition to MLP's, other neural networks

such as Kohonen feature maps have also been used in pattern
where N, is the number of vectors assigned to state i. recognition. A good introduction to the neural nets is given by

3) Calculate the transition and initial probabilities. For Lippmann [ 13], and an excellent exposition of the NN is given

1 < i < N, by Hecht-Nielsen [171. For a useful survey on NN's and their

foundations, paradigms, applications, and implementations,•,=Number of occurrences of {ol E (} 3.15) seC [18], [22].

Number of training sequences

For I < i < N and 1 < j < N, IV. IMPLEMENTATION CONSIDERATIONS

a~3  A. Training of Classifiers

Number of occurrences of {ot E i and ot+1 E j} for all t Each signal template, i.e., exemplar, is divided into a

Number of occurrences of {ot• i} for all t sequence of partially overlapping segments. Each segment is

(3.16) then represented by one feature vector. The sequence of feature
vectors is used as one training/testing observation sequence for

4) Calculate density functions of each training vector for the ttMM. For the MLP-NN, the whole sequence of feature

each state. For I < j < N, vectors is used as the training vector. For example, if there

arc 20 four-dimensional vectors in the sequence, these 80
( 1features are used as training feaures for the MLP-NN, and the
('2•)M/•�,2IV1/2 MLP- NN is designed with 80 input nodes. The MI-P-NN has

[Cp 1 (o,-- ji.I-~ 3.7 one hidden layer, and it is trained using the backpropagation
•exp -2 /k-K(o, -L2)J (3.17) algorithm and sigmoidal nonlinearity. The I1MM's are trained

using segmental k-means algorithm [IlI as described in the

tHere M, is the dimension of the feature vector, previous section. For each signal class, one 11MM is designed.
5) Use the Viterbi algorithm and the new probabilities to During recognition, the test signal is matched against all

trace the optimal state sequence Q" for each training sequence. models to find the best match. The matching is done by the

A vector is reassigned a state if its original state assignment is Viterbi algorithm 1I1. 1121. ig .3 depicts the implementation
different from the tracing result, i.e.. assign o, E i if q; ý. 7 of IIMM. For more details about the number of points in each

6) If any vector is reassigned a new state in Step 5, use signal template, the number of frames in a signal template,

the new state assignment and repeat Step 2 through Step 5: the percentage of overlap among successive frames, and the

otherwise stop, number of ,ignal classes, refer to Section V.
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Fa uH idden A, (A, B, 11)

class i eature Markov ....

Extraction Modeling

(a)

Test sample etsI [

Comparison HMM A-.Extraction • °=agmxP

(b)

Fig. 3. Implementation of the HMM classifier. (a) Training phase. (b) Testing.

FFr power spectral coefficients with high magnitude are used

ai xj Yk as features. The union of the coefficients for all different signal
types constitutes the feature vector.

xo

ao B. Initial Clustering Center and Local Maxima for HMM

In Section III, we have assumed that the feature vectors
*Y have a normal distribution within each state. The global

convergence property of the segmental K-means algorithm
ON a,( is based on this assumption. Although this is a practical and

* reasonable assumption, when the number of training samples
2 Y2 is not sufficiently large, the data may not conform to this

12 a2 ,assumption very well. A better solution to this problem is

* replacing the Gaussian density by a mixture of Gaussian
SY3 Y3 densities, but this will greatly increase the complexity of the

13 amodel and therefore will be computationally very costly. If
we do not change our model but carefully choose the initial

cluster centers in Step I of the training algorithm (Section
III) [11], we may still reach the global maximum. Thus, in

WiJ Vj k the training procedures, we will try different initial cluster

Fig. 4. A three-layer perceptron. centers and select the set of parameters that results in the
largest average P* over all training samples of that class.

The AR coefficients are computed using Burg's algorithm.

