
                          Bothner, T. (2016). Transition asymptotics for the Painlevé II
transcendent. Duke Mathematical Journal, 166(2), 205-324.
https://doi.org/10.1215/00127094-3714650

Peer reviewed version

Link to published version (if available):
10.1215/00127094-3714650

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Duke University Press at https://projecteuclid.org/euclid.dmj/1481879045. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1215/00127094-3714650
https://doi.org/10.1215/00127094-3714650
https://research-information.bris.ac.uk/en/publications/f69566ca-4a60-428e-a55b-467a8dafc697
https://research-information.bris.ac.uk/en/publications/f69566ca-4a60-428e-a55b-467a8dafc697


TRANSITION ASYMPTOTICS FOR THE PAINLEVÉ II TRANSCENDENT

THOMAS BOTHNER

Abstract. We consider real-valued solutions u = u(x|s), x ∈ R of the second Painlevé equation uxx =
xu + 2u3 which are parametrized in terms of the monodromy data s ≡ (s1, s2, s3) ⊂ C3 of the associated
Flaschka-Newell system of rational differential equations. Our analysis describes the transition, as x → −∞,
between the oscillatory power-like decay asymptotics for |s1| < 1 (Ablowitz-Segur) to the power-like growth

behavior for |s1| = 1 (Hastings-McLeod) and from the latter to the singular oscillatory power-like growth for
|s1| > 1 (Kapaev). It is shown that the transition asymptotics are of Boutroux type, i.e. they are expressed

in terms of Jacobi elliptic functions. As applications of our results we obtain asymptotics for the Airy kernel
determinant det(I − γKAi)|L2(x,∞) in a double scaling limit x → −∞, γ ↑ 1 as well as asymptotics for the

spectrum of KAi.

1. Introduction and statement of results

One of the most impressive occurrences of Painlevé transcendents in non-linear mathematical physics stems
from their applicability in random matrix theory. In this field Painlevé functions describe, for instance (cf.
[33, 3, 19]), eigenvalue distribution functions for classical finite n ensembles, they appear in the description of
universal distribution functions in the large n limit and are also used in the computation of gap probabilities
in the large n limit. One concrete example for the last two cases is given by the celebrated Tracy-Widom
distribution [32]: the distribution function for the largest eigenvalue λmax of a n× n random matrix drawn
from the Gaussian Unitary Ensemble (GUE) in the large n limit equals

FTW(x) = lim
n→∞

Prob

(
λmax ≤

√
2n+

x√
2n

1
6

)
= exp

[
−
∫ ∞

x

(y − x)u2HM(y)dy

]
, x ∈ R, (1.1)

where uHM = uHM(x), x ∈ R is the Hastings-McLeod solution of the second Painlevé equation,

u′′HM = xuHM + 2u3HM, (′) =
d

dx
; uHM(x) =

x−
1
4

2
√
π
e−

2
3x

3
2
(
1 + o(1)

)
, x→ +∞. (1.2)

This special solution was first analyzed in the works of Hastings and McLeod [22] who showed that the
boundary value problem (1.2) has a unique, monotonically decreasing, smooth solution. In addition,

uHM(x) ∼
√
−x
2
, x→ −∞.

Although FTW(x) in (1.1) is written as a distribution function, it is equivalent to a gap probability for

the rescaled eigenvalues µj =
√
2n

1
6 (λj −

√
2n ), and as such, expressible as Fredholm determinant. More

precisely,

FTW(x) = lim
n→∞

Prob
(
♯
{
j : µj ∈ [x,∞)

}
= 0
)
= det

(
I −KAi

)∣∣∣
L2(x,∞)

, (1.3)
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TRANSITION ASYMPTOTICS FOR THE PAINLEVÉ II TRANSCENDENT 2

where KAi is the trace-class operator in L2((x,∞); dλ) with kernel

KAi(λ, µ) =
Ai(λ)Ai′(µ)−Ai′(λ)Ai(µ)

λ− µ
, λ, µ ∈ (x,∞)

and Ai(λ) the classical Airy function. Besides the gap probability (1.3) other spectral properties of large
random matrices from the GUE can also be computed through Painlevé transcendents, for instance for
k ∈ Z≥0 we have (cf. [29])

lim
n→∞

Prob
(
♯
{
j : µj ∈ [x,∞)

}
= k

)
=

1

k!

(
− ∂

∂γ

)k [
det
(
I − γKAi

)∣∣∣
L2(x,∞)

] ∣∣∣∣
γ=1

and

det
(
I − γKAi

)∣∣∣
L2(x,∞)

= exp

[
−
∫ ∞

x

(y − x)u2AS(y; γ)dy

]
, γ ≥ 0. (1.4)

Here, uAS = uAS(x; γ), x ∈ R is the Ablowitz-Segur solution of the second Painlevé equation,

u′′AS = xuAS + 2u3AS, (′) =
d

dx
; uAS(x; γ) =

√
γ
x−

1
4

2
√
π
e−

2
3x

3
2
(
1 + o(1)

)
, x→ +∞. (1.5)

This one-parameter family of solutions has different analytical and asymptotical properties depending on
the values of γ: namely, for the values of γ ∈ (0, 1) fixed, the boundary value problem (1.5) has a unique,
bounded, smooth solution with oscillatory behavior as x→ −∞, compare (1.18) below. On the other hand,
if γ > 1, smoothness is destroyed at finite x and the solution blows up, see (1.20).

Remark 1.1. Historically, solutions of the boundary value problem (1.5) for fixed γ ∈ (0, 1) were first
analyzed, both analytically and asymptotically, in the late 1970’s, cf. [1, 2]. In particular for the bounded so-
lutions, Ablowitz and Segur solved the important connection problem, i.e. determine the complete asymptotic
description of uAS(x; γ) as x→ −∞ provided the same description is given as x→ +∞ (or vice versa). The
same problem was subsequently also solved for the unbounded solution uHM(x) of (1.2), see [22]. However,
the singular asymptotic structure for γ > 1 as x→ −∞ remained unknown until the work of Kapaev [27] in
1992.

Our modest goal in this paper is to place Ablowitz-Segur (for γ ∈ (0, 1) or γ ∈ (1,∞)) and Hastings-
McLeod solutions on equal asymptotic footing as x → −∞. This problem is of interest to the asymptotics
of the Fredholm determinant

det (I − γKAi)
∣∣∣
L2(x,∞)

as x→ −∞ and thus to the asymptotics of the Tracy-Widom distribution itself.

For the gap probability let us use the refined asymptotic behavior (compare Remark 1.8 below),

uHM(x) =

√
−x
2

(
1 +

1

8x3
+O

(
x−6

))
, x→ −∞ (1.6)

and the identity ∫ ∞

x

u2HM(y)dy =
(
u′HM(x)

)2 − xu2HM(x)− u4HM(x), x ∈ R

from which we learn in (1.1) that

FTW(x) = exp

[
x3

12

]
|x|− 1

8 c0
(
1 +O

(
x−3

))
, x→ −∞ (1.7)

with some constant c0 ∈ R. The constant factor was first derived by Deift, Its and Krasovsky in [12] using
scaling limits for a finite Laguerre ensemble combined with universality results for the Airy kernel,

c0 = exp

[
1

24
ln 2 + ζ ′(−1)

]
, (1.8)

with ζ = ζ(s) the Riemann-zeta function. Shortly afterwards Baik, Buckingham and DiFranco [4] gave
another derivation of (1.7), (1.8) based on exact integral representations of FTW(x) which, opposed to
(1.1), involve an integration from −∞ to x. In either approach the regularization of the integral in (1.1)
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is important and thus the asymptotics (1.6) relevant as they are needed in the evaluation of a large gap
probability in random matrix theory.1

The very same asymptotic question for the behavior of det(I − γKAi) with fixed γ 6= 1 is still open and
our focus does not lie on this interesting problem. However, considering the different qualitative behaviors
of uAS(x; γ) as x→ −∞ (see (1.18), (1.20) below for further detail),

uAS(x; γ) =

√
−2β

(−x) 1
4

cos

(
2

3
(−x) 3

2 + β ln
(
8(−x) 3

2

)
+ φ

)
+O

(
(−x)− 7

10

)
, γ ∈ (0, 1)

β =
1

2π
ln(1− γ), φ =

π

4
− arg Γ(iβ);

uAS(x; γ) =

√
−x

sin
(
2
3 (−x)

3
2 + β̂ ln(8(−x) 3

2 ) + ϕ
)
+O

(
(−x)− 3

2

) +O
(
(−x)−1

)
, γ ∈ (1,∞)

β̂ =
1

2π
ln(γ − 1), ϕ =

π

2
− arg Γ

(
1

2
+ iβ̂

)
;

it becomes evident that det(I − γKAi)|L2(x,∞) experiences a phase transition near γ = 1 as x → −∞: for
γ ∈ (0, 1) the determinant will be strictly positive, decaying exponentially fast but with a slower decay
rate than (1.7). Opposed to that, for γ ∈ (1,∞) the determinant will display oscillations with decreasing
amplitudes and its zeros are accumulating at x = −∞. This qualitative change leads to a challenging
problem: Determine the asymptotic behavior of

exp

[
−
∫ ∞

x

(y − x)u2AS(y; γ)dy

]
= det

(
I−γKAi

)∣∣∣
L2(x,∞)

as x→ −∞ and simultaneously γ → 1. (1.9)

As a direct application of Theorem 1.12 below on the transition asymptotics of uAS(x; γ) we will prove a short
result which shows that (1.7) to leading order also describes one particular case of the transition asymptotics
for det(I − γKAi).

Corollary 1.2. As x→ −∞ and γ ↑ 1, with c0 as in (1.8),

det
(
I − γKAi

)∣∣∣
L2(x,∞)

= exp

[
x3

12

]
|x|− 1

8 c0
(
1 + o(1)

)
,

uniformly for

κ ≡ − ln(1− γ)

(−x) 3
2

>
2

3

√
2.

For the values of x and γ such that 0 < κ < 2
3

√
2, our results in Theorem 1.10 and 1.13 do in general not

allow us to state an analogous expansion; the integration in (1.9) simply becomes too complicated. Still we
can make a qualitative prediction

The transition asymptotics of det(I − γKAi)|L2(x,∞) as x→ −∞, γ ↑ 1 and 0 < κ < 2
3

√
2 is

modeled by quasi-periodic functions, to leading order.

Remark 1.3. We would like to point out that an asymptotic analysis similar to (1.9) was recently carried
out for the case of another prominent Fredholm determinant in random matrix theory,

P (s, γ) = det(I − γKsin)
∣∣∣
L2(−1,1)

with Ksin(λ, µ) =
sin s(λ− µ)

π(λ− µ)
, s, γ > 0.

It is well known [29, 33] that P (s, 1) equals a gap probability: the probability of finding no eigenvalues in the
interval (− s

π
, s
π
) for a random matrix chosen from the GUE, in the bulk scaling limit with mean spacing one.

Similar to the Airy kernel determinant, P (s, γ) admits a representation in terms of Painlevé functions, this
time involving a special solution of the fifth Painlevé equation [26]. Building on previous work of Dyson [16],
the analysis of P (s, γ) as s → +∞, γ ↑ 1, was essentially completed in [8], however without using Painlevé
asymptotic analysis. This lead to results completely analogous to Corollary 1.2 and the qualitative prediction,
compare Theorems 1.4 and 1.12 as well as Corollary 1.13 in [8].

1Another way of deriving (1.7) without the Painlevé II connection was presented in [7].
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We now move ahead and present the setup for our results on the transition asymptotics as x → −∞
between uAS(x; γ) and uHM(x). Opposed to introducing Painlevé II functions as solutions to boundary value
problems as in (1.2) and (1.5), we choose to follow a Riemann-Hilbert point of view. In this approach [18, 25]
solutions u = u(x) to

uxx = xu+ 2u3 (1.10)

are parametrized through the monodromy data of an associated linear system of ordinary differential equa-
tions in the complex plane. The details are as follows, compare [20]: Given six complex numbers {sk}6k=1

which satisfy the relations

s1 − s2 + s3 + s1s2s3 = 0, sk+3 = −sk, s1 = s̄3, s2 = s̄2, (1.11)

we introduce the triangular matrices

Sk =

(
1 0
sk 1

)
for k ≡ 1 mod 2, Sk =

(
1 sk
0 1

)
for k ≡ 0 mod 2,

and the sectors

Ωk =
{
λ ∈ C :

π

6
(2k − 3) < argλ <

π

6
(2k − 1)

}
, k = 1, . . . , 6

with oriented boundary rays

Γk =
{
λ ∈ C : argλ =

π

6
+
π

3
(k − 1)

}
, k = 1, . . . , 6

as shown in Figure 1 below. Consider now the following Riemann-Hilbert problem (RHP).

Riemann-Hilbert Problem 1.4. Determine the piecewise analytic 2 × 2 matrix-valued function Y (λ) =
Y (λ;x, s ≡ (s1, s2, s3)) such that

• Y (λ) is analytic for λ ∈ C\⋃6
1 Γk and for every k, the function Yk(λ) = Y (λ)

∣∣
Ωk

has a continuous

extension on the closure Ωk.

(

1 0

s1e
2θ

1

)

(

1 s6e
−2θ

0 1

)

(

1 0

s5e
2θ

1

)

(

1 0

s3e
2θ

1

)

(

1 s4e
−2θ

0 1

)

(

1 s2e
−2θ

0 1

)

Ω1

Ω2
Ω3

Ω4

Ω5

Ω6

Figure 1. Jumps in the Painlevé II Riemann-Hilbert problem

• The boundary values Y+(λ) (resp. Y−(λ)) from the left (resp. right) side of the oriented contour Γk

are related via the jump condition

Y+(λ) = Y−(λ)e
−θ(λ,x)σ3Ske

θ(λ,x)σ3 , λ ∈ Γk (1.12)

where

θ(λ, x) = i

(
4

3
λ3 + xλ

)
, σ3 =

(
1 0
0 −1

)
.
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• As λ tends to infinity, the function Y (λ) is normalized as follows,

Y (λ) = I +O
(
λ−1

)
, λ→ ∞. (1.13)

Remark 1.5. The first two of the relations in (1.11) ensure consistency of the jump conditions (1.12) with
the continuity of Yk(λ) on Ωk. Indeed, conditions (1.12) can be rewritten as

Yk+1(λ) = Yk(λ)e
−θ(λ,x)σ3Ske

θ(λ,x)σ3 , λ ∈ Γk, k = 1, . . . , 5

Y1(λ) = Y6(λ)e
−θ(λ,x)σ3S6e

θ(λ,x)σ3 , λ ∈ Γ6

and thus

Y1(λ) = Y1(λ)e
−θ(λ,x)σ3S1S2 · . . . · S6e

θ(λ,x)σ3 , λ ∈ Γ1. (1.14)

But every solution Y (λ) of the RHP 1.4 is invertible since detY (λ) is an entire function normalized to unity
at infinity. Hence (1.14) yields upon cancellation of Y1(λ) the cyclic constraint

S1S2 · . . . · S6 = I (1.15)

which is equivalent to the first two conditions in (1.11). We also mention that by triangularity of Sk, we
have e−θ(λ,x)σ3Ske

θ(λ,x)σ3 → I as λ→ ∞ along the rays Γk, i.e. (1.12) is consistent with (1.13).

The connection between the RHP 1.4 and (1.10) is as follows. It is known [6] that for any set of parameters
s ≡ (s1, s2, s3) satisfying (1.11) the RHP for Y (λ) is meromorphically (with respect to x) solvable. Moreover
its solution determines the Painlevé II transcendent via

u(x) ≡ u(x|s) = 2 lim
λ→∞

[
λ
(
Y (λ;x, s)

)
12

]
, (1.16)

and in addition we have ū(x) = u(x̄). Conversely every real for real x solution of (1.10) has a unique
Riemann-Hilbert representation (1.16) for suitable s and we therefore adopt the notation u(x) ≡ u(x|s),
indicating the parametrization of solutions to PII equation (1.10) in terms of the data s.

