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Transient structural variations have strong effects
on quantitative traits and reproductive isolation in
fission yeast
Daniel C. Jeffares1,2,w, Clemency Jolly1, Mimoza Hoti1, Doug Speed2, Liam Shaw1,2, Charalampos Rallis1,2,w,

Francois Balloux1,2, Christophe Dessimoz1,3,4,5, Jürg Bähler1,2 & Fritz J. Sedlazeck6

Large structural variations (SVs) within genomes are more challenging to identify than

smaller genetic variants but may substantially contribute to phenotypic diversity and

evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic

reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality

curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including

duplications, deletions, inversions and translocations. We show that copy number variants

(CNVs) show a variety of genetic signals consistent with rapid turnover. These transient

CNVs produce stoichiometric effects on gene expression both within and outside the

duplicated regions. CNVs make substantial contributions to quantitative traits, most notably

intracellular amino acid concentrations, growth under stress and sugar utilization in wine-

making, whereas rearrangements are strongly associated with reproductive isolation.

Collectively, these findings have broad implications for evolution and for our understanding of

quantitative traits including complex human diseases.
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A
variety of genetic changes can influence the biology of
species, including single-nucleotide polymorphisms
(SNPs), small insertion-deletion events (indels), transpo-

son insertions and large structural variations (SV). SVs, including
deletions, duplications, insertions, inversions and translocations,
are the most difficult to type and consequently the least well
described.

Nevertheless, it is clear that SVs have strong effects on
various biological processes. Copy number variants (CNVs) in
particular influence quantitative traits in microbes, plants and
animals, including agriculturally important traits and a variety of
human diseases1–5. Inversions are known to influence repro-
ductive isolation6–13 and other evolutionary processes such
as recombination8 and hybridization between species14, with
a variety of consequences15.

We and others have recently begun to develop the fission yeast
Schizosaccharomyces pombe as a model for population genomics
and quantitative trait analysis6,7,16–18. This model organism
combines the advantages of a small, well-annotated haploid
genome19, abundant tools for genetic manipulation and high-
throughput phenotyping20, and considerable resources of
genome-scale and gene-centric data21–23.

Previous analyses of fission yeast have begun to describe
both naturally occurring and engineered inversions and recipro-
cal translocations6,7,18. Given this evidence for SVs and their
effects in this model species, we recognized that a systematic
survey of SVs would advance our understanding of their
biological influence. Here, we utilize the recent availability
of 161 fission yeast genomes and extensive data on quantitative
traits and reproductive isolation17 to describe the nature
and effects of SVs in S. pombe.

We show that SVs have strong effects on a variety
of quantitative traits and intrinsic reproductive isolation.
They contribute an average of 11% of trait variance (the much
more abundant SNPs contribute 24% on average), with the largest
effects coming from CNVs. We show that CNVs are transient
within clonal populations, and are frequently not well tagged
by SNPs. We also show that rearrangements (inversions and
translocations) contribute to reproductive isolation, whereas
CNVs do not.

Results
Population-wide detection of structural variations. To predict
an initial set of SVs, we applied four inference software packages
(Delly, Lumpy, Pindel and cn.MOPs)24–27 to existing short-read
data17, using parameters optimized on simulated data (Methods).
We then filtered these initial predictions, accepting SVs detected
by at least two callers, to obtain 315 variant calls (141 deletions,
112 duplications, 26 inversions and 36 translocations). We
release this pipeline as an open-source tool called SURVIVOR
(Methods). To ensure a high specificity, we further filtered
the 315 variants by removing SV calls whose breakpoints
overlapped with low complexity regions or any that correspo-
nded to previously annotated long terminal repeats (LTRs)17.
Finally, we manually vetted all the remaining SVs by visual
inspection of read alignments in multiple strains for all remaining
candidates. This meticulous approach aimed to ensure a high-
quality call set, to mitigate against the high uncertainty associated
with SV calling25.

This curation produced a set of 113 SVs, comprising
23 deletions, 64 duplications, 11 inversions and 15 translocations
(Fig. 1a). Reassuringly, when applying our variant calling
methods to an engineered knockout strain, we correctly identified
the known deletions and called no false positives. Attempts
to validate all rearrangements by PCR and BLAST searches of

de novo assemblies positively verified 76% of the rearrange-
ments, leaving only a few PCR-intractable variants unverified
(see Methods for details).

Most SVs were present at low frequencies, with 28% discovered
in only one of the strains analysed (Fig. 1b). The deletions were
generally slightly smaller (median length 14 kb, Fig. 1c) than
duplications (median length of 21 kb), with the largest duplication
extending to 510 kb and covering 200 genes (a singleton in strain
JB1207/NBRC10570). The majority of CNVs were present
in copy numbers varying between 0 and 16 (subsequently we
refer to amplifications of two or more copies as ‘duplications’).

