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Abstract

In this paper a new wave splitting is suggested that simplifies the analysis of
wave propagation in reciprocal bi-isotropic media. Two different methods to
solve the scattering problem are analyzed; the invariant imbedding and the
Green function approach. The medium is modeled by constitutive relations
in the time domain (time convolutions) and the slab is assumed to be inho-
mogeneous with respect to the depth. It is showed that the cross-polarized
contribution to the reflected field at normal incidence is zero for the general
reciprocal inhomogeneous slab. Moreover, the rotation and the attenuation
of the wave front are calculated explicitly in the general inhomogeneous slab
case. Special attention is paid to normal incidence and to the homogeneous
semi-infinite medium.

1 Introduction

The increasing interest in wave propagation phenomena in bi-isotropic (chiral) me-
dia is well documented, see, e.g., [7, 22] for a recent overview of the field. This paper
is a generalization of the analysis is Ref. [20], where scattering by transient elec-
tromagnetic waves of normal incidence was investigated. The incident wave in this
paper impinges on the slab at an arbitrary oblique angle and the slab is assumed to
be inhomogeneous with respect to the depth. The scattering problem in Ref. [20]
was solved by the use of wave splitting techniques [2–4, 23], which have been suc-
cessfully applied to several different wave propagation problems in the time domain,
see [1, 5, 8–11, 14, 16–19, 21, 23, 24].
In this paper a new splitting is adopted, which shows strong affinity to the

general wave splitting for Maxwell equations in three dimensions introduced by
Weston [24]. The new wave splitting has direct physical interpretations. This is
in contrast to the one given in [20], which made it necessary to introduce non-
physical kernels in an intermediate step in the calculations. The new splitting has
also advantages in the numerical implementations of the problem. Furthermore,
with this new splitting, it is possible to show that the inhomogeneous slab has no
cross-polarization contribution in the reflected field. This result holds for normal
incidence with an arbitrary reciprocal inhomogeneous (with respect to depth) slab
and therefore generalizes the results from the homogeneous slab case. Moreover,
the rotation and the attenuation of the wave front can be calculated in the general
inhomogeneous slab case at oblique incidence. Specifically, this result gives the wave
front behavior of the transmitted field.

2 Basic equations

The aim of this paper is to investigate electromagnetic wave propagation in the time
domain in a reciprocal bi-isotropic medium. The medium is a slab bounded by the
surfaces z = 0 and z = L, respectively, see Figure 1. Outside the slab, (z < 0 and
z > L), the medium is assumed to be homogeneous with constant permittivity ǫ0ǫ
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and permeability µ0µ. For simplicity these constant values of the permittivity and
permeability hold throughout the space. Generalization of this problem to phase
velocity mismatch at the boundaries of the slab is not considered in this paper,
c.f. [18].
Due to the slab geometry it is pertinent to rewrite the fields in a transverse and

a perpendicular part with respect to the slab interface. Specifically, introduce the
following notation:

E(r, t) = E‖(r, t) + ẑEz(r, t)

and

∇ = ∇‖ + ẑ
∂

∂z

where
E‖(r, t) = ẑ × (E(r, t)× ẑ)

and similarly for all other vector fields. Throughout this paper a 2 × 2 matrix
notation is adopted and all such matrices are typed in upright boldface and vectors
in slanted boldface1. Furthermore, no distinction is made between vectors and their
representation as column vectors of cartesian coordinates in this paper.
The Maxwell equations are the basic equations that model the dynamics of the

electromagnetic fields.










∇× E(r, t) = −∂B(r, t)
∂t

∇× H(r, t) =
∂D(r, t)

∂t

The x- and y-components of Maxwell equations can be written as

∂

∂z

(

JE‖

JH‖

)

=
∂

∂t

(

−B‖

D‖

)

+

(

J∇‖Ez

J∇‖Hz

)

The 2× 2 matrix J is defined as the constant matrix

J =

(

0 −1
1 0

)

Notice that the matrix J, considered as an operator on the vectors in the x-y-plane,
can be written as

J = ẑ × I
where the 2× 2 identity matrix I is

I =

(

1 0
0 1

)

and, therefore, the matrix J is a rotation of −π/2 around the z-axis. Notice also
that

JJ = −I
1At a few occasions 4 × 4 matrices are introduced. They are also written on upright boldface.

From the context it is obvious whether a 2× 2 or a 4× 4 matrix is regarded.



3

The z-components of the Maxwell equations are also used.

∂

∂t

(

−Bz

Dz

)

=

(

∂xEy − ∂yEx

∂xHy − ∂yHx

)

It is appropriate to rewrite the x- and y-components of the Maxwell equations
as

∂

∂z

(

E‖

ηJH‖

)

=
1

c

∂

∂t

(

cJB‖

cηD‖

)

+

(

∇‖Ez

ηJ∇‖Hz

)

(2.1)

and the z-components as

1

c

∂

∂t

(

cBz

cηDz

)

=

(

−(J∇‖)
t 0

0 −(∇‖)
t

) (

E‖

ηJH‖

)

(2.2)

where
(

−(J∇‖)
t 0

0 −(∇‖)
t

)

=

(

∂y −∂x 0 0
0 0 −∂x −∂y

)

and the phase velocity c and the wave impedance η are

c =
1√
ǫ0ǫµ0µ

=
c0√
ǫµ

η =

√

µ0µ

ǫ0ǫ
= η0

√

µ

ǫ

The permittivity, permeability, wave impedance and phase velocity of vacuum are
denoted ǫ0, µ0, η0 and c0, respectively. The constants ǫ and µ are the relative
permittivity and permeability, respectively, of the medium. The form of the Maxwell
equations in (2.1) and (2.2) is appropriate for the analysis below.
The constitutive relations model the dynamics of the constitutive charges of the

medium. In Ref. [12] (see also [13]) it was proven, under very general assumptions,
that the constitutive relations must be of the form of time convolutions. In this
paper a slightly altered version of these constitutive relations is used (for a relation
between the two different versions, see Appendix A). The constitutive relations that
are appropriate for the treatment in this paper are

