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Abstract

In this paper, a new methodology for power system
dynamic response calculations is presented. The
technique known as the waveform relaxation has been
extensively used in transient analysis of VLSI circuits
and it can take advantage of new architectures in
computer systems such as parallel processors. The
application in this paper is limited to swing equations
of a large power system. Computational results are
presented.

I. INTRODUCTION

The main trust of this paper is to introduce the wave-
form relaxation method (WRM) for the transient stability
analysis of very large scale power systems. In recent
years this method has been shown to be very effective
for the transient analysis of VLSI circuits. Although
the VLSI systems are technologically newer compared to
electric power systems, they share many commonalities
with them: the number of nodes typically exceeds
several thousand on realistic systems and both circuits
are sparse. Also, a typical VLSI circuit is a circuit
containing mainly R-C components, while a typilcal
power system consists primarily of R-L components
(with some capacitive effects on long lines and as
shunt compensation). Because of the dualism between
the RC and RL circuits, it 18 reasonable to assume
that the WR techniques can be applied to power systems
as well. The implementation of WR algorithms on pipe-
line or parallel processors will result in enhanced
computational efficiency. Hence, the results of this
paper complement the recent research work [1]-[3] on
applying parallel processors for solving power system
problems. Both VLSI circuits and very large scale
power systems (VLSP) share the common property that
the system matrix is diagonally dominant, if the
coupling between machines or groups of machines is
weak. In the WR algorithm, this helps in speeding up
the convergence. We emphasize here some of the common
problems in the VLSP and VLSI systems since the inten-
sive research efforts in the VLSI area can benefit
power systems research and vice versa. Moreover, the
developments in the VLSI research area are most often
geared towards the newest computer technology and
architectures ([6]. These are important factors in
on-line computer implementation or developing software
for power system simulators. It is a well known fact
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that researchers in VLSI simulation have benefited
immensely from the pioneering work on sparse matrix
techniques first applied to power systems [4]. It is
appropriate to emphasize such cross fertilization of
ideas in terms of dynamical simulation as a healthy
trend.

In particular, in this paper, we present recent
results of using waveform relaxation in VLSI circuits
[5]-{7] to the transient stability simulation problem
with the classical model. The results are general
enough to be applicable to multi-machine systems with
mixed algebraic and differential equations. Use of
parallel processing architectures and numerical con-
vergence aspects are discussed. The simulation
results on three, ten, and twenty-machine systems are
presented. They are very encouraging and support the
viewpoint that new avenues for finding more efficient
numerical methods for stability transient analysis
(TSA) still exist to the point that the transient
stability analysis, if combined with a proper computer
technology, may become feasible for real-time monitoring
and security evaluation of electric power systems.

II. THE DYNAMICAL MODEL FOR ELECTRIC POWER SYSTEMS

Generally, a multi-machine dynamical model is described
by the set of differential and algebraic equations of
the type

Me
"

F(x,y) , x(0) = x (2.1a)

0

o
]

G(x,y) (2.1b)

where (2.la) are equations of the generating unit and
(2.1b) are those corresponding to the interface
equations and the network equations.

If a classical model is assumed for the machine
and all loads are converted into impedances, we have
equations of the form

X = F(X) X(0) = X

0

Swing equations with the classical model can be put in
the form (2.2) as shown below.

(2.2)

The swing equation for ith machine is

dzsi 2 n
M =P, - EG,, - (C,, sin§,, + D,. cos §,.)
1 42 mi 1714 jzl ij 1ij ij 1j
#1
= Pi - Pei (61 e 6n) (2.3)
where
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H,
M, = -1 with H, = inertia constant in secs.
i nf i
. 2
Pmi = mechanical input in p.u., Pi = Pmi - Eicit
A
EL/Gi = yoltage behind the transient reactance Xdi

C,.=E, E, B ; D,, =E, E. G

1] i3 1] ij i 73 i3

Gi" Bij are elements of the Y matrix at the internal
3

nodes of the generator. Depending on the system con-
figuration (faulted or post-fault), these will assume

appropriate values.

We take 61 as the rotor angle with respect to the syn-

a8
i
chronously rotating reference axis. Let &i =35 T Y%
4 4. be the relative angular velocity where 8, 1s the
i

i
rotor angle w.r.t. absolute reference frame and we =

synchronous velocity (377 rad/sec). Introducing the
state variables 61 and Wy (i =1, 2, «vs, n}, we get

the state space equations

Cne
]

oy

=1 - i = ves
Wy =y (Pi Pei (61, ceny 6n)) i 1, 2, , n

i
The initial conditions of (2.4) are (61(0), 0)1i-=1,
2, «us, 0 where 61(0) is computed from the load flow

data and x), of the machine. The usual

di
regarding Pm

assumptions
L= constant and Ei = constant are made
during the simulations.