All SVs, particularly deletions and duplications, were biased
toward the ends of chromosomes (Fig. 1d and Supplementary
Figs 1 and 2), which are characterized by high genetic diversity,
frequent transposon insertions and a paucity of essential genes17,
similar to Saccharomyces cerevisiae and Sa. paradoxus28,29.
All SVs preferentially occurred in positions of low gene density
and were strongly under-enriched in essential genes (Supple-
mentary Fig. 2).

To describe SVs further, we conducted gene enrich-
ment analysis with the AnGeLi tool (Supplementary Table 1),
which interrogates gene lists for functional enrichments
using multiple qualitative and quantitative information
sources30. The CNV-overlapping genes were enriched for
caffeine/rapamycin induced genes and genes induced during
meiosis (P¼ 4� 10� 7 and 1� 10� 5, respectively); they
also showed lower relative RNA polymerase II occupancy
and were less likely to contain genes known to produce
abnormal cell phenotypes (P¼ 1.8� 10� 5 and 3� 10� 5,
respectively). These analyses are all broadly consistent with
a paucity of CNVs in genes that encode essential mitotic
functions. Rearrangements disrupted only a few genes and
showed no significant enrichments.

Duplications are transient within clonal populations. Our
previous work identified 25 clusters of near-clonal strains, which
differed by o150 SNPs within each cluster17. We expect that
these clusters reflect either repeat depositions of strains differing
only at few sites (for example, mating-type variants of reference
strains h90 and h– differ by 14 SNPs) or natural populations of
strains collected from the same location. Such ‘clonal populations’
reflect products of mitotic propagation from a very recent
common ancestor, without any outbreeding. We therefore
expected that SVs should be largely shared within these clonal
populations.

Surprisingly, our genotype predictions indicated that most
SVs present in clonal populations were segregating, that is, were
not fixed within the clonal population (68/95 SVs, 72%).
Furthermore, we observed instances of the same SVs that
were present in two or more different clonal populations that
were not fixed within any clonal population. These SVs could be
either incorrect allele calls in some strains, or alternatively, recent
events that have emerged during mitotic propagation. To
distinguish between these two scenarios, we re-examined the
read coverage of all 49 CNVs present within at least one clonal
population. Since translocations and inversions were more
challenging to accurately genotype, we did not re-examine these
variants. This analysis verified that 40 out of these 49 CNVs
(37 duplications, three deletions) were clearly segregating within
at least one clonal cluster (Supplementary Fig. 3). For example,
one clonal population of seven closely related strains, collected
together in 1966 from grape must in Sicily, have an average
pairwise difference of only 19 SNPs (diversity p¼ 1.5� 10� 6).
Notably, this collection showed four non-overlapping segregating
duplications (Fig. 2c, yellow highlight). This striking finding
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suggests that CNVs can arise or disappear frequently during
evolution.

To examine whether this transience is a general feature
of CNVs in this population, we quantified the variation in
copy number of each CNV relative to mutations in the adjacent
region of the genome. If a CNV was subject only to the same
processes as these adjacent regions, we would expect a strong
correlation between the rate of point mutation (SNPs) in
these regions and the total variation in copy number of the
CNV. However, the variation in copy number of CNVs across the
data set was only weakly correlated with SNP variation in nearby
regions of the genome (Spearman rank correlation r¼ 0.22,
P¼ 0.041), indicating that CNVs are subject to additional or
different evolutionary processes (Fig. 2a). Furthermore, some
CNVs showed high rates of variation within closely related
clusters relative to their variation in the rest of the data set
(Fig. 2b,c, Supplementary Table 2 and Supplementary Fig. 4).
Finally, we found that many CNVs represented the rare allele
within the cluster, consistent with events that have short half-
lives (Supplementary Fig. 5). Taken together, these results

indicate that CNVs are transient and variable features of the
genome, even within extremely closely related strains.

Transient duplications affect gene expression. Partial
aneuploidies of 500–700 kb in the S. pombe reference strain
are known to alter gene expression levels within and, to
some extent, outside of the duplicated region31. The naturally
occurring duplications described here are typically smaller
(median length: 21 kb), including an average of 6.5 genes.
To examine whether naturally occurring CNVs have similar
effects on gene expression, we examined eight pairs of closely
related strains (o150 SNPs among each pair) that contained
at least one unshared duplication (Fig. 3 and Supplementary
Table 3). Several of these strain pairs have been isolated
from the same substrate at the same time, and all pairs
are estimated to have diverged B50–65 years ago (Suppleme-
ntary Table 3). We assayed transcript expression from log
phase cultures using DNA microarrays, each time comparing
a duplicated to a non-duplicated strain from within the same
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clonal population. In seven out of the eight strain pairs,
the expression levels of genes within duplications were
significantly induced, although the degree of expression changes
between genes was variable (Fig. 3c and Supplementary Fig. 6).
The increased transcript levels correlated with the increased
genomic copy numbers, so that higher copy numbers produced
correspondingly more transcripts (Spearman rank correlation
r¼ 0.71, P¼ 0.014, Supplementary Fig. 7). No changes in gene
expression were evident immediately adjacent to the duplications
(Supplementary Fig. 7), suggesting that the local chromatin state
was not strongly altered by the CNVs. This result not only
confirms the previous observation that CNVs alter the gene expr-
ession levels, but more importantly it reveals large copy number
differences between two genomes that are only 19 SNPs apart.