Remark 1.6. The previously considered cases (1.5) and (1.2) are special cases of (1.16),

uAS(x; γ) = u
(
x|(−i

√
γ, 0, i

√
γ)
)
, uHM(x) = u

(
x|(−i, 0, i)

)
.

The data s is equal to the monodromy data of the associated linear 2× 2 matrix ODE

dΨ

dλ
=

[
−4iλ2σ3 + 4iλ

(
0 u
−u 0

)
+

(
−ix− 2iu2 −2ux

−2ux ix+ 2iu2

)]
Ψ (1.17)

where u satisfies (1.10). In the language of classical monodromy theory of differential equations (cf. [23]) the
entire functions Ψk(λ) = Yk(λ)e

−θ(λ,x)σ3 , k = 1, . . . , 6 and Ψ7(λ) ≡ Ψ1(λ) form the seven canonical solutions
of the ODE (1.17) and the triangular matrices Sk in (1.12) are the Stokes matrices characterizing the Stokes
phenomenon of the irregular singular point λ = ∞. The matrices Sk are x-independent and thus the second
Painlevé transcendent u = u(x|s) describes the isomonodromy deformations of system (1.17) with respect
to the (isomonodromic) deformation parameter x.

As we are interested in the asymptotic behavior of real solutions u(x|s) as x → −∞, it will be useful to
recall the following three different cases which have been singled out over the past 40 years.

(A) If |s1| < 1 is fixed, then, as x→ −∞,

u(x|s) = (−x)− 1
4

√
−2β cos

(
2

3
(−x) 3

2 + β ln
(
8(−x) 3

2

)
+ φ

)
+O

(
(−x)− 7

10

)
, (1.18)

with

β =
1

2π
ln
(
1− |s1|2

)
, φ = −π

4
− arg Γ(iβ)− arg s1,

and Γ(z) is the Euler gamma function.
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Remark 1.7. Expansion (1.18) appeared first in [1, 2] and was partially proven by Hastings, McLeod and
Clarkson in [22, 11] using Gelfand-Levitan type integral equations. In the late 80’s, Its, Kapaev, Suleimanov
and Kitaev [24, 31, 28], using the “isomondromy method”, obtained the full leading term. Another derivation
of (1.18) was given by Deift and Zhou [14] in the mid 90’s based on a direct asymptotic analysis of the
RHP 1.4 with the help of the Deift-Zhou nonlinear steepest descent method [13]. We refer the reader to the
monograph [20] for a detailed exposition of the methods used in the rigorous derivation of (1.18).

(B) If |s1| = 1, then with s1 = iǫ, ǫ = sgn(ℑ s1) ∈ {±1}, as x→ −∞,

u(x|s) = −ǫ
√
−x
2
+O

(
x−

5
2

)
. (1.19)

Remark 1.8. The leading order expansion in (1.19) is originally due to Hastings and McLeod [22] but was
later on also derived by Deift and Zhou [13], who extended (1.19) to a full asymptotic series in which all
coefficients can be computed recursively.

(C) If |s1| > 1 is fixed, then, as x→ −∞,

u(x|s) =
√
−x

sin
(

2
3 (−x)

3
2 + β̂ ln

(
8(−x) 3

2

)
+ ϕ

)
+O

(
(−x)− 3

2

) +O
(
(−x)−1

)
(1.20)

with

β̂ =
1

2π
ln
(
|s1|2 − 1

)
, ϕ = −arg Γ

(
1

2
+ iβ̂

)
− arg s1

where the error terms are uniform outside some neighborhoods of the singularities of the trigono-
metric function appearing in the denominator of the leading order.

Remark 1.9. The singular asymptotic formula (1.20) was first obtained by Kapaev in [27] through the
isomonodromy method. In [9], the authors rederived (1.20) based on nonlinear steepest descent techniques
applied to the RHP 1.4.

In this paper we derive new asymptotic expansions of u(x|s) as x → −∞ with the help of a nonlinear
steepest descent analysis applied to RHP 1.4. These expansions explain how the leading oscillatory power-
like decay in case (A) is transformed to the leading power-like growth in case (B) as |s1| ↑ 1. We shall refer
to the transition between regimes (A) and (B) as regular transition. In addition, we will also explain the
transformation of the leading singular oscillatory power-like growth in case (C) to the leading power-like
growth asymptotics in (B) as |s1| ↓ 1. It is natural to refer to the transition between (B) and (C) as singular
transition. The results are as follows.

1.1. Statement of results for regular transition. Let

κ =
v

(−x) 3
2

∈ (0,∞); 0 < v = − ln
∣∣1− |s1|2

∣∣ = − ln
(
1− |s1|2

)
, 0 < |s1| < 1 (1.21)

and k ∈ (0, 1) be implicitly determined from the transcendental equation

κ =
2

3

√
2

1 + k2

[
E′ − 2k2

1 + k2
K ′
]
, (1.22)

in which K and E are standard complete elliptic integrals

K = K(k) =

∫ 1

0

dµ√
(1− µ2)(1− k2µ2)

, K ′ = K(k′)2; E = E(k) =

∫ 1

0

√
1− k2µ2

1− µ2
dµ, E′ = E(k′)

with modulus k ∈ (0, 1) and complementary modulus k′ =
√
1− k2. It is shown in Proposition 3.2 that for

any κ ∈ (0, 23
√
2), equation (1.22) determines k = k(κ) uniquely. In addition, set

V = V (κ) = − 2

3π

√
2

1 + k2

[
E − 1− k2

1 + k2
K

]
; τ = τ(κ) = 2i

K

K ′ , (1.23)

2The (’) notation for complete elliptic integrals is reserved throughout for the complementary integrals; it does not represent
a derivative with respect to the modulus.
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and let

θ3(z, q) = 1 + 2

∞∑

m=1

qm
2

cos(2πmz); θ2(z, q) = 2

∞∑

m=0

q(m+ 1
2 )

2

cos
(
(2m+ 1)πz

)
, z ∈ C

denote the Jacobi theta functions with nome q = eiπτ . The theta functions in turn determine the Jacobi
elliptic function

cd

(
2z K

(
1− k

1 + k

)
,
1− k

1 + k

)
=
θ3(0, q)

θ2(0, q)

θ2(z, q)

θ3(z, q)
, z ∈ C

∖{1

2
+
τ

2
mod Z+ τZ

}
(1.24)

and we list properties of the elliptic integrals and theta functions which are relevant to our analysis in
Appendices A and B. The main result concerning the regular transition asymptotics of u(x|s) as x → −∞
is formulated in the following Theorem.

Theorem 1.10. For any fixed δ ∈ (0, 13
√
2), f1 ∈ (0,∞), there exist positive constants x0 = x0(δ), x1 =

x1(f1), v1 = v1(f1) and c0 = c0(δ), c1 = c1(f1) such that

u(x|s) = −ǫ
√
−x
2

1− k(κ)√
1 + k2(κ)

cd

(
2(−x) 3

2V (κ)K

(
1− k(κ)

1 + k(κ)

)
,
1− k(κ)

1 + k(κ)

)
+ J1(x, s), (1.25)

with
∣∣J1(x, s)

∣∣ ≤ c0(−x)−
1
10 ∀ (−x) ≥ x0, 0 < v ≤ (−x) 3

2

(
2

3

√
2− δ

)
, (1.26)

and ∣∣J1(x, s)
∣∣ ≤ c1

ln(−x) ∀ (−x) ≥ x1, v ≥ v1,
2

3

√
2 (−x) 3

2 − f1 ≤ v <
2

3

√
2 (−x) 3

2 . (1.27)

Theorem 1.10 describes the transition of the leading order asymptotics between case (A) for fixed |s1| < 1
given in (1.18) and case (B) for |s1| = 1 in (1.19). Indeed, using the limiting behavior of V (κ), τ(κ) and

k(κ) in the Jacobi elliptic function (1.25) as κ ↓ 0 and κ ↑ 2
3

√
2 (compare Corollary 3.3 below), we obtain

directly

Corollary 1.11. As x→ −∞,

u(x|s) = (−x)− 1
4

√
−2β cos

(
2

3
(−x) 3

2 + β ln
(
8(−x) 3

2

)
+ φ

)
+O

(
(−x)− 1

10

)
, (1.28)

uniformly for 0 < κ ≤ (−x)− 6
5 with (β, φ) as in (1.18). In addition, as x→ −∞, |s1| ↑ 1,

u(x|s) = −ǫ
√
−x
2
+O

(
1

ln(−x)

)
, (1.29)

uniformly for 2
3

√
2− (−x)− 3

2 ≤ κ < 2
3

√
2.

Our second result addresses the asymptotic regime x→ −∞, |s1| ↑ 1 for κ ≥ 2
3

√
2− f2

t
with fixed f2 ∈ R.

In this case the leading behavior is already of type (1.19) and therefore connects the Boutroux behavior
(1.25), (1.27) completely to the Hastings-McLeod asymptotics (1.19) for |s1| = 1.

Theorem 1.12. Given f2 ∈ R, there exist positive constants x0 = x0(f2), v0 = v0(f2) and c = c(f2) such
that

u(x|s) = −ǫ
√

−x
2

(
1− e(

2
3

√
2−κ)(−x)

3
2

π(−x) 3
4 2

5
4

+ J2(x, s)

)
, (1.30)

with ∣∣J2(x, s)
∣∣ ≤ c(−x)− 3

2 ∀ (−x) ≥ x0, v ≥ v0, v ≥ 2

3

√
2 (−x) 3

2 − f2.

Theorems 1.10 and 1.12 describe the behavior of u(x|s) as x→ −∞ for the values of κ in
(
0,

2

3

√
2− δ

]⊔[
2

3

√
2− f2

(−x) 3
2

,∞
)

⊂ (0,∞).
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κ = t
−η

t

oo

κ =
2

3

p

2−
f1
t

κ =
2

3

p

2− δ

Boutroux region
regular

v

κ =
2

3

p

2
Hastings-McLeod region

Stokes region

≈

Figure 2. Depiction of regular transition asymptotics in the (t, v) plane with t = (−x) 3
2

and v = − ln(1− |s1|2). The region captured by Theorems 1.10 is coined regular Boutroux
region since the asymptotics are described in terms of Jacobi elliptic functions. Above and
slightly below the separating line κ = 2

3

√
2 we observe to leading order Hastings-McLeod

asymptotics, compare Theorem 1.12. In between we find Stokes lines, see Theorem 1.13.

The corresponding regions in the double scaling diagram, i.e. regular Boutroux region for Theorem 1.10
and Hastings-McLeod region for Theorem 1.12, are shown in Figure 2. Another region, the Stokes region,
corresponds to

κ ∈
(
2

3

√
2− δ,

2

3

√
2− f1

(−x) 3
2

)
, δ ∈

(
0,

2

3

√
2

)
, f1 ∈ (0,∞). (1.31)

We will not provide a full asymptotic description of u(x|s) for the latter values of κ as the nonlinear steepest
descent analysis becomes increasingly difficult. Instead we focus on the scale

(−x) ≥ x0, v ≥ v0 : κ ≥ 2

3

√
2− f3

ln
(
(−x) 3

2

)

(−x) 3
2

, f3 ∈ R,

which eventually motivates the term Stokes region: For f3 ∈ (−∞, 16 ) the leading order behavior of u(x|s)
turns out to be unchanged from (1.30), however once we cross the Stokes lines

Sk : v =
2

3

√
2 (−x) 3

2 − 6k + 1

6
ln
(
(−x) 3

2

)
, k ∈ Z≥0, (1.32)

once we go deeper into (1.31), additional (k + 1) terms will contribute to the leading behavior. This is in
sharp contrast to Theorems 1.10 and 1.12 where the fixed choices of f1 ∈ (0,∞) and f2 ∈ R had no effect
on the leading orders. In the present paper, we shall prove the following estimation.

Theorem 1.13. Given f3 ∈ (−∞, 76 ) there exists positive constants x0 = x0(f3), v0 = v0(f3) and c = c(f3)
such that

u(x|s) = −ǫ
√
−x
2

(
1 + ǫp√

2

1− ǫp√
2

)
+ J3(x, s),

ǫp√
2
= −π− 1

2 2−
9
4 (−x)− 3

4 e(
2
3

√
2−κ)(−x)

3
2 (1.33)

with
∣∣J3(x, s)

∣∣ ≤ c(−x)− 3
2 min{ 7

6−f3,
2
3} ∀ (−x) ≥ x0, v ≥ v0, v ≥ 2

3

√
2 (−x) 3

2 − f3 ln
(
(−x) 3

2

)
.

This rigorously clarifies the appearance of the first Stokes line S1: Fix f3 ∈ (−∞, 16 ) in (1.33), then

p = O
(
(−x)− 3

2 (
1
2−f3)

)
= o(1)
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and subsequently by geometric progression, as x→ −∞, |s1| ↑ 1,

u(x|s) = −ǫ
√
−x
2
+O

(
(−x)−min{ 3

2 (
1
6−f3),1}

)
, uniformly for κ ≥ 2

3

√
2− f3

ln
(
(−x) 3

2

)

(−x) 3
2

.

1.2. Statement of results for singular transition. In this case we also work with the double scaling
parameter

κ =
v

(−x) 3
2

∈ (0,∞); 0 < v = − ln
∣∣1− |s1|2

∣∣ = − ln
(
|s1|2 − 1

)
, 1 < |s1| <

√
2

but notice that opposed to (1.21), we have now

0 < − ln
(
|s1|2 − 1

)
= v 6= − ln

(
1− |s1|2

)
.

Furthermore we choose an upper constraint 1 < |s1| <
√
2 which is important to our analysis below, but

at the same time is also consistent with the anticipated transition asymptotics for |s1| ↓ 1.3 The module
k ∈ (0, 1) is again determined via (1.22) and we require V = V (κ) and τ = τ(κ) as in (1.23). However,
instead of the Jacobi elliptic function cd(z) in(1.24), we need

dc

(
2zK

(
1− k

1 + k

)
,
1− k

1 + k

)
=
θ2(0, q)

θ3(0, q)

θ3(z, q)

θ2(z, q)
, z ∈ C

∖{1

2
mod Z+ τZ

}
. (1.34)

The analogue of Theorem 1.10 for the singular transition is contained in the following Theorem.

Theorem 1.14. For any fixed δ ∈ (0, 13
√
2), there exist positive constants x0 = x0(δ) and c0 = c0(δ) such

that

u(x|s) = −ǫ
√
−x
2

1 + k(κ)√
1 + k2(κ)

dc

(
2(−x) 3

2K

(
1− k(κ)

1 + k(κ)

)
,
1− k(κ)

1 + k(κ)

)
+ J4(x, s) (1.35)

with ∣∣J4(x, s)
∣∣ ≤ c0(−x)−

1
10 ∀ (−x) ≥ x0, 0 < v ≤ (−x) 3

2

(
2

3

√
2− δ

)
, (1.36)

provided (x, s1) is uniformly bounded away from the discrete set

Zn =
{
(x, s1) : 2(−x) 3

2V (κ) = n ∈ Z\{0}
}
. (1.37)

On the other hand, for any fixed f1 ∈ (0,∞), there exist constants x1 = x1(f1), v1 = v1(f1) and c1 = c1(f1)
such that (1.35) holds true with

∣∣J4(x, s)
∣∣ ≤ c1

ln(−x) ∀ (−x) ≥ x1, v ≥ v1,
2

3

√
2 (−x) 3

2 − f1 ≤ v <
2

3

√
2 (−x) 3

2

and no further constraint placed on (x, s1).

