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Systems With Nontrivial Transfer Conductances
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Abstract—In this paper, we provide a solution to the
long-standing problem of transient stabilization of multima-
chine power systems with nonnegligible transfer conductances.
More specifically, we consider the full 3n-dimensional model of
the n-generator system with lossy transmission lines and loads
and prove the existence of a nonlinear static state feedback law for
the generator excitation field that ensures asymptotic stability of
the operating point with a well-defined estimate of the domain of
attraction provided by a bona fide Lyapunov function. To design
the control law we apply the recently introduced interconnection
and damping assignment passivity-based control methodology
that endows the closed-loop system with a port-controlled Hamil-
tonian structure with desired total energy function. The latter
consists of terms akin to kinetic and potential energies, thus has
a clear physical interpretation. Our derivations underscore the
deleterious effects of resistive elements which, as is well known,
hamper the assignment of simple “gradient” energy functions and
compel us to include nonstandard cross terms. A key step in the
construction is the modification of the energy transfer between the
electrical and the mechanical parts of the system which is obtained
via the introduction of state-modulated interconnections that play
the role of multipliers in classical passivity theory.

Index Terms—Nonlinear systems, passivity-based control, power
systems, stability.

1. INTRODUCTION

RADITIONAL analysis and control techniques for power

systems are undergoing a major reassessment in recent
years; see [29] for an excellent tutorial account. This worldwide
trend is driven by multiple factors including the adoption of new
technologies, like flexible ac transmission systems, which offer
improvements in power angle and voltage stability but give rise
to many modeling and control issues that remain to be resolved.
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Also, the ever increasing utilization of power electronic con-
verters is drastically modifying the energy consumption profile,
as well as the underlying distributed generation. The new dereg-
ulated market, on the other hand, has seen the emergence of
separate entities for generation that imposes more stringent re-
quirements on the dynamic behavior of voltage regulated units
and the task of coordinating a large number of (small and large)
active and reactive control units in the face of significant load
uncertainty. It is, by now, widely recognized that the existing
methods and tools to approach power systems should be re-
visited to ensure reliable and secure planning—with the recent
dramatic blackouts in North America and Italy providing com-
pelling evidence of this fact.

In this paper, we study the fundamental problem of transient
stability of power systems whose reliable assessment has be-
come a major operating constraint, particularly in regions that
rely on long distance transfers of bulk power. Transient stability
is concerned with a power system’s ability to reach an accept-
able steady-state following a fault, e.g., a short circuit or a gen-
erator outage, that is later cleared by the protective system op-
eration; see [2], [9], [13], [25], and the tutorial paper [4] for
more details. The fault modifies the circuit topology—driving
the system away from the stable operating point—and the ques-
tion is whether the trajectory will remain in the basin of attrac-
tion of this (or other) equilibrium after the fault is cleared. The
key analysis issue is then the evaluation of the domain of attrac-
tion of the system’s operating equilibrium, while the control ob-
Jjective is the enlargement of the latter.

Transient stability analysis dates back to the beginning of the
electric age [5] with the problem originally studied via numer-
ical integration and, starting in the 1947 seminal paper [15],
with Lyapunov-like methods. A major open problem in this
area is the derivation of Lyapunov functions for transmission
systems that are not lossless, i.e., with transfer conductances
between busses.! While the transmission system itself can be
modeled as being lossless without loss of accuracy, the clas-
sical network reduction of the load busses induces transfer con-
ductances between the rest of the system busses, rendering the
negligible transfer conductances assumption highly unsatisfac-
tory [2], [13]. Although considerable efforts have been made
to find Lyapunov functions for lossy line systems, to the best
of the authors’ knowledge this research has unfortunately been
in vain. Actually, in [18] it is claimed that, even for the simple

IMore precisely, the conductances represent partial losses caused by the line

and the loads in the nodes. For the sake of simplicity, in this paper we say the
line is lossless or lossy if the conductances are neglected or not, respectively.
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swing equation model,? the standard energy function of a loss-
less system cannot be extended (in general) to a lossy system.
(See also [27] for some surprising results obtained via local sta-
bility analysis.)

Our interest in this paper is in the design of excitation
controllers to enhance transient stability. These controllers are
proposed to replace the traditional automatic voltage regulator
(AVR) plus power system stabilizer (PSS) control structure, and
questions about the benefits of this replacement have not yet
been answered. Given the highly nonlinear nature of the power
system models the applicability of linear controller design tech-
niques for transient stability enhancement is severely restricted.
On the other hand, the application of more promising nonlinear
control methods has attracted much attention in the literature,
with feedback linearization being one of the early strategies to
be explored [8], [13], [16], [34]. The well-known robustness
problems, both against parameter uncertainties and unmodeled
dynamics, of these nonlinearity cancellation schemes has mo-
tivated the more recent works on passivity-based techniques
[19], [33]. Most results along these lines are based on the appli-
cation of damping injection (also called L V') controllers (see
[7], [14], and [17].) See also [20] for an alternative passivation
approach. In [3], a dynamic damping injection controller is
proposed which is proven to enlarge the estimate of the region
of attraction and is shown (in simulation studies) to increase
critical clearing times for a single machine infinite bus (SMIB)
system with lossless transmission lines.

Attention has been given also to passivity-based methods that
rely on port-controlled Hamiltonian (PCH) descriptions of the
system [10], [22], [23], and [33]. As explained in Section III,
these techniques go beyond L,V schemes endowing the closed-
loop system with a PCH structure, with stability of the desired
equilibrium established assigning an energy function that qual-
ifies as Lyapunov function. In [30], we exploit the fact that the
lossless SMIB open-loop system is in PCH form, to give condi-
tions for a constant field control action to shape the energy func-
tion. In [28], again for this class of systems, we add an adaptive
Lo-disturbance attenuation controller (which belong to the class
of L,V controllers.) An energy function for the multimachine
case was first suggested in [31], where a domination design is
used to cope with the effect of the losses. In [35], the existence
of a static state feedback that assigns a PCH structure—using
the same energy function and still retaining the lossless assump-
tion—is established. This result is important because it paves
the way to additionally apply, in the spirit of [28], an L»-distur-
bance attenuation controller to this “PCH-ized” system. Unfor-
tunately, in neither one of these papers it is possible to prove that
the energy function qualifies as a Lyapunov function, hence the
stability of the desired equilibrium, which is the issue of main
concern in transient stability studies, is left unclear.?

2The situation for the more realistic flux-decay model [2], [13], that we con-
sider in this paper, is of course much more complicated.

3In [35], this claim is established if we make the assumption that the load
angles remain within (—7, 7). Even though this is true for the open loop system,
which lives in the torus, this structure is destroyed by the control, rendering the
assumption a priori unverifiable.