The gain coefficient is not used due to a scaling problem. V. EXPERIMENTAL REsuIXS

The range of the "gain" coefficient is much much larger than
the AR coefficients. The gain is given by / 1(2.1)]. There A. Signal Description

are sophisticated techniques to overcome this problem and get We have used DARPA standard data set I for our experi-

better results. For instance, in [5] a product-code HMM is used ments. This data set provides seven classes of signals to test
that can take the gain coefficient into account. Daubechies-4 our algorithm. A typical example, one from each class, is

and Daubechies-20 wavelet coefficients are used to compute shown in Fig. 2. We denote these signal classes as:

the wavelet transform. As explained in Section II, for each Class A: Broadband 15-ms pulse

signal, only a few wavelet coefficients with high magnitude Class B: Two 4 ms pulses, 27 ms separation

are used as features. Similarly, for each signal, only a few Class C: 3 kHz tonal, 10 ins duration
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TABLE I TABLE I1
CONFUSION MATRIX, tIMM Cl.ASSIFER. AMN) CONIUSION MATRIX, 11MM CLASS!IFIR, AND
AR Cocrnc r.Er F-ATURFS (SIXTI'-ORDER) AR CouLFcn',rr FFA1UERS (TmrnlI-ORDwR)

Chosen Class Chosen Class

A B C D -E F N A B C D E F N

True Clars True Class

17 1 0 0 1 0 4 17 1 0 0 1 0 3A A

0 15 0 0 1 0 0 0 17 0 0 1 0 4B B

0 0 22 0 0 0 0 2 0 18 2 0 0 0
C C

D 0 0 2 20 0 0 0 D 0 0 2 20 0 0 0

1 0 0 0 15 5 1 0 1 0 0 14 7 0

0 0 0 0 9 13 0 0 1 3 0 5 11 2

0 3 0 0 2 6 11 N 0 2 0 0 6 7 7NN

"* 6th-order AR model - 10th-order AR model

"* 6-state HMM; 8-state is worse * 6-state HMM

"* Recognition accuracy = 73.3 % • Recognition accuracy = 67.5%

"* AR model may not be a good fit for this data
of a classifier is possible only when the classifier can classify

"• AR modellhas problem modeling a pure sinusoid low SNR exemplars with high accuracy. Another important

distinction in our experiment is that we have included ocean
Class D: 3 kHz tonal, 100 ms duration noise as a separate class. In DARPA data set I, ambient noise
Class E: 150 Hz tonal, I s duration has a frequency spectrum that substantially overlaps with that
Class F: 250 Hz tonal, 8 s duration of types A, B, E, and D signals. Thus, the inclusion of ambient
Class N: Ocean ambient noise. noise as a separate class makes our classification problem
We have created 45 templates, i.e., exemplars, for each much harder.

class, of which 23 are used as training templates and 22 We have tried a different number of states for HMM, from
as test templates. Each signal template contains 1024 data N = 2 to N = 12, and a different number of nodes, from
points. The sampling rate for the signal .is 24.576 kHz. For 10 to 30, in the hidden layer of the MLP-NN. We have also
this sampling rate, 1024 data points are enough to capture compared the results of AR models of different orders, from
'he essential characteristics of all transient types including the M = 2 to M = 10. Only the best results are reported in the
Class B type signal, which has the most time spread. This paper and the accompanying tables. Table I shows the number
1024-point signal template is divided into 21 frames of 256 of errors in classifying the total 154 test exemplars using AR
data points with an overlap of 218 points (approximately 85%) features and HMM's. The best result is obtained with the
between two successive frames. Once the feature vectors are six-state HMM, and sixth-order AR model. As stated before,
computed from each frame, the signal template is represented the gain coefficient is not used mainly because of the scale
by a feature vector sequence. The training/testing sets include problem. Table II gives the result of the same experiment with
exemplars from five different SNR groups. The lowest SNR ten-order AR model. The recognition accuracy, i.e., percentage
is 24 dB down with respect to the highest SNR. The first of correctly classified test exemplars, in both these experiments
group is the reference, i.e., 0 dB, group. The other groups are is rather poor. This poor showing of AR-model-based features
created adding background noise to this reference group, and could be attributed to two possible explanations: 1) the AR
the SNR values for these groups are -6, -12, -- 18, and -24 model may not be a good fit for DARPA data set 1; 2) the
(d13, respectively, with respect to the reference 0 dB group, AR model implemented with Burg's algorithm has a problem
The SNR is computed as the ratio of the peak signal power to modeling a pure sinusoid [19]. It can be clearly seen that the
background noise power expressed in dB, As a result, some AR model has great difficulty in discriminating type E and type
very noisy exemplars are included in our experiments. Most F signals-two single-frequency tonals with close frequencies.
classifiers can handle signals with relatively high SNR quite We have also found that the AR order beyond 6 is not helpful
well, but fail with low SNR signal. A meaningful evaluation as the extra poles try to match the spurious peaks due to ocean
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TAnBLE Ill TABI.E [V(CONFUIOI(N M4AIM.X |[MM CL.A'S~imrkI, ANI 1:1'|. ['L•ArvRi:s CONK.)SION MATR•IX, I[MM CI-ASSIFTEIR, AND t)A|UI9II(-imI 4 J;l-AIWRIA•