Here, Theorem 1.14 describes the transition to leading order between case (C) for fixed |s1| > 1 in (1.20)
and case (B) with |s1| = 1 in (1.19). Indeed, through the limiting behavior of V (κ) and τ(κ) as κ ↓ 0 and

κ ↑ 2
3

√
2 in (1.35) we obtain

Corollary 1.15. As x→ −∞,

u(x|s) =
√
−x

sin
(

2
3 (−x)

3
2 + β̂ ln

(
8(−x) 3

2

)
+ ϕ

)
+O

(
(−x)− 3

10

) +O
(
(−x)− 1

10

)
(1.38)

uniformly for 0 < κ ≤ (−x)− 6
5 and away from the zeros of the trigonometric function appearing in the

denominator of the leading order. The parameters (β̂, ϕ) have appeared in (1.20). In addition, as x →
−∞, |s1| ↓ 1,

u(x|s) = −ǫ
√

−x
2
+O

(
1

ln(−x)

)
, (1.39)

uniformly for 2
3

√
2− (−x)− 3

2 ≤ κ < 2
3

√
2.

3For fixed |s1| ∈ [
√
2,∞), the leading order behavior of u(x|s) as x → −∞ is already known through (1.20).
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Our last result is the direct analogue of Theorem 1.12 to the singular transition.

Theorem 1.16. Given f2 ∈ R, there exist positive constants t0 = t0(f2), v0 = v0(f2) and c = c(f2) such
that

u(x) = −ǫ
√
−x
2

(
1 +

e(
2
3

√
2−κ)(−x)

3
2

π(−x) 3
4 2

5
4

+ J5(x, s)

)

with ∣∣J5(x, s)
∣∣ ≤ c(−x)− 3

2 ∀ (−x) ≥ x0, v ≥ v0, v ≥ 2

3

√
2 (−x) 3

2 − f2.

The regions captured by Theorems 1.14 and 1.16 are shown in Figure 3 and we use a similar terminology
as before, singular Boutroux and Hastings-McLeod.

singular

t

oo

κ =
2

3

p

2−
f1
t

κ =
2

3

p

2− δ

Boutroux region

v

κ =
2

3

p

2
Hastings-McLeod region

Stokes region

≈

κ = t
−η

Figure 3. Depiction of singular transition asymptotics in the (t, v) plane with t = (−x) 3
2

and v = − ln(|s1|2 − 1). The region captured by Theorems 1.14 is coined singular Boutroux
region since the asymptotics are described in terms of Jacobi elliptic functions. Above and
slightly below the separating line κ = 2

3

√
2 we observe to leading order Hastings-McLeod

asymptotics, compare Theorem 1.16.

We do not address the Stokes region for the singular case, a full analysis for all Stokes lines (1.32) in both
regular and singular transition will be postponed to a forthcoming publication.

Remark 1.17. As mentioned before, the master RHP 1.4 is meromorphically (with respect to x) solvable,
provided the Stokes data s ≡ (s1, s2, s3) satisfies (1.11), cf. [6]. More is true, the poles of the associated
Painlevé transcendent u(x|s) correspond exactly to the values of x for which the solution to RHP 1.4 ceases to
exist. But we know from [27, 22] (see also Remarks 1.8 and 1.9) that u(x|s) has smooth power-like behavior
(as x→ −∞) for |s1| = 1 and singular oscillatory behavior for |s1| > 1 in the same limit. Hence the natural
appearance of the exceptional set (1.37) in the description of the transition from (B) to (C); on one end it
degenerates exactly to the vanishing condition of the trigonometric function appearing in (1.38), on the other
end it becomes simply the empty set, see (1.39). In fact, (1.37) could be used to asymptotically localize the
poles of the Painlevé function u(x|s) on the negative real axis for |s1| ≥ 1 by an application of a Rouché type
argument.

Remark 1.18. For the special choice s2 = 0 (in this case u(x|s) is smooth and exponentially decaying as
x→ +∞) we can discuss the exceptional set Zn also in terms of the Tracy-Widom identity (1.4). The simple
poles of the Painlevé function are in a one-to-one correspondence with the simple zeros of the determinant
det(I−γKAi)|L2(x,∞) as a function of x. In case of fixed Stokes data s ≡ (s1, 0, s3) this connection was used
in [5] to derive a result on the pole distribution of the Ablowitz-Segur family in the complex x-plane. For, in
general, varying s our result (1.35) implies that the behavior of det(I − γKAi)|L2(x,∞) as x → −∞, γ ↓ 1 is
modeled by quasi-periodic functions to leading order with zeros on the real line determined implicitly by Zn.
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Below we include another figure which displays the full transition side to side. The plot shows a vicinity
of the transition point |s1| = 1.

t

|s1||s1| = 1

≈

oo oo

κ =
2

3

p

2−
f1
t

Stokes

region

Hastings-McLeod region

Stokes

region

κ =
2

3

p

2

region

regular Boutroux

region

singular Boutroux

κ =
2

3

p

2− δ

Figure 4. Depiction of transition asymptotics in the (|s1|, t) plane with t = (−x) 3
2 . The

regions decribed in Theorems 1.10, 1.12 and 1.13 are located to the left of the vertical line
|s1| = 1. The singular analogues, i.e. Theorems 1.14 and 1.16 are to the right of |s1| = 1.

1.3. Further applications and outline of paper. The transition asymptotics are derived through an
application of the nonlinear steepest descent method [13, 15] to the initial RHP 1.4. This analysis depends
crucially on the values of the double scaling parameter

κ =
v

t
∈ (0,∞); t = (−x) 3

2 > 0, 0 < v = − ln
∣∣1− |s1|2

∣∣ =
{
− ln

(
1− |s1|2

)
, 0 < |s1| < 1

− ln
(
|s1|2 − 1

)
, 1 < |s1| <

√
2.

For instance, the proof of Theorem 1.10 consists of several steps.

(1) First, the master RHP 1.4 is analyzed with the constraint t1−η ≤ v ≤ t( 23
√
2 − δ), η ∈ (0, 1) in

place. All details are worked out in Sections 3 and 4, which include a g-function transformation, the
construction of local model problems via Jacobi theta and Airy functions and iterative solutions of
singular integral equations. This part resembles in some of its aspects the approach carried out in
[8].

(2) Second, we analyze RHP 1.4 subject to the constraint t ≥ vk+1 > 0, t ≥ t0 with k ∈ Z≥3. The
techniques used now are very different from (1), in fact they are close to the ones we would use in
the asymptotic analysis of RHP 1.4 for fixed |s1| < 1, i.e. no need for a g-function transformation but
different model problems involving parabolic cylinder functions. We work out the necessary details
in Section 5 and combining error estimations from (1) and (2), we obtain (1.25) with estimation
(1.26). In addition, expansion (1.28) follows as well.

(3) Third, estimations (1.27) and (1.29) are derived by applying modular transformations to the Jacobi
theta functions used in (1) and introducing a new model function in a vicinity of the origin. The
details are presented in Section 6.

After that, we address the regime t ≥ t0, v ≥ v0, v ≥ 2
3

√
2 t−f2 in Theorem 1.12. Here the nonlinear steepest

techniques are again different from the ones used in the derivation of Theorem 1.10, we use a new g-function
and different model problems, compare Section 7. It is worth mentioning that these techniques resemble the
ones used in the derivation of (1.19) with |s1| = 1. Our final result for the regular transition is contained
in Theorem 1.13 which we derive in Section 8. The appearance of Stokes lines is already observed earlier in
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Section 6, see Remark 6.4, however we give a quantitative analysis of this phenomenon only subject to the
constraint

t ≥ t0, v ≥ v0, κ ≥ 2

3

√
2− f3

ln t

t
, f3 ∈ R.

In [8], Theorem 1.12, the authors also discovered a Stokes region while analyzing P (s, γ) as s → ∞, γ ↑ 1,
recall Remark 1.3. Starting from the known large s asymptotics of the eigenvalues of Ksin all Stokes lines
were classified by an application of Lidskii’s Theorem to the Fredholm determinant P (s, γ). We will now
argue that we can reverse this approach and derive asymptotics of the eigenvalues {λj(x)}∞j=0 of KAi via
Theorem 1.13 and identity (1.4). First, we state a slight improvement of Corollary 1.2.

Corollary 1.19. As x→ −∞ and γ ↑ 1, with c0 as in (1.8) and σ = 2
3

√
2− κ,

det
(
I−γKAi

)∣∣∣
L2(x,∞)

= exp

[
x3

12

]
|x|− 1

8 b(γ)

(
1 +

1

2
9
4
√
π

eσ(−x)
3
2

(−x) 3
4

)(
1 +O

(
(−x)− 3

2 min{ 2
3 ,

3
2−f3}

))
, (1.40)

uniformly for

κ ≥ 2

3

√
2− f3

ln
(
(−x) 3

2

)

(−x) 3
2

, f3 ∈
(
−∞,

7

6

)
,

where b = b(γ) is positive, bounded in γ, such that

b(γ) → c0, γ ↑ 1.

This result is a direct consequence of Theorem 1.13 and we state its proof in Section 8.2. Compared to
Corollary 1.2, an additional contribution to the leading order appears in (1.40) and the extra factor is in
general not close to unity. In other words, also the Fredholm determinant displays an asymptotic Stokes
phenomenon, and we have identified the first Stokes line,

S̃1 : v =
2

3

√
2 (−x) 3

2 − 1

2
ln
(
(−x) 3

2

)
.

Now back to the spectrum of KAi, we let {λj(x)}∞j=0 denote the eigenvalues of the trace class operator

KAi : L2((x,∞); dλ) 	. These have been, for instance, analyzed in [32], were it was proven that the
spectrum of KAi is simple, we have 1 > λ0(x) > λ1(x) > . . . and for fixed j ∈ Z≥0,

λj(x) ∼ 1, x→ −∞. (1.41)

In fact, Tracy and Widom in loc. cit. also gave an asymptotic formula,

1− λj(x) =

√
π

j!
2

7
2 j+

9
4 tj+

1
2 e−

2
3

√
2 t
(
1 + o(1)

)
, t = (−x) 3

2 → +∞, (1.42)

but the derivation is not fully rigorous. We will now outline a proof for the stated behavior, using Corollary
1.19. Choose t ≥ t0, v ≥ v0 such that

κ ≥ 2

3

√
2− f3

ln t

t
, f3 ∈

(
−∞,

7

6

)
; v = − ln(1− γ). (1.43)

Apply Lidskii’s Theorem,

det(I − γKAi)

det(I −KAi)

∣∣∣∣
L2(x,∞)

= det
(
I + e−vKAi(I −KAi)

−1
)∣∣∣

L2(x,∞)
=

∞∏

j=0

(
1 + e−v λj(x)

1− λj(x)

)

=

(
1 + e−v λ0(x)

1− λ0(x)

)
det
(
I + e−vK1(I −K1)

−1
)∣∣∣

L2(x,∞)
, (1.44)

with K1 = KAi · P 1
Ai and P

1
Ai is the projection onto the eigenspace of KAi with eigenvalues {λj}∞j=1. This

allows us to compare (1.7), (1.40) to (1.44), i.e. as x→ −∞, |s1| ↑ 1 subject to (1.43),
(
1 + e−v λ0(x)

1− λ0(x)

)
det
(
I + e−vK1(I −K1)

−1
)
=

(
b(γ)

c0
+

b(γ)

2
9
4
√
πc0

eσt

t
1
2

)(
1 +O

(
t−min{ 2

3 ,
3
2−f3}

))
.
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We multiply though with the second summand in the first factor in the right hand side of the last estimation,
(
2

9
4
√
π t

1
2 e−σt +

2
9
4
√
π t

1
2λ0(x)

e
2
3

√
2t(1− λ0(x))

)
det
(
I + e−vK1(I −K1)

−1
)

=
b(γ)

c0

(
1 + 2

9
4
√
π t

1
2 e−σt

)
(1.45)

×
(
1 +O

(
t−min{ 2

3 ,
3
2−f3}

))

and here, both factors in the left hand side of (1.45) are positive. But for t ≥ t0, v ≥ v0 such that

2

3

√
2 > κ ≥ 2

3

√
2− f3

ln t

t
, f3 ∈

(
0,

7

6

)
⇔ 0 < σ =

2

3

√
2− κ ≤ f3

ln t

t

all summands in the right hand side of (1.45) are bounded. Thus, by positivity, all summands in the left
hand side of (1.45) have to be bounded. So, using also (1.41),

t
1
2

e
2
3

√
2t(1− λ0(x))

det
(
I + e−vK1(I −K1)

−1
)

= O(1),

t
1
2 e−σt det

(
I + e−vK1(I −K1)

−1
)

= O(1). (1.46)

Since det(I + e−vK1(I −K1)
−1) ≥ 1, we deduce from the first estimation,

t
1
2

e
2
3

√
2t(1− λ0(x))

= O(1),

which is consistent with (1.42) for j = 0. In fact, (1.45) allows us to deduce the inequality,

1− λ0(x) ≥ c t
1
2 e−

2
3

√
2 t
(
1 + o(1)

)
, c > 0 (1.47)

but in order to achieve equality our analysis in the Stokes region has to be extended; so far (1.46) only gives

t
1
2

e
2
3

√
2t(1− λ1(x))

= O(1),

which is not sufficient yet to deduce equality in (1.47). Summarizing, provided Theorem 1.13 is extended
to the full Stokes region and simultaneously also Corollary 1.19, the results on the transition asymptotics of
u(x|s) would enable us to derive (1.42) rigorously.

The derivation of Theorem 1.14 follows largely its regular counterpart.

(4) The master RHP 1.4 is analyzed asymptotically subject to the constraint t1−η ≤ v ≤ t( 23
√
2−δ), η ∈

(0, 1) in Sections 9 and 10. Opposed to the regular case (1) we require a different outer parametrix
which has the singular structure and corresponding exceptional set (1.37) encoded.

(5) After that, we address the scale t ≥ vk+1 > 0, t ≥ t0 following [9]. The details are summarized in
Section 11.

(6) Again, by modular transformations, plus an additional argument related to the singular structure,
we complete the proof of Theorem 1.14 in Section 12 and in addition obtain Corollary 1.15.

Section 13 concludes the manuscript by deriving Theorem 1.16 and we list a few identities for complete
elliptic integrals and Jacobi theta functions in Appendices A and B.

2. Preliminary steps for regular and singular transition analysis

We start with the scaling transformation X(λ) = Y
(
λ
√
−x
)
, λ ∈ C\⋃6

1 Γk and are lead from the initial

RHP 1.4 to a RHP for the function X(λ). This problem is formulated on the same jump contour
⋃6

1 Γk with
jump

X+(λ) = X−(λ)e
−tϑ(λ)σ3Ske

tϑ(λ)σ3 , λ ∈ Γk

and jump exponent

ϑ(λ) = i

(
4

3
λ3 − λ

)
, t = (−x) 3

2 .
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Next we deform the original jump contours, to obtain a RHP for a function Z(λ) as shown in Figure 5 - at
this stage the endpoints λ = ±λ∗ are yet to be determined. To be more more precise, this step amounts to
the following definition

Z(λ) = X(λ)





e−tϑ(λ)σ3S1e
tϑ(λ)σ3 , λ ∈ 1

e−tϑ(λ)σ3S2e
tϑ(λ)σ3 , λ ∈ 2

e−tϑ(λ)σ3S1S2e
tϑ(λ)σ3 , λ ∈ 3

e−tϑ(λ)σ3S−1
3 etϑ(λ)σ3 , λ ∈ 4

, Z(λ) = X(λ)





e−tϑ(λ)σ3S4e
tϑ(λ)σ3 , λ ∈ 5

e−tϑ(λ)σ3S4S5e
tϑ(λ)σ3 , λ ∈ 6

e−tϑ(λ)σ3S5e
tϑ(λ)σ3 , λ ∈ 7

e−tϑ(λ)σ3S−1
6 etϑ(λ)σ3 , λ ∈ 8

I, else

,

where the corresponding regions are shown in Figure 5 below. The RHP for Z(λ) is as follows.