III. BACKGROUND ON THE WAVEFORM RELAXATION METHOD

General Qverview

The dynamical model used for transient stability studies
of an electric power system cousisting of n machines
reviewed in Section 1I, can be thought of as a system
of 2n coupled first-order differential equatioms. 1If
the unknown variables are denoted in a vector form

X = [51 w, 52 @ e 8w ]

e X X ] (3.1)

=[x X X nl n2

11 12 21 X22

the power systems equations defined in Section II

could be represented as

X, = ves , .2

X)) = Fpp s Xpps Xy Xppa eees Xs X0) 0 (3.22)
X.. = vee 3.2b
Xg = Frp Ry Kpps Xopps Xpps eees Xps X0 (3.20)
X | = ces 3.2

X ™ Fap Ky Xy oo X0 X)) (3-2¢)
X . = . 3.2d
Ko = Fop (s Xppe mees X0 X00) (3.2d)

Mathematically, the transient analysis problem is a
problem of integrating for given initial coanditions
X(to) = XO equations (3.2a)-(3.2d) in time to obtain
X(t) for t > to and tg [tO, T}. The time T is fixed
prior to performing the integration and is generally
1-2 seconds. The efficiency of the transient analysis
method is mainly measured by the necessary CPU time to
generate X(t) for all tglt Tl. Both implicit and

O’
explicit methods of integration are used in power
system dynamic response calculations [8]. Unique

properties of power systems like highly localized
fault propagation phenomena or coherency of machines,
etc., are not accounted for in the standard transient
stability programs, unless coherent dynamic equivalents
are established by a separate program. Research in
coherency and dynamic equivalents has resulted in
good production grade codes [9]-[10]. It is, however,
highly desirable that results in coherency be inte-
grated with numerical algorithms and WR algorithm
precisely allows for this. Also if some variables do
not change during simulation, i.e., latency phenomena,
it could be accommodated in our methodology [12].

For any high order problems, direct numerical integra-
tion (explicit) methods (DNI) are more attractive than
the class of so-called implicit numerical integration
(INI) schemes (backward Euler formula being one of the
simplest numerically stable in this group). A basic
difference between these two methods is that the INT
method involves the inversion of a matrix whose order
is the same as the order of differential equations to
be solved, e.g., 2n for the system (3.2). This is
thought of as being computationally expensive for
transient analysis studies since the matrix inversion
needs to be done at each step in time. Algebraization
of the differential equations with LU factorization
with sparsity and vector array processors reduce the
computation [13]. Typically, if the integration time
is [to, T] and the integration step is h, the number
(1T - to]

T which is

extremely time consuming. This reasoning should not
be confused with the reasoning in load flow computa-
tions, where algebraic, rather than differential
eauations are solved. Here, Newton-Raphson's method
with sparsity and vector array processor reduces the
equations of the form AX = b is the most favored
approach, In power systems transient analysis, DNI
methods like Runge~Kutta are well accepted and used.
The proposed Waveform Relaxation Algorithms as a new
option are originally based on INI methods (like
Backward Euler Formula) and then combined with the
latency [12] property of diagonally dominant dynamical
systems, to reduce the order of matrices which need to
be inverted.

of inversions would be of order

Waveform Relaxation Method

The Waveform Relaxation Algorithms are illustrated
first on a simple system of two differential equations
in two unknowns, X X, ¢

)
Xl = Fl(xl’ X2) xl(tO) = XlO (3.3a)
X, = By(X5 X)) X (e) = X, (3.3b)

The basic idea of the WRM is to fix the waveformn Xz
in [to, T] and integrate equation (3.3a) as a one-
dimensional differential equation in Xl(t) over the

T} ("one sweep*). The solu-

whole time interval {to,




tion obtained for Xl(t) can be substituted in (3.3b),

which will then reduce to another first-order dif-
ferential equation in one variable Xz(t). Equation

(3.3a) is then integrated again using the new solution
Xz(t) and the procedure becomes iterative. A standard

numerical integration problem of =n differential
equations in n unknowns becomes a problem of solving
iteratively a sequence of n differential equations in
one variable. This algorithm 1is analogous to the
Jacobi method for solving the load flow equations.
Details can be found in [14].