Interestingly, some genes outside the duplicated regions
also showed altered expression levels (Fig. 3d and Suppleme-
ntary Table 4). For example, two strain pairs differ by a single
12 kb duplication. Here, five out of seven genes within
the duplication showed induced expression, while 45 genes
outside the duplicated region also showed consistently altered
expression levels (38 protein-coding genes, seven noncoding

RNAs) (Fig. 3d, arrays 7 and 8). As environmental growth
conditions were tightly controlled, these changes in gene
expression could be due to either compensatory effects of the
initial perturbation caused by the 12 kb duplication or changes
that arise due to SNPs or indels that segregate between the strains
(Supplementary Fig. 6). We conclude that these evolutionary
unstable duplications reproducibly affect the expression of
distinct sets of genes and thus have the potential to influence
cellular function and phenotypes.

Copy number variants contribute to quantitative traits. To test
whether SVs affect phenotypes, we examined the contributions of
SNPs, CNVs and rearrangements to 228 quantitative traits
(Supplementary Table 5), including 20 cell-shape parameters,
colony size on solid media assaying 42 stress and nutrient
conditions17, 126 growth parameters in liquid media conditions7

and three biochemical parameters from wine fermentation32. For
each phenotype, we used mixed model analysis to estimate the
total proportion of variance explained by the additive
contribution of genomic variants (the narrow-sense heritability).
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When we determined heritability using only SNP data,
estimates varied between 0 and 74% (median 30%). After adding
CNVs and rearrangements to SNPs in a composite model,
the estimated overall heritability increased for nearly all traits,
explaining up to B40% of additional trait variance (Fig. 4a). This
finding indicates that the CNVs and rearrangements can explain
a substantial proportion of the trait variance. Using this
composite model, we quantified the individual contributions of
heritability best explained by SNPs, CNVs and rearrangements
(Fig. 4b). On average, SNPs explained 24% of trait variance,
CNVs 7% and rearrangements 4% (Supplementary Table 5).
Analysis of simulated data confirmed that the contribution of
CNVs could not be explained by linkage to causal SNPs alone
(Supplementary Fig. 8).

Many trait measures gathered using the same method
(for example, growth on solid media, cell shape) are strongly

correlated17. Thus, some groups of traits have consistently larger
contributions from SVs (Fig. 4b) than from SNPs alone. These
traits include intracellular amino acid concentrations, growth
under stress and several traits measured during wine
fermentation (Fig. 4c). Since many of these strains have been
collected from fermentations (Supplementary Table 6), the
substantial influence of CNVs may represent recent strong
selection and adaptation to fermentation conditions that has
occurred via recent CNV acquisition.

Our analysis of heritability showed that SNPs are generally
able to capture most, but not all, of the genetic contribution
of SVs (Fig. 4). To examine whether trait-influencing SVs would
be effectively detected from SNPs alone in this population,
we examined the linkage of all 113 SVs with SNPs. We found
that only 63 of these SVs (55%) are in strong linkage to SNPs
(r2 40.6), leaving 45% of the SVs weakly linked. This lack of
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linkage is consistent with SVs being transient, rather than
persisting within haplotypes. Such weakly linked SVs may be
missed in SNP-only association studies.

To examine this possibility, and to locate specific SVs
that affect these traits, we performed mixed model genome-
wide association studies, using all 68 SVs with minor allele
counts X5 (that is, occurring in at least five strains) as well
as 139,396 SNPs and 22,058 indels with minor allele counts X5.
Trait-specific significance thresholds for 5% family-wise
error rates were computed via permutation analysis, and

were approximately 10� 4 (SVs) and 10� 6 (SNPs and indels).
Nineteen SVs (28%) were significantly associated with traits
(15 duplications, five deletions and one translocation), as
well as 228 SNPs (0.16%), and 93 indels (0.42%)
(Supplementary Table 7). SVs were associated with 20 different
traits, including amino acid concentrations, mating traits, and
stress resistance in solid and liquid media. Nine of these SVs were
not strongly linked to SNPs (r2o0.6). The median effect size
of these SVs was 14% (range 6-33%). While more detailed
analyses of these associations will be required to confirm any
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particular association, our findings are consistent with the
heritability analysis.

Collectively, these analyses indicate that even a small collection
of SVs, most notably CNVs, can contribute substantially
to quantitative traits. Thus, Genome-wide association studies
(GWAS) analyses conducted without genotyping SVs could fail
to capture these important genetic factors.