Chosen Class Chosen Class

A B C D D 1 N A B C D H D; N"Il'ue Class "T'rue Class

A 21 0 0 0 1 0 0 A 20 1 0 0 0 0 1

B0 19 2 0 1 0 0 n4 17 0 0 0 0 1

1 0 0 22 0 0 0 0 0 0 22 0 0 0 0

0 0 0 21 0 0 0 D0 0 0 22 0 0 0

0 0 0 0 21 0 1 0 0 0 0 21 0 1
B E

0 0 0 0 0 21 1 0 0 0 0 0 21 1
F F

0 7 0 0 3 0 12 0 4 0 0 0 0 18N Nq

* 30 FFT features • 30 features

* 8-state H1MM • 8-state 1lMM

* Recognition accuracy 89.6 % • Recognition accuracy = 91.5 %

* Recognition accuracy = 95.5 % when class for ocean noise TABLE V
CONFUSION MATRIX. 1]MM CLAssw-azt. AN DAmBECHns-20 .ATURS

is excluded. Chown Class

A B C D E P N
noise. It is conceivable that some performance improvement is _rue___,,__ABCDEFN

True Class
still possible with AR-model-based features [5]; however, as
we will show, the FFT power spectral features and Daubechies 20 1 0 0 0 0 1

wavelet based features hold more promise for our classification A

task. Please note that the results reported in [2] and [6] are also 3 17 0 0 0 0 2

not favorable for AR-model-based features.

Table III shows the number of errors in classifying the 0 0 22 0 0 0 0

total 154 test exemplars using FFT power spectral features
and HMM's. The best result is obtained 'with the eight-state D 0 0 0 22 0 0 0

HMM's. The recognition accuracy is now close to 90%.
When the ocean ambient noise is excluded, the recognition E0 0 0 0 21 0
accuracy is over 95.5%. Tables IV and V show the number
of errors in classifying the total 154 test exemplars using 0 1 0 0 0 21 0

wavelet-transform-based features and HMM's. The best re-
suit is obtained with an eight-state HMM's. The recognition N 0 5 0 0 0 0 17

accuracy is now above 90%.
Table VI shows the number of errors in classifying the total

154 test exemplars using FFT power spectral features and
MLP-NN. The best result is obtained with 20 nodes at the * 30 features
hidden layer. The recognition accuracy is now above 90%. - 8.-state HMM
Tables VII and VIII show the number of errors in classifying
the total 154 test exemplars using wavelet-transform-based - Recognition accuracy 90.9%
features and MLP-NN. Once again, the recognition accuracy
is above 90%. In particular, the MLP-NN classifier and
Daubechles-20 transform feature combination has achieved the exemplars using wavelet-transform-based features. The best
best individual performance--93.5% classification accuracy. result is achieved with Daubechies-4 transform features, and

