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Abstract The present work deals with the development of

an energy-momentum conserving method to unilateral con-

tact constraints and is a direct continuation of a previous

work (Hesch and Betsch in Comput Mech 2011, doi:10.1007/

s00466-011-0597-2) dealing with the NTS method. In this

work, we introduce the mortar method and a newly developed

segmentation process for the consistent integration of the

contact interface. For the application of the energy-momen-

tum approach to mortar constraints, we extend an approach

based on a mixed formulation to the segment definition of

the mortar constraints. The enhanced numerical stability of

the newly proposed discretization method will be shown in

several examples.

Keywords Contact · Energy methods · Large deformation ·

Mortar method

1 Introduction

The most common approach for the simulation of contact

problems in the context of large deformations is the well

known node-to-segment (NTS) method. This method is often

preferred due to its simple implementation and has also been

addressed in the precursor [16] of the present work. For a

survey of actual developments in the field of NTS meth-

ods we refer to the textbooks written by Laursen [22] and

Wriggers [35]. The collocation-type NTS method does not

pass the patch test and exhibits poor convergence properties.

In particular, the local errors at the contact region do not

necessarily diminish with mesh refinement (see [7]).
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To remedy this drawback, mortar formulations have

been used for unilateral contact problems for several years.

Originally developed in the context of domain decomposi-

tion problems (see [2] and for further details [21,27,33,34]),

they are nowadays well established for contact problems. The

extension to contact mechanics started with the application of

the mortar method to two-dimensional contact problems, see

McDevitt and Laursen [26], Yang et al. [37], Flemish et al. [9]

and Fischer and Wriggers [8]. Three dimensional implemen-

tations have been developed in Puso and Laursen [28,29].

Energy-momentum schemes for non-linear elastodynam-

ics have been developed in the beginning of the 1990s, start-

ing with the work of Simo and Tarnow [31] and Simo et al.

[32]. Further improvements have been achieved by Gonzalez

[10,12] for general non-linear systems and extended to sys-

tems subject to holonomic constraints by Gonzalez [11], see

also Betsch and Steinman [4].

A first application of energy-momentum schemes to uni-

lateral contact constraints within the concept of the NTS

method can be found in Laursen and Chawla [6,23] and in

Armero and Petöcz [1]. Further developments, exclusively

within the framework of the NTS method, can be found

in Laursen and Love [24], Hauret and Le Tallec [14] and

Haikal and Hjelmstad [13]. A first application within the

mortar framework to two-dimensional contact problems and

three-dimensional domain decomposition problems can be

found in Hesch and Betsch [15,17].

For the construction of an energy-momentum method,

we use mixed or reducible formulations, see Zienkiewicz

et al. [38]. In particular, we apply a specific coordinate aug-

mentation technique, originally introduced by Betsch and

Uhlar [5] in the context of multibody dynamics. This con-

cept has already been modified for the construction of an

energy-momentum scheme within the framework of domain

decomposition problems [17]. Furthermore, we will show
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the drawbacks of this formulation and consider major

simplifications, reducing the numerical costs of the mortar

formulation to the costs of the widely used NTS method.

Although we sacrifice exact conservation of total energy due

to the proposed simplification, we are able to algorithmically

conserve at least both momentum maps.

An outline of the present work is as follows. Section 2

gives a short introduction to finite dimensional Hamiltonian

systems subject to unilateral contact constraints. The mortar

constraints and the necessary segmentation process will be

shown in detail in Sect. 3. In Sect. 4 follows the introduction

of mixed formulations and the reformulation of the mortar

constraints in terms of invariants. The objectivity of the semi-

discrete system will be shown in Sect. 5, followed by the

energy conserving time discretization scheme and the men-

tioned simplifications in Sect. 5.1. Representative numerical

examples are presented in Sect. 6. Eventually, conclusions

are drawn in Sect. 7.

2 Mechanical systems with unilateral holonomic

constraints

Without loss of generality we consider a two body contact

problem, where the reference configuration of the bodies in

contact is represented by the open sets �(i), i ∈ {1, 2}. The

surfaces on the current boundary γ (i) = ϕ(i)(∂�(i), t) of the

bodies are subdivided as follows

γ (i) = γ (i)
u

∪ γ (i)
σ ∪ γ (i)

c
, γ (i)

u
∩ γ (i)

σ ∩ γ (i)
c

= 0 (1)

where γ
(i)
u denotes the Dirichlet boundary, γ

(i)
σ the Neumann

boundary and γ
(i)
c the contact boundary of the respective

body.

A comprehensive treatment of the governing equations

can be found in our previous paper [? ]. Here, we focus on a

finite-dimensional mechanical system, subject to unilateral

holonomic constraints. Within this framework, the aug-

mented Hamiltonian H, a function of the configuration

vector q(t) ∈ Rn , the linear momentum p(t) ∈ Rn and

the Lagrange multipliers λ(t) ∈ Rm at time t reads

H(q, p,λ) = T ( p) + Vλ(q) (2)

where T ( p) denotes the total kinetic energy related to a non-

singular mass matrix M ∈ Rn × Rn

T ( p) =
1

2
p · M−1 p (3)

and Vλ(q) denotes an augmented potential energy function,

given by

Vλ(q) = V (q) + λ · � (4)

The potential energy function V (q) describes the strain

energy of the discretized bodies involved in a contact situa-

tion. Details concerning the strain energy function are given

in standard textbooks (e.g. [20,22]). Note that we place no

restrictions to the strain energy functions, neither to the con-

stitutive law nor to the strain measures. Additionally, the

Lagrange multipliers λ are used to enforce m holonomic con-

straints � : Rn → Rm .