To the best of our knowledge, even in the lossless case, the
problem of designing a state-feedback controller that ensures
asymptotic stability of the desired equilibrium point for multi-
machine systems remains open. The main contribution of this
paper is to provide an affirmative answer to this problem for
the lossy case. Our work is the natural extension of [11] where,
for the lossless SMIB system, we propose a state-feedback
controller that effectively shapes the total energy function and
enlarges the domain of attraction. As in [11], the control law
is derived applying the recently introduced Interconnection
and damping assignment passivity-based control (IDA-PBC)
methodology [23], [24]. (See also the recent tutorials [22],
[24] and the closely related work [10].) The parameterization
of the energy function is motivated by our previous works
on mechanical [21] and electromechanical systems [26], and
consists of terms akin to kinetic and potential energies, thus
has a clear physical interpretation. Our derivations underscore
the deleterious effects of transfer conductances which, as is
well-known, hamper the assignment of simple “gradient” en-
ergy functions [4], [18] and compel us to include nonstandard
cross terms. As usual in IDA-PBC designs, a key step in the
construction is the modification of the energy transfer between
the electrical and the mechanical parts of the system which
is obtained via the introduction of state-modulated intercon-
nections that play the role of multipliers in classical passivity
theory [6]. As a by-product of our derivations we also present
the first “globally”* asymptotically stabilizing law for the lossy
SMIB system.

The remaining of the paper is organized as follows. The
problem is formulated in Section II. In Section III, we briefly
review the IDA-PBC technique. We give the slightly modified
version presented in [24] where the open-loop system is not in
PCH form, as is the case for the problem at hand. In Section IV,
we apply the method to the lossy SMIB system where we
show that a separable Lyapunov function that ensures “global”
stability can be assigned. In Section V we show that, already for
the two-machines case, the presence of transfer conductances
hampers the assignment of a separable Lyapunov function,
therefore, cross-term must be included. The stabilization
mechanism of the control is analyzed in Section VI, where we
provide a passive subsystem decomposition that reveals the un-
derlying stabilization mechanism. The general n-machines case
is treated in Section VII. Two simulation studies are presented
in Section VIII showing the enlargement of the domains of
attraction and its effect on the enhancement of critical clearing
times for a SMIB and a two-machines system. We conclude
with some final remarks in Section IX.

II. MODEL AND PROBLEM FORMULATION

We consider in this paper the problem of transient stabiliza-
tion of a large-scale power system consisting of n generators in-
terconnected through a transmission network which we assume
is lossy, that is, we explicitly take into account the presence of
transfer conductances. The dynamics of the ith machine with

4The qualifier “global” is used here in the sense that we provide an estimate
of the domain of attraction that contains all the operating region of the system.
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excitation is represented by the classical three-dimensional flux
decay model [4, eq. (9)] or [13, eq. (6.47)]

0; = wiownri
.- 12 !
Miwri=— Davriwnri + Pri — G By — Ey;

X Z E;j{G]uijCOS((Si —5j) -f—B]\,jijSiIl((Si - 5])}
J=1,j7#1

TaiEy; = — [1 = Bagii (xai — 2y;)] Egy — (2ai — w;)
X Z E,'“-{GMijsin(éi—(Sj)—BM,i]-cos(éi—éj)}
j=1,5s
+ Efsi +upi

The state variables of this subsystem are the rotor angle §;, the
rotor speed wj; and the quadrature axis internal voltage E(’]i,
hence, the overall system is of dimension 3n.5 The control input
is the field excitation signal uf;. The parameters G a5 = G arjis
Bari; = Barj; and Gy are, respectively, the conductance,
susceptance and self-conductance of the generator 7. E'¢,; rep-
resents the constant component of the field voltage and FP,,,; the
mechanical power, which is assumed to be constant. The pa-
rameters . 4;, :cfh, w;o and Dyy; represent the direct-axis—syn-
chronous and transient—reactances, the synchronous speed and
damping coefficient, respectively. We note that all parameters
are positive and z4; > z/;;. See [13] and [25] for further details
on the model.
Using the following identities:

Gcosb+ Bsind =Y sin(6 + )
Gsind — Bcosd = —Y cos(é + ) (1)

with Y2 = G? + B? and a = arctan(G/B), and introducing
the parameters

. A Eys; o A Ui A Dy p 2 Priwio

fi = i = i = S Vi
Ta; Ta; M; M;
A Garijwio a Barijwio A

Gij = T Bij = T Wi = WioWMi

We can rewrite the system in the more compact form
(éi = Ww;

w; = —Diwi-l-Pi—GiiEf—Ei Z EjYij Sin((si—(sj'-l-ozij)
J=1j#1

E’i:—aiEi—l—bi Z E; COS(5¢—5j+Oéij)+Efi+ui 2)

J=1,j#i

where, in order to simplify the notation, we use E; instead of

Ey;, and we have defined

Yi; 2 m Qijj £ arctan ”

L)
/
A A Tdi— T4

a; = T [1—Burii (zai—2ly;)]  bi .

5]

Yij. (3)

SIn the sequel, we will consider that the full system consists of the intercon-
nection of n subsystems of dimension 3, and talk about the zth subsystem only.
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Observe that a;, b; > 0, oy;; = oy; and that, if M; = M;,
Y;; = Yj;;. This assumption will be made throughout the rest of
the paper to simplify the derivations; see Remark 6.

We underscore that if G;; = 0 then «;; = 0. As shown later,
this ubiquitous assumption considerably simplifies the stabiliza-
tion problem. (It is convenient at this point to make the following
clarification: even in the case when the line is lossless, the clas-
sical reduction of transmission lines and load buses will lead to
areduced model with G;; # 0. To simplify the notation we will
refer to the case G;; = 0 (# 0) as lossless (respectively, lossy)
network cases.)

Problem Formulation: Assume the model (2), with u; = 0
has a stable equilibrium point at [§;«,0, F;.], with E;, > 0.6
Find a control law w; such that in closed-loop

—  an operating equilibrium is preserved;

—  we have a Lyapunov function for this equilibrium;

— itis asymptotically stable with a well-defined domain

of attraction.
Two additional requirements are that the domain of attraction of
the equilibrium is enlarged by the controller and that the Lya-
punov function has an energy-like interpretation.

A detailed analysis of the equilibria of (2) is clearly extremely
involved—even in the two-machines case. To formulate our
claims we will make some assumptions on these equilibria that
will essentially restrict |6;. — j*| to be small, a scenario which
is reasonable in practical situations. We will also sometimes
assume that the line conductances are sufficiently small.

Remark 1: In[27], it is shown that, contrary to a widely held
opinion, equilibrium solutions of the lossy swing equations with
|6« — 8« — ;| < (m/2) may be unstable, while it is known
that with transfer conductances neglected they are stable.