We have also experimented with left-to-right 1IMM's. Table is reported In Table IX. This best result-88.9% classification
IX shows the number of errors in classifying the total 154 test accuracy-is somewhat inferior to the results achieved by
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TABLE VI TABLP VIII
('ONWIISION MATRIX, NN CI..AsrIIER, AND FI'r FIATIJRUS CONI'sl)N MATRIX, NN CIASSIrER. AND DAInWIMIIIS-20 I:-AfIRLi

Chosen Class Chosen Class

A B C D E F N A 1 C D 13 F N

True Class True Class

18 2 0 0 0 0 2 20 0 0 0 0 0 2
A A

1 19 0 0 0 0 2 0 20 0 0 2 0 0
B B

0 0 22 0 0 0 0 0 0 22 0 0 0 0c c

0 0 0 22 0 0 0 0 0 0 22 0 0 0D D

0 0 0 0 20 0 2 0 0 0 0 20 0 2E

0 1 0 0 0 21 0 0 0 0 0 0 22 0F P

0 3 0 0 1 0 18 I 0 0 0 2 1 18
N N

- 30 features 30 features

- 20 nodes for the hidden layer • 20 nodes for the hidden layer

• Recognition accuracy = 90.9 % Recognition accuracy = 93.5 %

TABLE VII
CoNFUsIoN MATRIX, NN C.Assm-"tm. AND DAuBEc-.s-4 FEArums initial guess of A and B probability parameters. This latter

Chosen Class initialization process is considerably more difficult, and needs

A B C D E F N more intimate knowledge of the data.

True Class
B. Combined Classifier

20 1 0 -- 0 0 0 1A From the confusion matrices given by Tables HI-VIII, it

is clear that every feature/classifier combination has a some-2 is 0 0 0 0 2
B what different performance. A pertinent question is-can we

combine the evidence of all the feature/classifier combinations0 0 22 0 0 0 0
C to yield results that would be superior to any specific fea-

ture/classifier combination? Such a combined classifier would0 0 0 22 0" 0 0

also be more robust. One simple way to combine the feature

0vectors is to extract AR, FFT-based, and wavelet coefficients

from each frame, and then form a large vector which would

0 0 0 0 0 22 0 be the input to either a HMM or MLP-NN based classifier. In
our case. this solution would mean a 66-dimensional floating

1 6 0 0 0 0 15 point feature vector for each frame. This tremendous increase
N in computational complexity can be avoided by intelligent use

of the classifier. A product-code HMM as described in 15] can
incorporate all three different feature vectors in one classifier

• 30 features without substantial increase in the complexity. Unfortunately,
these three feature sets are not independent of each other as

* 20 nodes for the hidden layer required by the theory of product-code HMM.
We have devised a simple classifier, henceforth called the

* Recognition accuracy - 90.9 % majority classifier, that would take the output of each specific

feature/classifier combination and assign the test exemplar the
fully connected IIMM's. Another important point is that the class with the majority votes only when the vote exceeds
initialization process as described in Section III Is only good a threshold. Since we have six votes per test exemplar, we
for fully connected H-IMM's. For left-to-right HMM's, the choose a threshold of 3 and 4. If the majority vote is below
initialization process needs to be defined in terms of an this threshold, that test exemplar is not classified. The detailed
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TABLE IX TABLE X
CONFUSION MATRIX. L-R HMM CLASSIFIER, AND DAUBECHIES-