{

cηD(r, t) = E(r, t) + (G ∗ E)(r, t) + η(K ∗ H)(r, t)

cB(r, t) = −(K ∗ E)(r, t) + ηH(r, t) + η(F ∗ H)(r, t)
(2.3)

where time convolution is denoted by a ∗, i.e.,

(G ∗ E)(r, t) =

∫ t

−∞

G(r, t− t′)E(r, t′) dt′

The kernels G and F model the ordinary dispersive effects in the absence of bi-
isotropy. The kernel K is a measure of the bi-isotropy of the medium. Notice that
the kernel K appears in both equations in the constitutive relations and therefore
the medium is reciprocal [13]. The kernels G, F and K are zero for t < 0 due to
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causality. Furthermore, these kernels are assumed to be continuously differentiable
functions of t for t > 0 for each r.
In Section 3 the inverse of the constitutive relations in (2.3) are also used. To

avoid cumbersome notation it is therefore convenient to introduce the inverse of
(2.3) explicitly. The inverse of (2.3) is

{

E(r, t) = cηD(r, t) + cη(g ∗ D)(r, t) + c(k ∗ B)(r, t)

ηH(r, t) = −cη(k ∗ D)(r, t) + cB(r, t) + c(f ∗ B)(r, t)
(2.4)

where the three new kernels g, f and k are defined in terms of the original kernels
G, F and K as











k + (F +G+G ∗ F +K ∗K) ∗ k = −K
g +G+ g ∗G = k ∗K
f + F + f ∗ F = k ∗K

(2.5)

From these equations it is immediately clear that the first equation determines the
kernel k uniquely, since it is a Volterra equation of the second kind in k. With the
same arguments the second and third equations uniquely determine the kernels g
and f , respectively. Conversely, it is also clear that G, F and K can be recovered
from g, f and k. This is easily seen from the equations in (2.5), which imply that

K + (f + g + g ∗ f + k ∗ k) ∗K = −k

This is again a Volterra equation of the second kind in K if g, f and k are known.
The kernels G and F can then be computed from the second and the third equations
in (2.5), respectively.

3 Oblique incidence

The analysis and the equations in Section 2 are general. No assumption about the
material has been made so far. In this section certain assumptions are made to
handle the oblique incidence case. It is assumed that the slab is inhomogeneous
only with depth z. The susceptibility kernels are therefore functions of z and t, i.e.,
G(r, t) = G(z, t) and similarly for all other susceptibility kernels. The geometry of
the problem is depicted in Figure 1. All fields are assumed to vary as a function of
space r and time t as

E(r, t) = x̂Ex(z, s) + ŷEy(z, s) + ẑEz(z, s)

H(r, t) = x̂Hx(z, s) + ŷHy(z, s) + ẑHz(z, s)

where

s = t− y sin θ

c

and θ is the angle of incidence. The fields are only functions of depth z and the time
coordinate s = t − y sin θ/c. This assumption implies that the fields at a certain
point and time (r, t) is identical to the fields at an earlier time t − y sin θ/c at the
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point y = 0 and depth z. Therefore, at constant depth z, the history of the fields is
translated in time with y sin θ/c. The time convolutions in the constitutive relations,
(2.3), are changed

(G ∗ E)(r, t) =

∫ t

−∞

G(z, t− t′)E(z, t′ − y sin θ/c) dt′ =
∫ s

−∞

G(z, s− s′)E(z, s′) ds′

These assumptions imply that all derivatives in the Maxwell equations are simplified.

∂x =
∂

∂x
= 0, ∂t =

∂

∂t
= ∂s, ∂y =

∂

∂y
= −sin θ

c
∂s

and the Maxwell equations (2.1) with the constitutive relations (2.3) imply that the
x- and y-components satisfy

c
∂

∂z

(

E‖

ηJH‖

)

=

(

−K ∗ J (1 + F∗)I
(1 +G∗)I −K ∗ J

)

∂

∂s

(

E‖

ηJH‖

)

− sin θ ∂
∂s









0
Ez

−ηHz

0









0 L

y

z

θ

ǫ, µ

G(z, t) = 0

F (z, t) = 0

K(z, t) = 0

ǫ, µ

G(z, t) �= 0
F (z, t) �= 0
K(z, t) �= 0

ǫ, µ

G(z, t) = 0

F (z, t) = 0

K(z, t) = 0

Figure 1: Geometry of the problem.

The z-components of the fields in the last term are now eliminated. The consti-
tutive relations (2.4) and the Maxwell equations (2.2) imply that the z-components
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of the fields satisfy

∂

∂s

(

Ez

ηHz

)

=

(

k∗ 1 + g∗
1 + f∗ −k∗

)

∂

∂s

(

cBz

cηDz

)

= − sin θ
(

k∗ 1 + g∗
1 + f∗ −k∗

) (

1 0 0 0
0 0 0 −1

)

∂

∂s

(

E‖

ηJH‖

)

Thus, it is possible to eliminate the z-components and obtain an equation in the
transverse components of the electric and the magnetic fields only. The result is

c
∂

∂z

(

E‖

ηJH‖

)

=

(

−K ∗ J (1 + F∗)I
(1 +G∗)I −K ∗ J

)

∂

∂s

(

E‖

ηJH‖

)

+ sin2 θ









0 0 0 0
k∗ 0 0 −1− g∗

−1− f∗ 0 0 −k∗
0 0 0 0









∂

∂s

(

E‖

ηJH‖

)

(3.1)

The second term on the right hand side vanishes at normal incidence. Note that the
first term on the right hand side contains the constitutive relations, (2.3), and the
second term contains the constitutive relations given by (2.4).

4 Wave splitting

In this section the new wave splitting for the bi-isotropic medium is introduced. The
idea of wave splitting has been used in several scattering problems [2–4, 23]. The
wave splitting used in this paper has several similarities with the three-dimensional
wave splitting for the Maxwell equations suggested by Weston [24].
Mathematically, the wave splitting is a change in the dependent variables. The

definition is
(

E+(z, s)
E−(z, s)

)

= P

(

E‖(z, s)
ηJH‖(z, s)

)

(4.1)

where the 4× 4 matrix P is defined as

P =
1

2 cos θ

(

cos θI −SS
cos θI SS

)

with inverse

P−1 =

(

I I

− cos θS−1S−1 cos θS−1S−1

)

The 2× 2 matrices S, I and J are

S =

(

1 0
0 cos θ

)

, I =

(

1 0
0 1

)

, J =

(

0 −1
1 0

)

(4.2)



7

Notice that S and J do not commute.
In these new fields, E+(z, s) and E−(z, s), the transverse electric and magnetic

fields are






E‖(z, s) = E+(z, s) +E−(z, s)

H‖(z, s) =
1

η
cos θJS−1S−1

(

E+(z, s)− E−(z, s)
)

Compared to the wave splitting employed in Ref. [20], this new splitting has the
advantage that the fields E+(z, s) and E−(z, s) are continuous over the slab bound-
aries. This property facilitates the treatment of the scattering problem.