III. INTERCONNECTION AND DAMPING ASSIGNMENT CONTROL

To solve this problem, we will use the IDA-PBC methodology
proposed in [23]; see also [22]. IDA-PBC is a procedure that
allows us to design a static state feedback that stabilizes the
equilibria of nonlinear systems of the form

&= f(z) + g(x)u ©)

where x € R"™ is the state vector and ©v € R™, m < n is the
control action, endowing the closed-loop with a port-controlled
Hamiltonian (PCH) structure’

T = [Jd(x) - Rd(:l?)] VHd (5)

where the matrices Jy(z) = —J] (z) and R4(z) = R} (z) >
0, which represent the desired interconnection structure and dis-
sipation, respectively, are selected by the designer—hence the
name IDA—and H; : R™ — R is the desired total stored en-
ergy. If the latter has an isolated minimum at the desired equi-
librium z, € R™, that is if

x, = arg min Hy(z) (6)

6Because of physical constraints E; is restricted to be positive.

TWe note that all vectors defined in the paper are column vectors, even the
gradient of a scalar function. We use the notation V, = (8/9x), when clear
from the context the subindex in V will be omitted.
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then x, is stable with Lyapunov function Hy(z). As stated in
the simple proposition that follows, whose prove may be found
in [24], the admissible energy functions are characterized by a
parameterized partial differential equation (PDE).

Proposition 1: Consider the system (4). Assume there exists
matrices Jq(z) = —J] (x), Ra(x) = R, () > 0 and a func-
tion Hy (), which satisfies (6), such that the PDE

g (@) f(z) = gt (x) [Ja(z) — Ra(z)] VHy (7

is solved, where g (z) is a left annihilator of g(z), i.e.,
g+ (x)g(z) = 0. Then, the closed-loop system (4) with

u=[g"(#)9(=)] " g" (@) {[Ja(®) - Ra(=)] VHa - f(2)}

will be a PCH system with dissipation of the form (5) with x,
a (locally) stable equilibrium. It will be asymptotically stable
if, in addition, the largest invariant set under the closed-loop
dynamics (5) contained in

{z e R" | (VH,) " Ra(z)VHy =0} )

equals {z,}. An estimate of its domain of attraction is given by
the largest bounded level set {x € R"|Hy(z) < c}.

A large list of applications of this method may be found in
the recent tutorial paper [24]. In particular, it has been applied
in [11] for transient stabilization of SMIB systems fixing J4 ()
and R 4(x) to be constant and solving the PDE (7) for H4(x). In-
spired by [10], where the energy function is fixed and then a set
of algebraic equations for .J;(z) and R4(z) are solved, we ap-
plied this variant of the method for a class of electromechanical
systems in [26] with a quadratic in increments desired energy
function. In [21], these two extremes were combined for appli-
cation in mechanical systems. Namely, we fixed H4(z) to be of
the form

1

Ha(g,p) = 50" My (@)p + Va(g)

where the state z = (g, p) consists of the generalized position
and momenta, and My(q) = M] (q) > 0 and V,(q) repre-
sent the (to be defined) closed-loop inertia matrix and potential
energy function, respectively. PDEs for M;(q) and V4(q) were
then established, and solved in several examples selecting suit-
able functions for J4(q, p).

In this paper, we also proceed as in [21] for (2), fix the ki-
netic energy of the total energy function as (1/2) 31" | w?, and
choose a quadratic function in the electrical coordinates F;,
which similarly to the matrix M,(q) above, is parameterized
by a function of the angular positions ;. The proposed energy
function is completed adding a potential-energy-like function of
0;.

For the sake of clarity of presentation we will illustrate the
procedure first with the simplest SMIB case. Interestingly, we
obtain in this case an IDA-PBC that ensures the largest attain-
able domain of attraction—namely, the whole normal operating
region.

Remark 2: We have concentrated here in the design of the
energy shaping term of the controller. As usual in IDA-PBC,
it is possible to add a damping injection term of the form
—K4ig" (v)VHy, where Kg; = K, > 0, that enforces the

seminegativity of Hy. As shown in the simulations of Sec-
tion VIII this term may improve the transient performance of
the system.

IV. SINGLE MACHINE SYSTEM WITH LOSSY NETWORK

In the case n = 1, the model (2) reduces to the well-known
SMIB system

b=w
W= —Dw+ P, — GE? — EY sin(§ + a)
E=—aE+bcos(§+a)+Ef+u )

where we have introduced some obvious simplifying notation.
We underscore the fact that, due to the presence of losses in the
line, there appears a quadratic term GE? and a phase « in the
trigonometric functions. Compare with [11, eq. (1)].

We are interested in the behavior of the system in the set
D ={(6,w,E)|6 € [-(x/2),(w/2)], E > 0}. Mimicking the
derivations in [11] it is possible to show that inside this set there
is a stable equilibrium that we denote (84,0,F,), and the corre-
sponding Lyapunov function provides estimates of its domain
of attraction which are strictly contained in D. The objective is
to design a control law that assigns a Lyapunov function which
provides larger estimates of the domain of attraction of this equi-
librium.

As will be shown later, in this particular case we will be able
to assign a separable energy function, more precisely a function
of the form

Hyfb.w.5) = St 4 p0) + 2B -5 (0)

2
where v > 0 is some weighting coefficient and 1)(6) is a poten-
tial-energy-like function that should satisfy ¢, = arg min ¥ (4).
Our choice of energy function candidate (10), together with the
first equation of (9) fixes the first row, and consequently the first
column, and the (2, 2) term of the matrix .J4(6, E)—R 4.8 Hence,
we propose

0 1 0
Ji(6,E) = | —1 0 Ja3(6, F)
| 0 —Ja3(6, E) 0
[0 0 0
Ra= 10 D 0
100 r

where J23(6, E) is a function to be determined and > 0 is a
constant damping injection gain.
According to Proposition 1, the PDE to be solved is

—-VsHy — DV H; + ng,(é, E)VEHd

= —Dw+ P,, — GE? — EY sin(6 + «)
which, upon replacement of (10), yields the ordinary differential
equation
—Vp +~.J23(6, E)(E — E,) = P,, - GE> — EY sin(6 + o).

(11

8Similar to [21], and motivated by the form of the proposed energy function,
we make J, dependent only on (6, E) and take R, to be constant.
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Evaluating (11) at £ = FE,, we obtain
Vip = —P,, + GE? + E,Y sin(6 + a).