Throughout this paper, we use isoparametric displace-

ment-based finite elements in space for the approximation

of the configuration and its variation

q(i) =
∑

A∈ω(i)

N
(i)
A

q
(i)
A

, and δq(i) =
∑

A∈ω(i)

N
(i)
A

δq
(i)
A

(5)

where A ∈ ω(i) = {1, . . . , n
(i)
node} defines a set of nodes

and n
(i)
node the corresponding total number of nodes of the

body i ∈ {1, 2}. For convenience, we introduce a subset

A ∈ ω̄(i) = {1, . . . , n
(i)
surf } of nodes on the respective contact

interfaces γ
(i)
c and the total number of constraints n

con. To

deal with unilateral contact constraints �, which are subject

to the classical Karush–Kuhn–Tucker conditions

�I ≤ 0, λI ≥ 0, λI �I = 0, ∀i ∈
{

1, . . . , n
con
}

(6)

we replace the original constraints � with the already intro-

duced constraints �


I = λI − max{0, λI − c�I }, c > 0 (7)

For details on the corresponding active-set strategy see

Hüeber and Wohlmuth [19], for details concerning the differ-

entiability of the max-operator see Hintermueller et al. [18].

2.1 Mortar formulation

Once the actual contact boundary is determined, we can for-

mulate the local balance of linear momentum across the inter-

face (cf. [37])

t(1) dγ (1) = −t(2) dγ (2) (8)

where t(i) denotes the Cauchy tractions. Based on this bal-

ance principle we can postulate the virtual work of the contact

forces G
c (cf. [30])

G
c =

2
∑

i=1

∫

γ
(i)
c

t(i) · δq(i) dγ (i) =

∫

γ
(1)
c

t(1) · [δq(1)−δq(2)] dγ

(9)

In correspondence with the literature, surface γ
(1)
c is referred

to as non-mortar surface, while the opposing surface is called

mortar surface. In contrast to the NTS-method, which utilizes

a point wise evaluation of the Cauchy tractions, we interpo-

late the tractions using the shape functions N
A of the under-

lying discrete surface on the non-mortar side. Accordingly,

t(1) =
∑

A=ω̄(1)

N
A(ξ (1))t

(1)
A

(10)
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Fig. 1 Three dimensional

segmentation problem

If we substitute (5) and (10) into (9) we obtain the discrete

contact virtual work1

G
c = nB · δq

(1)
B

− nC · δq
(2)
C

(11)

where the abbreviations

nB =

∫

γ
(1)
c

t A N
A(ξ (1))N

B(ξ (1)) dγ, and

nC =

∫

γ
(1)
c

t A N
A(ξ (1))N

C (ξ (2)) dγ (12)

have been used. The Cauchy tractions are decomposed into

the normal and the tangential part

t A = t N

A
+ t F

A
, with t N

A
= λAν, t F · ν = 0 (13)

where ν denotes the unit outward normal vector of the sur-

face γ
(1)
c . Since we restrict ourselves to frictionless sliding,

we assume t F = 0. The mortar constraints in normal direc-

tions can now be written as follows

� A = nAB · q
(1)
B

− nAC · q
(2)
C

(14)

where

nAB =

∫

γ
(1)
c

νN
A(ξ (1))N

B(ξ (1)) dγ and

nAC =

∫

γ
(1)
c

νN
A(ξ (1))N

C (ξ (2)) dγ (15)

1 If convenient and unique, the summation convention is used.

are referred to as mortar integrals. The evaluation of the

mortar integrals (15) is based on a segmentation process,

described in detail in the following section.

3 Mortar contact constraints

The evaluation of the mortar integrals relies on the simul-

taneous integration of both dissimilarly discretized surfaces

in contact. To deal with this matter, we subdivide both sur-

faces into segments and introduce a common parametrization

based on triangular shape functions within each single seg-

ment. Then we apply Gauss integration and assemble the

segment contributions into a global vector of constraints.

This section is organized as follows: In Sect. 3.1 we

discuss the newly developed segmentation process for arbi-

trary curved surfaces. There are well-established segmenta-

tion procedures (see [30,35] and the references therein); we

have to reconsider these procedures, since we assume the

segments to be configuration dependent. The evaluation of

the mortar constraints will be shown in Sect. 3.2, followed

by the assembly procedure outlined in Sect. 3.3.

3.1 Determination of the segments

A typical situation is depicted in Fig. 1. The lower surface of

the brick element (highlighted in yellow) on the mortar side

and the corresponding portions of the four opposing surface

elements on the non-mortar side are assumed to be in contact.

The following outlines the algorithm for the segmentation

process:

1. Loop over all nodes q
(2)
I

on the mortar side.

Similar on the standard orthogonal projection tech-

nique known from the NTS method we determine the
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Fig. 2 Orthogonal projection of the vertices

convective coordinates ξ̄
(1)

I
corresponding to the verti-

ces q
(2)
I

(see Fig. 2) by solving the non-linear equations

�Aug1,I =

⎡

⎢

⎢

⎢

⎢

⎣

4
∑

J=1
N

J,ξ̄
(1)
I,1

(ξ̄
(1)
I

)q
(1)
J

·

(

q
(2)
I

−
4
∑

L=1
NL (ξ̄

(1)
I

)q
(1)
L

)

4
∑

J=1
N

J,ξ̄
(1)
I,2

(ξ̄
(1)
I

)q
(1)
J

·

(

q
(2)
I

−
4
∑

L=1
NL (ξ̄

(1)
I

)q
(1)
L

)

⎤

⎥

⎥

⎥

⎥

⎦

≡ 0

(16)

with respect to the convective coordinates using a stan-

dard Newton method. Here, N
J,ξ̄

(1)

I,α

(ξ̄
(1)

I
) denotes the

derivative of the shape function with respect to ξ̄
(1)

I,α .

2. Loop over all nodes q
(1)
I

on the non-mortar side.

Once again, we use the orthogonal projection technique

to determine the convective coordinates ξ̄
(2)

I
correspond-

ing to the relevant nodes on the mortar side (see ξ̄
(2)

1 in

Fig. 2). To deal with arbitrary curved surfaces, we pro-

ject the nodes to the projected surfaces defined by the

nodes q̄
(1)
I

=
∑4

L=1 NL(ξ̄
(1)

I
)q

(1)
L

instead of the original

surface defined by the nodes q
(2)
I

. Once again, we use a

Newton method to solve the non-linear equations

�Aug2,I

=

⎡

⎢

⎢

⎢

⎢

⎣

4
∑

J=1

N
J,ξ̄

(2)
I,1

(ξ̄
(2)
I

)q̄
(1)
J

·

(

q
(1)
I

−
4
∑

K=1

NK (ξ̄
(2)
I

)q̄
(1)
K

)

4
∑

J=1

N
J,ξ̄

(2)
I,2

(ξ̄
(2)
I

)q̄
(1)
J

·

(

q
(1)
I

−
4
∑

K=1

NK (ξ̄
(2)
I

)q̄
(1)
K

)

⎤

⎥

⎥

⎥

⎥

⎦

≡ 0

(17)

with respect to the convective coordinates ξ̄
(2)

I
.