0 Lz
z

E−(z, t) E+(z, t)

Figure 2: The wave splitting.

Outside the slab, i.e., z < 0 and z > L, where
{

D(z, t) = ǫǫ0E(z, t)

B(z, t) = µµ0H(z, t)

the fields E+(z, s) and E−(z, s) represent the right and the left going parts of the
solution, respectively. More specifically,

{

E+(z, s) = f ‖(s− z cos θ/c)
E−(z, s) = g‖(s+ z cos θ/c)

where f and g are the electric fields of the general plane waves propagating in the
direction of incidence and reflection, respectively, see also (5.1). The definition (4.1),
however, is well defined even inside the medium where G �= 0, F �= 0 and K �= 0,
see also Figure 2 and a formal picture of the wave splitting.

5 Dynamics

The transverse components of the electric and the magnetic fields satisfy the system
of equations in (3.1). The plus and minus fields E+(z, s) and E−(z, s), defined in
Section 4, satisfy similar system of equations. These equations are equivalent to
(3.1) and straightforward to derive using (3.1) and (4.1).

v
∂

∂z

(

E+

E−

)

=

(

−I 0
0 I

)

∂

∂s

(

E+

E−

)

+

(

S 0

0 S

) (

α β

γ δ

) (

S−1 0

0 S−1

)

∗ ∂
∂s

(

E+

E−

) (5.1)
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where the longitudinal phase velocity v is

v = c/ cos θ

and the 2× 2 matrix kernels α, β, γ and δ are

(

α β

γ δ

)

= X+Y (5.2)

The 4× 4 matrix kernels X, Y are defined as

X =
1

2 cos2 θ

(

−G− F− 2K −G+ F
G− F G+ F− 2K

)

(5.3)

and

Y =
tan2 θ

2









f −k −K f k −K
k +K g k −K −g
−f k −K −f −k −K
k −K g k +K −g









(5.4)

where
G = GSS, F = F cos2 θS−1S−1, K = KJ

The terms in equation (5.1) are organized such that the term containing the 4× 4
matrix Y vanishes at normal incidence, θ = 0. Both the 4 × 4 matrices X and
Y contain the generalized sucseptibility kernels and vanish if there is no slab, i.e.,
G(t) = F (t) = K(t) = 0. The first term gives the dynamics for the free space
contribution.

6 Propagation of the wave front

Before the general scattering problem is addressed, it is interesting to analyze the
propagation of singularities in the bi-isotropic medium. This analysis gives infor-
mation about the rotation and the attenuation of the wave front as it propagates
through the medium. Specifically, the wave front of the transmitted field can be
explicitly given in terms of the incident field. In Appendix B a general derivation
of the problem is given.
The propagation of singularities in the positive z-direction for the dynamic sys-

tem (5.1) depends on the matrix α(z,+0).

α(z,+0) =
1

2 cos2 θ
(−G− F− 2K)(z,+0) + tan

2 θ

2

(

f −k −K
k +K g

)

(z,+0)

=
1

2 cos2 θ

(

−G− F 2K
−2K −G− F

)

(z,+0)

This is the upper left corner contribution on the right hand side of (5.1). Moreover,
in the simplification of this result, equation (2.5) has been used. The other matrices
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β, γ and δ play no rôle in the propagation of the wave front in the positive z-
direction.
Assume there is a finite jump discontinuity in the plus field E+ at z = 0. This

finite jump discontinuity propagates through the medium and the finite jump dis-
continuity at depth z is related to its value at z = 0 as

[

E+(z, s+ z/v)
]

= Q′(0, z)
[

E+(0, s)
]

where the 2 × 2 matrix Q′(0, z) quantifies the rotation and the attenuation of the
discontinuity. The square bracket

[

E+(z, s+ z/v)
]

denotes the finite jump discon-
tinuity of the field at the point (z, s + z/v). The field E− shows no finite jump
discontinuity of this kind and therefore the total field E has exactly the same fi-
nite jump discontinuity as the field E+ above. Notice also, that the finite jump
discontinuity

[

E+(0, s)
]

is the same on either side of the interface of the slab.
The matrix Q′(0, z) satisfies the following first order differential equation found

by use of propagation of singularity arguments.

d

dz
Q′(0, z) =

1

v
Sα(z,+0)S−1Q′(0, z)

Q′(0, 0) = I

To solve this system of equations it is convenient to introduce a new matrix

Q = S−1Q′S

i.e., the matrix Q′ is similarity transformed. The matrix Q satisfies a simpler initial
value problem.

d

dz
Q(0, z) =

1

v
α(z,+0)Q(0, z) =

cos θ

c
α(z,+0)Q(0, z)

Q(0, 0) = I

This matrix equation can be explicitly solved and expressed in the following general
notation:

Q(z1, z2) = e
− 1

2c cos θ

∫

z2
z1

(G(z′,+0)+F (z′,+0)) dz′
(

cosφ(z1, z2) − sinφ(z1, z2)
sinφ(z1, z2) cosφ(z1, z2)

)

where the angle of rotation of the wave front φ(z1, z2) is

φ(z1, z2) = − 1

c cos θ

∫ z2

z1

K(z′, 0) dz′ (6.1)

Notice that this result holds for an inhomogeneous slab with arbitrary susceptibility
kernels G(z, t), F (z, t) and K(z, t).
The matrix Q′ will play an important part in the definition of the imbedding

kernels and the Green functions in (7.1) and (11.1), respectively.
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7 Scattering operators

The reflection and the transmission kernels of the slab give the impulse response
on both sides of the slab for an excitation from the left, i.e., the reflected and the
transmitted field, respectively, for a delta pulse excitation.
The imbedding approach to solve the scattering problem uses the idea of studying

a one-parameter family of problems. At one end of the parameter interval the
scattering problem is trivial while for the other endpoint of the parameter interval
the full scattering problem is solved. This idea has been used extensively to solve
scattering problems in the time domain during the last decade [1, 2, 4, 5, 9–11, 15–
20, 23].

0 z L
z

Figure 3: The imbedding geometry.