The basic WRM for solving a general system of nonlinear
differential equations (2.2) 1is presented in Flow
Chart 1.

FLOW CHART 1.

The Basic Waveform Relaxation Method.

Input Data

Wavefora Guess xo(t): tc[to, T}

such that

XO(O) - Xo

]

Solve for tc[to, T]

X e T B(X X

L X e X e

X )

x1,k+1' x1+l,k' Pk

Yes
k <k
naxqo
k = k+]
No
Convergence
Check
No
Solution

k = ma
‘max ximum number of sweeps

1,k+1” 1 k+]
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A typical convergence check 1is

max max

(t) -x, (O] <e (3.4)
1<i<n te[to, T] ’

1%} a1

Important specific features of this numerical algorithm
compared to conventionally used power systems tran—
sient stability schemes are:

(a) the algorithm is iterative

(b) the step where the solution in the (k+1)8t sweep
of differential equations 1s employed involves
solving a differential equation in one unknown
Xi,k+1 only. The other variables Xl,k’ Xz’k,
ceay xi—l,k’ Xi+1,k’ ceny xn,k are known from
the previous sweep k. In the VLSI literature, a
typical INI method used to perform this step is
the backward Euler algorithm.

We adopt the same method here, and it basically
amounts to the following. Letting j correspond to the
integration step 1, to the ith state variable and k to
the sweep

Xi,k+1 = F, (xl,k, xz’k, cees xi_l’k, Xi,k+1’ xi+l,k ,
ceey xn’k) (3.5)

or

ol 3

- 3 j J 3
) By (30 X0 0 Xm0 X e

3 i
Kot o %y k)

1
+ Z ®, L (xd R xi’k+l, ooy X )(xj+ xi’k)

j+1

_1 J j _
+ (Xl ke X e o X (5 ke T X )

(3.6)
which implicitly defines

oF

W e awen=tad 0
%y

i,k+1 1,k+1 1,k’ i,k+1” "°°

J yy! ] j j
X))t By G oo Fligrr ooer X0
n aF,
1
+ 1 (x{ Lreees xi’k+1,..., k)(xj+ -1 Q)
(3.7

If higher order terms in the right-hand side of (3.7)
are neglected, (3.7) can be approximated as

oF

¥l _n 1.3 3

xi’k+l xi"&l + h(l - h X, (xl,k, ey xi’k+l, ooy
3oy 3 3 3
xn’k)) . F (x1 IR xi’k+l, xn’k) (3.8)
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IV. CONVERGENCE CONDITIONS AND PROCEDURES FOR SPEED-UP

It has been shown that rather mild conditions on con-
tinuity of functions Fi’ i =1, «i., n are required

for the WRM to converge for any initial guess X(tn),
te[to, T]. (Theorems 3.1, 3.1 in [5]).

For typical power systems the required conditions are
always satisfied. Going back to the parallelism with
the Jacobi method for load flow solution, a well known,
theoretically proven fact [23] is that this method
converges for a wider range of initial guesses than
the standardly used Newton-Raphson method. It is the
rate of convergence that makes the Jacobi method
inferior for load flow calculations. Jacobi method is
considered to converge linearly, while Newton-Raphson
converges almost quadratically. Since the WRM tech-
nique in transient analysis is analogous to Jacobi's
method for solving algebraic equations whose conver-
gence rate is linear, this might be a point of concern.
Gauss-Seidel WRM algorithm will improve the conver-
gence rate [5].

It is not surprising, however, that the initial con-
vergence rate obtained for VLSP systems is much higher
than the convergence rate for VLSI systems. We argue
in the next section that if the knowledge about cou-
pling between machines on a typical large scale power
system is used, the WRM easily becomes a superior
technique, even prior to parallel processing implemen-—
tation.

A true issue in comparing convergence rate of conven-
tionally used direct integration methods for transient
analysis with the WRM is the fact that the DNI methods
become inefficient for extremely large problems because
of the following two reasons.

(a) The sparse matrix solution time grows super-
linearly with the size of the problem. Experimental
evidence indicates that the point where the matrix
solution time begins to dominate is when the system
has over several thousand nodes, which is the case for
VLSP systems.