4 
F:EATURES FUSED CONR;.SION MATRIX, MAJORIrY VoTi NWI oI 1) 4

Chosen Class Chosen Class

A B C D F F N A B C D E F N X

True Class True Class

20 2 0 0 0 0 0 A 20 0 0 0 0 0 0 2
A

2 18 0 0 0 0 2 B 0 17 0 0 0 0 0 5
B

0 0 22 0 0 0 0 0

D 0 0 22 0 0 0 0 C
0 0 0 22 0 0 0 0D

D 0 0 0 22 0 0 0
0 0 0 0 21 0 1 0

E
N0 1 0 0 20 0 1

0 0 0 0 0 21 0 IF
0 1 0 0 0 21 1

F 0 1 0 0 0 0 17 4

N

1 6 0 0 0 0 15
N

•Misclassifiedl = 2

• 30 features •No decision = 12

* 8-state HMM X means no decision

* Recognition accuracy = 88.9 %
TABLE XI

FusED COr, 'uSION MATRIX, Mxjo'rry VOTE NEEDED=3

Chose Class
experimental results are given in Tables X and XI. When

the threshold is -4, only two test exemplars are misclassified, A B C D E F N x
Tr~ue Class

but 12 are not classified. When the threshold is 3, five test
exemplars are misclassified, but only three are not classified. A 20 0 0 0 0 0 1 1

It is very clear that the exemplars that would otherwise be
classified erroneously are now classified as "nonclassified" by B 2 19 0 0 0 0 0 1

the combined classifier. Also, very few test exemplars are
misclassified by the combined classifier. Thus, in the case C 0 0 22 0 0 0 0 0

of a definitive decision, the combined classifier has close to 0 0 0 22 0 0 0 0

100% recognition accuracy. For test signals with low SNR, D

the combined classifier would not make a wrong decision. For 0 0 0 0 21 0 1 0

the lack of consistent evidence, it would term the signal as
"nonclassified." F 0 0 0 0 0 22 0 0

It is possible to implement the classified-versus-
nonclassified decision for the individual classifier by finding N 0 1 0 0 0 0 20

an optimum threshold. For a HMM classifier, the computation
of this optimal threshold requires some knowledge about the
distribution of the observation sequence corresponding to •Misclassified = 5
optimal Viterbi state sequence given the HMM parameters.
For an MLP-NN, the distribution at the output node is No decision= 3

needed. While these distributions are very difficult to find, X means no decision

the majority classifier simplifies the threshold computation
problem enormously especially when the output of each
classifier/feature combination is given equal weight. Also, classified, the performance of the majority classifier is still
the best performance for a classifier/feature combination is
given by the NN/Daubechies-20 combination. In this case, supenor to any individual classifier.

10 out of 154 exemplars are wrongly classified. In the case It is interesting to compare our data and results to those

of a majority classifier with threshold 3, five exemplars are of Ghosh et al. [2] and Desai et al. [31. Although, the same
wrongly classified and three exemplars are not classified. DARPA data set is used in [2], [31. only four signal types
Even if we consider the "nonclassified" exemplars as wrongly are considered in [31. In [21, noise as a separate class is
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not considered. As we htave mentioned before, the addition 161 M. K. Shuields and C. W.rilernecn, "A huidden Markov mnodel appioach to

o1 ocean noisc ats a separate class makes the classification thie classification of acoustic transients," in Proc. I('ASSP. San I r~ncisco.
CA, 1992, pp. 2731-2734.

of DARPA data set I very difficult. Anothcr important poin~t 171 L. Rt. Rabiner and B. It, Juang, "An introduction to hidden Maikov

is that, in our technique, no preprocessing is used-, but such models," IEEE ASSP Mag., pp. 4-16. June 1986.

processings are used in [21. [31. Also, the experiments in 12] 18I L.. R. Rabiner. B. If. Juang. S. E. L~evinson, and M, M. Sondhi.
0 "Recognition of isolated digits using hidden Markov models with

use signals from DARPA data set I test data set. Since we have contiuos mixture densities," AT&T Tech. J.. vol. (A. no. 6. pp.

no access to the "truthing" of these data, we have focused 1211-1234, July/Aug. 1985.

DARA dta et trinig dta et.The 19) BI. H. Juang and L. Rt. Rabiner. "The segmental K-mneans algorithm for

our xpeimen onestimating parameters of hidden Markov models." IEEE Trans. Acoust..