Replacing this expression back in (11) we can compute
J23 (67 E) as
1 .
Jo3(6, F) = - (E+E,)G+Ysin(6+a). (12)
From the previous construction, it is clear that Vi (6,) = 0,
therefore to ensure the minimum condition (6), and to estimate

the domain of attraction, it only remains to study the second
derivative of (), which is given by

V2 = E,Y cos(6 + a)
=FE,(Bcosd — Gsin )

where we have used the trigonometric identities (1) and the defi-
nitions (3) to obtain the last equation. Some simple calculations
prove that the function () is strictly convex in the interval
(—(m/2), arctan(B/@G)), where we remark that the right-hand
term of the interval approaches m/2 as the line resistance G
tends to 0.

We have established the following proposition.

Proposition 2: The SMIB system with losses (9) in closed-
loop with the control law

u = —blcos(d + a) — cos(bx + a)] — Joz(8, F)w

where J23(6, F) is given in (12) and + is an arbitrary positive
constant, ensures asymptotic stability of the desired equilibrium
(64,0,E,) with the Lyapunov function

1
Hy(6,0, B) = 3u” + %(E — B,)?

+ (GE} = P,) 6 — E.Y cos(6 + a)

and a domain of attraction containing the largest connected com-
ponent inside the set

max

66(—§,arctan g)

{(6,w7E) | He(b,w,E) < Hd(6707E*)}

that contains the equilibrium (8,,0,F,).
In particular, if the system is lossless, then the control takes
the simpler proportional-plus-derivative form

" (b . %p) [cos(8) — cos(8,)]

where p 2 (d/dt), ¥ > 0is a free parameter, and the estimate
of the domain of the attraction above coincides with D.

Proof: The proof of stability is completed computing the
control law as suggested in Proposition 1, selecting the free co-
efficients to satisfy ry = a, and using the equilibrium equations
to simplify the controller expression. The Lyapunov function is
obtained evaluating the integral of V¢ and replacing in (10).

9Actually, in the case n = 1, we have that B > G in most practical sce-
narios. Therefore, the interval is typically of the form (—(7/2), (7/2) — €],
with € > 0 a small number.
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Asymptotic stability follows also from Proposition 1 noting,
first, that the closed-loop system lives in the set!® [—7, 7] X R x R
and the energy function Hy(6,w, E) is positive definite and
proper throughout this set. Second, since H, < 0, we have that
all solutions are bounded. Finally, we have that Hd =0=F=
E,, w = 0, and this in its turn implies § = 0.

The claim for the lossless transmission line is established
noticing that, in this case, G = a = 0 reducing the control law
to the expression given in the proposition (with 7 = (v/B)) and
enlarging the estimate of the domain of attraction. <

Remark 3: The construction proposed above should be con-
trasted with the one given in [11]. In the latter, Jo3(6, E) is fixed
to be a constant and no particular structure is assumed a priori
for Hy(6,w, E). It turns out that, in this case, the energy func-
tion obtained from the solution of the PDE contains quadratic
terms in the full state plus trigonometric functions of §. A nice
feature of this approach is that the resulting controller is linear.
On the other hand, the estimate of the domain of attraction does
not cover the whole operating region as proven here.

Remark 4: It has been mentioned before that, because of
physical constraints, £/ > 0. The controller of Proposition 2
does not guarantee that this bound is satisfied, however, it can
easily be modified to do so. For, we propose instead of (10) a
function that grows unbounded as E approaches zero, for in-
stance

Ho(,w, F) = %Lﬁ +(8) +v[F = By log(F)].

Mimicking the previous derivations, we obtain the same func-
tion 1)(4), but a new interconnection term

Ja23(6, F) = —% [G(E + E,) +Ysin(6 + )]

that accordingly modifies the control. Another interesting vari-
ation that allow us to ensure global asymptotic stability consists
of selecting

Ha(8,w, E) = %wQ F406) + L [B - A BT

with A(9) a function to be defined. The PDE, evaluated at £ =
E.\(6), becomes

GEZN*(8) + E.Y sin(é6 + a)A(8) — Vi) — P, = 0.

If we now fix
P,
9(8) = 2 log [1 + (5 — 6.7

which is positive definite and radially unbounded, then the
quadratic equation shown previously can be solve globally (for

A(8).)
V. NECESSITY OF NONSEPARABLE ENERGY FUNCTIONS

In the previous section, we have shown that for the single ma-
chine case it is possible to assign a separable Lyapunov function

10Notice that, in contrast to [34], the proposed controller is periodic in &,
hence, it leaves the system living in the torus.
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1
P L2+j QLZ

Ptj0u POy,

Fig. 1. Two machines system with &G; the generators, and P ;, () 1.; the active
and reactive power of the loads.

of the form (10). Before considering the n-machines case we
will show now that, already for the two machines case, sepa-
rable Lyapunov functions are not assignable via IDA-PBC, thus
it is necessary to include cross-terms in the energy function. We
then propose a procedure to add this cross term for the two-ma-
chines system.

Caveat: In the two-machines case, the dynamics can be con-
siderably simplified defining a new coordinate 41 — d5. This sim-
plification is, however, of little interest in the general case. Since
the derivations in this section will help to setup the notation that
will be used for the general n-machines problem we avoid this
simplification and consider all the equations of the system.

A. Separable Lyapunov Function for the Lossless Case

We consider a power system represented by two machines
connected via a lossy transmission line as depicted in Fig. 1.
The dynamics of this system are obtained from (2) resulting in
the sixth-order model!!

51 =w1

w1 = — Dywi + P — G E} — YE 1 Eysin(§; — 62 + )
Ey = —a1 By + b1 Eycos(6; — 6y 4 a) + Epy 4 uy

by =ws

Wy = — Dowy + Py — G E2 + YE  Eysin(6; — 65 — )
Ey = —ayBy + by By cos(82 — 61 4+ ) + Eja +ua.  (13)

We want to investigate the possibility of assigning, via IDA-
PBC, an energy function of the form

Ha(s,w, E) = $(6) + %W + %(E _E)TI(E - E.)

with § = [61,52]T, w = [wl,wz]T, FE = [El,Ez]T, E* =
[E14, E2.]T, | - | the Euclidean norm and I’ = diag{v1,y2} >
0. Reasoning as in the single machine case we propose (14),

11Using the property sin(¢) = — sin(—a) we have inverted the sign of the
last term in the fifth equation to underscore the nice antisymmetry property that
appears if & = 0, which is alas lost in the lossy case. As will be proven later,
this implies a “loss of integrability” which constitutes the main stumbling block
for the assignment of energy functions.

as shown at the bottom of the page, where the J;;(6, E) are
functions to be defined and r; > 0.
The system of PDE:s to be satisfied is

— Vs, ¥+ Jas (6, E)yi1(E1 — Eqy)
+ Jo6(0, E)v2(Ey — Eoy) = F1(6, E)
— Vs, — J35(6, E)v1(E1 — Evy)