Riemann-Hilbert Problem 2.1. The function Z(λ) has the following analytical properties:

• Z(λ) is analytic for λ ∈ C\([−λ∗, λ∗] ∪⋃6
1 γk)

• We have the following jumps along the solid curves shown in Figure 5,

Z+(λ) = Z−(λ)e
−tϑ(λ)σ3Ske

tϑ(λ)σ3 , λ ∈ γk, k = 1, . . . , 6;

Z+(λ) = Z−(λ)e
−tϑ(λ)σ3S−1

5 S−1
4 S−1

3 etϑ(λ)σ3 , λ ∈ [−λ∗, 0];
Z+(λ) = Z−(λ)e

−tϑ(λ)σ3σ2S3S4S5σ2e
tϑ(λ)σ3 , λ ∈ [0, λ∗],

where in fact

S−1
5 S−1

4 S−1
3 = σ2S3S4S5σ2, σ2 =

(
0 −i
i 0

)
. (2.1)

• As λ→ ∞, the function Z(λ) is normalized as

Z(λ) = I +O
(
λ−1

)
.

γ2

γ1γ3

γ4

γ5

γ6

λ∗
−λ∗

1

3

2

8

6

5

4

7

Figure 5. Deformation of
original jump contours,
X(λ) 7→ Z(λ). The three
dots represent the points
λ = −λ∗, 0, λ∗.

γ1

γ6

γ2

γ3

γ4

γ5

−λ∗ λ∗

bΩ2

bΩ1

bΩ3

bΩ4

bγ5

eγ2

bγ2

eγ5

Figure 6. First opening of lens,
Z(λ) 7→ T (λ).

The particular factorization appearing in (2.1) will be used in another contour deformation, our first

opening of lens: Referring to the domains Ω̂j , j = 1, . . . , 4 shown in Figure 6, we set

T (λ) = Z(λ)





e−tϑ(λ)σ3S−1
2 etϑ(λ)σ3 , λ ∈ Ω̂1

e−tϑ(λ)σ3S−1
4 etϑ(λ)σ3 , λ ∈ Ω̂2

e−tϑ(λ)σ3S−1
5 etϑ(λ)σ3 , λ ∈ Ω̂3

e−tϑ(λ)σ3S−1
1 etϑ(λ)σ3 , λ ∈ Ω̂4

I, else.

(2.2)
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and are lead to a RHP for T (λ) with jumps (compare Figure 6 for the jump contours)

T+(λ) = T−(λ)e
−tϑ(λ)σ3Ske

tϑ(λ)σ3 , λ ∈ γk, k = 1, 3, 4, 6

T+(λ) = T−(λ)e
−tϑ(λ)σ3S4e

tϑ(λ)σ3 , λ ∈ γ̂2; T+(λ) = T−(λ)e
−tϑ(λ)σ3S1e

tϑ(λ)σ3 , λ ∈ γ̂5

and

T+(λ) = T−(λ)e
−tϑ(λ)σ3S2S

−1
4 etϑ(λ)σ3 , λ ∈ γ̃2; T+(λ) = T−(λ)e

−tϑ(λ)σ3σ2S2S
−1
4 σ2e

tϑ(λ)σ3 , λ ∈ γ̃5

T+(λ) = T−(λ)e
−tϑ(λ)σ3S−1

4 S−1
3 S−1

4 etϑ(λ)σ3 ; T+(λ) = T−(λ)e
−tϑ(λ)σ3σ2S4S3S4σ2e

tϑ(λ)σ3 ,

for λ ∈ [−λ∗, 0] and λ ∈ [0, λ∗] in the last two cases. Notice that

S−1
4 S−1

3 S−1
4 =

(
1− s1s3 s1 + s1(1− s1s3)
−s3 1− s1s3

)
, σ2S4S3S4σ2 =

(
1− s1s3 −s3

s1 + s1(1− s1s3) 1− s1s3

)
. (2.3)

The presence of the factors 1 − s1s3 = 1 − |s1|2 on the diagonal motivates the use of a g-function in order
to address the transition asymptotics x→ −∞, |s1| → 1. Subsequently we shall first work out the necessary
details in case of the regular transition.

3. Regular transition analysis for κ ∈
[
δ, 23

√
2− δ

]
with 0 < δ < 1

3

√
2 fixed

We introduce the double scaling parameter

κ =
v

t
≡ − ln

(
1− |s1|2

)

(−x) 3
2

≡ −2πβ

t
∈ (0,∞); t = (−x) 3

2 , β =
1

2π
ln
(
1− |s1|2

)
(3.1)

and keep κ ∈ [δ, 23
√
2 − δ] with 0 < δ < 1

3

√
2 fixed throughout. Based on the cyclic constraints (1.11) the

parameter κ allows us to derive expansions of the Stokes multipliers in terms of κ which are used later on.

3.1. Preliminary expansions. First observe from (1.11) and (3.1) the exact identity ℜ(s1) = s2
2 e

−κt.
Second, by definition (3.1),

|s1| = 1− 1

2
e−κt +O

(
e−2κt

)
, t→ ∞; arg(s1) = ǫ arccos

(ℜ(s1)
|s1|

)
, arccos : [−1, 1] → [0, π],

and we obtain for s1 = |s1|eiarg(s1),

Proposition 3.1. As t→ ∞, |s1| ↑ 1 with ei
π
2 ǫ = iǫ, ǫ = sgn(ℑs1) ∈ {±1},

s1 = iǫ

(
1− 1

2
(1 + iǫs2)e

−κt +O
(
e−2κt

))
, s3 = −iǫ

(
1− 1

2
(1− iǫs2)e

−κt +O
(
e−2κt

))
, (3.2)

and

s1 + s1(1− s1s3) = iǫ

(
1 +

1

2
(1− iǫs2)e

−κt +O
(
e−2κt

))
, (3.3)

uniformly for κ ∈ [δ, 23
√
2− δ] with 0 < δ < 1

3

√
2 fixed.

Let us now move ahead and introduce one of the key ingredients in the nonlinear steepest descent analysis,
the g-function.

3.2. Introduction of g-function. Set J = (−1,−k) ∪ (1, k) ⊂ R where k ∈ (0, 1) is determined implicitly
in (1.22),

κ =
2

3

√
2

1 + k2

[
E′ − 2k2

1 + k2
K ′
]
=

(
2

1 + k2

) 3
2
∫ 1

k

√
(1− µ2)(µ2 − k2) dµ. (3.4)

The following Proposition addresses the bijective correspondence between κ ∈ (0, 23
√
2) and k ∈ (0, 1).
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Proposition 3.2. The modulus k is uniquely determined via (3.4) in case κ ∈ (0, 23
√
2). Moreover, as

κ ↓ 0,

k = 1− 2

√
κ

π
+

2κ

π
− 29

8

(
κ

π

) 3
2

+O
(
κ

2
)
, (3.5)

and, as κ ↑ 2
3

√
2, with σ = σ(κ) = 2

3

√
2− κ ↓ 0,

k =

√√
2σ

| lnσ|

(
1 +

ln | lnσ|
2 lnσ

+
2 + 7 ln 2

4 lnσ
+O

(
ln | lnσ|
ln2 σ

))
. (3.6)

Proof. Consider the function

F(k,κ) = κ − I(k), k ∈ [0, 1],

where

I(k) =

(
2

1 + k2

) 3
2
∫ 1

k

√
(1− µ2)(µ2 − k2) dµ.

With the help of standard expansions for the complete elliptic integrals as k ↓ 0 and k ↑ 1 (compare Appendix
A), we get

I(k) =
2

3

√
2

[
1− 3

2
k2| ln k| − 3

4
(1 + 4 ln 2)k2 +

39

16
k4| ln k|+O

(
k4
)]
, k ↓ 0, (3.7)

I(k) =
π

4
(1− k)2

[
1 + (1− k) +

11

32
(1− k)2 +O

(
(1− k)3

)]
, k ↑ 1. (3.8)

Thus

lim
k↓0

F(k,κ) = κ − 2

3

√
2 < 0, lim

k↑1
F(k,κ) = κ > 0,

but F(k,κ) is real analytic in a neighborhood of (k ∈ (0, 1],κ ∈ [0,∞)) with the first partial derivatives
equal to

Fk(k,κ) = k

(
2

1 + k2

) 3
2

[
3

1 + k2

∫ 1

k

√
(1− µ2)(µ2 − k2) dµ+

∫ 1

k

√
1− µ2

µ2 − k2
dµ

]
> 0,

Fκ(k,κ) = 1.

Hence the implicit function theorem guarantees existence of a unique real analytic solution k = k(κ) of the
equation F(k,κ) = 0 near the point (k,κ). We use (3.8) and (3.7) to derive (3.5) and (3.6). �

Besides the expansions (3.5) and (3.6) for k = k(κ) itself, we will later on also require expansions of the
frequency V = V (κ) and module τ = τ(κ) introduced in (1.23). These follow directly from (3.5) and (3.6)
and are summarized in the Corollary below.

Corollary 3.3. As κ ↓ 0,

V (κ) = − 2

3π
− κ

2π2
lnκ +

κ

2π2
(1 + ln 16π) +O

(
κ

2
)
, τ(κ) = − i

π
ln
(

κ

16π

)
− 17i

8π

κ

π
+O

(
κ

3
2

)
. (3.9)

Secondly, as σ = 2
3

√
2− κ ↓ 0,

V (κ) = − σ

| lnσ|

(
1 +

ln | lnσ|
lnσ

+
2 + 7 ln 2

2 lnσ
+O

(
ln2 | lnσ|
ln2 σ

))
, (3.10)

and in the same limit also

τ ′ ≡ − 1

τ(κ)
= −| lnσ|

2πi

(
1− ln | lnσ|

lnσ
− 7 ln 2

2 lnσ
+

ln | lnσ|
ln2 σ

+O
(

1

ln2 σ

))
. (3.11)

We now define the g-function,

g(z) = 4i

∫ z

M

(
(µ2 −M2)(µ2 −m2)

) 1
2 dµ, z ∈ C\[−M,M ] (3.12)
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where

0 < m =
1√
2

k√
1 + k2

<
1

2
< M =

1√
2

1√
1 + k2

<
1√
2

(3.13)

and the contour of integration is chosen in the simply connected domain CP
1\[−M,M ]. Moreover, we fix

−π < arg
((
µ2 −M2

)(
µ2 −m2

))
≤ π such that

√
(µ2 −M2)(µ2 −m2) > 0 for µ > M,

and thus, g(z) is single-valued and analytic in CP
1\[−M,M ]. As z tends to infinity

g(z) = ϑ(z) + ℓ+
i

8z

(
1− k2

1 + k2

)2

+O
(
z−3

)
, z → ∞,

where

ℓ = −ϑ(M) + 4i

∫ ∞

M

[√
(µ2 −M2)(µ2 −m2)− µ2 +

1

4

]
dµ. (3.14)

Further steps in the analysis require certain analytical properties of g(z).

Proposition 3.4. For z ∈ R introduce

Ω(z) = i
(
g+(z) + g−(z)

)
, and Π(z) = g+(z)− g−(z), with g±(z) = lim

ε↓0
g(z ± iε).

The functions Ω(z) and Π(z) are real-valued on the real line, in fact

Ω(z) = −8

∫ z

M

√(
µ2 −M2

)(
µ2 −m2

)
dµ, z ∈ (M,+∞), Ω(z) = 0, z ∈ (m,M),

Ω(z) = −8

∫ m

z

√(
M2 − µ2

)(
m2 − µ2

)
dµ, z ∈ (−m,m),

Ω(z) = −8

∫ m

−m

√(
M2 − µ2

)(
m2 − µ2

)
dµ ≡ 2πV (κ), z ∈ (−M,−m),

Ω(z) = −8

∫ m

−m

√(
M2 − µ2

)(
m2 − µ2) dµ+ 8

∫ −M

z

√(
µ2 −M2

)(
µ2 −m2

)
dµ, z ∈ (−∞,−M).

Moreover

Π(z) = 0, z ∈ (−∞,−M) ∪ (M,+∞), Π(z) = 8

∫ M

z

√(
M2 − µ2

)(
µ2 −m2

)
dµ, z ∈ (m,M),

Π(z) = 8

∫ M

m

√(
M2 − µ2

)(
µ2 −m2

)
dµ ≡ κ, z ∈ (−m,m),

Π(z) = κ − 8

∫ −m

z

√(
M2 − µ2

)(
µ2 −m2

)
dµ, z ∈ (−M,−m).

3.3. The g-function transformation. We first go back to the RHP for T (λ) as defined in (2.2) with jump
contour ΣT shown in Figure 6. Now fix the endpoint

λ∗ =
1√
2

1√
1 + k2

=M

and employ the following transformation,

S(λ) = e−tℓσ3T (λ)et(g(λ)−ϑ(λ))σ3 , λ ∈ C\ΣT , ΣT =

(
[−M,M ] ∪

6⋃

k=1

γk ∪ γ̂2 ∪ γ̂5 ∪ γ̃2 ∪ γ̃5
)
, (3.15)

with g = g(z) as in (3.12) and ℓ in (3.14). Since all jumps in the T -RHP display the structure

T+(λ) = T−(λ)e
−tϑ(λ)σ3GT (λ)e

tϑ(λ)σ3 , λ ∈ C\ΣT ,

we are lead to the following RHP

Riemann-Hilbert Problem 3.5. Determine the 2× 2 matrix valued function S(λ) = S(λ;x, s) such that

• S(λ) is analytic for λ ∈ C\ΣS where the jump contour ΣS is identical to the contour ΣT shown in
Figure 6.
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• The function S(λ) satisfies the jump condition

S+(λ) = S−(λ) e
−tg−(λ)σ3GT (λ)e

tg+(λ)σ3

︸ ︷︷ ︸
=GS(λ)

, λ ∈ ΣS ≡ ΣT .

• As λ→ ∞,

S(λ) = I +O
(
λ−1

)
.

Recall at this point (2.3): for λ ∈ (m,M) we have thus

S+(λ) = S−(λ)

(
e−t(κ−Π(λ)) −s3

s1 + s1(1− s1s3) (1− s1s3)e
−tΠ(λ)

)
, λ ∈ (m,M)

with κ from (3.1). But (compare Proposition 3.4)

κ −Π(λ) = 8

∫ λ

m

√(
M2 − µ2

)(
µ2 −m2

)
dµ > 0, λ ∈ (m,M)

and Π(λ) > 0 in the right slit. Hence, using also the expansions (3.2),(3.3),

GS(λ)

(
0 −e−iπ2 ǫ

ei
π
2 ǫ 0

)−1

→ I, x→ −∞, |s1| ↑ 1 : κ ∈
[
δ,
2

3

√
2− δ

]
, 0 < δ <

1

3

√
2 (3.16)

uniformly in λ chosen from any compact subset of the right slit (m,M). In the left slit (−M,−m) a similar
situation occurs,

S+(λ) = S−(λ)

(
e−t(κ−Π(λ)) (s1 + s1(1− s1s3))e

itΩ(λ)

−s3e−itΩ(λ) (1− s1s3)e
−tΠ(λ)

)
, λ ∈ (−M,−m).

But here

κ −Π(λ) = 8

∫ −m

λ

√(
M2 − µ2

)(
µ2 −m2

)
dµ > 0, λ ∈ (−M,−m)

and also

Π(λ) = 8

∫ M

−λ

√(
M2 − µ2

)(
µ2 −m2

)
dµ > 0, λ ∈ (−M,−m).

Hence combined with (3.2),(3.3),

GS(λ)

(
0 ei

π
2 ǫ+itΩ(λ)

−e−iπ2 ǫ−itΩ(λ) 0

)−1

→ I, x→ −∞, |s1| ↑ 1 : κ ∈
[
δ,
2

3

√
2− δ

]
, 0 < δ <

1

3

√
2

(3.17)
uniformly in λ chosen from any compact subset of the left slit (−M,−m). Next, we consider the jump
contours which extend to infinity, i.e.