Consider a subsection [z, L] of the physical slab [0, L], see Figure 3. The relation
between the fieldsE+(z, s),E−(z, s) andE+(z, s),E+(L, s+(L−z)/v), respectively,
are given by the following definitions (for more details of how these relations are
derived, see [4, 6]):

{

E−(z, s) =
(

R′(z, ·) ∗ E+(z, ·)
)

(s)

E+(L, s+ (L− z)/v) = Q′(z, L)
{

E+(z, s) +
(

T′(z, ·) ∗ E+(z, ·)
)

(s)
} (7.1)

where the time convolutions are defined as

(

R′(z, ·) ∗ E+(z, ·)
)

(s) =

∫ s

−∞

R′(z, s− s′)E+(z, s′) ds′

and the matrix-valued kernels R′ and T′ are

R′(z, s) =

(

R11(z, s) R12(z, s)/ cos θ
R12(z, s) cos θ R22(z, s)

)

T′(z, t) =

(

T11(z, s) T12(z, s)/ cos θ
T21(z, s) cos θ T22(z, s)

)

Note that the kernel R′(z, s) has identical off-diagonal entries (apart from the cos θ
factor). This follows from a more general Ansatz due to the reciprocal nature of the
problem. In the second equation in (7.1) a delta measure has been subtracted from
the scattering kernel. Thus, the precursors are determined by the remaining part
T′.
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These kernels, R′ and T′, can physically be interpreted as the reflection and
transmission imbedding kernels for the subsection [z, L] of the slab. They are defined
in the region (z, s) ∈ [0, L] × (−∞,∞) and are referred to as imbedding kernels.
Note that the kernels R′(0, s) and T′(0, s) are the physical scattering kernels of
the slab and that the kernels R′(L, s) and T′(L, s) are zero since the fields E± are
continuous at z = L (no scatterer is present as z = L). Moreover, R′(z, s) and
T′(z, s) are zero for s < 0 due to causality.
To simplify the equations below, it is convenient to use the matrix S, see (4.2),

explicitly and to introduce reflection and transmission kernels R and T.

R(z, s) = S−1R′(z, s)S =

(

R11(z, s) R12(z, s)
R12(z, s) R22(z, s)

)

and

T(z, s) = S−1T′(z, s)S =

(

T11(z, s) T12(z, s)
T21(z, s) T22(z, s)

)

The transformation with S is a similarity transformation.
The imbedding kernels R and T are equal to zero for s < 0 and have finite jump

discontinuities at s = 0. T is continuously differentiable for s > 0 and so is R except
on the line s = 2(L− z)/v, where R has a finite jump discontinuity.
The imbedding kernels R(z, s) and T(z, s) satisfy partial differential equations.

These equations, the imbedding equations, will be presented in the next section as
well as the finite jump discontinuities of the kernels.

8 The imbedding equations

The imbedding equations are easily derived from the dynamic equation (5.1) and the
definition of the imbedding kernels (7.1), see also (B.3) and (B.4) in Appendix B.
The result, valid for s > 0, 0 < z < L and s �= 2(L− z)/v, is

v∂zR− 2∂sR = ∂s {γ + δ ∗R−R ∗ α −R ∗ β ∗R} (8.1)

v∂zT = α(z,+0)T− ∂s {α+ β ∗R+T ∗ α+T ∗ β ∗R} (8.2)

R(L, s) = 0

T(L, s) = 0

R(z,+0) = −1
2
γ(z,+0)

where the four matrices α, β, γ and δ are defined in (5.2), (5.3) and (5.4). Note
that the imbedding equations are matrix equations and that the matrices α, β, γ
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and δ have only six independent elements. These are











































































α11 = −δ11 =
1

2 cos2 θ
(−G− F cos2 θ + f sin2 θ)

β11 = −γ11 =
1

2 cos2 θ
(−G+ F cos2 θ + f sin2 θ)

α22 = −δ22 =
1

2 cos2 θ
(−G cos2 θ − F + g sin2 θ)

β22 = −γ22 =
1

2 cos2 θ
(−G cos2 θ + F − g sin2 θ)

α12 = −α21 = δ12 = −δ21 =
1

2 cos2 θ
(2K − (k +K) sin2 θ)

β12 = β21 = γ12 = γ21 =
1

2 cos2 θ
((k −K) sin2 θ)

The value of the matrices at s = 0 can be simplified by using (2.5). The result is























































α(z,+0) =
1

2 cos2 θ

(

−G− F 2K
−2K −G− F

)

(z,+0)

β(z,+0) = − 1

2 cos2 θ

(

G− F cos 2θ 2K sin2 θ
2K sin2 θ G cos 2θ − F

)

(z,+0)

γ(z,+0) =
1

2 cos2 θ

(

G− F cos 2θ −2K sin2 θ
−2K sin2 θ G cos 2θ − F

)

(z,+0)

δ(z,+0) =
1

2 cos2 θ

(

G+ F 2K
−2K G+ F

)

(z,+0)

The values T(z,+0) follows from (8.2) by integration along the z-axis. The result
is, see also (B.5) in Appendix B

vT(z,+0) =

∫ L

z

Q(z′, z) {∂sα − βγ/2} (z′,+0)Q(z, z′) dz′

The finite jump discontinuity in R along the line s = 2(L − z)/v is denoted by
[R](z), i.e.,

[R](z) = R(z, 2(L− z)/v + 0)−R(z, 2(L− z)/v − 0)

The discontinuity is found by standard propagation of singularity arguments, see [6],
using (8.1). The result is, see also (B.6) in Appendix B

(z) =
1

2
exp

{∫ z

L

δ(z′,+0)
dz′

v

}

γ(L,+0) exp

{∫ L

z

α(z′,+0)
dz′

v

}

=exp

{

− 1

c cos θ

∫ L

z

(G(z′,+0) + F (z′,+0)) dz′
}

1

2

(

cosφ(z, L) sinφ(z, L)
− sinφ(z, L) cosφ(z, L)

)

γ(L,+0)

(

cosφ(z, L) − sinφ(z, L)
sinφ(z, L) cosφ(z, L)

)

(8.3)
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where φ(z, L) is given by (6.1).
The imbedding equations (8.1) and (8.2) both consist of a set of three and four

coupled partial differential equations, respectively. The four entries in the matrix
equation for the reflection imbedding equation are:











































v∂zR11−2∂sR11 = ∂s

{

−β11 − 2α11 ∗R11 + 2α12 ∗R12

−R11 ∗ (β11 ∗R11 + β12 ∗R12)−R12 ∗ (β12 ∗R11 + β22 ∗R12)
}

v∂zR12−2∂sR12 = ∂s

{

β12 − (α11 + α22) ∗R12 + α12 ∗ (R22 −R11)