"truthing" of all the signals in this set is known. Thus, a proper 5peech, and Signal Proces.. vol. ASSP-38, no. 9, pp. 1639-164 1. Sept.

comparison is not possible at this point though our technique 1990.

hasperormd qitewel, hic vaidaesour approach. Also, [10] L. ft. Rabiner. J. G. Wilpon, and B. It. Juang. "A segmental k-means
has ý,-formd qitewell whch vlidtestraining procedure for connected word recognition." AT&T Tech. J.. vol.

a number of conclusions from our work confirm two main 65. no. 3. pp. 21-31, May/June 1986.

observations made in [2]. These are: 1) both FFT- and wavelet- 1II1 Y. lie and A. Kundu. -2-13 shape classification using 11MM." IEEE
Trans. Part. Analysis and Mach. Iniell.. vol. 13. no. 11, pp. 1172-1184,

based features are promising, and 2) a combined classifier is 1991.

likely to yield better results. [121 0. D. Fomney. Jr.. "'lse Viterbi algorithm." I.E'EEProc.. vol. 61. no. 3.
pp. 263-278. Mar. 1973.

(13) Rt. P. Lippmann. "An introduction to computing with neural nets." IEEE
ASS)' Mag.. pp. 4-21. Apr. 1987.

VI. CONCLUDING REMARKS AND FuTI4VE RESEARCH! 1141 J. Ei. Dayhoff. Neural Netwiork Architecture: An Introduction. New
York: Van Nostrand Reinhold, 1990, ch. 4, p. 58.

Based on the experimental results, thle following conclusions 1151 D. Ei Rumeihart. G. E. Hinton, and Rt. 1. Williams. "Learning in-

are in order: ternal representations by error propagation." in Parallel Distributed

1) Both M-1- and wavelet-based features are promising. Processing: Explorations in the AMticrostructure of Cognition, Vol. 1:
Foundationst, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge.

2) To a certain extent, the wavelet-baseýd features comple- MA: M.I.T. Press. 1986.

ment the FFT-based features. [161 T. Brotherton. T. Pollard. Rt. Barton, A. Krieger, and L. Marple.

3) To a certain extent, the 11MM classifier complements the "Application of time-frequency and time-scale analysis to underwater
acoustic transients." in Proc. IEEE Int. Symp. Tme-freq. and Ti1me-scale

NN cassiier.Analysis, Victoria, B.C.. Canada. Oct. 1992.

4) The combined classifier has the best result. Also, the [171 Rt. Hecht-Nielsen. Neurocomputing. Reading, MA: Addison-Wesley.

combination is very robust. Only a simple combination is de- 18 0
[1)P. K. Simpson. Artificial Neural Systems., Foundations. Paradigms.

scribed in the paper. Other possible combinations of HMM/NN Applications and Implementations. Elmsford. NY: Pergamnon. 1990.

classifier should be. explored. 1191 S. Kay. Modern Spectral Estimation. Englewood Cliffs. NJ: Prenti cc
Hall, 1988.

5) For longer Signals, HMM-based classification could prove [201 1. Daubechies. "Oiihonomtal bases of compactly ý,apported wavelets."

more effective. The longer signals are likely to have more Comm~ Pure and Applied Math, vol. 4 1, no. 7, pp. 909-996. 1988.

sequence information. The exploitation of this sequence infor- [211 0. Rioul and M. Vetterli. "Wavelets and signal processing." IEEE ASSP
niaton s th raionae fr usng MM. 221Mag.. vol. 8. no. 4. pp. 14-38, 1991.
matin i theratonae fo usng H M. 22]C. Lou. Neural Networks: Thieoretical Foundations and Analysis. New

6) Features based on other wavelets, such as Gabor York: IEEE Press. 1992.

wavelets, may prove more effective. This is another interesting [231 R. K. Young. Wavelet Thieory and Its Applications. Boston. MA:
Kluwer, 1993. inl n

future research topic. [241 W. Y. Huang and R. C. Rose. "Integrated models of sinlad

background for an HMM/neural net ocean acoustic events classifier."

in Proc. 25th Ann. Asilomar Con!. on Signals, Systems, and Computers.
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