Structural variations contribute to reproductive isolation.
Crosses between S. pombe strains produce between o1 and
90% viable offspring6,18. We have previously shown that spore
viability correlates inversely with the number of SNPs between
the parental strains17. This intrinsic reproductive isolation may be
due to the accumulation of Dobzhansky–Muller incompatibilities
(variants that are neutral in one population, but incompatible
when combined)33,34. However, genetically distant strains also
accumulate SVs, which are known to lower hybrid viability and
drive reproductive isolation9. In S. pombe, engineered inversions
and translocations reduce spore viability by B40% (ref. 6).
At present the impact of naturally occurring rearrangements,
sequence divergence, and incompatible alleles in speciation
within budding yeast is unclear12–14,35,36.

To analyse intrinsic reproductive isolation in our population
based on naturally occurring SVs, we examined the relation-
ship between viability, SNPs and SVs. Both SV-distance
(number of unshared SVs between parents) and SNP-distance
inversely correlated with hybrid viability (Kendall correlation
coefficients, SVs: t¼ � 0.26, P¼ 5.6� 10� 3, SNPs: t¼ � 0.35,
P¼ 1.6� 10� 4) (Supplementary Fig. 9). While inversions and
translocations are known to lower hybrid viability as they affect
chromosome pairing and segregation during meiosis6,18,37,
CNVs are not expected to influence spore viability. Consistent
with this view, there was no significant correlation between
CNVs and viability (rearrangements, t¼ � 0.36, P¼ 2.0� 10� 4;
CNVs, t¼ � 0.10, P¼ 0.28).

As the numbers of SNP and rearrangement differences
between mating parents are themselves correlated (t¼ 0.53,
P¼ 1.3� 10� 8), we also estimated the influence of each factor

alone using partial correlations. When either SNPs or rearrange-
ments were controlled for, both remained significantly correlated
with offspring viability (P¼ 0.04, P¼ 0.02, respectively) (Fig. 5).
Taken together, these analyses indicate that both rearrangements
and SNPs contribute to reproductive isolation, but CNVs do not.

Discussion
Here we present the first genome- and population-wide catalogue
of SVs among S. pombe strains. To account for the high
discrepancy of available methods25, we applied a consensus
approach to identify SVs (SURVIVOR), followed by rigorous
filtering and manual inspection of all calls. We focused on high
specificity (the correctness of the inferred SV) rather than high
sensitivity (attempting to detect all SVs).

Our previous analyses of these strains, conducted without
SV data17, attributed both trait variations and reprodu-
ctive isolation to SNPs and/or small indels. Here we show that
the small number of SVs we describe make substantial
contributions to both of these factors. We demonstrate
that CNVs (duplications and deletions) contribute significantly
to our ability to describe quantitative traits, whereas variants that
rearrange the order of the genome (inversions and translocations)
produce much weaker effects on traits. In contrast, CNVs have
no detectable influence on reproductive isolation, while rearra-
ngements contribute substantially to reproductive isolation,
similar to other species10,38.

We show that CNVs and, to a lesser extent, rearrangements
can produce substantial contributions to trait variation. These
CNVs subtly alter the expression of genes within and beyond
the duplications, and contribute considerably to quantitative
traits. Within small populations, CNVs may produce larger
effects on traits in the short term than SNPs, since their
effect sizes can be substantial (SVs significant in GWAS have
a mean effect size of 16% in this study). Within budding
yeast, clearly measured effects of alterations to gene order in
the DAL metabolic cluster39 and the lethality of some engineered
rearrangements40 indicates that rearrangements can also effect
phenotypic changes. Given the evidence for extensive ploidy and
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aneuploidy variation with budding yeasts, including clinical
and industrial budding yeasts29,41,42, SVs can be expected to
have considerable impacts on phenotypic variation of these fungi.

In this context, it is striking that CNVs appear to be transient
within the clonal populations that we studied. Our analysis
is consistent with experimental studies with fission yeast,
indicating that both rearrangements and CNVs may be gained
or lost at rates in excess of point mutations. For example, frequent
gain of duplications has been observed in laboratory cultures
of S. pombe, where spontaneous duplications suppress
cdc2 mutants at least 100 times more frequently than
point mutations. These suppressor strains lose their duplications
with equal frequency43, indicating reversion of alleles. Similarly,
duplications frequently occur during experimental evolution
with budding yeast44. This instability is likely facilitated
by repeated elements, which are unstable within both budding
and fission yeast genomes45–48, which is also supported by
the enrichment of SVs in our population near retrotransposon
LTRs (Supplementary Fig. 10). Although we do not examine
the stability of rearrangements, there is also evidence for their
instability. Transposon-mediated rearrangements are highly
dynamic in laboratory cultures during selection49,50, and show
elevated mutation rates at subtelomeric regions51.