+ J56(6, E)v2(Eo — Eoy) = Fr(6, E) (15)
where we introduced the functions
Fi(6,F)
F(6, F) = ’
5= o )
A Pl—GllElz—YElEz Sin(51—52+a) (16)
- Py _G22E% —YFE{E, sin(62 -6 -l-Oé) )

Now, evaluating (15) at £ = E,, we get

Vip = —FF(8)
where we have defined FE+(§) 2 F(6,E,). Recalling
Poincare’s Lemma,!? we see that there exists a scalar function
1) : R? — R such that the previous equation holds if and only if

VFE = (VFE)T. (17)

Now

V51F2E* =Y Fi.Fs. COS((Sl — 09 — a)
V5ZF1E* =YF.F>, COS((Sl — by + a)

where cos(z) = cos(—1z) was used now to invert the arguments
in the first equation. These two functions are equal if and only
if o = 0—that is, if the line is lossless—concluding then that
* aseparable Lyapunov function is assignable via IDA-PBC
if and only if the line is lossless.
In this case, we can integrate V1) to get

1/}((5) = Y FEi.Fo [Sin(61* — (52*)((51 — (52) + COS((Sl - 62)]

where we invoked again the equilibrium equations to simplify
the expression. The Hessian of ¢(6) is positive semidefinite in
the interval |6, — 62| < (7w/2). Hence, the proposed energy
function will have a minimum at the desired equilibrium pro-
vided |61+« — 624 < (7/2), and the IDA-PBC will ensure its
asymptotic stability.

12poincare’s Lemma: Given f : R” — R”, f € C' inS C R". There exists
¥ : R® — Rsuchthat Vi = fifandonly if Vf = (Vf)T.

0 1 0 0 0 0
1 =Dy Jw(6,E) 0 0 Ja(6, )
0 —Jx(bF — 0 J35(6, E 0
. B) = Re=| TN s ) (14)
0 0 —J35(0,E) —1 —D» Js56(0, E)
0 —ng((s, E) 0 0 —J56((5, E) —T2
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B. Lossy Line

If the line is not lossless we have to introduce a cross-term in
the energy function and, reasoning like in [21] and [26], propose
to include a function ) : R?> — R as

Hy(6,w, E) = (8) + %|w|2

1
+5 1B~ MO E,] ' T[E - \&E,] (18)
where A(8,) = 1. The PDEs now take the form

Fi(6,E) = — Vi, 9 + 71 [E1 — E1.A(6)] E1.Vs, A
+ 792 [B2 — E2.\(6)] E2. Vs, A
+ Jo3(6, E)v1 [E1 — E1:\(0)]
+ Jog(6, E)vo [Ea — EauA(6)]
Fy(6,E) = = Vs, + 71 [F1 — E1.A(0)] F1. Vs, A
+ 72 [B2 — E2:A(0)] B2 Vs, A
— J35(8, E)y1 [E1 — E1:A(0)]

+ J56(8, E) vz [E2 — E.A(6)] (19)
which, evaluated at E = A(8) F., yields
Vip = —FF(5) (20)
with!3
FE(§) 2 F (5, \(§)E,) . Q1)

The problem is now to prove the existence of a function A(4)
such that the integrability conditions of Poincare’s Lemma, i.e.,

V51F2E* = vézFlE*

are satisfied. This identity defines a PDE for \(8), that we could
try to solve. With an eye on the general case, n > 2, when
we have to deal with a set of PDEs that becomes extremely in-
volved, we will proceed in an alternative way and directly con-
struct this function as follows. First, we postulate that 1(6) is a
function of 6; — 62, in which case

Ve, )+ Ve, p =0
and, consequently, invoking (20), we also have that
FE(8) + FF+(6) = 0.
Evaluating the latter [from (16) and (21)] we get

Py 4 Py — M\%(6) {GIIE%* + GooF3,+
YEl*Ez* [Sin(61 — (52 + Ol) + Sin((Sz — 61 + Ol)]} =0.

The expression in brackets evaluated at 0, equals P; 4+ P». This
implies, on one hand, that A(6,) = 1 as desired while, on the

13Due to the presence of A(8), the functions £Z+ () and F 2+ (§) are obvi-
ously nonequal.
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other hand, it ensures the existence of a neighborhood of 61, —
02+ where this expression is bounded away from zero, thus, we
can define

A(6) :+\/ fxly
Py+ Py +2G 12 B Eau[cos (01 — 62) —cos (01— 024)]
(22)
which is obtained using the equilibrium equations and (3). It
is clear from (22) that the neighborhood increases as the line
conductance G712 (and «) approaches zero, and in the limit of a
lossless line it becomes the whole real axis and we recover the
previous derivations with A(§) = 1.

Some lengthy, but straightforward, calculations prove that
F(6, \(6)E,)—with A(§) given by (22)—satisfies the integra-
bility conditions of Poincare’s Lemma, ensuring the existence of
the function v(§) that solves (20). The design of the IDA-PBC
is completed evaluating the functions J;;(6, E) from (19) and
computing the control law!4 according to Proposition 1. The re-
sult is summarized in Proposition 3.

Proposition 3: Consider the two machines system with
losses (13) and stable operating equilibrium satisfying.

Assumption A.1

|61* - 52*| S . (23)

[N

Assumption A.2

P+ Py > 4G 1314 Fas. (24)

Assumption A.3

(P1+P2)B12 COS(61*—52*)+(P1—P2)G12 Sin((sl*—(SQ*) > 0.

(25)
Then, the system in closed-loop with the control law

u; = alEl — b1E2 COS(61 — 62 + ) — Efl — J23(6, E)wl
— 1171 [B1 — EuA(6)] + J35(0, E)w

)

(

Up =asEy — baEq cos(62 — 61 + &) — Efo — Jog (6, E)wr
— 1972 [Bo — E2. A(8)] — J56(6, E)wo

where \(9) is given in (22) and

_ YEZ*

71

G
- 71 [E1 + E1A(8)] — E1 Vs, A
1

Y
JQG((S, E) = — ’}/_El Sin(61 - 52 + Ol) + EQ*V§1/\
2
YEZ*

71

Y
J56((57 E) = — %El Sin(62 — 61+ Ol)

G
- —72 [Es + Ep A(6)] + E2u Vs, A
2

Jos3(6, FE) =

)\(5) Sin(51 — (52 + Oé)

J35(5, E) = /\(5) sin(52 — 51 + Ol) + El*V§1 /\

14We should underscore that the controller depends on V), hence we do not
require the knowledge of the function ?(¢6) itself.