−R11 ∗ (β11 ∗R12 + β12 ∗R22)−R12 ∗ (β12 ∗R12 + β22 ∗R22)
}

v∂zR22−2∂sR22 = ∂s

{

−β22 − 2α22 ∗R22 − 2α12 ∗R12

−R12 ∗ (β11 ∗R12 + β12 ∗R22)−R22 ∗ (β12 ∗R12 + β22 ∗R22)
}

The corresponding entries in the matrix equation for the transmission imbedding
equation are:







































































































v∂zT11 =α11(z,+0)T11 + α12(z,+0)T21

− ∂s

{

α11 + α11 ∗ T11 − α12 ∗ T12 + β11 ∗R11 + β12 ∗R12

+ T11 ∗ (β11 ∗R11 + β12 ∗R12) + T12 ∗ (β12 ∗R11 + β22 ∗R12)
}

v∂zT12 =α11(z,+0)T12 + α12(z,+0)T22

− ∂s

{

α12 + α12 ∗ T11 + α22 ∗ T12 + β11 ∗R12 + β12 ∗R22

+ T11 ∗ (β11 ∗R12 + β12 ∗R22) + T12 ∗ (β12 ∗R12 + β22 ∗R22)
}

v∂zT21 =− α12(z,+0)T11 + α22(z,+0)T21

− ∂s

{

−α12 + α11 ∗ T21 − α12 ∗ T22 + β12 ∗R11 + β22 ∗R12

+ T21 ∗ (β11 ∗R11 + β12 ∗R12) + T22 ∗ (β12 ∗R11 + β22 ∗R12)
}

v∂zT22 =− α12(z,+0)T12 + α22(z,+0)T22

− ∂s

{

α22 + α12 ∗ T21 + α22 ∗ T22 + β12 ∗R12 + β22 ∗R22

+ T21 ∗ (β11 ∗R12 + β12 ∗R22) + T22 ∗ (β12 ∗R12 + β22 ∗R22)
}

Note that to solve the transmission kernels Tij the reflection kernels Rij have to
be known. Despite the complexity of these equations they are very well suited for
numerical calculations. Numerical results are reported in a sequent paper.

9 The Imbedding equations at normal incidence

The imbedding equations in Section 8 give the equations for general oblique inci-
dence. In general, the scattering problem is solved by a system of four coupled
partial differential equations. In this section the simplifications that occur for nor-
mal incidence are explicitly pointed out.
At normal incidence, θ = 0, equation (7.1) is simplified. Due to axial symmetry

of the problem, the reflection and transmission kernels have only two independent
entries and, furthermore, S = I and s = t. The reflection and transmission kernels
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for normal incidence are
{

E−(z, t) =
(

R(z, ·) ∗ E+(z, ·)
)

(t)

E+(L, t+ (L− z)/c) = Q(z, L)
{

E+(z, t) +
(

T(z, ·) ∗ E+(z, ·)
)

(t)
}

where

R(z, t) =

(

R1(z, t) −R2(z, t)
R2(z, t) R1(z, t)

)

and

T(z, t) =

(

T1(z, t) −T2(z, t)
T2(z, t) T1(z, t)

)

It is easy to see that all 2× 2 matrices of this form commute.
The imbedding equations, (8.1) and (8.2), and the finite jump discontinuities

simplify to

2c∂zR− 4∂tR = ∂t {G− F+ 2(G+ F) ∗R+ (G− F) ∗R ∗R} (9.1)

R(L, t) = 0

R(z,+0) = −G(z,+0)− F(z,+0)
4

[R](z) =
G(L,+0)− F(L,+0)

4
exp

{

−
∫ L

z

(G+ F )(z′,+0)
dz′

c

}

for the reflection kernels, and for the transmission kernels the result is

2c∂zT = ∂t {G+ F+ 2K}+ ∂t {G+ F+ 2K} ∗T
+ ∂t {(G− F) ∗ (R+R ∗T)} (9.2)

T(L, t) = 0

8cT(z,+0) =

∫ L

z

{

(G− F)2 − 4∂t(G+ F+ 2K)
}

(z′,+0) dz′

Notice that G = GI and F = F I for normal incidence. The domain of definition
for these equations is {(z, t) : t > 0, 0 < z < L and t �= 2(L− z)/c}. Also note that
R = 0 if G = F.
Equation (9.1) shows that R2(z, t) = 0, since the imbedding equation (9.1) has

only diagonal entries and no off-diagonal terms (this assumes unique solubility of
the equation). The reflection kernel then simplifies to R(z, t) = R1(z, t)I = R(z, t)I,
where I is the 2 × 2 identity matrix. As a consequence of this, the cross-polarized
part of the reflected electric field from the finite or semi-infinite (reciprocal) bi-
isotropic slab will be zero even if the slab is inhomogeneous. This result holds for
any susceptibility kernels G, F and K and is therefore a general result.
Finally, for completeness the explicit entries of the imbedding matrix equations

(9.1) and (9.2) are given.










2c∂zR− 4∂tR = ∂t {G− F + 2(G+ F ) ∗R + (G− F ) ∗R ∗R}
2c∂zT1 = ∂t {G+ F} ∗ T1 − 2∂t {K} ∗ T2 + ∂t {G+ F + (G− F ) ∗ (R +R ∗ T1)}
2c∂zT2 = ∂t {G+ F} ∗ T2 + 2∂t {K} ∗ T1 + ∂t {2K + (G− F ) ∗R ∗ T2}
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10 Homogeneous, semi-infinite slab

If the slab is homogeneous and semi-infinite, see Figure 4, R is independent of z
so that equation (8.1) can be integrated (with respect to s). Hence, equation (8.1)
simplifies to

2R+ γ + δ ∗R−R ∗ α −R ∗ β ∗R = 0, s > 0 (10.1)

or equivalently







































2R11−β11 − 2α11 ∗R11 + 2α12 ∗R12

−R11 ∗ (β11 ∗R11 + β12 ∗R12)−R12 ∗ (β12 ∗R11 + β22 ∗R12) = 0

2R12+β12 − (α11 + α22) ∗R12 + α12 ∗ (R22 −R11)

−R11 ∗ (β11 ∗R12 + β12 ∗R22)−R12 ∗ (β12 ∗R12 + β22 ∗R22) = 0

2R22−β22 − 2α22 ∗R22 − 2α12 ∗R12

−R12 ∗ (β11 ∗R12 + β12 ∗R22)−R22 ∗ (β12 ∗R12 + β22 ∗R22) = 0

These equations give the solution to scattering problem for a semi-infinite, homo-
geneous medium at oblique incidence. Notice that this is a system of non-linear
Volterra equations of the second kind in R. Equations of this kind are very stable
and easy to solve numerically, see Ref. [20].