This analysis also has relevance for human diseases, since
de novo CNV formation in the human genome occurs at a rate
of approximately one CNV/10 generations52, and CNVs are
known to contribute to a wide variety of diseases4. Indeed, both
the population genetics and the effects of SVs within S. pombe
seem similar to human, in that CNVs are associated with
stoichiometric changes on gene expression, and SVs are in weak
linkage with SNPs53,54, and therefore may be badly tagged by
SNPs in GWAS studies. We show that CNVs and rearrangements
in fission yeast not only rapidly emerge but also substantially
contribute to quantitative traits independent of weakly linked
SNPs. These findings highlight the need to identify SVs when
describing traits using GWAS, and indicate that a failure to call
SVs can lead to an overestimation of the impact of SNPs to traits
or contribute to the problem that large proportions of
the heritable component of trait variation are not discovered in
GWAS (the ‘missing heritability’). We observed a clear example
of this effect in two winemaking traits, where heritability was
entirely due to SVs.

In summary, we show that different types of SVs are transient
within populations of fission yeast, where they alter gene
expression, impact phenotypes and can lead to reproductive
isolation.

Methods
Performance assessment of SV callers using simulated data. To identify
filtering parameters for DELLY, LUMPY and Pindel for the S. pombe genome,
we simulated seven data sets (s1–s7) of 40� coverage with a range of different
SV types and sizes (Supplementary Table 7). The simulated read sets contained
sequencing errors (0.4%), SNPs and indels (0.1%) within the range of actual
data from S. pombe strains and between 30 and 170 SVs. These data sets were
produced by modifying the reference genome using our in-house software
(SURVIVOR, described below), and simulating reads from this genome with
Mason software55.

After mapping the reads and calling SVs, we evaluated the calls. We defined
a SV correctly predicted if: (i) the simulated and reported SV were of the same
type (for example, duplication), (ii) were predicted to be on same chromosome and
(iii) their start and stop locations were with 1 kb. We then defined caller-specific
thresholds to optimize the sensitivity and false discovery rate (FDR) for each
caller. FDRs on the simulated data were low: DELLY (average 0.13), LUMPY
(average 0.06) and Pindel (average 0.04).

Selecting calls that were present in at least two callers further reduced the
FDR (average of 0.01). DELLY had the highest sensitivity (average 0.75),
followed by SURVIVOR (average 0.70), LUMPY (average 0.62) and Pindel (0.55).
We further used simulated data to assess the sensitivity and FDR of our
predictions. cn.mops was evaluated with a 2 kb distance for start and stop
coordinates. Our cn.mops parameters were designed to identify large (above 12 kb)

events and thus did not identify any SVs simulated for s1-s6. Details of simulations
and caller efficacy are provided in Supplementary Table 9.

SURVIVOR (StructURal Variant majorIty VOte) Software Tool. We developed
the SURVIVOR tool kit for assessing SVs for short-read data that contains several
modules. The first module simulates SVs given a reference genome file (fasta)
and the number and size ranges for each SV (insertions, deletions, duplications,
inversions and translocations). After reading in the reference genome, SURVIVOR
randomly selects the locations and size of SV following the provided parameters.
Subsequently, SURVIVOR alters the reference genome accordingly and prints the
so altered genome. In addition, SURVIVOR provides an extended bed file to report
the locations of the simulated SVs.

The second module evaluates SV calls based on a variant call format (VCF)
file56 and any known list of SVs. A SV was identified as correct if (i) they were
of same type (for example, deletion); (ii) they were reported on same chromosome
and (iii) the start and stop coordinates of the simulated and identified SV were
within 1 kb (user definable).

The third module of SURVIVOR was used to filter and combine the calls
from three VCF files. In our case, these files were the results of DELLY, LUMPY
and Pindel. This module includes methods to convert the method-specific output
formats to a VCF format. SVs were filtered out if they were unique to one of the
three VCF files. Two SVs were defined as overlapping if they occur on the same
chromosome, their start and stop coordinates were within 1 kb, and they were of
the same type. In the end, SURVIVOR produced one VCF file containing the so
filtered calls. SURVIVOR is available at github.com/fritzsedlazeck/SURVIVOR.

Read mapping and detection of structural variants. Illumina paired-end
sequencing data for 161 S. pombe strains were collected as described in Jeffares,
et al.17, with the addition of Leupold’s reference 975 hþ (JB32) and excluding
JB374 (known to be a gene-knockout version of the reference strain, see below).
Leupold’s 968 h90 and Leupold’s 972 h� were included as JB50 and JB22,
respectively (Supplementary Table 6). For all strains, reads were mapped using
NextGenMap (version 0.4.12)57 with the following parameter (-X 1000000) to
the S. pombe reference genome (version ASM294v2.22). Reads with 20 base
pairs or more clipped were extracted using the script split_unmapped_to_fasta.pl
included in the LUMPY package (version 0.2.9)25 and were then mapped
using YAHA (version 0.1.83)58 to generate split-read alignments. The
two mapped files were merged using Picard-tools (version 1.105)
(http://broadinstitute.github.io/picard), and all strains were then down-sampled
to 40� coverage using Samtools (version 0.1.18) (ref. 59).