(b) The DNI methods become inefficient for large
problems when the differential equations are stiff.
Direct application of the integration method forces
every differential equation in the system to be
discretized identically, and this discretization must
be small enough so that the fastest changing variable
in the system 1is accurately represented. Gear's
formula [16] overcomes this difficulty, If it were
possible to pick different discretization points, or
time steps, for groups of differential equations in
the system so that each could use the largest time
step that would accurately reflect the behavior of the
associated variables, the efficiency of the simulation
would be greatly improved. This is the multiple time-—
scale issue and has been implemented in a DNI frame-
work [17].

Specific Techniques Employed

The partitioning of original power equations (2.4) is
done in 2 x 2 blocks, i.e., the angle 51 and speed Ch

are solved from two equations simultaneously. The
notation corresponding to the power system problem is
given in (3.1). If equations are solved one at a time,
the WRM does not converge. So, the results reported
here are for the case where two equations are solved
in two unknowns by the Backward Euler Formula and the
WRM adopted to this simulation is given by Flow Chart
No. 2.

FLOW CHART 2.

WRM Algorithm for Transient Stability Analysig

Go(t? = 8 te[to, T]

ag(€) = wy: te[co, T]

Solve for te[to, T]

Ore

T S el

_ 1
wi,k+l T M (Pi - Pei (6 eee §

5 1,k 1-1,k’

6i,k+l’ 61+l,k eee &

i = i+1

No

No
Solution

O —

k = maximum n
max umber of sweeps

Different time responses of different variables for
which we are solving naturally suggest grouping based
on coherency [9]-[11]. 1Initial experiments with this
show that the convergence rate is rather sensitive to
grouping. If the machines within a group are tightly
coupled, then the convergence rate in terms of number
of "sweeps" is better. WR algorithm can thus incor-
porate coherency based technique with numerical
integration. A major research effort on VLSP systems
with nodes of order of thousands should be based on
exploring this fact together with the WRM.



The other technique for speeding up the WRM convergence
rate is based on the so-called time windowing [6]. 1If
we are interested in results on time [to, T}, the WRM

could be applied on [to, TI] then in [Tl’ T2] and
[TZ, T} in order to reduce the total CPU time. The

effect of time windowing oun the numerical examples is
presented in the next section.

The grouping of differential equations to be solved
simultaneously has a significant effect on very large
scale systems and it should be done carefully. The
"adaptive clustering" idea reported in the VLSI liter-
ature [6] could be directly implemented since grouping
under the same name and meaning has been recently
reported by Zaborszky et al. [18]. Again, this is
what makes this numerical method very promising and
currently research is in progress in this area.

V. PARALLEL PROCESSING BASED WRM

An additional property of WRM is the fact that parallel
processing is a natural setup for the method. If one
processor is assigned to one group of variables which
are solved for simultaneously, the CPU time is reduced
proportionally to the number of groups. Considerable
work exists on parallel solution of ordinary differen-
tial equations [19]-[20].

A detailed discussion of the possible computer archi-
tectures for WRM methods is given in [6]. Previously
reported work on parallel processing in power systems
[1]-{3] exploits time-point pipelining algorithms.
The shared memory computer architecture is argued to
be more efficient for the WRM support of VLSI systems
which, we believe, should be common for VLSP systems.
The key problem in designing a parallel processor lies
in the communication between the processors and is
much easier here,

The main advantage of a shared memory system is that
it is not necessary to explicitly transfer data from
one processor to another. When a processor needs data
from another processor, it simply reads from the memory
location in which the other processor has written.
This allows for more dynamic algorithm structures (like
WRM with fault dependent grouping) because it is not
necessary to determine beforehand which processors
will need the results of a given calculation. There
are disadvantages, however (synchronization and lock-
ing being the major), but overall the shared memory
architecture appears to be better for more adaptive
algorithms.

VI. NUMERICAL RESULTS

The WR algorithm discussed in Section III was imple-
mented on the 3, 10 and 20 machine systems. The 3
machine data is taken from Ref. [21]), and 10 and 20
machine data from Ref. [22]. From the numerical
point of view it appears that the number of sweeps is
fairly independent of the size of the system. This is
probably due to the fact that the natural modes of the
system lie in a fairly small range. 1In each case we
have compared the WR algorithm with the explicit fourth
order Runge-Kutta method. Both simulations were coded
in PASCAL so that CPU times etc. can be compared on
the same basis. The step size chosen was At = .00375s
because the comparison was with Runge-Kutta method
which becomes ungtable for larger At. If an implicit
method such as the trapezoidal method is used, At
could have been chosen higher. 1In fact, in the WR
algorithm, At can be chosen even higher because of the
backward Euler method which is numerically stable.
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The CPU times were computed in each case and are shown
in Table I. Also shown are the number of "sweeps" for
the WR algorithm and the CPU time with At = 0.0375 s.
The progressive convergence for 66(t) in the 10 machine

case for different sweeps is shown in Figure 1. There
was no significant change in number of sweeps when At
was increased from .00375 s to .0375 s. It can be
seen that CPU time decreases for the WR algorithm when
At is increased to .0375 s.