Fig. 3 Determination of the intersections

3. Loop over all edges on the non-mortar side.

To determine the projected intersections between the

edges (see the crosses in Fig. 2), we create a list of

all edges of all surface elements on the mortar side

and span on each edge, corresponding to the nodes

q
(1)
K

, K ∈ {1, 2}, a surface using a normal field,2 defined

by dK at both nodes q
(1)
K

. Then we create a second list

of all edges of the projected mesh. A specific line on the

projected mesh can be determined using the projected

nodes q̄
(1)
J

=
∑4

L=1 NL(ξ̄
(1)

J
)q

(1)
L

, J ∈ {1, 2}. At last,

we search for the intersection (see Fig. 3) between each

projected line and each possible surface. The correspond-

ing convective coordinates ξ̃I,1 and ξ̃I,2 (as well as ξ̃I,3

which is not needed in the sequel) follow from

�Aug3,I =

2
∑

I=1

N̂J (ξ̃I,1)q̄
(1)
J

−

2
∑

K=1

N̂K (ξ̃I,2)(q
(1)
K

+ d
(1)
K

ξ̃I,3)≡0 (18)

Note that in the above considerations the shape functions

N̂J (ξ̃I,i ), i ∈ {1, 2} on the edges are one dimensional

(see Fig. 3).

4. Delaunay triangularization of each element on the mortar

side.

Based on the results of the first three steps we apply

a Delaunay triangularization as shown in Fig. 4. Note

that several constraints (i.e. specification of nodes, which

must be connected) have to be predetermined. As shown

in Fig. 4, two segments Seg1 and Seg2 have been located

in the first square of Fig. 2.

For later use and guided by previous developments in [? ]

we introduce a global vector of coordinates f , collecting all

convective coordinates, determined by (16), (17) and (18).

2 Different definitions of a normal vector on a discrete surface are pos-

sible, see e.g. Yang et al. [37]. We use an averaged normal composed

of the normals of the adjacent elements.
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Fig. 4 Segmentation based on

a Delaunay triangularization

3.2 Segment wise evaluation of the mortar constraints

After we have located all segments, we calculate the segment

contributions to the mortar constraints (14). Therefore we

introduce for each segment a linear transformation η → ξ̃
(i)

seg

via

ξ̃
(i)

seg(η) =

3
∑

K=1

M
K (η)ξ

(i)
seg,K (19)

where ξ
(i)
seg,K denote the convective coordinates determined

in Sect. 3.1. For each segment we specify the associated

convective coordinates and collect them in the set ηconv =

{ f seg} = {ξ
(i)
seg,K }, i ∈ {1, 2}, K ∈ {1, 2, 3}. In accordance

with the results of the segmentation algorithm, linear trian-

gular shape functions M
K are used. The approximations (5)

and (10) can now be recast in the form

t(1)
seg =

∑

κ

N
κ(ξ̃

(1)

seg(η))tκ (20)

q(1)
seg =

∑

β

N
β(ξ̃

(1)

seg(η))q
(1)
β (21)

q(2)
seg =

∑

ζ

N
ζ (ξ̃

(2)

seg(η))q
(2)
ζ (22)

For the application of a numerical quadrature rule, the Jaco-

bian

Jseg =

∥

∥

∥
a1

(

ξ̃
(1)

seg(η)
)

× a2

(

ξ̃
(1)

seg(η)
)
∥

∥

∥
det(Dξ(η)) (23)

is required, where the tangential vectors aα are calculated

via

aα =
∑

κ

N
κ

,ξ
(1)
α

(

ξ̃
(1)

seg(η)
)

q(1)
κ (24)

Based on the tangential vectors, we specify a unit normal

vector ν

ν =
a1

(

ξ̃
(1)

seg(η)
)

× a2

(

ξ̃
(1)

seg(η)
)

∥

∥

∥
a1

(

ξ̃
(1)

seg(η)
)

× a2

(

ξ̃
(1)

seg(η)
)
∥

∥

∥

(25)

The we cut the norm from both, the Jacobian and the normal

vector and receive

J̄seg = det(Dξ(η)), ν̄ = a1(ξ̃
(1)

seg(η)) × a2(ξ̃
(1)

seg(η)) (26)

To prevent expensive calculations we propose at this point

a simplification and assume that ν̄ remains constant in each

segment, i.e. we evaluate the normal vector at a specific, con-

stant position within the segment.3 Then we can rewrite the

constraints on segment level as follows

�κ
seg = ν̄ ·

[

n̄
κβq

(1)
β − n̄

κζ q
(2)
ζ

]

(27)

using the mortar integrals

n̄
κβ( f seg) =

∫

△

N
κ(ξ̃

(1)

seg(η))N
β(ξ̃

(1)

seg(η)) J̄seg dη

n̄
κζ ( f seg) =

∫

△

N
κ(ξ̃

(1)

seg(η))N
ζ (ξ̃

(2)

seg(η)) J̄seg dη

(28)

which we evaluate using a standard Gauss quadrature

(cf. [17,27]).

3.3 Assembly of the mortar constraints

Once we have determined all segment contributions, we have

to assemble the mortar constraints. Therefore, we arrange the

constraint functions in a global vector of constraints �(q)

in correspondence to the Lagrange multipliers, which are

related to the nodal points on the non-mortar side
∑

A∈ω̄(1)

λA� A(q, f ) = λ · �(q, f ) (29)

Each segment in turn corresponds to a pair of elements e1 ∈

ǭ(1), where ǭ(1) denotes the set of elements on the contact

surface γ
(1)
c , and e2 ∈ ǭ(2) on the contact surface γ

(2)
c . Since

each constraint will be assembled out of a variable number of

segments, where each triangular segment relies on the four

3 It is important to note that the normal vector still depends on the cur-

rent configuration of the surface, only its relative position on the surface

remains constant.