Subsequently, DELLY (version 0.5.9, parameters: ‘‘ –q 20 -r’’)26, LUMPY
(version 0.2.9, recommended parameter settings)25 and Pindel (version 0.2.5a8,
default parameter)27 were used to independently identify SVs in the 161 strains
using our SURVIVOR software. This included merging any variants of the same
type (duplication, deletion and so on) whose start and end coordinates where
within 1 kb. Merging was justified by the finding that most allele calls were close to
the defined call (only 5% of start or end positions were 4300 nt from the defined
consensus boundary). We then retained all variants predicted by at least two
methods. These SVs calls were genotyped using DELLY.

To identify further CNVs, we ran cn.MOPS24 with parameters tuned to collect
large duplications/deletions as follows: read counts were collected from bam
alignment files (as above) with getReadCountsFromBAM and WL¼ 2000, and
CNVs predicted using haplocn.mops with min Width¼ 6, all other parameters as
default. Hence, the minimum variant size detected was 12 kb. CNV were predicted
for each strain independently by comparing the alternative strain to the two
reference strains (JB22 and JB32) and four reference-like strains that differed from
the reference by o200 SNPs (JB1179, JB1168, JB937 and JB936).

After CNV calling, allele calling was achieved by comparing counts of coverage
in 100 bp windows for the two reference strains (JB22 and JB32) to each alternate
strain using custom R scripts. Alleles were called as non-reference duplications if
the one-sided Wilcoxon rank sum test P values for both JB22 and JB32 vs alternate
strain were less than 1� 10� 10 (showing a difference in coverage) and the ratio of
alternate/reference coverage (for both JB22 and JB32) was 41.8 (duplications), or
o0.2 (deletions). Manual inspection of coverage plots showed that the vast
majority of the allele calls were in accordance with what we discerned by eye. These
R scripts were also used to examine CNVs predicted to be segregating within
clusters (clonal populations). All such CNVs were examined in all clusters that
contained at least one non-reference allele call (Supplementary Table 10).

Finally, we manually mapped two large duplications that did not satisfy
these criteria (DUP.I:2950001..3190000, 240 kb and DUP.I:5050001..5560000,
510 kb – both singletons in JB1207), but were clearly visible in chromosome-scale
read coverage plots (Supplementary Fig. 11).

Reduction of false discovery rate. This filtering produced 315 variant calls.
However, because 31 out of these 315 (B10%) were called within the two
reference strains (JB22 and JB32), we expected that this set still contained false
positives. To further reduce the false positive rate, we looked for parameters that
would reduce calls made in reference strains (JB22 and JB32) but not reduce calls in
strains more distantly related to the reference (JB1177, JB916 and JB894 that have
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68223, 60087 and 67860 SNP differences to reference17). The reasoning was that
we expected to locate few variants in the reference, and more variants in the
more distantly related strains. This analysis showed that paired-end support,
repeats and mapping quality were of primary value.

We therefore discarded all SVs that had a paired-end support of 10 or less.
In addition, we ignored SVs that appeared in low mapping quality regions
(that is, regions where reads with MQ¼ 0) or those where both start and
end coordinates overlapped with previously identified retrotransposon LTRs17.

Finally, to ensure a high specificity call set, these filtered SVs were manually
curated using IGV60 (Supplementary Tables 11 and 12). We assigned each SVs a
score (0: not reliable, 1: unclear, 2: reliable based on inspection of alignments
through IGV). We utilized different visualizations from IGV to identify regions
were pairs of the reads mapped to different loci, for example, which we interpreted
as possible artefacts. Overall, we investigated whether the alignments of the
breakpoints and reads in close proximity had a reliable mapping in terms of
mapping quality and clearness of the distortions of the pairs. Only calls passing
this manual curation as reliable (score 2) were included in the final data set
of 113 variants utilized for all further analyses. These filtering and manual curation
steps reduced our variant calls substantially, from 315 to 113. At this stage
only 1/113 (B1%) of these variants was called within the two standard reference
strains (Leupolds’s hþ and h-, JB22 and JB32 in our collection).

PCR validation. PCR analysis was performed to confirm 10 out of the 11 inver-
sions and all 15 translocations from the curated data set. One inversion was
too small to examine by PCR (INV.AB325691:6644..6784, 140 nt). Primers were
designed using Primer3 (ref. 61) to amplify both the reference and alternate alleles.
PCR was carried out with each primer set using a selection of strains that our
genotype calls predict to include at least one alternate allele and at least one
reference allele (usually six strains). Products were scored according to product
size and presence/absence (Supplementary Tables 13 and 14).