0
z

ǫ, µ

G(t) = 0

F (t) = 0

K(t) = 0

ǫ, µ

G(t) = 0

F (t) = 0

K(t) = 0

Figure 4: Geometry of the semi-infinite slab problem.

Again, at normal incidence simplifications occur in (10.1). The reflection equa-
tion then reduces to

4R +G− F + 2(G+ F ) ∗R + (G− F ) ∗R ∗R = 0, t > 0

This result agrees with the result given in Ref. [20] for the case of F (t) = 0 (use the
result of Appendix A).
The results in this section can also be used in the homogeneous but finite slab

in the region {(z, s) : 0 < z < L and 0 < s < 2(L − z)/v}. The effect of the back
wall reflection is not effecting the reflection in the interval 0 < s < 2(L− z)/v.



16

11 The Green Functions

In this section a different way of obtaining the scattering kernels is presented. The
approach of Green functions was originally introduced by Krueger and Ochs [21]
for the dispersionless case and by Kristensson [15] for the isotropic medium with
dispersion. The method also gives the internal fields of the slab.
The Green functions G′+(z, s) and G′−(z, s) are defined for (z, s) ∈ [0, L] ×

(−∞,∞) through the relation between the fields E+(z, s) and E−(z, s) and the
excitation E+(0, s).







E+(z, s+ z/v) = Q′(0, z)E+(0, s) +
(

G′+(z, ·) ∗Q′(0, z)E+(0, ·)
)

(s)

E−(z, s+ z/v) =
(

G′−(z, ·) ∗Q′(0, z)E+(0, ·)
)

(s)
(11.1)

where

(

G′±(z, ·) ∗Q′(0, z)E+(0, ·)
)

(s) =

∫ s

−∞

G′±(z, s− s′) ∗Q′(0, z)E+(0, s′) ds′

and

G′±(z, s) =

(

G±
11(z, s) G±

12(z, s)/ cos θ
G±

21(z, s) cos θ G±
22(z, s)

)

The Green functions are zero for s < 0 due to causality. The matrix G′− has a finite
jump discontinuity at s = 2(L−z)/v. The entries in the matrices G′± are otherwise
continuously differentiable functions for s > 0.
As in Section 8, it is convenient to introduce the following similarity transfor-

mation:

G±(z, s) = S−1G′±(z, s)S =

(

G±
11(z, s) G±

12(z, s)
G±

21(z, s) G±
22(z, s)

)

It is easy to derive the following relationship between the imbedding and Green
function formulations from their definitions, see (7.1) and (11.1):

{

Q(L, z)G+(L, s)Q(z, L) = G+(z, s) +T(z, s) +
(

T(z, ·) ∗G+(z, ·)
)

(s)

G−(z, s) = R(z, s) +
(

R(z, ·) ∗G+(z, ·)
)

(s)
(11.2)

The boundary values are found analogously



















G+(0, s) = 0

G−(0, s) = R(0, s)

G+(L, s) = Q(0, L)T(0, s)Q(L, 0)

G−(L, s) = 0

In the same way as the imbedding kernels, the Green functionsG± satisfy partial
differential equations. Straightforward calculations give that, in the region {(z, s) :
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s > 0, 0 < z < L and s �= 2(L − z)/v}, the Green functions satisfy, see also (B.9)
and (B.10) in Appendix B

v∂zG
+ = −G+α(z,+0) + ∂s

{

α+α ∗G+ + β ∗G−
}

(11.3)

v∂zG
− − 2∂sG

− = −G−α(z,+0) + ∂s

{

γ + γ ∗G+ + δ ∗G−
}

(11.4)

G−(z,+0) = −γ(z,+0)/2 = R(z,+0)

where α, β, γ and δ are defined in (5.2), (5.3) and (5.4).
The value G+(z,+0) can be obtained from (11.3) by integration. The result is

vG+(z,+0) =

∫ z

0

Q(z′, z) {∂sα − βγ/2} (z′,+0)Q(z, z′) dz′

The finite jump discontinuity inG− along the line s = 2(L−z)/v is denoted [G−](z),
i.e.,

[G−](z) = G−(z, 2(L− z)/v + 0)−G−(z, 2(L− z)/v − 0)
The discontinuity is found from propagation of singularity arguments, or simpler
from (11.2) and (8.3).

[G−](z) =
1

2
exp

{∫ z

L

δ(z′,+0)
dz′

v

}

γ(L,+0) exp

{∫ L

z

α(z′,+0)
dz′

v

}

= [R](z)

The Green function equations (11.3) and (11.4) are two coupled matrix equations.
The entries of (11.3) are



























