123



466 Comput Mech (2011) 48:461–475

vertices of e1 with local node number κ ∈ {1, . . . , 4}, we

need a connection between the local node numbers and the

global location within the vector of constraints �(q). There-

fore we introduce a location array LM (see [15]), so that

A = LM(κ, e1) and use this location array for the assembly

of the segment contributions

�mortar(q, f ) = A
e1∈ǭ(1)

�e1(q, f )

= A
e1∈ǭ(1)

⋃

seg

�e1,seg(qseg, f seg)

= A
e1∈ǭ(1)

⋃

seg

⎡

⎢

⎣

�κ=1
e1,seg(qseg, f seg)

...

�κ=4
e1,seg(qseg, f seg)

⎤

⎥

⎦
(30)

where A denotes the standard assembly operator (see [20])

and qseg is defined by the set of relevant vectors ηseg =

{qseg} = {q
(1)
I

, q
(2)
J

}, ∀ I, J ∈ [1, . . . , 4].

4 Reformulation of the constraints

Regarding Cauchy’s representation theorem, we can rewrite

(cf. Sect. 4.1) the constraints in terms of invariants. For the

later application of the concept of a discrete gradient to con-

serve the total energy, we have to reformulate the constraints

in terms of invariants, which are at most quadratic. There-

fore, as outlined in Hesch and Betsch [? 17], we replace the

normal vector for each segment by augmented coordinates

dseg in the mortar constraints

�κ
seg(qseg, f seg, dseg)

= dseg ·
[

n̄
κβ( f seg)q

(1)
β − n̄

κζ ( f seg)q
(2)
ζ

]

. (31)

Note that the additional constraints

�normal
seg =

⎡

⎣

dseg · a1

dseg · a2

dseg · dseg − ‖a1 × a2‖
2

⎤

⎦ (32)

are necessary to determine the actual value of the augmented

coordinates.

4.1 Reformulation in terms of invariants

Similar to the approach in Hesch and Betsch [? ] we rewrite

the mortar constraints (31) in terms of invariants. Therefore,

we introduce the following sets

S̄(ηaug)={(q
(1)
I

−q
(1)
1 ) · (q

(i)
J

−q
(1)
1 ), i ∈ {1, 2}, I, J ∈ {1, 2, 3, 4}}

S̃(ηaug)={(q
(i)
I

−q
(1)
1 ) · dseg, i ∈ {1, 2}, I ∈ {1, 2, 3, 4}}

S̊(ηaug) = {dseg · dseg}

Ŝ(ηaug) = { f seg}

(33)

and define a vector of possible invariants

π =

⎡

⎢

⎢

⎢

⎣

π̄ (i) ∈ S̄(ηaug)

π̃ (i) ∈ S̃(ηaug)

π̊ ∈ S̊(ηaug)

π̂ ∈ Ŝ(ηaug)

⎤

⎥

⎥

⎥

⎦

(34)

Note that we have chosen q
(1)
1 such that all terms with I = 1

in (33) vanish. Other choices using a different number of

invariants are possible. To rewrite (31) in terms of the invari-

ants (34) we rearrange the constraints as follows

�κ
seg(qseg, f seg, dseg) = n̄

κβ( f seg)dseg · q
(1)
β

−n̄
κζ ( f seg)dseg · q

(2)
ζ (35)

As shown in Puso [27], linear momentum can not be exactly

conserved due to the inexact numerical evaluation of the mor-

tar integrals. This drawback can be removed by assuming that

∑

β

n̄
κβq

(1)
1 −

∑

ζ

n̄
κζ q

(1)
1 = 0 (36)

holds exactly. Note that the evaluation of the mortar integrals

(28) by means of quadrature rules violates condition (36) in

general. Inserting (36) in (35) yields

�κ
seg(qseg, f seg, dseg)

= n̄
κβ( f seg)(q

(1)
β −q

(1)
1 ) · dseg−n̄

κζ( f seg)(q
(2)
ζ −q

(1)
1 ) · dseg

(37)

Applying the sets of invariants (33) the mortar constraints

(31) can now be written as follows

�κ
seg(π) = n̄

κβ(π̂)π̃
(1)
β − n̄

κζ (π̂)π̃
(2)
ζ (38)

The additional constraints (32) used to determine the actual

values of the augmented coordinates dseg have also to be

rewritten in terms of invariants

�normal
seg (π) =

⎡

⎢

⎢

⎢

⎢

⎣

4
∑

I=1

N
I,ξ

(1)
1

π̃
(1)
I

4
∑

I=1

N
I,ξ

(1)
2

π̃
(1)
I

π̊ − K

⎤

⎥

⎥

⎥

⎥

⎦

(39)

with

K =

[

(

N
I,ξ

(1)
1

N
J,ξ

(1)
1

π̄
(1)
I,J

)(

N
I,ξ

(1)
2

N
J,ξ

(1)
2

π̄
(1)
I,J

)

−
(

N
I,ξ

(1)
1

N
J,ξ

(1)
2

π̄
(1)
I,J

)2
]

(40)
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The corresponding reformulation of the constraints in (16),

(17) and (18) can be found in Appendix A. Note that the

constraints �Aug3
in (18) have to be modified as follows

�
edI J

Aug3
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

d
(1)
1 ·

[

2
∑

I=1
N̂I (ξ̃1)q̄

(1)
I

−
2
∑

J=1
N̂J (ξ̃2)(q

(1)
J

+ d
(1)
J

ξ̃3)

]

(q
(1)
1 − q

(1)
2 ) ·

[

2
∑

I=1
N̂I (ξ̃1)q̄

(1)
I

−
2
∑

J=1
N̂J (ξ̃2)(q

(1)
J

+ d
(1)
J

ξ̃3)

]

(q̄
(1)
1 − q̄

(1)
2 ) ·

[

2
∑

I=1
N̂I (ξ̃1)q̄

(1)
I

−
2
∑

J=1
N̂J (ξ̃2)(q

(1)
J

+ d
(1)
J

ξ̃3)

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

As will be shown in the following, the premultiplication of

the original, nonlinear constraints using a local basis com-

posed of d
(1)
J

, (q
(1)
1 − q

(1)
2 ) and (q̄

(1)
1 − q̄

(1)
2 ) is necessary for

the conservation of angular momentum.4

At last, we collect all constraints in one global vector

�(π(q, f , d)) =

⎡

⎢

⎢

⎢

⎢

⎣

�mortar(π(q, f , d))