ORTEGA et al.: TRANSIENT STABILIZATION OF MULTIMACHINE POWER SYSTEMS 67

and

vV P1+P2G12E1*E2* Sin(61 — (52)
2 {P1+P2+2G12E1*E2* [COS((Sl_(SQ)_COS((Sl*_(SQ*)]}%

Vs, A=

has an asymptotically stable equilibrium at (64,0, F,). Further,
a Lyapunov function for this equilibrium is given by (18) with
(22) and

P(0) = —P1(61 — 62)

1—02
n / (P1 +P2) [G11E12*+YE1*E2* Sin(T+C¥)] dr
Py + Py +2G13F1. . [cos(T) — cos(81. — 024)]
0

and an estimate of its domain of attraction is the largest bounded
level set

{(6,w,E) € R® | Hy(b,w,E) < c}.

Proof: First, note that (23) and (24) assure that A(9), given
by (22), is well defined (in some neighborhood of the desired
equilibrium). Now, we will compute from (19) the functions
J;;(6, E). For, with some obvious abuse of notation, define the
vector function

FE(8) 2 F (8, E1, \N(6)E»y)

that is, the value of the function F'(§, E'), given in (16), at E5 =
A(8) E.. Evaluating the first equation of (19) at this point and
using the notation just defined, we get

PP (8) = =Vs,9 + 71 [E1 — ErA(8)] E1Vs, A
+J23(8, E)71 [E1 — E1.A(9)].

Now, from (20) we have that Vs, ¢p = —F*(§), and doing
some calculations we get

FP1(8) = F(8) = = [E1 — ErA(6)]
X {Gll [El + El*)\(6)] + YEZ*)\ [sin(51 — 52 + Ol)]} .

Plugging this expression back in the first of equations (19) and
eliminating the common factor [F; — E1,\(6)] yields, after the
calculation of Vs, A from (22), the expression of J»3(6, ) in
(26). With this definition of J23(6, F/) substituted in (19) we
immediately obtain Jog(6, E).

Proceeding in exactly the same way, with the second set of
equations (19), we calculate J35(8, £) and J56(6, E).

It remains only to prove that the proposed energy function has
indeed a minimum at the desired equilibrium point. Introduce a
partial change of coordinates

z=FE—\06)FE, (26)
and—recalling that A\(6,) = 1, with 6, = (61, 02, )—we look
at the minima of the function

N 1 1
Ha(8,w,2) = $(6) + 5 |wf* + 52T

which are obviously determined solely by (). From (16) and
(20), we have that Vi)(8,) = 0. Some lengthy calculations es-
tablish that V23(8,) > 0 if and only if

Py cos(61 — 62 + a) + Py cos(61 — b2 — ) > 0

which, using (1), can be shown to be equivalent to (25), com-
pleting the proof. N

Remark 5: Assumption A.1 captures the practically reason-
able constraint that the normal operating regime of the system
should not be “overly stressed.” (See also [27]). Notice that, as
indicated in the proof, the assumption provides a sufficient con-
dition ensuring that A(9), given by (22), is well defined, but it is
far from being necessary. The last two assumptions are obviated
in the lossless case, but may be satisfied even for large values of
the conductance G15. In particular, Assumption A.2—which is
given in this way for ease of presentation—can clearly be re-
laxed restricting our analysis to the set

{(6,w,E) € RO |PL + P,
+2G 12 E14 Fay [cos(81 — 82) — cos(81x — Ga24)]| > 0}

that covers the whole R® as G5 tends to zero.

Remark 6: If the rotor inertias of the two machines, M, are
different we have that Y15 # Y51. However, retracing the deriva-
tions above we can easily derive the new control law taking into
account this fact.

VI. PASSIVITY INTERPRETATION

The action of the controller described above has a nice inter-
pretation in terms of a passivity property. Indeed, as discussed
in [24], the terms in the interconnection matrix, J; j(é, E), play
a role similar to multipliers in passive subsystems interconnec-
tion. To better perceive their effect let us write the equations of
the closed-loop system (5), (14), (18) using the coordinate z in-
troduced in (26) and take, for simplicity, I' = I. Noting that
z = VgHy,y, and after some simple calculations we get

S=w
w=—Dw+a(s,E)z— Vi
(= —Rz—a' (8F)w
where we have defined the matrices
D 2 diag{D;, D>}
R2 diag{ry, 72}

Ja3(8, E)+ Ep, Vs A Jag(8, E)+ E5, Vs A

a(b, F) 2
T | as(6, E)H BV s, A Js6(0, B)+Ea Vs, A |

A block diagram representation of the system is given in
Fig. 2. Clearly, the transfer matrices

(sI+ D)t (sI+R)!

are strictly positive real—hence, strictly output passive. Also, it
is well known (see [6, Ch. 6.4, ex. 5]), that pre- and postmul-
tiplying a passive operator by arbitrary (possibly unbounded)
nonsingular matrices does not destroy its passivity property.
Consequently, the (lower) feedback operator is also passive and
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Zy

\{

(sI+D)*

(sI+R)™

aT

Fig. 2. Passive subsystems decomposition of the closed-loop.

the inner feedback interconnection is passive. The outer feed-
back operator X, maps w into V. From the relationship Y =
(V4)) Tw, and the fact that ¢} is (locally) a positive definite func-
tion, we conclude (with some obvious abuse of notation) that 3,
is also “locally passive,” and stability is ensured.

VII. n-MACHINE CASE

For the n-machines case with losses, the obstacle of integra-
bility discussed in the previous section cannot be overcome with
a scalar function A(6) and we need to consider a vector function.
Therefore, we propose a total-energy function of the form

Ha(b,w, E) = 4(6) + %|w|2

+% [E — diag {\:(8)} E.] ' T[E — diag {\:(8)} Ex]  (27)

where 8 = [81,..., 6,7, $(8) = [1(6),...,4n(8)] T, w =
Wi, swa]T, E = [E1,...,E,]", with \;, ¥ : R® — R,
functions to be defined.