v∂zG
+
11 =− α11(z,+0)G

+
11 + α12(z,+0)G

+
12

+ ∂s

{

α11 + α11 ∗G+
11 + α12 ∗G+

21 + β11 ∗G−
11 + β12 ∗G−

21

}

v∂zG
+
12 =− α22(z,+0)G

+
12 − α12(z,+0)G

+
11

+ ∂s

{

α12 + α11 ∗G+
12 + α12 ∗G+

22 + β11 ∗G−
12 + β12 ∗G−

22

}

v∂zG
+
21 =− α11(z,+0)G

+
21 + α12(z,+0)G

+
22

+ ∂s

{

−α12 + α22 ∗G+
21 − α12 ∗G+

11 + β22 ∗G−
21 + β12 ∗G−

11

}

v∂zG
+
22 =− α22(z,+0)G

+
22 − α12(z,+0)G

+
21

+ ∂s

{

α22 + α22 ∗G+
22 − α12 ∗G+

12 + β22 ∗G−
22 + β12 ∗G−

12

}

and the corresponding entries of (11.4) are



























































v∂zG
−
11−2∂sG

−
11 = −α11(z,+0)G

−
11 + α12(z,+0)G

−
12

+ ∂s

{

−β11 − β11 ∗G+
11 + β12 ∗G+

21 − α11 ∗G−
11 + α12 ∗G−

21

}

v∂zG
−
12−2∂sG

−
12 = −α22(z,+0)G

−
12 − α12(z,+0)G

−
11

+ ∂s

{

β12 − β11 ∗G+
12 + β12 ∗G+

22 − α11 ∗G−
12 + α12 ∗G−

22

}

v∂zG
−
21−2∂sG

−
21 = −α11(z,+0)G

−
21 + α12(z,+0)G

−
22

+ ∂s

{

β12 − β22 ∗G+
21 + β12 ∗G+

11 − α22 ∗G−
21 − α12 ∗G−

11

}

v∂zG
−
22−2∂sG

−
22 = −α22(z,+0)G

−
22 − α12(z,+0)G

−
21

+ ∂s

{

−β22 − β22 ∗G+
22 + β12 ∗G+

12 − α22 ∗G−
22 − α12 ∗G−

12

}
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This system of equations is an alternative set of equations to solve the scattering
problem. It is a system of eight coupled equations. However, the system is linear
in contrast to the imbedding equations, which were non-linear, but only contained
four coupled equations. Despite the complexity these equations are very well suited
for numerical treatment, see also Ref. [20].

12 The Green Functions at normal incidence

Simplifications, similar to the ones found for the imbedding equations, occur at
normal incidence. In this section these simplifications are explicitly pointed out.
At normal incidence equation (11.1) is transformed into (S = I and s = t)

{

E+(z, t+ z/c) = Q(0, z)E+(0, t) +
(

G+(z, ·) ∗Q(0, z)E+(0, ·)
)

(t)

E−(z, t+ z/c) =
(

G−(z, ·) ∗Q(0, z)E+(0, ·)
)

(t)

where

G±(z, t) =

(

G±
1 (z, t) −G±

2 (z, t)
G±

2 (z, t) G±
1 (z, t)

)

due to axial symmetry. All 2× 2 matrices of this form commute with each other.
The Green functions equations for normal incidence are

2c∂zG
+ = (G(z,+0) + F(z,+0) + 2K(z,+0))G+

− ∂t

{

G+ F+ 2K+ (G+ F+ 2K) ∗G+ + (G− F) ∗G−
} (12.1)

G+(0, t) = 0

8cG+(z,+0) =

∫ z

0

{

(G− F)2 − 4∂t(G+ F+ 2K)
}

(z′,+0) dz′

for the matrix G+ and

2c∂zG
− − 4∂tG

− = (G(z,+0) + F(z,+0) + 2K(z,+0))G−

+ ∂t

{

G− F+ (G− F) ∗G+ + (G+ F− 2K) ∗G−
} (12.2)

G−(L, t) = 0

G−(z,+0) = −1
4
(G(z,+0)− F(z,+0))

[G−](z) =
G(L,+0)− F(L,+0)

4
exp

{

−
∫ L

z

(G+ F )(z′,+0)
dz′

c

}

for the matrix G−. Notice that G = GI and F = F I for normal incidence. The
region of definition in both these cases is {(z, t) : t > 0, 0 < z < L and t �=
2(L− z)/c}.
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The explicit entries of the matrix equations (12.1) and (12.2) are


























































2c∂zG
+
1 = {G(z,+0) + F (z,+0)}G+

1 − 2K(z,+0)G+
2

− ∂t

{

G+ F + (G+ F ) ∗G+
1 − 2K ∗G+

2 + (G− F ) ∗G−
1

}

2c∂zG
+
2 = {G(z,+0) + F (z,+0)}G+

2 + 2K(z,+0)G
+
1

− ∂t

{

2K + (G+ F ) ∗G+
2 + 2K ∗G+

1 + (G− F ) ∗G−
2

}

2c∂zG
−
1 − 4∂tG

−
1 = {G(z,+0) + F (z,+0)}G−

1 − 2K(z,+0)G−
2

+ ∂t

{

G− F + (G− F ) ∗G+
1 + (G+ F ) ∗G−

1 + 2K ∗G−
2

}

2c∂zG
−
2 − 4∂tG

−
2 = {G(z,+0) + F (z,+0)}G−

2 + 2K(z,+0)G
−
1

+ ∂t

{

(G− F ) ∗G+
2 + (G+ F ) ∗G−

2 − 2K ∗G−
1

}

The explicit relation between the imbedding kernels R and T and Green function
formulations at normal incidence follows from equation (11.2).

{

G+(L, t) = G+(z, t) +T(z, t) +
(

T(z, ·) ∗G+(z, ·)
)

(t)

G−(z, t) = R(z, t)I+
(

R(z, ·) ∗G+(z, ·)
)

(t)

since all matrices commute. The kernels T(z, t) and R(z, t) = R(z, t)I are the
kernels introduced in Section 9.

Appendix A Relation between constitutive rela-

tions

For the convenience of the reader an appendix with the transformation between the
constitutive relation used in Ref. [20] and the present paper is given.
In Ref. [20] a slightly different set of constitutive relations was introduced.







D(r, t) = ǫ0ǫ
{

E(r, t) + (G ∗ E)(r,⊔) + ⌋(K ∗ B)(r,⊔)
}

H(r, t) = ǫ0ǫ
{

c(K ∗ E)(r,⊔) + ⌋∈
[

B(r,⊔) + (F ∗ B)(r,⊔)
]

}

Specifically, in Ref. [20] these constitutive relations were introduced with F = 0.
The relation between this set of constitutive relations and the ones in (2.3) is given
in terms of the resolvent of F(r,⊔).

F + F + F ∗ F = ′

This is a Volterra equation of the second kind. The relation between the kernels G,
F , K and G, F , K is easily found.

{

G = G − K ∗ K = G − K ∗ (K + F ∗ K)
K = K + F ∗ K

These equations can be used to transform the kernels G, F , K into the kernels G,
F , K. Conversely, they can also be used to transform the kernels G, F , K into the
kernels G, F , K, by solving suitable Volterra equations of the second kind.
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Appendix B General equations

In this appendix the derivations of the imbedding equations and the Green function
equations for a general 2×2 system are presented. The rotation and the attenuation
of the wave front are also given.
The dynamics for a general 2× 2 matrix system are assumed to be:

∂

∂z

(

E+

E−

)

=
1

c

(

−I+α+∗ β−∗
β+∗ I+α−∗

)

∂

∂t

(

E+

E−

)