�normal(π(q, f , d))

�Aug1
(π(q, f , d))

�Aug2
(π(q, f , d))

�Aug3
(π(q, f , d))

⎤

⎥

⎥

⎥

⎥

⎦

(42)

Remark The original constraint (27) can be rewritten in

terms of invariants, which are at most cubic

π̆ seg =

⎡

⎢

⎣

(a1 × a2) · (q
(1)
β − q

(1)
1 )

(a1 × a2) · (q
(2)
ζ − q

(1)
1 )

f seg

⎤

⎥

⎦
, ∀β, ζ ∈ {1, . . . , 4}

(43)

The segment contributions to the mortar constraints based on

(43) can now be written as follows

�̆κ
seg(π) = n̄

κβ(π̆)π̆
(1)
β − n̄

κζ (π̆)π̆
(2)
ζ (44)

After the assembly procedure (see (30)) we obtain the

reformulated mortar constraints �̆mortar(π̆(q, f , d)). Note,

however, that cubic invariants prevent the application of the

concept of a discrete gradient in the sense of Gonzalez [11].

4.2 Frame indifference of the constraints

According to Noether’s theorem, conservation laws are

related to the invariance properties of the system. In par-

ticular, conservation of linear and angular momentum can be

linked to the invariance of the Hamiltonian under translations

and rotations, assuming the absence of external forces. With

regard to (4) we postulate the invariance of the strain energy

function V (q) (cf. [3]) and concentrate our investigations

on the constraint functions. To verify the frame indifference,

rigid body motions of the form

q
♯
I,seg = c + Qq I,seg (45)

4 Other local bases are possible.

are considered, where c ∈ R3 is a constant vector and Q ∈

SO(3) is a rotation tensor. Due to the definition of the sets

in (33) and the demonstrated reformulation of the segment

contributions in terms of invariants (38) we can state that

�κ
seg(π(c + Qq I,seg, f seg, dseg))

−�κ
seg(π(qseg, f seg, QT dseg)) = 0 (46)

Next, we substitute c = ǫµ and Q = I , where I denotes

the unity matrix, µ ∈ R3 is constant and ǫ ∈ R arbitrary.

Accordingly, we receive for the translational part

0 =
d

dǫ

∣

∣

∣

∣

ǫ=0

�κ
seg(π(q I,seg + ǫµ, f seg, dseg))

= D�κ
seg(π)) ·

∑

I

∂q I,seg
π(qseg, f seg, dseg) · µ=0 (47)

For the rotational part, we substitute c = 0 and Q =

exp (ǫµ̂), where exp(ǫµ̂) ∈ SO(3) denotes the exponential

map of a skew-symmetric tensor µ̂, which can be associated

with an axial vector µ ∈ R3, so that µ̂a = µ × a for any

a ∈ R3 and receive

0 =
d

dǫ

∣

∣

∣

∣

ǫ=0

�κ
seg(π(exp(ǫµ̂)q I,seg, f seg, dseg))

−�κ
seg(π(qseg, f seg, exp(−ǫµ̂)dseg))

= D�κ
seg(π)) ·

∑

I

[

∂q I,seg
π(qseg, f seg, dseg) · (µ × q I,seg)

+ ∂dseg
π(qseg, f seg, dseg) · (µ × dseg)

]

(48)

Since we rewrite the additional constraints (32), (16), (17)

and (18) in terms of the same invariants, analogues proper-

ties are also valid for them.

5 Equations of motion

Regarding the Hamiltonian (2), the constrained semi-discrete

system under consideration can be recast in the form

ż = J∇z H(z,λ)

0 = ∇λ H(z,λ)
(49)

Here, J denotes the canonical skew symmetric matrix

J =

[

0 1

−1 0

]

(50)

and z = [q, p] the canonical phase space variables. Con-

cerning the augmentation technique introduced in Sect. 4,

the corresponding equations of motion take the form

ż = J∇z H(z, f , d,λ)

0 =

⎡

⎣

∇f H(z, f , d,λ)

∇d H(z, f , d,λ)

∇λ H(z, f , d,λ)

⎤

⎦ (51)
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For the semi-discrete system at hand, various constants of

motion exist (cf. [25, Chapter 3.3]). First, we consider the

components of the momentum maps

G(z) = µ ·
∑

A∈ω

pA, G(z) = µ ·
∑

A∈ω

q A × pA (52)

and show that

d

dt
G(z)=∇z G(z) · ż =∇z G(z) · J∇z H(z, f , d,λ)≡0

(53)

Again, µ ∈ R3 denotes a constant vector. Since we are not

interested in the strain energy function (cf. [3]), we consider

only the contributions of the reformulated active constraints.

For the total linear momentum (52)1 follows

d

dt
G(z) = µ ·

∑

A∈ω̄

ṗA

= λ · D�(π) ·
∑

A∈ω̄

(∂q A
π(q, d, f )) · µ = 0 (54)

where use of (47) has been made. Similarly, for the total

angular momentum (52)2 follows

d

dt
G(z) = µ ·

∑

A∈ω

(q̇ A × pA + q A × ṗ)

= µ ·
∑

A∈ω

(M−1 pA × pA − q A

×(∂q A
π(q, f , d))T ∇π �(π) · λ

= −µ ·
∑

A∈ω̄

q A × (∂q A
π(q, f , d))T ∇π �(π) · λ

= λ · D�(π) ·
∑

A∈ω̄

(∂q A
π(q, f , d)) · q̂ Aµ (55)

With regard to (48) we can state that

D�(π) ·

⎡

⎣

∑

A∈ω̄

(∂q A
π(q, d, f )) · q̂ Aµ

−
∑

B∈ωseg

(∂d B
π(q, d, f )) · d̂ Bµ

⎤

⎦ = 0 (56)

where ωseg denotes the set of all segments. Insertion in (55)

together with (51)3 yields

d

dt
G(z) = λ · D�(π) ·

∑

B∈ωseg

(∂d B
π(q, d, f )) · d̂ Bµ

= 0 (57)