Inversions: 9/10 variants were at least partially verified by either reference or
alternate allele PCR (three variants were verified by both reference and alternate
PCRs), and 7/10 inversions also received support from BLAST (see below).
Translocations: 10/15 were at least partially verified by either reference or alternate
allele PCR (5/15 variants were verified by both reference and alternate PCRs).
One additional translocation received support from BLAST (see below), meaning
that 11/15 translocations were supported by PCR and/or BLAST. Three out of the
four translocations that could not be verified were probably nuclear copies of
mitochondrial genes (NUMTs)62, because one breakpoint was mapped to the
mitochondrial genome. Details of the 113 curated variants are presented in
Supplementary Table 15.

Validation by BLAST of de novo assemblies. We further assessed the quality
of the predicted breakpoints for the inversions and translocations by comparing
them to the previously created de novo assemblies for each of the 161 strains17.
To this end, we created blast databases for the scaffolds of each strain that were
4 1kb. We then created the predicted sequence for 1 kb around each junction
of the validated 10 inversions and 15 translocations. These sequences were
used to search the blast databases using BLASTþ with --gapopen 1 --gapextend 1
parameters. We accepted any blast hsp with a length 4800 bp as supporting
the junction (because these must contain at least 300 bp at each side of the
break point). Four inversions and three translocations gained support from
these searches (Supplementary Table 2—PCR.xlsx).

Knockout strain control. Our sample of sequenced strains included one strain
(JB374) that is known to contain deletions of the his3 and ura4 genes. Our variant
calling and validation methods identified only two variants in this strain, both
deletions that corresponded to the positions of these genes, as below:

his3 gene location is chromosome II, 1489773-1488036, deletion detected at
II:1488228-1489646.

ura4 gene location is chromosome III, 115589-116726, deletion detected at
III:115342-117145.

This strain was not included in the further analyses of the SVs.

Microarray expression analysis. Cells were grown in YES (Formedium, UK) and
harvested at OD600¼ 0.5. RNA was isolated followed by cDNA labelling63. Agilent
8� 15K custom-made S. pombe expression microarrays were used. Hybridization,
normalization and subsequent washes were performed according to the
manufacturer’s protocols. The obtained data were scanned and extracted using
GenePix and processed for quality control and normalization using in-house
developed R scripts. Subsequent analysis of normalized data was performed using
R. Microarray data have been submitted to ArrayExpress (accession number
E-MTAB-4019). Genes were considered as induced if their expression signal after
normalization was 41.9, and repressed if o0.51.

Time to most recent common ancestor (TMRCA) estimates. Previously,
based on the genetic distances between these strains and the ‘dated tip’ dating
method implemented in BEAST64, we have estimated the divergence times between

all 161 S. pombe strains sequenced17. To determine the TMRCA for pairs of strains,
we re-examined the BEAST outputs using FigTree to obtain the medium and 95%
confidence intervals.

SNP and indel calling. SNPs were called as described17. Insertions and deletions
(indels) were called in 160 strains using stampy-mapped, indel-realigned bams as
described previously17. We accepted indels that were called by both the Genome
Analysis Toolkit HaplotypeCaller65 and Freebayes66, and then genotyped all these
calls with Freebayes.

Briefly, indels were called on each strains bam with HaplotypeCaller, and
filtered for call quality 430 and mapping quality 430 (bcftools filter --include
’QUAL430 && MQ430’). Separately, indels were called on each strains bam
with Freebayes, and filtered for call quality 430. All Freebayes vcf files were
merged, accepting only positions called by both Freebayes and HaplotypeCaller.
These indels were then genotyped with Freebayes using a merged bam
(containing reads from all strains), using the --variant-input flag for Freebayes to
genotyped only the union calls. Finally indels were filtered for by score, mean
reference mapping quality and mean alternate mapping quality 430 (bcftools filter
--include ’QUAL430 && MQM430 & MQMR430’). These methods identified
32,268 indels. Only 50 of these segregated between Leupold’s h- reference (JB22)
and Leupold’s h90 reference (JB50), whereas 12109 indels segregated between the
JB22 reference and the divergent strain JB916.

Heredity and GWAS. We analysed 228 traits, including those described
previously17, and three wine traits32. Trait values were normalized using a rank-
based transformation in R, for each trait vector y, normal.y ¼ qnorm(rank(y)/
(1þ length(y))). Total heritability, and the contribution of SNPs, CNVs and
rearrangements were estimated using LDAK (version 5) (ref. 67), with kinship
matrices derived from all SNPs, 146 CNVs and 15 rearrangements. All genotypes,
including CNVs were encoded as binary values (1 or 0) for heritability and GWAS.
To assess whether the contribution of CNVs could be primarily due to linkage with
causal SNPs, we simulated trait data using the --make-phenos function of LDAK
with the relatedness matrix from all SNPs, assuming that all variants contributed to
the trait (--num-causals -1). We made one simulated trait data set per trait, for each
of the 2 traits, with total heritability defined as predicted from the real data. We
then estimated the heritability using LDAK, including the joint matrix of SNPs,
CNVs and rearrangements. To assess the extent to which the contribution of SNPs
to heritability was overestimated, we performed another simulation using the
relatedness matrix from the 87 segregating CNVs alone, and then estimated the
contribution of SNPs, CNVs and rearrangements in this simulated data as above.