ΣS∞
= γ̂2 ∪ γ̂5 ∪ γ̃2 ∪ γ̃5 ∪

⋃
γk.

Along these contours the jumps in the S-RHP are given by

S+(λ) = S−(λ)e
−tg(λ)σ3GT (λ)e

tg(λ)σ3 , λ ∈ ΣS∞

Hence, by triangularity and the sign chart of ℜ(g(λ)) (compare Figure 7), the jumps on the infinite contours

approach the identity matrix exponentially fast in the limit x → −∞, |s1| ↑ 1 with κ ∈ [δ, 23
√
2 − δ], δ > 0,

provided we stay away from the endpoints λ = ±m,±M and the origin λ = 0. In the remaining gap
(−m,m) ⊂ R two cases need to be distinguished: First for λ ∈ (0,m),

S+(λ) = S−(λ)

(
1 −s3eitΩ(λ)

(s1 + s1(1− s1s3))e
−itΩ(λ) (1− s1s3)

2

)

= S−(λ)

(
1 0

(s1 + s1(1− s1s3))e
−itΩ(λ) 1

)(
1 −s3eitΩ(λ)

0 1

)

≡ S−(λ)SL1(λ)SU1(λ), λ ∈ (0,m) (3.18)
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and secondly for λ ∈ (−m, 0),

S+(λ) = S−(λ)

(
1 (s1 + s1(1− s1s3))e

itΩ(λ)

−s3e−itΩ(λ) (1− s1s3)
2

)

= S−(λ)

(
1 0

−s3e−itΩ(λ) 1

)(
1 (s1 + s1(1− s1s3))e

itΩ(λ)

0 1

)

≡ S−(λ)SL2(λ)SU2(λ), λ ∈ (−m, 0). (3.19)

In (3.18) and (3.19) all off-diagonal entries are fast oscillating as x → −∞, see Proposition 3.4. We now
transform this behavior on (−m,m) to exponential decay with the help of contour deformations (opening of
lens) tailored to the factorizations written in (3.18) and (3.19). The key to this explicit transformation is
the following Proposition.

Proposition 3.6. Introduce for z ∈ (−m,m) the functions

H1(z) = iΩ(z), H2(z) = −iΩ(z),

with Ω = Ω(z) as in Proposition 3.4. Then H1(z) admits local analytical continuation into a neighborhood
of the gap (−m,m) into the upper half-plane such that

ℜ
(
H1(z)

)
< 0, ℑz > 0, ℜz ∈ (−m,m).

Similarly, the function H2(z) admits local analytical continuation into a neighborhood of the gap (−m,m)
into the lower half-plane such that

ℜ
(
H2(z)

)
< 0, ℑz < 0, ℜz ∈ (−m,m)

Proof. We follow the standard line of argument. First

iΩ(z) = −8i

∫ m

z

√(
M2 − µ2

)(
m2 − µ2

)
dµ, z ∈ (−m,m)

and thus (with z = x+ iy, x = ℜz, y = ℑz)

d

dy
H1(x+ iy)

∣∣∣∣
y=0

= −8
√(

M2 − x2
)(
m2 − x2

)
< 0, x ∈ (−m,m),

d

dy
H2(x− iy)

∣∣∣∣
y=0

= −8
√(

M2 − x2
)(
m2 − x2

)
< 0, x ∈ (−m,m),

which implies the claim via the Cauchy-Riemann equations. �

3.4. Opening of lens. Suppose L±
j , j = 1, 2 denotes the lens shaped regions shown in Figure 7. With the

help of the analytical continuations of H1(z) and H2(z) as discussed in Proposition 3.6, we set

L(λ) =





S(λ)S−1
U1

(λ), λ ∈ L+
1

S(λ)SL1
(λ), λ ∈ L−

1

S(λ)S−1
U2

(λ), λ ∈ L+
2

S(λ)SL2(λ), λ ∈ L−
2

S(λ), otherwise

(3.20)

so that L(λ) solves the following RHP

Riemann-Hilbert Problem 3.7. Determine the 2× 2 piecewise analytic function L(λ) such that

• L(λ) is analytic for λ ∈ C\
(
[−M,−m] ∪ [m,M ] ∪ γ±1 ∪ γ±2 ∪ ΣS∞

)



TRANSITION ASYMPTOTICS FOR THE PAINLEVÉ II TRANSCENDENT 20

γ̃5

γ̃2

γ̂2

γ̂5

L
−

1L
−

2

γ+

1

γ−

1

γ+

2

γ−

2

γ1

γ6

γ3

γ4

−M M
L
+

2 L
+

1−m m

<
(

g(λ)
)

< 0

<
(

g(λ)
)

> 0

<
(

g(λ)
)

< 0

<
(

g(λ)
)

> 0

<
(

g(λ)
)

> 0

<
(

g(λ)
)

< 0

Figure 7. Opening of lens, the jump contours for L(λ) consists of the solid black lines. In
addition, along the dotted lines ℜ(g(λ)) = 0.

• We have the following jump behavior, with orientation as indicated in Figure 7,

L+(λ) = L−(λ)





GS(λ), λ ∈ (−M,−m) ∪ (m,M) ∪ ΣS∞

SU1(λ), λ ∈ γ+1
SL1(λ), λ ∈ γ−1
SU2

(λ), λ ∈ γ+2
SL2

(λ), λ ∈ γ−2

• As λ→ ∞,

L(λ) = I +O
(
λ−1

)
.

After employing the explicit transformation (3.21), it is now time to focus on the local model problems
near the points λ = ±m,±M and λ = 0 as well as on the slit segment J = (−M,−m) ∪ (m,M).

3.5. The outer parametrix. The RHP associated to the outer parametrix is motivated by (3.16),(3.17)
and thus consists in

Riemann-Hilbert Problem 3.8. Find a 2×2 matrix-valued piecewise analytic function N(λ) = N(λ; t, ǫ)
such that

• N(λ) is analytic for λ ∈ C\J
• Along the branch cuts, with orientation as in (7),

N+(λ) = N−(λ)

(
0 ei

π
2 ǫ+itΩ(λ)

−e−iπ2 ǫ−itΩ(λ) 0

)
, λ ∈ (−M,−m) (3.21)

N+(λ) = N−(λ)

(
0 −e−iπ2 ǫ

ei
π
2 ǫ 0

)
, λ ∈ (m,M) (3.22)

• N(λ) is square integrable on J
• As λ→ ∞,

N(λ) = I +O
(
λ−1

)
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Observe that the function

Ñ(λ) = e−iπ4 ǫσ3N(λ)ei
π
4 ǫσ3 , λ ∈ C\J

solves a similar RHP as the one posed for N(λ), but with jumps on J given by

Ñ+(λ) = Ñ−(λ)

(
0 eitΩ(λ)

−e−itΩ(λ) 0

)
, λ ∈ (−M,−m),

Ñ+(λ) = Ñ−(λ)

(
0 1
−1 0

)
, λ ∈ (m,M).

This is precisely the same jump behavior which appeared in [8], Section 3.1. The solution method is therefore
analogous, we only summarize the relevant steps and refer to [8] for further details.

The solution to RHP 3.8 is derived in terms of Jacobi theta functions defined on the elliptic curve

Γ =
{
(z, w) : w2 = p(z)

}
, p(z) =

(
z2 −m2

) (
z2 −M2

)

of genus one. We view Γ as two sheeted covering of the Riemann sphere, glued together in the standard way.
For definiteness, let

√
p(z) ∼ z2 as z → ∞ on the first sheet and

√
p(z) ∼ −z2 in the similar limit on the

second sheet.

A0 A1B1

−m m M−M

Figure 8. Standard homology basis for Γ

We fix a homology basis for Γ as indicated in Figure 8, and let

ω =
c dz

w
, c = c(κ) =

i

2

[∫ M

m

dµ√
(M2 − µ2)(µ2 −m2)

]−1

=
i

2

M

K ′ (3.23)

be the unique holomorphic one form on Γ with normalization
∮

A1

ω = 1,

and B-period (compare (1.23))

τ =

∮

B1

ω = 2c

∫ m

−m

dz√
(m2 − z2)(M2 − z2)

= 2i
K

K ′ , −iτ > 0.

Also, define the Abel (type) map

u : CP1\[−M,M ] → C, z 7→ u(z) =

∫ z

M

ω = u(∞)− c

z
+O

(
z−3

)
, z → ∞

and collect the following properties

Proposition 3.9. The Abelian integral u(z) is single-valued and analytic for z ∈ CP
1\[−M,M ], we have in

addition

u+(z)− u−(z) =

{
0, z ∈ (−∞,−M) ∪ (M,∞)

−1, z ∈ (−m,m)
, u+(z) + u−(z) =

{
0, z ∈ (m,M)

τ, z ∈ (−M,−m),

and

u(∞) =
τ

4
(in CP

1). (3.24)
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Remark 3.10. Equation (3.24) is a simple identity between complete elliptic integrals,

u(∞) =
i

2

K

K ′ , τ = 2i
K

K ′ .

Our construction requires furthermore the functions

ω(z) =

(
(z +m)(z −M)

(z +M)(z −m)

) 1
4

, φ(z) =
1

2

(
ω(z) +

(
ω(z)

)−1
)
, φ̂(z) =

1

2i

(
ω(z)−

(
ω(z)

)−1
)
,

defined and analytic for z ∈ CP
1\[−M,M ] such that ω(z) > 0 for z > M . To complete the derivation, we

use the Jacobi theta function

θ(z|τ) ≡ θ3(z|τ) =
∑

k∈Z

exp
[
iπk2τ + 2πikz

]
, z ∈ C,

and define

N (±)(z) =

(
θ(u(z) + tV ± d)

θ(u(z)± d)
,
θ(−u(z) + tV ± d)

θ(−u(z)± d)

)
≡
(
N

(±)
1 (z), N

(±)
2 (z)

)
,

where (see (1.23))

V (κ) ≡ V = − 4

π

∫ m

−m

√
(M2 − µ2) (m2 − µ2) dµ ≡ 1

2π
Ω(z), z ∈ (−M,−m); d = −τ

4
. (3.25)

With this, a solution to RHP 3.8 is given in the next Proposition.

Proposition 3.11 (cf. [8], Section 3.1). The function

N(λ) = ei
π
4 ǫσ3

θ(0)

θ(tV )

(
N

(+)
1 (λ)φ(λ) N

(+)
2 (λ)φ̂(λ)

−N (−)
1 (λ)φ̂(λ) N

(−)
2 (λ)φ(λ)

)
e−iπ4 ǫσ3 (3.26)

is single-valued and analytic in C\J . Its jumps are stated in (3.21) and (3.22), furthermore, as λ→ ∞,

N(λ) = I +
1

λ


 −c θ′(tV )

θ(tV ) − θ(0)
θ(tV )

θ(u(∞)−tV−d)
θ(u(∞)−d)

M−m
2i ei

π
2 ǫ

θ(0)
θ(tV )

θ(u(∞)+tV−d)
θ(u(∞)−d)

M−m
2i e−iπ2 ǫ c θ′(tV )

θ(tV )


+O

(
λ−2

)
.

Our next move focuses on the construction of model functions near the branch points and the origin.

3.6. Parametrix near the origin. Near the origin, we first observe that

2g(λ) = κ − iΩ(λ), λ ∈ γ̃2; 2g(λ) = −κ − iΩ(λ), λ ∈ γ̃5.

Thus the jumps on the quasi-vertical segments γ̃2 ∪ γ̃5 displayed in Figure 7 approach the identity matrix
exponentially fast along the entire segment, more precisely

e−tg(λ)σ3S2S
−1
4 etg(λ)σ3 = I + (s1 + s2)e

−tκeitΩ(λ)σ+, λ ∈ γ̃2

e−tg(λ)σ3σ2S2S
−1
4 σ2e

tg(λ)σ3 = I − (s1 + s2)e
−tκe−itΩ(λ)σ−, λ ∈ γ̃5.

Using also (3.2) and (3.3) we shall consider the following RHP.

Riemann-Hilbert Problem 3.12. Find a 2× 2 piecewise analytic function H(λ) such that

• H(λ) is analytic for λ ∈ (C ∩ D(0, r))\(γ±1 ∪ γ±2 ) where D(0, r) = {λ ∈ C : |λ| < r} and we fix
0 < r < m

2 .
• The boundary values are related via the equations (compare Figure 7 for orientation)

H+(λ) = H−(λ)

(
1 iǫ eitΩ(λ)

0 1

)
, λ ∈ D(0, r) ∩ (γ+1 ∪ γ+2 ); (3.27)

H+(λ) = H−(λ)

(
1 0

iǫ e−itΩ(λ) 1

)
, λ ∈ D(0, r) ∩ (γ−1 ∪ γ−2 ) (3.28)

• H(λ) is bounded at the origin λ = 0.
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• As x→ −∞, |s1| ↑ 1 with κ ∈ [δ, 23
√
2− δ], δ ∈ (0, 13

√
2) fixed, we have

H(λ) =
(
I + o(1)

)
N(λ)

uniformly for λ ∈ ∂D(0, r).

The solution to this problem is very elementary: assemble

Ho(ζ) =





eiζσ3 , arg ζ ∈ (−π
4 ,

π
4 ) ∪ ( 3π4 ,

5π
4 )

eiζσ3

(
1 iǫ eitΩ(0)

0 1

)
, arg ζ ∈ (π4 ,

3π
4 )

eiζσ3

(
1 0

−iǫ e−itΩ(0) 1

)
, arg ζ ∈ (− 3π

4 ,−π
4 )

with Ω(0) = πV (see Proposition 3.4) and observe that Ho(ζ) solves a “bare” RHP

• Ho(ζ) is analytic for ζ ∈ C\{ζ : arg ζ = ±π
4 ,± 3π

4 }
• Along the four rays oriented from zero to infinity,

Ho
+(ζ) = Ho

−(ζ)

(
1 iǫ eitΩ(0)

0 1

)
, arg ζ =

π

4
; Ho

+(ζ) = Ho
−(ζ)

(
1 −iǫ eitΩ(0)

0 1

)
, arg ζ =

3π

4
;

Ho
+(ζ) = Ho

−(ζ)

(
1 0

iǫ e−itΩ(0) 1

)
, arg ζ = −π

4
; Ho

+(ζ) = Ho
−(ζ)

(
1 0

−iǫ e−itΩ(0) 1

)
, arg ζ = −3π

4
.

• Ho(ζ) is bounded as ζ → 0.
• As ζ → ∞, we have

Ho(ζ) =
(
I +O

(
ζ−∞)) eiζσ3 (3.29)

uniformly in a full neighborhood of ζ = ∞.

Referring to the locally analytic change of variables,

ζ(λ) =
t

2
(Ω(λ)− Ω(0)) = 4tMmλ

(
1 +O

(
λ2
))
, λ ∈ D(0, r), 0 < r <

m

2
(3.30)

the origin parametrix is then given by

H(λ) = N(λ)Ho
(
ζ(λ)

)
e−iζ(λ)σ3 , λ ∈ D(0, r), (3.31)

with N(λ) as in (3.26). Since N(λ) is analytic in the disk D(0, r), compare Proposition 3.11, we check
directly that the jumps of H(λ) are indeed as in (3.27) and (3.28) with the orientation of the contours near
the origin like in Figure 7. Note also that the four rays in the bare RHP can always be locally deformed
to match the contours γ±j . Furthermore with (3.29) and (3.30) we obtain from (3.31) the desired matching

between the model functions: as t = (−x) 3
2 → +∞, |s1| ↑ 1 such that κ ∈ [δ, 23

√
2− δ] is fixed,

H(λ) =
(
1 +O

(
t−∞))N(λ) (3.32)

uniformly for 0 < r1 ≤ |λ| ≤ r2 <
m
2 . This completes the construction of the origin parametrix.