As before, only the contributions of the constraints have been

considered. This demonstrates, that the frame-invariance is

a necessary condition for the conservation of the momentum

maps, which is in agreement with Noether’s theorem. The

last constant of motion considered here is the Hamiltonian

itself, representing the total energy of the system

G(z, d, f ) = H(z, f , d,λ) (58)

The invariance of the Hamiltonian with respect to time is a

consequence of the skew-symmetry in (53). Due to the aug-

mented coordinates, we have to consider the additional terms

in (51) as well

d

dt
G(z, d, f ) = ∇z H(z, f , d,λ) ż + ∇f H(z, f , d,λ) ḟ

+∇d H(z, f , d,λ)ḋ

= ∇z H(z, f , d,λ)J∇z H(z, f , d,λ)

+∇d H(z, f , d,λ)ḋ

+∇f H(z, f , d,λ) ḟ

= 0 (59)

representing the consistency condition of the Hamiltonian.

5.1 Discretization in time

To solve the semidiscrete system at hand, we have to imple-

ment an appropriate time stepping scheme. Three approaches

for the discretization in time with different degrees of com-

plexity are considered below.

1. The most complex approach rests on the configuration

dependency of the mortar integrals. For a typical time

step [tn, tn+1] of length �t the equations of motion (51)

can be recast in the form5

qn+1 − qn = �t M−1 p
n+ 1

2

pn+1 − pn = −�t∇ V (qn , qn+1)

−�t (D1π(q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2
))T ∇π �(πn , πn+1) · λn+1

0 = (D2π(q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2
))T ∇π �(πn , πn+1) · λn+1

0 = (D3π(q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2
))T ∇π �(πn , πn+1) · λn+1

0 = �(π(qn+1, dn+1, f n+1))

(60)

Here, (•)
n+ 1

2
= 1

2
((•)n+1 + (•)n) denotes a mid-point

evaluation and ∇ V (qn, qn+1) is the discrete gradient of

the strain energy function as proposed in Betsch and

Steinmann [3]. The equivariant discrete gradient of the

5 Here, D1−3 denotes the derivative with respect to the 1 − 3 slot.
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constraints ∇π �(πn,πn+1) consists on the one hand of

the segment contributions (see Sect. 3.3)

∇π �κ
seg(πn,πn+1) = ∇ �κ

seg(πn+ 1
2
)

+
�κ

seg(πn+1) − �κ
seg(πn) − ∇ �κ

seg(πn+ 1
2
)�π

‖π‖2
�π

(61)

where �π = πn+1 − πn . On the other hand, ∇π

�(πn,πn+1) consists of the contributions of the refor-

mulated constraints (42)2−5, using the same vector of

invariants and the same definition for the discrete gradi-

ent.

2. A tremendous decrease of the size and the complexity of

the system can be achieved by evaluating the convective

coordinates f only at time tn . The equations of motion

can now be recast in the form

qn+1 − qn = �t M−1 p
n+ 1

2

pn+1 − pn = −�t∇ V (qn , qn+1)

−�t (D1π(q
n+ 1

2
, d

n+ 1
2
, f n))T ∇π �(πn , πn+1) · λn+1

0 = (D2π(q
n+ 1

2
, d

n+ 1
2
, f n))T ∇π �(πn ,πn+1) · λn+1

0 = �(π(qn+1, dn+1, f n))

(62)

Here, the constraints are assembled as follows

�(π(qn+1, dn+1, f n))=

[

�mortar(π(qn+1, dn+1, f n))

�normal(π(qn+1, dn+1, f n))

]

(63)

Note that the segments have to be generated merely once

for each time step and are held constant until the next

time step.

3. A further decrease of the size and the complexity of the

system can be achieved by eliminating the augmentation

of the normal vector and sacrificing exact conservation

of energy. In particular, we retain the augmented coor-

dinates f n and make use of the cubic invariants π̆ (see

(43)) instead of the quadratic invarinats

qn+1 − qn = �t M−1 p
n+ 1

2

pn+1 − pn = −�t∇ V (qn, qn+1)

−�t (D1π̆(q
n+ 1

2
, f n))T ∇Mπ �(π̆n, π̆n+1) · λn+1

0 = �̆mortar(π̆(qn+1, f n)) (64)

Analogues to the time-continuous case we can identify sev-

eral constants of motion in the discrete setting. Again we

focus on the constraint contributions and start with the con-

servation properties of the momentum maps for the first

approach

G(zn+1) − G(zn) = µ ·
∑

A∈ω̄

( pA,n+1 − pA,n)

= µ ·
∑

A∈ω̄

(∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f

n+ 1
2
))T ∇π �

×(πn,πn+1) · λn+1 = 0 (65)

and

G(zn+1) − G(zn) = µ ·
∑

A∈ω

[

(q A,n+1 − q A,n)

× p
A,n+ 1

2
+ q

A,n+ 1
2

× ( pn+1 − pn)
]

= −�tµ ·
∑

A∈ω

[

q
A,n+ 1

2

×
(

∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f

n+ 1
2
)
)T

∇π �(πn, πn+1) · λn+1

]

= −�tλn+1 ·
(

∇π �(πn, πn+1)
)T

·
∑

A∈ω

(

∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f

n+ 1
2
)
)

·q̂
A,n+ 1

2
µ (66)

With regard to (56) we can state

(∇π �(πn , πn+1))T ·

⎡

⎣

∑

A∈ω̄

(∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f

n+ 1
2
)) · q̂

A,n+ 1
2
µ

−
∑

B∈ωseg

(

∂d B
π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

))

· d̂
B,n+ 1

2
µ

⎤

⎦=0 (67)

and rewrite the last equation

G(zn+1) − G(zn)

= �tλn+1 ·
(

∇π �(πn , πn+1)
)T

·
∑

B∈ωseg

[(

∂d B
π(q

n+ 1
2
, d

n+ 1
2
, f

n+ 1
2
)
)

· d̂
B,n+ 1

2
µ
]

= �tµ ·
∑

B∈ωseg

d
B,n+ 1

2

×
(

∂d B
π(q

n+ 1
2
, d

n+ 1
2
, f

n+ 1
2
)
)T

∇π �(πn , πn+1) · λn+1 = 0

(68)