Genome-wide associations were performed with LDAK using default
parameters. To account for the unequal relatedness of strains, we used a kinship
matrix derived from all 172,368 SNPs called previouslyJeffares et al.17 Association
analysis was used to find associations between traits, testing SVs, SNPs and indels
with a minor allele count Z5. Analysis was run separately for 68 SVs, 139,396
SNPs and 22,058 indels (each used the kinship derived from all SNPs). We
examined the same 53 traits as for the heritability analysis (above). For each
trait, we carried out 1,000 permutations of trait data, and define the 5th percentile
of these permutations as the trait-specific P value threshold.

Model details for Heritability and GWAS Analysis. To estimate the heritability
contribution of SNPs, we computed a kinship matrix (KSNP) using all 172,368 SNPs
that we had discovered in our previous published analysis17 (elements of this
matrix represent pairwise allelic correlations across all SNPs)67 , onto which we
regressed the phenotypic values assuming the following model:

Y � N 0;KSNP s
2
SNP þ s2e I

� �

We estimated the two variance components, s2SNP and s2e , using REML (restricted
maximum-likelihood), based on which our estimates of the heritability of SNPs is

s2SNP
s2SNP þ s2e

To estimate the heritability of CNVs and rearrangements, we repeated this analysis
using instead KCNV then KREA, computed using only 146 segregating CNVs and 15
segregating rearrangements, respectively.

We additionally considered the model

Y � N 0;KSNP s
2
SNP þKCNV s

2
CNV þKREA s

2
<A þ s2e I

� �

;

Having estimated the four variance components, again using REML, the relative
contributions of SNPs, CNVs and rearrangements are, respectively,

s2SNP
S

;

s2CNV
S

and
s2REA
S

where S ¼ s2SNP þ s2CNV þ s2REA .
To test the specificity of this analysis, we generated phenotypes for which only

one predictor type contributed (for example, only SNPs), then analysed using the
individual and joint models above, which allowed us to assess how accurately we
can distinguish between contributions of different predictor types.
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For the mixed model association analysis, we used the same the SNP kinship
matrix. As the predictors (variants that we examined for effects on a trait),
we chose to analyse SNPs, indels and SVs with a minor allele count
Z5 (68 SVs, 139,396 SNPs and 22,058 indels).

Then for each predictor Xj we considered the model

Y � NðbjX jKSNP s
2
SNP þs2e IÞ;

where bj is the effect size of predictor Xj

Having solved using REML, we used a likelihood ratio test (comparing to the
null model (bj¼ 0) to assess whether bj is significantly nonzero. Each of these
analyses used the kinship derived from all SNPs.

Offspring viability and genetic distance. Cross spore viability data and
self-mating viability were collected from previous analyses6,17. The number of
differences between each pair was calculated using vcftools vcf-subset56, and
correlations were estimated using R, with the ppcor package. When calculating
the number of CNVs differences between strains, we altered our criteria for
‘different’ variants (to merge variants whose starts and ends where within 1 kb),
and merged CNVs if their overlap was 450% and their allele calls were the same.

Transience analysis. For each CNV, we extracted all SNPs from 20 kb upstream
and 20 kb downstream. 86/87 CNVs showed variation in these regions
(DUP.MT:1..19382 was the only CNV with no corresponding SNPs). We then
used these concatenated SNPs to build a local SNP-based tree with FastTree
(version 2.1.9) (ref. 68). To build a CNV-based tree from the copy number
variation in each CNV region, we used a neighbour-joining tree estimation
based on the Euclidean distances between strains.

The total branch length of the CNV-based tree was strongly correlated
(Spearman rank correlation r¼ 0.90, Po0.001) with the standard deviation of
copy number variation (Supplementary Fig. 4). We therefore used this standard
deviation to define a relative rate of transience for each cluster, src¼ sic/soc, where
sic and soc are the within cluster and without cluster standard deviations,
respectively, meaning that CNVs which were highly relatively transient within
a given cluster would have high values of src. This was used to select the
three CNVs visualized in Fig. 2c. See Supplementary Table 2 for all values
of src, Supplementary Fig. 4 for visualization as heatmap. Visualizations
of all 86/87 CNVs with their SNP-based phylogenies are available at:
https://figshare.com/projects/fission_yeast_structural_variation/15798.

Circle plots were used to visualize the variation in copy number over the
SNP-based phylogeny for each CNV using Anvi’o (version 2.0.3)69.

Data availability. Sequence data are archived in the European Nucleotide Archive
under study accessions PRJEB2733 and PRJEB6284. SNP, indel and SVs calls,
genotypes and copy numbers are available on Figshare at: https://figshare.com/
projects/fission_yeast_structural_variation/15798.

Array data is available at ArrayExpress, accession number: E-MTAB-4019.
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