3.7. Parametrices near the inner branch points. Our construction for the model function near the
right inner branch point λ = m is motivated by the local expansions

iΩ(λ) = c0(λ−m)
3
2 +O

(
(λ−m)

5
2

)
, λ ∈ γ+1 ∩D(m, r)

−iΩ(λ) = −c0(λ−m)
3
2 +O

(
(λ−m)

5
2

)
, λ ∈ γ−1 ∩D(m, r)

Π(λ) = κ − c0(λ−m)
3
2 +O

(
(λ−m)

5
2

)
, λ ∈ (m,M) ∩D(m, r)

where

c0 =
16

3

√
2m(M2 −m2) > 0,
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arg ζ = 0

arg ζ = 2π

3

arg ζ = 4π

3

+

−

+

−

−

+

Figure 9. Jump
contour for the bare
parametrix ARH(ζ).

(

1 iε e
itΩ(λ)

0 1

)

(

e
−t(κ−Π(λ))

iε

iε 0

)

λ = m

(

1 0

iε e
−itΩ(λ)

1

)

Figure 10. Jumps of the
model function U(λ) near λ =
m.

we fix 0 < r < min{m
2 ,

1
2 (M −m)} and the function (λ−m)

3
2 is defined for λ ∈ C\[m,∞) with the branch

fixed by the requirement arg (λ − m) = π for λ < m. This motivates the use of Airy functions and our
construction follows from now on [8], Section 3.2. with minor modifications. We define

ARH(ζ) = A0(ζ)





I, arg ζ ∈ (0, 2π3 )(
1 −1

0 1

)
, arg ζ ∈ ( 2π3 ,

4π
3 )

(
1 −1

0 1

)(
1 0

1 1

)
, arg ζ ∈ ( 4π3 , 2π)

(3.33)

where A0(ζ) denotes the unimodular entire function

A0(ζ) = i
√
πe−iπ6 σ3

(
e−iπ6 0
0 ei

π
2

)
 Ai

(
e−i 2π3 ζ

)
Ai(ζ)

e−i 2π3 Ai′
(
e−i 2π3 ζ

)
Ai′(ζ)


 ei

π
6 σ3 , ζ ∈ C (3.34)

which is constructed with the help of the Airy function w = Ai(z), the unique solution to the boundary
value problem

w′′ = zw; Ai(z) =
z−

1
4

2
√
π
e−

2
3 z

3
2

(
1− 5

48
z−

3
2 +O

(
z−3

))
, z → ∞, −π < arg z < π.

Through the standard properties of w = Ai(z) (cf. [30]), the model function ARH(ζ) in (3.33) has jumps on
the contour shown in Figure 9, more precisely

• ARH(ζ) is analytic for ζ ∈ C\{arg ζ = 0, 2π3 ,
4π
3 }

• The boundary values are related via the equations

ARH
+ (ζ) = ARH

− (ζ)

(
1 1
0 1

)
, arg ζ =

2π

3
,

ARH
+ (ζ) = ARH

− (ζ)

(
1 0
−1 1

)
, arg ζ =

4π

3
,

ARH
+ (ζ) = ARH

− (ζ)

(
1 1
−1 0

)
, arg ζ = 0.

• As ζ → ∞, we have in a full neighborhood of infinity,

ARH(ζ) = ζ−
1
4σ3

i

2

(
1 −i
−1 −i

)[
I +

1

48ζ
3
2

(
−1 6i
6i 1

)
+O

(
ζ−3

)]
e

2
3 ζ

3
2 σ3 . (3.35)

With the (locally conformal) change of variables

ζ(λ) =

[
6t ei

π
2

∫ λ

m

((
M2 − µ2

) (
m2 − µ2

)) 1
2 dµ

] 2
3

∼
(
4t
√

2m(M2 −m2)
) 2

3

(λ−m), |λ−m| < r, (3.36)
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we define

U(λ) = Br1(λ)A
RH
(
ζ(λ)

)
e−

2
3 ζ

3
2 (λ)σ3e−iπ4 ǫσ3 , |λ−m| < r (3.37)

which involves the (locally) analytic function

Br1(λ) = N(λ)ei
π
4 ǫσ3

(
−i i
1 1

)
δ(λ)σ3

(
ζ(λ)

λ−M

λ−m

) 1
4σ3

, δ(λ) =

(
λ−m

λ−M

) 1
4

→ 1.

Remark 3.13. Analyticity of Br1(λ) near λ = m follows from the simple observation that for λ ∈ (m,m+r),

(
Br1(λ)

)
+
= N−(λ)

(
0 −e−iπ2 ǫ

ei
π
2 ǫ 0

)
ei

π
4 ǫσ3

(
−i i
1 1

)(
δ−(λ)

)σ3
e−iπ2 σ3

(
ζ(λ)

λ−M

λ−m

) 1
4σ3

=
(
Br1(λ)

)
−,

thus Br1(λ) can only have an isolated singularity at λ = m. But this singularity is at worst of square root
type, hence has to be removable.

As we are allowed to locally deform the jump contours in (3.33) and match those in the initial L-RHP,
the local parametrix U(λ) has jumps in D(m, r) as shown in Figure 10. Moreover, with the help of (3.35),

U(λ) = N(λ)ei
π
4 ǫσ3

[
I +

1

48ζ
3
2

(
−1 6i
6i 1

)
+O

(
ζ−3

)]
e−iπ4 ǫσ3

=

[
I +N(λ)

{
1

48ζ
3
2

(
−1 −6ǫ
6ǫ 1

)
+O

(
ζ−3

)} (
N(λ)

)−1
]
N(λ) (3.38)

so that (as t→ +∞, |s1| ↑ 1 with κ ∈ [δ, 23
√
2− δ] fixed)

U(λ) =
(
I +O

(
t−1
) )
N(λ), (3.39)

uniformly for 0 < r1 ≤ |λ−m| ≤ r2 < min{m
2 ,

1
2 (M −m)}.

The parametrix near the remaining inner branch point λ = −m is constructed similarly: introduce

ÃRH(ζ) = Ã0(ζ)





I, arg ζ ∈ (−π,−π
3 )(

1 0

−e−iπ(1−γ) 1

)
, arg ζ ∈ (−π

3 ,
π
3 )

(
1 0

−e−iπ(1−γ) 1

)(
1 eiπ(1−γ)

0 1

)
, arg ζ ∈ (π3 , π)

(3.40)

where

γ = 1 +
8t

π

∫ m

−m

√
(M2 − µ2) (m2 − µ2) dµ ≡ 1− 2tV (κ),

with

Ã0(ζ) = i
√
πei

π
2 (1−γ)σ3e−iπ3 σ3

(
e−iπ4 e−iπ(1−γ) 0

0 e−i 5π12

)(
eiπAi′

(
eiπζ

)
−eiπ3 Ai′

(
ei

π
3 ζ
)

−Ai
(
eiπζ

)
Ai
(
ei

π
3 ζ
)

)

× ei
π
3 σ3e−iπ2 (1−γ)σ3 , ζ ∈ C, (3.41)

and collect the following properties

• ÃRH(ζ) is analytic for ζ ∈ C\{arg ζ = −π
3 ,

π
3 , π}

• The jumps are as follows, compare Figure 11 for orientation,

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
1 0

−e−iπ(1−γ) 1

)
, arg ζ = −π

3

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
1 eiπ(1−γ)

0 1

)
, arg ζ =

π

3

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
1 eiπ(1−γ)

−e−iπ(1−γ) 0

)
, arg ζ = π
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arg ζ = π

arg ζ =
π

3

arg ζ = −

π

3

+
−

+

+

−

−

Figure 11. Jump
contour for the bare
parametrix ÃRH(ζ).

(

e
−t(κ−Π(λ))

iε e
itΩ(λ)

iε e
−itΩ(λ)

0

)

λ = −m

(

1 iε e
itΩ(λ)

0 1

)

(

1 0

iε e
−itΩ(λ)

1

)

Figure 12. Jumps
of the model function
V (λ) near λ = −m.

• As ζ → ∞, valid in a full neighborhood of infinity,

ÃRH(ζ) = ζ
1
4σ3

i

2
e−iπ(1−γ)

(
1 −ieiπ(1−γ)

−1 −ieiπ(1−γ)

)[
I +

i

48ζ
3
2

ei
π
2 (1−γ)σ3

(
1 6i
6i −1

)
e−iπ2 (1−γ)σ3

+O
(
ζ−3

) ]
e

2
3 iζ

3
2 σ3 (3.42)

With the change of variables

ζ(λ) =

[
6t

∫ λ

−m

((
M2 − µ2

) (
m2 − µ2

)) 1
2 dµ

] 2
3

∼
(
4t
√

2m(M2 −m2)
) 2

3

(λ+m), |λ+m| < r,

we move ahead and define the parametrix near λ = −m,

V (λ) = Bℓ1(λ)Ã
RH
(
ζ(λ)

)
e−

2
3 iζ

3
2 (λ)σ3e−iπ4 ǫσ3 , |λ+m| < r, (3.43)

where

Bℓ1(λ) = N(λ)ei
π
4 ǫσ3

(
−ieiπ(1−γ) ieiπ(1−γ)

1 1

)
δ̃(λ)−σ3

(
ζ(λ)

λ+M

λ+m

)− 1
4σ3

,

with δ̃(λ) =
(
λ+m
λ+M

) 1
4 → 1, λ→ ∞.

Remark 3.14. Again, the multiplier Bℓ1(λ) is analytic at λ = −m, since

(
Bℓ1(λ)

)
+
= N−(λ)

(
0 ei

π
2 ǫ+2πitV

−e−iπ2 ǫ−2πitV 0

)
ei

π
4 ǫσ3

(
−ieiπ(1−γ) ieiπ(1−γ)

1 1

)(
δ̃−(λ)

)−σ3

× e−iπ2 σ3

(
ζ(λ)

λ+M

λ+m

)− 1
4σ3

=
(
Bℓ1(λ)

)
−, λ ∈ (−m− r,−m).

Moreover, we check that V (λ) (after employing a local contour deformation) has jumps inside D(−m, r)
as shown in Figure 12 and through (3.42),

V (λ) = N(λ)ei
π
4 ǫσ3

[
I +

i

48ζ
3
2

ei
π
2 (1−γ)σ3

(
1 6i
6i −1

)
e−iπ2 (1−γ)σ3 +O

(
ζ−3

)]
e−iπ4 ǫσ3

=

[
I +N(λ)

{
i

48ζ
3
2

(
1 −6ǫ e2πitV

6ǫ e−2πitV −1

)
+O

(
ζ−3

)} (
N(λ)

)−1
]
N(λ).

Thus for t→ +∞, |s1| ↑ 1 such that κ ∈ [δ, 23
√
2− δ], δ ∈ (0, 13

√
2),

V (λ) =
(
I +O

(
t−1
) )
N(λ) (3.44)

uniformly for 0 < r1 ≤ |λ + m| ≤ r2 < min{m
2 ,

1
2 (M − m)}. This completes the construction of the

parametrices at the inner branch points λ = ±m.



TRANSITION ASYMPTOTICS FOR THE PAINLEVÉ II TRANSCENDENT 27

3.8. Parametrices near the outer branch points. Once more Airy functions are used in the construc-
tions, first near λ =M : Define the bare parametrix,

ÂRH(ζ) = Â0(ζ)





(
1 0

1 1

)
, arg ζ ∈ (−π,− 2π

3 )

I, arg ζ ∈ (− 2π
3 ,−π

3 )(
1 1

0 1

)
, arg ζ ∈ (−π

3 ,
π
3 )

(
1 1

0 1

)(
1 0

−1 1

)
, arg ζ ∈ (π3 , π)

(3.45)

with

Â0(ζ) = σ2Ã0(ζ)
∣∣∣
γ≡1

σ2 = i
√
π ei

π
3 σ3

(
e−i 5π12 0
0 e−iπ4

)(
Ai
(
ei

π
3 ζ
)

Ai
(
eiπζ

)

ei
π
3 Ai′

(
ei

π
3 ζ
)

eiπAi′
(
eiπζ

)
)
e−iπ3 σ3 , ζ ∈ C.

This model function has the properties listed below

• ÂRH(ζ) is analytic for ζ ∈ C\{arg ζ = − 2π
3 ,−π

3 ,
π
3 , π}

• We have the following jump behavior on the contour shown in Figure 13,

ÂRH
+ (ζ) = ÂRH

− (ζ)

(
1 0
−1 1

)
, arg ζ = −2π

3
,
π

3

ÂRH
+ (ζ) = ÂRH

− (ζ)

(
1 1
0 1

)
, arg ζ = −π

3

ÂRH
+ (ζ) = ÂRH

− (ζ)

(
0 1
−1 0

)
, arg ζ = π

arg ζ = −

2π

3
arg ζ = −

π

3

arg ζ = π

arg ζ =
π

3

+
−

−

+

−

+

+
−

Figure 13. Jump
contour for the bare
parametrix ÂRH(ζ).

λ = M

(

1 0

iε e
2tg(λ)

1

)

(

0 iε

iε 0

)

(

1 0

iε e
2tg(λ)

1

)

(

1 iε e
−2tg(λ)

0 1

)

Figure 14. Jumps of the model
function P (λ) near λ =M .

• As ζ → ∞,

ÂRH(ζ) = ζ−
1
4σ3

i

2

(
−i 1
i 1

)[
I +

i

48ζ
3
2

(
−1 −6i
−6i 1

)
+O

(
ζ−3

)]
e−

2
3 iζ

3
2 σ3 (3.46)

This time, we use the change of variables,

ζ(λ) =

[
6t

∫ λ

M

((
µ2 −M2

) (
µ2 −m2

)) 1
2 dµ

] 2
3

∼
(
4t
√
2M(M2 −m2)

) 2
3

(λ−M), |λ−M | < r
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and the local parametrix is defined as

P (λ) = Br2(λ)Â
RH
(
ζ(λ)

)
e

2
3 iζ

3
2 (λ)σ3e−iπ4 ǫσ3 , |λ−M | < r. (3.47)

Here,

Br2(λ) = N(λ)ei
π
4 ǫσ3

(
1 −1
−i −i

)
δ̂(λ)σ3

(
ζ(λ)

λ−m

λ−M

) 1
4σ3

, δ̂(λ) =

(
λ−M

λ−m

) 1
4

→ 1, λ→ ∞

is once more analytic near λ = M . The relevant jump properties of P (λ) are displayed in Figure 14 and
with (3.46),

P (λ) = N(λ)ei
π
4 ǫσ3

[
I +

i

48ζ
3
2

(
−1 −6i
−6i 1

)
+O

(
ζ−3

)]
e−iπ4 ǫσ3

=

[
I +N(λ)

{
i

48ζ
3
2

(
−1 6ǫ
−6ǫ 1

)
+O

(
ζ−3

)} (
N(λ)

)−1
]
N(λ).

Hence for t→ +∞, |s1| ↑ 1 such that κ ∈ [δ, 23
√
2− δ], δ ∈ (0, 13

√
2),

P (λ) =
(
I +O

(
t−1
))
N(λ) (3.48)

uniformly for 0 < r1 ≤ |λ−M | ≤ r2 <
1
2 (M −m).