Next, we verify algorithmic conservation of energy. Since the

original system deals with inequality constraints, an addi-

tional error in energy arises due to the application of the

active set strategy. As shown in Hesch and Betsch [? ], this

error is negligible and can be treated as described in the afore

mentioned paper. For the algorithmic conservation of energy

the net power input to the system within each time step has

to be zero. After a few calculations we receive

�E =λn+1 · D1π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

)T
∇π �(πn,πn+1)

·(qn+1 − qn) (69)
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where �E denotes the change in total energy. Introducing
the discrete consistency condition

D1π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

)T
∇π �(πn, πn+1)(qn+1−qn)

+D2π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

)T
∇π �(πn, πn+1)(dn+1 − dn)

+D3π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

)T
∇π �(πn, πn+1)( f n+1− f n)

= ∇π �(πn, πn+1)(πn+1 − πn)

= �(πn+1) − �(πn) = 0 (70)

we can show that

�E = −λn+1 ·

[

D2π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

)T

×∇π �(πn,πn+1)(dn+1 − dn)

+D3π
(

q
n+ 1

2
, d

n+ 1
2
, f

n+ 1
2

)T

×∇π �(πn,πn+1)( f n+1 − f n)
]

= 0 (71)

is valid. Thus, total energy is conserved.

Similarly, the second approach yields for the momentum

maps

G(zn+1) − G(zn) = µ ·
∑

A∈ω̄

( pA,n+1 − pA,n)

= µ ·
∑

A∈ω̄

(∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f n))T

×∇π �(πn,πn+1) · λn+1

= 0 (72)

and

G(zn+1)−G(zn)=µ ·
∑

A∈ω

[

(q A,n+1 − q A,n)× p
A,n+ 1

2

+q
A,n+ 1

2
× ( pn+1 − pn)

]

= −�tµ ·
∑

A∈ω

[

q
A,n+ 1

2

×
(

∂q A
π
(

q
n+ 1

2
, d

n+ 1
2
, f n

))T

∇π �(πn,πn+1) · λn+1

]

= −�tλn+1 ·
(

∇π �(πn,πn+1)
)T

·
∑

A∈ω

(∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f n)) · q̂

A,n+ 1
2
µ (73)

With regard to (56) we obtain immediately

(∇π �(πn, πn+1))T

·

⎡

⎣

∑

A∈ω̄

(∂q A
π(q

n+ 1
2
, d

n+ 1
2
, f n)) · q̂

A,n+ 1
2
µ

−
∑

B∈ωseg

(∂d B
π(q

n+ 1
2
, d

n+ 1
2
, f n)) · d̂

B,n+ 1
2
µ

⎤

⎦ = 0 (74)

and rewrite Eq. (73) as follows

G(zn+1) − G(zn)

= �tλn+1 ·
(

∇π �(πn,πn+1)
)T

·
∑

B∈ωseg

[(

∂d B
π(q

n+ 1
2
, d

n+ 1
2
, f n)

)

· d̂
B,n+ 1

2
µ
]

= �tµ ·
∑

B∈ωseg

d
B,n+ 1

2

×
(

∂d B
π(q

n+ 1
2
, d

n+ 1
2
, f n)

)T

∇π �(πn,πn+1) · λn+1

= 0 (75)

Again, both momentum maps are algorithmically conserved.

For the total energy we get

�E = λn+1 · D1π
(

q
n+ 1

2
, d

n+ 1
2
, f n

)T

∇π �(πn,πn+1)

·(qn+1 − qn) (76)

The discrete consistency condition reads

D1π(q
n+ 1

2
, d

n+ 1
2
, f n)T ∇π �(πn,πn+1)(qn+1 − qn)

+D2π(q
n+ 1

2
, d

n+ 1
2
, f n)T ∇π �(πn, πn+1)(dn+1−dn)

= ∇π �(πn, πn+1)(πn+1 − πn)

= �(πn+1) − �(πn) = 0 (77)

and insertion in (76) yields

�E = −λn+1 · [D2π(q
n+ 1

2
, d

n+ 1
2
, f n)T

×∇π �(πn,πn+1)(dn+1−dn)] = 0 (78)

Thus, total energy is conserved.

At last, we can show for the third approach that

G(zn+1) − G(zn) = µ ·
∑

A∈ω̄

( pA,n+1 − pA,n)

= µ ·
∑

A∈ω̄

(

∂q A
π̆(q

n+ 1
2
, f n)

)T

∇π̆ �̆(π̆n, π̆n+1) · λn+1

= 0 (79)

and

G(zn+1) − G(zn) = µ ·
∑

A∈ω

[

(q A,n+1 − q A,n) × p
A,n+ 1

2

+q
A,n+ 1

2
× ( pn+1 − pn)

]

= −�tµ ·
∑

A∈ω

[

q
A,n+ 1

2

×
(

∂q A
π̆(q

n+ 1
2
, f n)

)T

∇π̆ �̆(π̆n, π̆n+1) · λn+1

]

= −�tλn+1 ·
(

∇π̆ �̆(π̆n, π̆n+1)
)T

·
∑

A∈ω

(∂q A
π̆(q

n+ 1
2
, f n)) · q̂

A,n+ 1
2
µ

= 0 (80)
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Fig. 5 Configurations at time

t = 2 and t = 5

Fig. 6 Segmentation at time

t = 2 and t = 5

Accordingly, both momentum maps are algorithmically con-

served. Since we can not apply the concept of a discrete gra-

dient, total energy is not conserved.

6 Numerical investigations

In this section we investigate the performance of the differ-

ent proposed approaches. Two model problems have been

taken from Yang and Lausen [36] and applied to the newly

developed schemes.

6.1 Two tori impact problem

As a first example we consider an impact simulation of

two tori. Both tori are discretized using 8,024 eight-node

brick elements with overall 72,216 degrees of freedom.