Consider now the matrix shown in (28) at the bottom of the
page, where, for simplicity, we have omitted the arguments and
use an obvious—though awkward—notation for the subindexes
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TABLE 1
CRITICAL CLEARING TIME (m/s)

U UN uo
tor 250 200

TABLE 1I
SYSTEM PARAMETERS FOR DIFFERENT VALUES OF GG
G Y a b Ox E,
0.01771 34.3046 0.02915 0.1490 0.9122 0.9824
0.0885 34.6526 0.1448 0.1506 0.4946 1.0815
0.1771 35.7184 0.2838 0.1552 0.0870 1.1528

TABLE III
CRITICAL CLEARING TIME (m/s)
G u=uy uU=1ug
0.01771 170 130
0.0885 180 160
0.1771 300 50
TABLE IV
PARAMETERS OF THE POST-FAULT SYSTEM
Parameter  Gen 1 Gen 2
a 16.7255 14.2937
b 11.1059  9.4147
Y 51.2579 36.6127
Gii 28.9008 20.3936
« 0.5430  0.5430
E, 5.8103 7.9279
P 52.2556  48.4902

of the J;;’s. Applying the IDA-PBC procedure we get, for each
2ith row, 2 = 1,...,n, of the previous matrix, a PDE of the
form

—Vs.0p + [E — diag {\i(6)} B.] ' TV diag {Xi(6)} Ev+

> videi-tyei 1B — Epdi(0)] = Fi(5,E)  (29)

j=1
ro 1 0 0 0 0 0 0 0 ]
-1 =D T3 0 0 Ja 0 0 Ta(3n)
0 —J23 —Tr1 0 J35 0 0 Jg(gn_l) 0
0 0 0 0 1 0 0 0 0
0 0 —Js5 -1 —Ds J56 0 0 J5(3n)
0 —J. 0 0 —J. - 0 Jo(3n— 0
Jy— Ry — 26 56 2 6(3n—1) (28)
0 0 0 0 0 0 0 1 0
0 0 —J3(3n-1) 0 0 —Jo(3n-1) E -1 -D, J(3n-1)3n
L 0 _J2(3n) 0 0 _J5(3n) 0 0 —J(3n—1)3n —Tn
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3 (rad)

E (pu)

control input

3 4 5 6

time (sec) —»
Fig.3. SMIB system, with G = 0 and ¢.; = 200 m sec, in closed-loop with u 5 (continuous line) and u o (dotted line). Behavior of load angle, internal voltage,
and control input.
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Fig. 4. SMIB system, with G = 0.01771 S, t.; = 130 m/s, in closed-loop with % x (continuous line) and w«o (dotted line). Behavior of load angle, internal
voltage, and control input.

with our now familiar notation where, as before

FL'((S, E) é P, — GLLE? - F; Z E]YLJ Sin(éi — 6]' + Ozij)

J=1 i Fy (6, diag{A;(6)} Ey)

E.(s\A : ) _ .

and the fact that J;; = —J;;. Setting £ = diag{\;(6)}E, in F(8)=F (8, diag{i(8)} ) = o
(29), and piling up all the elements in a vector, we obtain F, (6, diag{Xi(6)} Ev)

Vi) = —FF(6) (30) As pointed out before, it is possible to prove that
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Fig. 5. SMIB system, with G = .0885 S, ., = 160 m/s, in closed-loop with u (continuous line) and v, (dotted line). Behavior of load angle, internal
voltage, and control input.
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Fig. 6. SMIB system, with G = .1771S,t.; = 50 m/s, in closed-loop with « v (continuous line) and u o (dotted line). Behavior of load angle, internal voltage,

and control input.

« there does not exist a scalar function A : R* — R such
that F'Ex () 2 F(6,\(6)E,) satisfies the integrability
conditions imposed by Poincare’s Lemma (17).

Hence, the construction proposed in Section V-B is not feasible.
Further, the task of solving the associated system of PDEs for a
vector function, already for the three machines system, seems
formidable. Therefore, we proceed in an alternative way and
apply the Implicit Function Theorem [1] to prove the existence

of a vector function that, for arbitrary 1/(¢), (locally) “inverts”
(30)—provided the system conductances are sufficiently small.

The result is summarized in the next proposition whose proof
requires the following simple fact.

Fact 1: Let M = S+ D be ann x n matrix with § = —ST
and D = diag{d;} > 0. Then, M is full rank.

Proposition 4: Consider the n-machines system with losses
(2) and assume the line conductances are sufficiently small.
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FO

0.012+j0.20 4 ® oL
@ 0054010 | jo5s |/ ~
0.012+j0.10 | .005+j0.05 | CL) 2
X’,=0.5 X’,=0.5
X,=18 > S X,~2.3
T,,=6s & < T,=7s
M= - = M,=7s
D=1 D,=0.2

Fig. 7. Two machines system.
More precisely, for all 7 # j, G;; < e for some sufficiently
small € > 0.

Then, for any arbitrary C* function ¢(§) such that §, =
arg min 1), there exists a (locally-defined) IDA-PBC that en-
sures asymptotic stability of the equilibrium (84,0,F,) with a
Lyapunov function of the form (27) and estimate of its domain
of attraction the largest bounded level set

{(,w,E) € R* | Hy(b,w,E) < c}.

Proof: From our previous derivations it is clear that the
key step is to prove the existence of functions 1) : R — R,
with 6, = argmint, and \; : R — R™, with \;(6,) = 1, such
that (30) is satisfied. For, we first factor the function F'F+(§) as

FE(8) = P — diag {\i(8)} M(8§)A\(6) €2))

where P 2 [Pr,...,P.]7, A(6) 2 [M(6),..., A(6)]T and

M(6) = {m;;(6)} € R™*™ with elements
A 2 A .
mii =GBy mij(8) =Yij B B sin(8i—6+aij),

We make at this point two important observations.

P.1) From (31) and the definition of equilibria of (2) we

have
FE(8,) = 0.

P2) If Qi = 0, then

mij(8) = —m;i(8),  i#j
and the matrix M () is the sum of a full rank diagonal
matrix and a skew symmetric matrix. Hence, invoking
Fact 1 above, and a continuity argument we conclude
that M () is full rank for sufficiently small c;;.
Now, we fix an arbitrary C! function v(8), denote ¢ 2 Vi,
and define a parameterized function Qs : R™ x R — R as

Qs(\, ¢) 2 ¢ — P+ diag{ A\ } M(8)\

where the subindex (-)s is included to underscore that the func-
tion is parameterized in 8. With this notation we can write (30)

i # j.

and (31) in the alternative form Qs(A, ¢) = 0. We will now
verify the conditions of the Implicit Function Theorem to prove
the (local) existence of a function xy : R®™ — R"™ such that
Qs(x(¢),¢) = 0. Toward this end, we define the point of in-
terest as

M ENG) =11, 1T b 2 V(s =0

From P.1), we have that Qs, (A, ¢) = 0 as required by the
theorem. To check the rank condition, we compute

VAQ& (/\*7§b*>
= M(b,) + diag {Z M;(64), -+, Z Mni(‘s*)}

i=1

= M(8,) + diag{P1,..., P}

where the second right-hand term, which is obviously full rank,
stems from the fact that F'¥+(§,) = 0 and (31). Property P.2),
together with the smallness assumption of the Gj;’s, (conse-
quently of the c;;’s), yields the claim.

Summarizing, we have proven that for any C* function 1(§),
with §, = arg min 1, there exists a function x : R” — R such
that A(6) = x(V(6)) solves (30) in a neighborhood of .