We are left with the parametrix near the left most branch point λ = −M : assemble

ĀRH(ζ) = Ā0(ζ)





(
1 eiπ(1−γ)

0 1

)
, arg ζ ∈ (0, π3 )

I, arg ζ ∈ (π3 ,
2π
3 )(

1 0

e−iπ(1−γ) 1

)
, arg ζ ∈ ( 2π3 ,

4π
3 )

(
1 0

e−iπ(1−γ) 1

)(
1 −eiπ(1−γ)

0 1

)
, arg ζ ∈ ( 4π3 , 2π)

(3.49)

where

Ā0(ζ) = ei
π
2 (1−γ)σ3σ2A0(ζ)σ2e

−iπ2 (1−γ)σ3

= i
√
πei

π
6 σ3ei

π
2 (1−γ)σ3

(
ei

π
2 0
0 e−iπ6

)(
Ai′(ζ) −e−i 2π3 Ai′

(
e−i 2π3 ζ

)

−Ai(ζ) Ai
(
e−i 2π3 ζ

)
)
e−iπ6 σ3e−iπ2 (1−γ)σ3 , ζ ∈ C,

and, as before, γ = 1− 2tV (κ). We have

• ĀRH(ζ) is analytic for ζ ∈ C\{arg ζ = 0, π3 ,
2π
3 ,

4π
3 }

• Fixing orientations as shown in Figure 15 below, the relevant boundary values are related as follows

ĀRH
+ (ζ) = ĀRH

− (ζ)

(
1 −eiπ(1−γ)

0 1

)
, arg ζ =

π

3
,
4π

3

ĀRH
+ (ζ) = ĀRH

− (ζ)

(
1 0

e−iπ(1−γ) 1

)
, arg ζ =

2π

3

ĀRH
+ (ζ) = ĀRH

− (ζ)

(
0 eiπ(1−γ)

−e−iπ(1−γ) 0

)
, arg ζ = 0

• As ζ → ∞,

ĀRH(ζ) = ζ
1
4σ3

i

2
ei

π
2 (1−γ)σ3

(
−i 1
i 1

)
e−iπ2 (1−γ)σ3

[
I +

1

48ζ
3
2

(
1 6ie−iπγ

6ieiπγ −1

)

+O
(
ζ−3

) ]
e−

2
3 ζ

3
2 σ3 (3.50)
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arg ζ = 0

arg ζ = π

3

+

−

−

+−

+

+
−

arg ζ = 4π

3

arg ζ = 2π

3

Figure 15. Jump
contour for the bare
parametrix ĀRH(ζ).

λ = −M

(

0 iε e
itΩ(λ)

iε e
−itΩ(λ)

0

)

(

1 0

−iε e
2tg(λ)

1

)

(

1 −iε e
−2tg(λ)

0 1

)

(

1 −iε e
−2tg(λ)

0 1

)

Figure 16. Jumps of the model
function Q(λ) near λ = −M .

and with the change of variables

ζ(λ) =

[
6tei

π
2

∫ λ

−M

((
µ2 −M2

) (
µ2 −m2

)) 1
2 dµ

] 2
3

∼
(
4t
√
2M(M2 −m2)

) 2
3

(λ+M), |λ+M | < r,

the required local parametrix is given by

Q(λ) = Bℓ2(λ)Ā
RH
(
ζ(λ)

)
e

2
3 ζ

3
2 (λ)σ3e−iπ4 ǫσ3 , |λ+M | < r, (3.51)

where

Bℓ2(λ) = N(λ)ei
π
4 ǫσ3ei

π
2 (1−γ)σ3

(
1 −1
−i −i

)
e−iπ2 (1−γ)σ3 δ̄(λ)−σ3

(
ζ(λ)

λ+m

λ+M

)− 1
4σ3

,

and δ̄(λ) =
(
λ+M
λ+m

) 1
4 → 1 as λ→ ∞. Since Bℓ2(λ) is analytic at λ = −M , the model function Q(λ) has the

jumps shown in Figure 16 and with (3.50),

Q(λ) = N(λ)ei
π
4 σ3

[
I +

1

48ζ
3
2

(
1 6ie−iπγ

6ieiπγ −1

)
+O

(
ζ−3

)]
e−iπ4 ǫσ3

=

[
I +N(λ)

{
1

48ζ
3
2

(
1 6ǫ e2πitV

−6ǫ e−2πitV −1

)
+O

(
ζ−3

)} (
N(λ)

)−1
]
N(λ).

This implies for t→ +∞, |s1| ↑ 1 such that κ ∈ [δ, 23
√
2− δ], δ ∈ (0, 13

√
2),

Q(λ) =
(
I +O

(
t−1
))
N(λ) (3.52)

uniformly for 0 < r1 ≤ |λ+M | ≤ r2 <
1
2 (M −m).

3.9. Final transformation - ratio problem. In this final step, we use the explicit model functions H(λ)
in (3.31), U(λ) in (3.37), V (λ) in (3.43), P (λ) in (3.47), Q(λ) in (3.51) and N(λ) in (3.26). We transform
the previous RHP 3.7 for L(λ) by setting

R(λ) = L(λ)





(
H(λ)

)−1
, |λ| < r(

U(λ)
)−1

, |λ−m| < r̂(
V (λ)

)−1
, |λ+m| < r̂(

P (λ)
)−1

, |λ−M | < r̄(
Q(λ)

)−1
, |λ+M | < r̄(

N(λ)
)−1

, |λ| > r, |λ∓m| > r̂, |λ∓M | > r̄

(3.53)

where 0 < r < m
2 , 0 < r̂ < min{m

2 ,
1
2 (M − m)} and 0 < r̄ < 1

2 (M − m) remain fixed. Definition (3.53)
implies that the RHP for L(λ) shown in Figure 7 is transformed to the RHP for R(λ) posed on the contour
ΣR shown in Figure 17.
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γ1

γ6

γ3

γ4

γ
+

2 γ
+

1

γ
−

2
γ
−

1

Cr2C`2 C0

C`1
Cr1

eγ5

eγ2

bγ2

bγ5

Figure 17. The jump contour ΣR of the ratio function R(λ) defined in (3.53).

Riemann-Hilbert Problem 3.15. The ratio function R(λ) = R(λ; t, |s1|) has the following properties.

• R(λ) is analytic for λ ∈ C\ΣR where ΣR = [−M,−m] ∪ [m,M ] ∪ γ±1 ∪ γ±2 ∪ C0 ∪ Cr1 ∪ Cr2 ∪ Cℓ1 ∪
Cℓ2 ∪ ΣS∞

• For the oriented contour ΣR shown in Figure 17, the jumps read as

R+(λ) = R−(λ)GR(λ; t, |s1|), λ ∈ ΣR

and we state GR(λ; t, |s1|) explicitly after the next condition.
• As λ→ ∞,

R(λ) = I +O
(
λ−1

)
.

Returning now to the jump matrix GR, we have, first, inside the five circles Cj ,

R+(λ) = R−(λ)GR(λ; t, |s1|), GR(λ)Ξ−(λ) = Ξ−(λ)C(λ)

where

Ξ(λ) = H(λ), |λ| < r; Ξ(λ) =

{
U(λ), |λ−m| < r̂

V (λ), |λ+m| < r̂
; Ξ(λ) =

{
P (λ), |λ−M | < r̄

Q(λ), |λ+M | < r̄

and (inside the far most left circle Cℓ2),

C(λ) =





(
1
(
iǫ− s1

)
e−2tg(λ)

0 1

)
, λ ∈ (γ̂2 ∪ γ4) ∩D(−M, r̄)

(
1 0(

s3 + iǫ
)
e2tg(λ) 1

)
, λ ∈ γ3 ∩D(−M, r̄)

(
−iǫ s1(1 + e−κt) −iǫ eitΩ(λ)e−t(κ−Π(λ))

−iǫ e−itΩ(λ)e−t(κ+Π(λ)) iǫ s3

)
, λ ∈ (−M,−M + r̄)
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followed by (inside the left circle Cℓ1),

C(λ) =





(
1
(
s1 + s1(1− s1s3)− iǫ

)
eitΩ(λ)

0 1

)
, λ ∈ γ+2 ∩D(−m, r̂)

(
1 0

−
(
s3 + iǫ)e−itΩ(λ) 1

)
, λ ∈ γ−2 ∩D(−m, r̂)

(
−iǫ s1(1 + e−κt) (s1 + s1(1− s1s3)− iǫ)eitΩ(λ)e−t(κ−Π(λ))

−iǫ e−itΩ(λ)e−t(κ+Π(λ)) iǫ s3 + e−2tκ

)
, λ ∈ (−m− r̂,−m)

as well as for the corresponding circles on the right,

C(λ) =





(
1 −

(
s3 + iǫ

)
eitΩ(λ)

0 1

)
, λ ∈ γ+1 ∩D(m, r̂)

(
1 0(

s1 + s1(1− s1s3)− iǫ
)
e−itΩ(λ) 1

)
, λ ∈ γ−1 ∩D(m, r̂)

(
iǫ s3 −iǫ e−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) −iǫ s1(1 + e−κt) + e−2tκ

)
, λ ∈ (m,m+ r̂)

and

C(λ) =





(
1 0(

s1 − iǫ
)
e2tg(λ) 1

)
, λ ∈ (γ1 ∪ γ̂5) ∩D(M, r̄)

(
1 −

(
s3 + iǫ

)
e−2tg(λ)

0 1

)
, λ ∈ γ6 ∩D(M, r̄)

(
iǫ s3 −iǫ e−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) −iǫ s1(1 + e−κt)

)
, λ ∈ (M − r̄,M).

Inside the remaining circle centered at the origin,

C(λ) =





(
1 (s1 + s2)e

−κteitΩ(λ)

0 1

)
, λ ∈ γ̃2 ∩D(0, r)

(
1 0

−(s1 + s2)e
−κte−itΩ(λ) 1

)
, λ ∈ γ̃5 ∩D(0, r)

(
1 −(s3 + iǫ)eitΩ(λ)

0 1

)
, λ ∈ γ+1 ∩D(0, r)

(
1 (s1 + s1e

−κt − iǫ)eitΩ(λ)

0 1

)
, λ ∈ γ+2 ∩D(0, r)

(
1 0

−(s3 + iǫ)e−itΩ(λ) 1

)
, λ ∈ γ−2 ∩D(0, r)

(
1 0

(s1 + s1e
−κt − iǫ)e−itΩ(λ) 1

)
, λ ∈ γ−1 ∩D(0, r).

Recalling our previous expansions for s1 = s̄3 in (3.2),(3.3), we see that for λ ∈ ΣR inside the circles with
radii r, r̂ and r̄, we have

C(λ) = I +O
(
e−κt

)
, t→ +∞, |s1| ↑ 1 : κ ∈

[
δ,
2

3

√
2− δ

]
,



TRANSITION ASYMPTOTICS FOR THE PAINLEVÉ II TRANSCENDENT 32

which is uniform with respect to the chosen radii. But since Ξ−(λ) is bounded on the same contours, we
obtain the estimation

‖GR(· ; t, |s1|)− I‖L2∩L∞(ΣR∩Dj) ≤ d1e
−κt, d1 > 0 (3.54)

where Dj denotes any of the five open disks centered at λ = 0 or λ = ±m,±M . Secondly we estimate the
jumps on the remaining finite branches of ΣR: for the horizontal line segments, first for λ ∈ (−M+r̄,−m−r̂),
followed then by λ ∈ (m+ r̂,M − r̄),

R+(λ) = R−(λ)N−(λ)

(
−iǫ s1(1 + e−κt) −iǫ eitΩ(λ)e−t(κ−Π(λ))

−iǫ e−itΩ(λ)e−t(κ+Π(λ)) iǫ s3

)(
N−(λ)

)−1
,

R+(λ) = R−(λ)N−(λ)

(
iǫ s3 −iǫ e−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) −iǫ s1(1 + e−κt)

)(
N−(λ)

)−1
.

Notice that for λ ∈ (m+ r̂,M − r̄),

κ −Π(λ) = 8

∫ λ

m

√
(M2 − µ2) (µ2 −m2) dµ ≥ 8

√
2m(M +m)

∫ λ

m

√
(M − µ)(µ−m) dµ

≥ c
√
k(1− k) r̂

3
2 , c > 0 universal,

with a similar estimate also holding for λ ∈ (−M + r̄,−m − r̂). As the outer parametrix N−(λ) remains
bounded on the line segments for fixed radii, we have with universal dj > 0 (using again (3.2),(3.3)),

‖GR(· ; t, |s1|)− I‖L2∩L∞((−M+r̄,−m−r̂)∪(m+r̂,M−r̄)) ≤ d2e
−d3tmin{κ,

√
k(1−k)r̂

3
2 }. (3.55)

Remark 3.16. Although we have chosen fixed radii in (3.53) we shall always indicate the dependency of
the estimations of GR(·; t, |s1|) − I on the latter. This will be useful later on when we partially drop the

constraint on κ ∈ [δ, 23
√
2− δ].

Next, on the lens boundaries, for j = 1, 2,

R+(λ) = R−(λ)N(λ)SUj
(λ)
(
N(λ)

)−1
, λ ∈ γ+j ∩ {|λ∓m| > r̂},

R+(λ) = R−(λ)N(λ)SLj
(λ)
(
N(λ)

)−1
, λ ∈ γ−j ∩ {|λ∓m| > r̂},

and therefore, with fixed radii which ensures the boundedness of N(λ),

‖GR(· ; t, |s1|)− I‖L2∩L∞(γ±

j ∩{|λ∓m|>r̂}) ≤ d4e
−d5t

√
k(1−k) r̂

3
2 . (3.56)

The pieces of ΣR now left are all infinite branches and circle boundaries, more precisely

R+(λ) = R−(λ)Q(λ)
(
N(λ)

)−1
, λ ∈ Cℓ2 ; R+(λ) = R−(λ)V (λ)

(
N(λ)

)−1
, λ ∈ Cℓ1

R+(λ) = R−(λ)U(λ)
(
N(λ)

)−1
, λ ∈ Cr1 ; R+(λ) = R−(λ)P (λ)

(
N(λ)

)−1
, λ ∈ Cr2

and

R+(λ) = R−(λ)H(λ)
(
N(λ)

)−1
, λ ∈ C0.

We conclude with (3.39),(3.44),(3.48),(3.52) and (3.32), (fixed radii so that N(λ) is bounded)

‖GR(· ; t, |s1|)− I‖L2∩L∞(∪Cj) ≤
d6
t

(
k(1− k)

)− 1
2 max

{
r̂−

3
2 ,
√
k r̄−

3
2

}
(3.57)

Also, for the infinite branches,

R+(λ) = R−(λ)N(λ)e−tg(λ)σ3GT (λ)e
tg(λ)σ3

(
N(λ))−1,

where GT (λ) depends only on the Stokes multipliers and GT (λ) are piecewise constant triangular matrices.
Due to this triangularity and the sign chart of ℜ

(
g(λ)

)
, compare Figure 7, we have that

‖GR(· ; t, |s1|)− I‖L2∩L∞(infinite) ≤ d7e
−d8tmin{

√
1−k r̄

3
2 ,

√
k r}, dj > 0. (3.58)

All together, the RHP for R(λ) can be solved iteratively as t→ +∞, |s1| ↑ 1 provided κ ∈ [δ, 23
√
2− δ].
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3.10. Iterative solution. We collect estimations (3.54)-(3.58), so that

‖GR(· ; t, |s1|)− I‖L2∩L∞(ΣR) ≤
d

t
, t→ +∞, |s1| ↑ 1 : κ ∈

[
δ,
2

3

√
2− δ

]
, 0 < δ <

1

3

√
2. (3.59)

Here we used that for the values of κ ∈ [δ, 23
√
2− δ] we only work with fixed radii in (3.53). Since the RHP

at hand is equivalent to the singular integral equation

R−(λ) = I +
1

2πi

∫

ΣR

R−(w)
(
GR(w)− I

) dw

w − λ
, λ ∈ ΣR,

estimation (3.59) guarantees (cf. [13]) the unique existence of an asymptotic solution of the RHP in L2(ΣR),
this solution satisfies moreover

‖R−(· ; t, |s1|)− I‖L2(ΣR) ≤
d

t
, t→ +∞, |s1| ↑ 1 : κ ∈

[
δ,
2

3

√
2− δ

]
, 0 < δ <

1

3

√
2. (3.60)

3.11. Transition asymptotics. We now extract the asymptotics through (1.16), i.e. we apply

u(x|s) = 2 lim
λ→∞

[
λ
(
Y (λ;x, s)

)
12

]

and for this have to trace back the sequence of transformations

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ T (λ) 7→ S(λ) 7→ L(λ) 7→ R(λ).