The inner and outer radii are 52 and 100, respectively,

the wall thickness of each hollow torus is 4.5. A stan-

dard Neo-Hookean hyperelastic material with E = 2,250

and ν = 0.3 is used. The initial density ρ = 0.1 and

the homogeneous, initial velocity of the left torus is given

0 1 2 3 4 5
2

2.1
x 10

7

t

H H

Fig. 7 Total energy versus time using approach 1

by v = [30, 0, 23]. A time-step size of �t = 0.0025

has been used for the first approach, whereas a time-

step size of both simplified approaches has been set to

�t = 0.01.
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Fig. 8 Total energy versus time using approach 3
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Fig. 9 Values of change of the first component of angular momentum

versus time using approach 3

Excluding the augmented coordinates f from the calcula-

tions as shown in (62), a reduction of the average calculation

time of a Newton step of about 12% could be achieved in

this specific example. Furthermore, we were able to use four

to ten times larger time-step sizes. This stability feature is of

major importance especially in large sliding situations.

In Fig. 5 the configuration at t = 2 and t = 5 is shown. The

associated segmentations are displayed in Fig. 6. 2,318 seg-

ments are automatically constructed at time t = 2 for overall

331 mortar constraints. For the first approach where the mor-

tar integrals remain not constant throughout each time step,

an additional 355 constraints for �Aug1
, 240 constraints for

�Aug2
and 703 constraints for �Aug3

are necessary. Further-

more, 6,954 constraints for the augmentation of the normal

vector have to be considered. At t = 5 5,896 segments with

overall 755 mortar constraints are determined. Correspond-

ingly, we need 923 constraints for �Aug1
, 529 constraints for

�Aug2
, 1,866 constraints for �Aug3

and 20,862 constraints

for the augmentation of the normal vector. Clearly, this is not

acceptable. In contrast, if we apply approach 3, we only have

to add 755 mortar constraints to the global system. We then

need the same amount of constraints as for the NTS method,

since each mortar constraint refers to a specific node on the

non-mortar side. Although the evaluation of the mortar con-

straints is more involved, the solver clearly dominates the

overall calculation time and thus, we have no drawback in

the calculation time due to the use of mortar methods.

In Fig. 7 total energy versus time is displayed using the

proposed energy-momentum scheme together with deform-

able mortar segments. As shown in Fig. 8, approach 3 does

not conserve energy. The increase in total energy is accept-

able, since we used relatively large time steps. The last dia-

gram shows the values of change of the first component of

angular momentum. Note that the values are below the stop-

ping criterion of the Newton iteration (10−5) (Fig. 9).

6.2 Torus-cylinder impact example

As before, we utilize a problem introduced by Yang and Laur-

sen [36], see Fig. 10 . The material properties and the initial

geometry of the torus are the same as in Sect. 6.1. The inner

diameter of the cylinder is 100, the wall thickness is 7.5 and

Fig. 10 Configuration at time

t = 0 and t = 5.8
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Fig. 11 Segmentation at time t = 5.8 (rotated 90◦)
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Fig. 12 Linear momentum versus time
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Fig. 13 Third component of the angular momentum versus time

the initial velocity of the torus is [0, 0, 20]. The Torus con-

sists of 4,992 elements and 22,464 degrees of freedom, the

cylinder of 4,960 elements and 23,040 degrees of freedom.

Furthermore, the time-step size has been set to �t = 0.005.

A standard Neo-Hookean hyperelastic material with E =

12000 and ν = 0.3 is used. In Fig. 11 a typical segmentation

after 5.8 s is displayed.

As before, the vector of augmented coordinates would

become unacceptably large. Thus, we concentrate on

approach 3. As can be seen in Figs. 12 and 13, respectively,

linear and angular momentum are algorithmically conserved.

7 Conclusions

This paper extends the mixed energy momentum approach,

developed previously in the context of the NTS method, to

the mortar method. The proposed methods conserve linear

and angular momentum algorithmically, which is new in the

context of mortar contact methods. To achieve this benefit,

an accurate segmentation procedure as well as the reformula-

tion of the constraints in terms of invariants using reducible

coordinates is presented in detail. Furthermore, an energy

conserving algorithm has been applied to the constraints.

We have also shown how to apply several simplifica-

tions without affecting conservation of the momentum maps.

These simplifications lead to a reduction of the numerical

costs of the mortar method to a level, similar to the costs of

the traditional NTS method. This comes at the expense of

algorithmic energy conservation.
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Appendix A: Reformulation of the additional

constraints

For the reformulation of (16) in terms of invariants similar

to (34), we define a vector of possible invariants as follows

π =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(q
(1)
J

− q
(1)
1 ) · (q

(2)
I

− q
(1)
1 )

(q
(1)
J

− q
(1)
1 ) · (q

(1)
J

− q
(1)
1 )

(q
(1)
2 − q

(1)
1 ) · (q

(1)
3 − q

(1)
1 )

(q
(1)
2 − q

(1)
1 ) · (q

(1)
4 − q

(1)
1 )

(q
(1)
3 − q

(1)
1 ) · (q

(1)
4 − q

(1)
1 )

ξ̄
(1)

I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, J ∈ [2, 3, 4] (81)

for all projected nodes I . For the reformulated constraints we
obtain

�Aug1,I (π)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

N2,π10
N3,π10

N4,π10

]

·

⎧

⎨

⎩

⎡

⎣
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(82)
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where NJ,π10(π10, π11) denotes the derivative of the shape

function J with respect to π10. Moreover, we have to refor-

mulate (17). It is easy to show, that (17) can be rewritten as

follows

�Aug2 ,I =

⎡

⎢

⎢

⎢
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⎢
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Although tedious, it is straight forward to reformulate

Eq. (83) in terms of the invariants

π =

⎡

⎢

⎣

(q
(1)
J L

− q
(1)
J1 ) · (q

(1)
J K

− q
(1)
J1 )
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J
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I

⎤
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⎦
(84)

Note, that each q
(1)
J L

, q
(1)
J K

, ∀L , K ∈ {2, 3, 4} depends on the

corresponding position of the projection J ∈ {1, 2, 3, 4}.

Note that we search for the convective coordinates of the

mortar side in terms of the projected mesh.
At last we rewrite (41) as follows
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Even more tedious as before, but straight forward we can

reformulate the last set of equations in terms of the invariants
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together with the convective coordinates ξ̄
(1)

I
, ξ̃1, ξ̃2, ξ̃3 for

all combinations of L , M, K ∈ {1, 2, 3, 4} and I, J ∈

{1, 2, 3, 4}.
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