3 m/c 10 m/c| 20 m/c
1. CPU time (WR) 4,440 36.232 151.941
At = .00375s
2. CPU time (WR) 0.402 3.072 21.337
At = .0375s
3. CPU time (RK) 1.130 7.291 26.674
At = ,00375s
4. N¥o. of Sweeps (WR) | 19 18 19
At = .00375s
TABLE 1. CPU time comparison and number of

"sweeps” for WR algorithm.

The effect of "windowing” in the WR algorithm is shown
in Table II. Two different time "windowing” patterns
were investigated. There is a significant decrease in
CPU time when windowing is used. Only the results
using three “"windows" are presented in Table TII,
Comparing these results with the corresponding cases 1
and 2 in Table I, we observe a 50% reduction in CPU
time. Since "windowing” 1is not possible in the RK
method, no direct comparison is possible. At this
point, it is felt that depending on the time interval
of simulation [to, T] beyond a certain number of

"windows,” one cannot expect a decrease in CPU time.
The same experience has been reported for the VLSI
systems {6]. Figure 2 shows the effect of "windowing"
on 66(t) in the 10 machine case.

3 m/c 10 m/c 20 m/c
1. CPU time (WR) 2,436 17.889 79.053
At = ,00375s
2. CPU time (WR) 0.220 1.614 9.605
At = .0375s
TABLE II. CPU time with "windowing” (.5, 1.0, 1.5 §)

Finally, the WR algorithm in combination with coherent
grouping was investigated. In the 10 machine case
there were six coherent groups as in [10]. The groups
were machines (2,3), (4,6,7,8,10), (5), (9), (1) (see
Figure 3). Instead of grouping the variables as in
(3.1), we group all varlables corresponding to a
coherent group as one set. If the coupling between
the areas is weak and within an area is tight, this
will have the effect of improving both the CPU time
and the number of sweeps. The improvement is depen-
dent on the degree of coherency., Table III shows the
effect of grouping on the 10 and 20 machine system.

10 m/c 20 m/c
1. CPU time (WR) 29.961 105.147
At = .00375s
2. CPU time (WR) 3.075 14.806
At = .0375s
3. CPU time (RK) 14 13
At = ,00375s
TABLE I1I. Effect of grouping.
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Figure 1. Successive sweeps of 66(t) for fault at Figure 2. Converged solution by "windowing" techmique
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Figure 3. Single line diagram of 10 machine, 39 bus
system.

bus #35 cleared in .24 Sec.
(At = .00375 Sec.) and solution by R-K Method



Note that a combination of windowing and grouping
still needs to be studied. Based on the results in
Tables II and III, we believe that the CPU time for
solving a 20 machine case will be shorter than the
shortest reported for the WRM, i.e., 9.605 CPU.
It is true that as the size of the system increases,
the ratio of CPU time of WR/RK increases from 2.155
for the three machine case to 2.96 for the 20 machine
case for At = .00375 sec. However, this is offset by
the possibility of taking larger At for the WR method
in which case the same ratio varies from .1946 to .36.
A comparison of the WR method with a stable method like
the trapezoidal or backward Euler method indicated that
the latter takes much computer time. Sparsity consid-
erations were not used and hence a direct comparison
method is not fair at this stage. Research on this
aspect 18 continuing. If the parallel processing
argument is introduced with a suggested number of pro-
cessors M, the reported computing time needed for the
WRM of 9.605 CPU would reduce to approximately r the
(9.605/M) CPU. However, many different constraints,
like cost and specific computer architecture, should
determine the choice of the number of processors M.
Vii. CONCLUSION

In this paper a new method for the transient stability
analysis of very large scale power systems is pro-
posed. This is the waveform relaxation method inten-
sively used in VLSI systems. Groups of differential-
algebralc equations are integrated for the “sweep” and
iteratively done as in Jacobi method of solving load
flow equations. The technique 1is very promising.
Current further work in this area concerns the detailed
models of machines and use of parallel processors to
make the tool an effective one. Also, theoretical
results on coherency are being combined with the
numerical aspects of the WRM.
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