The design of the IDA-PBC is completed proceeding as in
Proposition 3. That is, given ¢ (8) and A(§), we compute from
(29) the functions J;;(6, E') and subsequently the control law. <

Remark 7: Unlike the two-machines case considered before,
Proposition 4 does not explicitly impose an assumption on the
operating equilibrium of the form |6;+ — 6| < (7/2).In view of
the results of [27], it is expected that a similar condition will be
needed to ensure stability of the open-loop equilibrium. Also,
as in the two-machines case it will appear in the definition of
the admissible domain of operation. Furthermore, Proposition
4 allows to assign arbitrary potential energy functions (6), of
course, at the price of only proving the existence of the con-
troller.

VIII. SIMULATIONS
In this section, we present numerical simulations of the pro-
posed controller for the SMIB and the two-machines systems.
A. Single Machine Infinite Bus

We carried out simulations for the SMIB with and without
losses, and compared the behavior of two controllers: the control
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Fig. 8. Two machines system in closed-loop with the proposed IDA-PBC and ¢.; = 80 m/s. Behavior of load angles and internal voltages.

law of Proposition 2 with added damping injection, that we call
upn, and is given by

uy = —b[cos(éd + a) — cos(6y + )]
+% (E+ E,)G +Ysin(6 + a)]w — k(E — E.)

and the control law proposed in [11, eq. (7)], called u¢, that we
rewrite here for ease of reference

uo = —kybi(cos by — cos ) — ajan <Z—3 + kv> (6 —6%)
1

—qiw — (2—3(12 — by + kuaz) (E - E,)
1

with the tuning parameters k, > 0, @z > 0, and a3 < 0,
verifying

b
oy < ——.
a2

0422%

The parameters of the SMIB model (9) are taken from [3]
as Y = 34.29, ¢ = 0.3341, b = 0.1490, P = 28.22, and
E¢ = 0.2405. The parameters of the controllers are set for uy
as k = 4,~ = 15, and for up as a; —0.8, s = 76.88,
k, = 0.01.

We analyze the response of (9) without losses, thatis, G = 0,
to a short circuit which consists of the temporary connection of
a small impedance between the machine’s terminal and ground.
The fault is introduced at ¢ = 1 s and removed after a certain
time (called the clearing time and denoted ¢.;), after which the
system is back to its pre-disturbance topology. During the fault

the trajectories diverge, the largest time interval “before insta-
bility,”15 called the crifical clearing time (¢ ), is determined via
simulation. Table I shows the critical clearing times for the two
controllers, as we see from the table the proposed controller, u -,
effectively increases the critical clearing time. Moreover, the
new control also improves the transient performance as shown
in Fig. 3, which presents the system’s response to a fault with
t. = 200 m/s for both controllers.

We then consider the effect of the losses for both controllers
reacting to the fault explained above. Simulations were carried
out for increasing values of G, which changes the system pa-
rameters and the equilibrium point as indicated in Table II.

The parameters of the controllers are set for uy as & = 10,
~v = 10 and for up as a; = —0.8, ay = 76.88, and k,, = 0.1.

Table III presents the critical clearing time obtained for each
value of GG. Similar to the lossless case, the proposed controller
increases the critical clearing time and enhances the transient
performance. (The dramatic improvement for large values of G
is consistent with the fact that the controller uo was designed
neglecting the losses, while ux explicitly takes them into ac-
count.) Figs. 4-6 present the transient behavior of the system
for different values of G and the critical clearing time obtained
for up.

B. Two Machines System

This subsection presents simulations of the two machines
system depicted in Fig. 7. In this case, the disturbance is a three-
phase fault in the transmission line that connects buses 3 and 5,
cleared by isolating the faulted circuit simultaneously at both
ends, which modifies the topology of the network an conse-
quently induces a change in the equilibrium point.

I5This is practically detected observing the evolution of the signals that should
remain within physically reasonable values, e.g., £ > O and u < U,.
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Fig. 9. Two machines system in closed-loop with the proposed IDA-PBC and t.; = 80 1m/s. Behavior of the control inputs.

The parameters of the model (13) are given in
Table IV, and the equilibrium point after the fault is
(815, Wiks By 825, wor, Foy)  =(0.6481,0,1.0363,0.8033, 0,
1.0559), which verifies the conditions of Proposition 3. We
remark that the rotor inertias of the two machines, M;, are dif-
ferent thus we have that Y15 # Y5, and, consequently, the con-
trol law of Proposition 3 has to be slightly modified as indicated
in Remark 6.

The simulation scenario corresponds to an overly stressed
system. Without control the system is highly sensitive to the
fault and the critical clearing time is almost zero. Although this
scenario may be practically unrealistic we decided to present it
to show that, even in this extreme case, the proposed controller
enhances performance. Fig. 8 presents the system’s response to
a short-circuit with clearing time ¢.,. = 80 m/s. The control in-
puts are depicted in Fig. 9, which were clipped at +10.

IX. CONCLUSION

We have presented a static state feedback controller that
ensures asymptotic stability of the operating equilibrium for
multimachine power systems with lossy transmission lines. The
controller is derived using the recently developed IDA-PBC
methodology, hence endows the closed loop system with a PCH
structure with a Hamiltonian function akin to a true total energy
of an electromechanical system. A key step in the procedure is
the inclusion of an interconnection between the electrical and
the mechanical dynamics that may be interpreted as multipliers
of the classical passivity theory.

Unfortunately, because of the use of the Implicit Function
Theorem, in the general n-machines case only existence of the
IDA-PBC is ensured and we need to rely on a “sufficiently
small” transfer conductances assumption. On the other hand, for
the single and two-machines problems we give a complete con-
structive solution. Some preliminary calculations for the three-
machines system suggest that, with a suitable selection of the
“potential energy” term, it is possible to obtain an explicit ex-
pression for the controller in the general case. In any case, the
complexity of the resulting control law certainly stymies its
practical application and the result must be understood only as

a proof of assignability of a suitable energy function. Alterna-
tive routes must be explored to come out with a practically fea-
sible design—probably trying other parameterizations for the
energy function. In this respect it is interesting to note that the
proposed function (27) differs from the ones used in mechanical
and electromechanical systems [[21, eq. (2.3)] and [26, eq. (5)],
respectively]. It is easy to see that neither one of these forms is
suitable for the power systems problem at hand.

Simulations were carried out to evaluate, in academic exam-
ples, the performance of the proposed scheme. Currently, we are
working on the development of a realistic simulation example
for the two-machines problem where the performance of the
proposed scheme will be compared with the classical AVR-PSS
configuration. The outcome of this research will be reported in
the near future.
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