(B.1)

where the four 2× 2 matrices α± and β± are assumed to be continuous functions of
space and time. The region of domain for this equation is t ∈ (−∞,∞), 0 < z < L
and the field E−(L, t) is assumed to be zero. This last condition ensure that no
sources are present on the right hand side of the slab.
Let t± ∈ (−∞,∞) and 0 < z± < L. Furthermore, assume there are finite jump

discontinuities in the fields E± along the lines t = t± ± (z − z±)/c, respectively.
The finite jump discontinuity in the field E− is relevant if there is a phase velocity
mismatch at the back wall of the slab. The finite jump discontinuity in E± at (z, t)
is denoted by square brackets [E±(z, t)], i.e.,

[E±(z, t)] = E±(z, t+ 0)− E±(z, t− 0)

Propagation of singularity arguments show that the finite jump discontinuities sat-
isfy

d

dz

[

E±(z, t± ± (z − z±)/c)
]

=
1

c
α±(z,+0)

[

E±(z, t± ± (z − z±)/c)
]

The matrices β± have no effect on the propagation of the discontinuities of the
fields. Assume that the finite jump discontinuity in the slab is related to the jump
at z = z± as

[

E±(z, t± ± (z − z±)/c)
]

= Q±(z±, z)
[

E±(z±, t±)
]

The matrix-valued functions Q±(z±, z) then satisfy















d

dz
Q±(z±, z) =

1

c
α±(z,+0)Q±(z±, z)

Q±(z, z) = I

Q±(z±, z∓) = Q±(z, z∓)Q±(z±, z)

The last equality implies that Q±(z, z∓) as a function of its first argument satisfies

d

dz
Q±(z, z∓) = −1

c
Q±(z, z∓)α±(z,+0)

Also note that
Q±−1

(z∓, z) = Q±(z, z∓)
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The imbedding kernels that relate the plus and the minus fields are defined by
the following relations:

{

E−(z, t) =
(

R(z, ·) ∗ E+(z, ·)
)

(t)

E+(L, t+ (L− z)/c) = Q+(z, L)
{

E+(z, t) +
(

T(z, ·) ∗ E+(z, ·)
)

(t)
} (B.2)

In the region {(z, t) : t > 0, 0 < z < L and t �= 2(L − z)/c} the imbedding
kernels satisfy















c∂zR− 2∂tR = ∂t

{

β+ +α− ∗R−R ∗ α+ −R ∗ β− ∗R
}

R(L, t) = 0

R(z,+0) = −1
2
β+(z,+0)

(B.3)

and
{

c∂zT = α+(z,+0)T− ∂t

{

α+ + β− ∗R+T ∗ α+ +T ∗ β− ∗R
}

T(L, t) = 0
(B.4)

These imbedding equations are found by differentiating (B.2) w.r.t. z and using the
dynamics of the plus and minus fields in (B.1).
Evaluation of the imbedding equation for T at t = 0 and using the explicit value

of the reflection kernel at t = 0 implies

c∂zT(z,+0) =α+(z,+0)T(z,+0)−T(z,+0)α+(z,+0)

−
{

∂tα
+(z,+0)− 1

2
β−(z,+0)β+(z,+0)

}

The reflection kernel has a finite jump discontinuity along the curve t = 2(L− z)/c.
This discontinuity is denoted in square brackets, i.e.,

[R](z) = R(z, 2(L− z)/c+ 0)−R(z, 2(L− z)/c− 0)

The imbedding equation, (B.3), for the reflection kernel implies

c
d

dz
[R](z) = α−(z,+0)[R](z)− [R](z)α+(z,+0)

From these equations it is easy to obtain

cT(z,+0) =

∫ L

z

Q+(z′, z)

{

∂tα
+ − 1

2
β−β+

}

(z′,+0)Q+(z, z′) dz′ (B.5)

and

[R](z) = Q−(L, z))[R](L)Q+(z, L) =
1

2
Q−(L, z)β+(L,+0)Q+(z, L) (B.6)

respectively.
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The imbedding kernels R and T relate the plus and minus fields at z (for trans-
mission at z = L) to each other. The Green functions relate the plus and minus
fields at z to the excitation at z = 0. The explicit definition of Green functions is

{

E+(z, t+ z/c) = Q+(0, z)E+(0, t) +
(

G+(z, ·) ∗Q+(0, z)E+(0, ·)
)

(t)

E−(z, t+ z/c) =
(

G−(z, ·) ∗Q+(0, z)E+(0, ·)
)

(t)
(B.7)

The relation with the imbedding kernels and the Green functions is easily found by
repeated use of (B.2) and (B.7).

Q+(L, z)G+(L, t)Q+(z, L) = G+(z, t) +T(z, t) +
(

T(z, ·) ∗G+(z, ·)
)

(t)

G−(z, t) = R(z, t) +
(

R(z, ·) ∗G+(z, ·)
)

(t) (B.8)

The boundary values of the Green functions are also related to the scattering kernels
of the problem.

G+(0, t) = 0

G−(0, t) = R(0, t)

G+(L, t) = Q+(0, L)T(0, t)Q+(L, 0)

G−(L, t) = 0

In the region {(z, t) : t > 0, 0 < z < L and t �= 2(L − z)/c} the Green functions
satisfy

c∂zG
+ = −G+α+(z,+0) + ∂t

{

α+ +α+ ∗G+ + β− ∗G−
}

(B.9)

and






c∂zG
− − 2∂tG

− = −G−α+(z,+0) + ∂t

{

β+ + β+ ∗G+ +α− ∗G−
}

G−(z,+0) = −1
2
β+(z,+0) = R(z,+0)

(B.10)

These equations are found by differentiating (B.7) w.r.t. z and using the dynamics
of the plus and minus fields in (B.1). Evaluation of (B.9) at t = 0 gives

c∂zG
+(z,+0) =α+(z,+0)G+(z,+0)−G+(z,+0)α+(z,+0)

+

{

∂tα
+(z,+0)− 1

2
β−(z,+0)β+(z,+0)

}

It is then easy to obtain the value of G+ at t = +0.

cG+(z,+0) =

∫ z

0

Q+(z′, z)
{

∂tα
+ − β−β+/2

}

(z′,+0)Q+(z, z′) dz′

The Green functionG− has a finite jump discontinuity along the line t = 2(L−z)/c.
The discontinuity is denoted in square brackets.

[G−](z) = G−(z, 2(L− z)/c+ 0)−G−(z, 2(L− z)/c− 0)
From (B.10) or (B.8), it follows that the explicit value of the discontinuity is

[G−](z) = Q−(L, z)[G−](L)Q+(z, L) = [R](z) =
1

2
Q−(L, z)β+(L,+0)Q+(z, L)
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