First, we get that

u(x|s) = 2 lim
λ→∞

[
λ
(
Y (λ)

)
12

]
= 2

√
−x lim

z→∞

[
zX(z)

]
12

= 2
√
−x lim

z→∞

[
zT (z)

]
12

= 2
√
−x lim

z→∞

[
zetℓσ3S(z)e−t(g(z)−ϑ(z))σ3

]
12

= 2
√
−x lim

z→∞

[
zetℓσ3L(z)e−t(g(z)−ϑ(z))σ3

]
12

= 2
√
−x lim

z→∞

[
zetℓσ3N(z)R(z)e−t(g(z)−ϑ(z))σ3

]
12
.

But since

g(z)− ϑ(z) = ℓ+
i

8z

(
1− k2

1 + k2

)2

+O
(
z−3

)
, z → ∞,

we have

e−t(g(z)−ϑ(z))σ3 = e−tℓσ3

(
I − it

8z

(
1− k2

1 + k2

)2

σ3 +O
(
z−2

)
)
.

Also, as z → ∞,

R(z) = I +
1

2πi

∫

ΣR

R−(w)
(
GR(w)− I

) dw

w − z
= I +

i

2πz

∫

ΣR

R−(w)
(
GR(w)− I

)
dw +O

(
z−2

)

and

N(z) = I +
N1

z
+O

(
z−2

)
, z → ∞

with (compare Proposition 3.11),

(N1)12 = − θ(0)

θ(tV )

θ(u(∞)− tV − d)

θ(u(∞)− d)

M −m

2i
ei

π
2 ǫ = −θ3(0|τ)

θ2(0|τ)
θ2(tV |τ)
θ3(tV |τ)e

iπtV M −m

2i
ei

π
2 ǫ

where we used (3.24) and (3.25), i.e.

u(∞)− d =
τ

2
,

and the well known transformation identities between Jacobi theta functions, compare Appendix B. So far,
we have thus the exact identity,

u(x) =
√
−x e2tℓ

[
− ǫ(M −m)

θ3(0|τ)
θ2(0|τ)

θ2(tV |τ)
θ3(tV |τ)e

iπtV + E(κ)
]
, (3.61)
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with

E(κ) = i

π

∫

ΣR

(
R−(w)

(
GR(w)− I

))
12

dw = O
(
t−1
)
, t→ +∞, |s1| ↑ 1 : κ ∈

[
δ,
2

3

√
2− δ

]

In order to further simplify expansion (3.61), we note that

Proposition 3.17.

e2t(ℓ+iπ2 V ) = 1.

Proof. Let us treat

f(M) ≡ ℓ+ i
π

2
V = −ϑ(M) + 4i

∫ ∞

M

[√
(µ2 −M2) (µ2 −m2)− µ2 +

1

4

]
dµ

− 2i

∫ m

−m

√
(M2 − µ2) (m2 − µ2) dµ, m = m(M) =

√
1

2
−M2

as a function of one variable M ∈ [ 12 ,
1√
2
]. It is not hard to verify that

d

dM
f(M) = 2iM(m2 −M2)

[
2

∫ ∞

M

dµ√
(µ2 −M2)(µ2 −m2)

−
∫ m

−m

dµ√
(M2 − µ2)(m2 − µ2)

]
.

But from the identity u(∞) = τ
4 , compare (3.24), we see that the last difference of integrals vanishes, hence

f(M) is in fact M independent. Letting M ↓ 1
2 , we have

f(M) =
i

3
+ o(1)− i

3
= o(1), M ↓ 1

2

and thus the stated identity follows. �

Summarizing our previous simplifications and noting that ℓ ∈ iR, we have

u(x|s) = −ǫ
√
−x (M −m)

θ3(0|τ)
θ2(0|τ)

θ2(tV |τ)
θ3(tV |τ) + J1(x, s), t = (−x) 3

2 (3.62)

and

Proposition 3.18. For any given δ ∈ (0, 13
√
2) there exist positive constants t0 = t0(δ), v0 = v0(δ) and

c = c(δ) such that

∣∣J1(x, s)
∣∣ ≤ ct−

2
3 , ∀ t ≥ t0(δ), v ≥ v0(δ), tδ ≤ v ≤ t

(
2

3

√
2− δ

)
.

The leading term in (3.62), although currently expressed in terms of ratios of Jacobi theta functions, can
be rewritten with the help of the Jacobi elliptic function (1.24) using Appendix B,

θj(z|τ) ≡ θj(z, q), j = 2, 3; q = eiπτ = exp

[
−2π

K

K ′

]
,

and the identity (see (3.13))

M −m =
1√
2

1− k√
1 + k2

.

Hence,

u(x|s) = −ǫ
√

−x
2

1− k√
1 + k2

cd

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+ J1(x, s) (3.63)

and the error term J1(x, s) is estimated in Proposition 3.18. We have already control over the error in the
domain {(

t, v
)
: t ≥ t0, v ≥ v0 : tδ ≤ v ≤ t

(
2

3

√
2− δ

)}
,

but in order to complete the proof of Theorem 1.10 this domain will be extended in the following sections.
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4. Extension at the lower end for regular transition - κ ∈
[
t−η, 23

√
2− δ

]
, η ∈ (0, 1)

Assume that both t = (−x) 3
2 ≥ t0 and v = − ln(1− |s1|2) ≥ v0 are sufficiently large such that

0 < t−η ≤ κ ≤ 2

3

√
2− δ, with 0 < η < 1 fixed. (4.1)

From (3.5) and (3.13), we see that

m =
1

2
− ĉ

t
η
2

+O
(
t−η
)
, M =

1

2
+

ĉ

t
η
2

+O
(
t−η
)

as t ≥ t0 for some ĉ > 0. Hence, in the definition of the ratio problem (3.53) for R(λ), we cannot keep the
radii r̂ and r̄ fixed since M −m ↓ 0. This issue can be resolved by scaling both radii with t, in fact we shall
choose in (3.53)

r̂ = c1t
− η

2 , r̄ = c2t
− η

2 , 0 < c1, c2 : c1 + c2 < ĉ. (4.2)

In order to estimate the jumps in the ratio problem with the latter choice in place, we need to derive
estimations for the outer parametrix N(λ) and N−(λ) on the jump contours. First with Corollary 3.3,
expansion (3.9),

θ3
(
z|τ(κ)

)
= 1 +O(κ), κ ↓ 0

uniformly for z chosen from compact subsets of C. Next, with the contracting choice of radii,

ω(z) = O(1), ω−1(z) = O(1), 0 < t−η ≤ κ ≤ 2

3

√
2− δ

uniformly for z ∈ Cℓ2 ∪ Cℓ1 ∪ Cr1 ∪ Cr2 . The same estimations for ω±1(z) are also valid on the infinite
branches ΣS∞

as well as on all remaining finite branches outside the five disks Dj centered at λ = 0 and
λ = ±m,±M . Together

N−(λ) = O(1) =
(
N−(λ)

)−1
, κ ↓ 0

uniformly on the circle boundaries and all other finite or infinite branches outside
⋃
Dj . We can now simply

go back to (3.54)-(3.57) and substitute (4.1),(4.2) and (3.5) into the estimations. We obtain immediately

‖GR(·; t, |s1|)− I‖L2∩L∞(ΣR) ≤
d9
t1−η

, ∀ t ≥ t0, v ≥ v0 : 0 < t−η ≤ κ ≤ 2

3

√
2− δ, η ∈ (0, 1), (4.3)

and thus, repeating the steps in the previous section (with adjusted error terms),

u(x|s) = −ǫ
√
−x
2

1− k√
1 + k2

cd

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+O

(
(−x)−1+ 3

2η
)
, (4.4)

uniformly as x→ −∞, |s1| ↑ 1 such that 0 < t−η ≤ κ ≤ 2
3

√
2− δ for any 0 < η < 2

3 . In estimation (4.4), we
obtained control over the error term through the a-priori knowledge

‖R−(· ; t, |s1|)− I‖L2∩L∞(ΣR) ≤
d10
t1−η

(4.5)

and a direct estimation of √
−x E(κ) = O

(
(−x)−1+ 3

2η
)
.

We can get a better error estimation by explicitly computing the first terms in

E(κ) = i

π

2∑

k=1

(∮

Cℓk

(
GR(w)− I

)
12

dw+

∮

Crk

(
GR(w)− I

)
12

dw

)

+
i

π

∫

ΣR

((
GR(w)− I

)(
R−(w)− I

))
12

dw.

Two of the four contour integrals along the circles Cℓk ∪ Crk have been explicitly computed in [8], Section
4.2, namely the integrals along Cℓ1 and Cr1 . It was shown in loc. cit that these two contour integrals are in
fact O

(
t−1
)
even with contracting radii. The same result also applies to the contour integrals over Cℓ2 and

Cr2 and without reproducing the lengthy computations of [8], we simply conclude

E(κ) = i

π

∫

ΣR

((
GR(w)− I

)(
R−(w)− I

))
12

dw +O
(
t−1
)
. (4.6)
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Remark 4.1. Even without referring to the explicit computations in [8] we see directly from, say (3.36) and
(3.38), that the evaluation of the contour integral

∮

Cr1

(
GR(w)− I

)
dw

by the residue theorem leads to an asymptotic series in reciprocal nonnegative integer powers of t.

For further improvement, we use that we have slightly better L2-estimations than (4.3),

‖GR(·; t, |s1|)− I‖L2(ΣR) ≤
d11

t1−
3
4η

which follows from the scaling invariance of the differential dλ
λ

on any circle boundary in the complex plane.
Hence, by general small norm theory of [13],

‖R−(·; t, |s1|)− I‖L2(ΣR) ≤
d12

t1−
3
4η
.

Back to (4.6), for any η ∈ (0, 1),

E(κ) = O
(
t−2+ 3

2η
)
+O

(
t−1
)

and we have therefore derived (3.63) with an error term J1(x, s) such that

Proposition 4.2. For any given δ ∈ (0, 23
√
2), η ∈ (0, 1) there exist positive constants t0 = t0(δ, η), v0 =

v0(δ, η) and c = c(δ, η) such that

∣∣J1(x, s)
∣∣ ≤ ct−min{ 2

3 ,
5
3− 3

2η}, ∀ t ≥ t0, v ≥ v0, t1−η ≤ v ≤ t

(
2

3

√
2− δ

)
.

Notice that for t ≥ t0 such that 0 < κ ≤ t−
4
5 we obtain from (3.5) and (3.9),

−ǫ
√
−x
2

1− k√
1 + k2

cd

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
= −ǫ(−x)− 1

4

√
−2β cos(πtV (κ)) +O

(
(−x)− 7

10

)

with

β =
1

2π
ln
(
1− |s1|2

)
.

Also from (3.9), as 0 < κ ≤ t−
4
5 ,

πtV (κ) = −2

3
(−x) 3

2 − β ln
(
8(−x) 3

2

)
+ β ln

∣∣ ln(1− |s1|2)
∣∣− β(1 + ln 2π) +O

(
(−x)− 9

10

)
. (4.7)

But from Stirling’s approximation,

arg Γ(iβ) = arg Γ

(
− i

2π
κt

)
= −β(1 + ln 2π) + β ln

∣∣ ln(1− |s1|2)
∣∣+ π

4
+O

(
(κt)−1

)
, (4.8)

since κt = O
(
t
1
5

)
→ +∞. Using in addition (3.2),

arg(s1) =
ǫπ

2
+O

(
t−∞) , (4.9)

expansion (4.9),(4.8) combined in (4.7) gives therefore

πtV (κ) = −
[
2

3
(−x) 3

2 − β ln
(
8(−x) 3

2

)
+ φ

]
− π

2
(1 + ǫ) +O

(
(−x)− 3

10

)
, (4.10)

where (compare (1.18))

φ = −π
4
− arg Γ(iβ)− arg s1.

Substituting (4.10) back into the expansion of the Jacobi elliptic function, we use the addition theorem for
cos z and the identity

−ǫ cos
(
z +

π

2
(1 + ǫ)

)
= cos z, z ∈ C,
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so that finally

−ǫ
√
−x
2

1− k√
1 + k2

cd

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
=(−x)− 1

4

√
−2β cos

(
2

3
(−x) 3

2 + β ln
(
8(−x) 3

2

)
+ φ

)

+O
(
(−x)− 2

5

)
, x→ −∞, (4.11)

uniformly for 0 < κ ≤ t−
4
5 . This short computation shows that the Jacobi elliptic function leading term in

(3.63) reproduces the known oscillatory leading behavior of (1.18) for the values of (t, v) such that t ≥ t0
and 0 < κ ≤ t−

4
5 . However in the same region of the double scaling diagram we do not yet have control over

the error J1(x, s), compare Proposition 4.2. This will be achieved below using different nonlinear steepest
descent techniques applied to the RHP 1.4.

5. Further extension at the lower end for regular transition - κ ∈
(
0, t−η

]
, η ∈ ( 34 , 1)

Suppose throughout that t = (−x) 3
2 ≥ t0 is sufficiently large such that

t ≥ vk+1 > 0, t ≥ t0, k ∈ Z≥0. (5.1)

With this constraint in place we employ a different approach to the nonlinear steepest descent analysis of
RHP 1.4. In fact we now choose steps which are close in certain points to the ones used in the derivation of
(1.18) for fixed |s1| < 1, see [20], chapter 9, §4.

Start from the Riemann-Hilbert problem for Z(λ) with its jump contour shown in Figure 5 or Figure 18
below and where we fix

λ∗ =
1

2
.

The jump matrix on the full segment [−λ∗, λ∗], compare (2.1), is factorized

S−1
5 S−1

4 S−1
3 = σ2S3S4S5σ2 =

(
1− s1s3 s1

s1 1− s1s3

)
=

(
1 0

s1e
κt 1

)
e−κtσ3

(
1 s1e

κt

0 1

)
≡ SLSDSU

and we observe that with (5.1),

0 < eκt ≤ exp
(
t

1
k+1

)
, t ≥ t0, t ≥ vk+1 > 0. (5.2)

γ1

γ6

γ2

γ3

γ4

γ5 γ̂5

γ̂2

ΩL

ΩU

<
(

#(λ)
)

> 0

<
(

#(λ)
)

> 0

<
(

#(λ)
)

< 0

−λ∗ λ∗

<
(

#(λ)
)

< 0

<
(

#(λ)
)

< 0

<
(

#(λ)
)

> 0

Figure 18. Opening of lens subject to the scale (5.1), the jump contours for Φ(λ) are the
solid black lines. In addition, along the dotted lines ℜ

(
ϑ(λ)

)
= 0.
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Next define (compare Figure 18),

Φ(λ) =





Z(λ)S−1
U , λ ∈ ΩU

Z(λ)SL, λ ∈ ΩL

Z(λ), otherwise

and obtain the following RHP

• Φ(λ) is analytic for λ ∈ C\(γ̂2 ∪ γ̂5 ∪
⋃6

1 γk)
• The boundary values are related via the following jump conditions

Φ+(λ) = Φ−(λ)e
−tϑ(λ)σ3Ske

tϑ(λ)σ3 , λ ∈ γk, k = 1, 3, 4, 6

Φ+(λ) = Φ−(λ)e
−tϑ(λ)σ3S2S

−1
U etϑ(λ)σ3 , λ ∈ γ2

Φ+(λ) = Φ−(λ)e
−tϑ(λ)σ3SUe

tϑ(λ)σ3 , λ ∈ γ̂2

Φ+(λ) = Φ−(λ)e
−tϑ(λ)σ3S5SLe

tϑ(λ)σ3 , λ ∈ γ5

Φ+(λ) = Φ−(λ)e
−tϑ(λ)σ3S−1

L etϑ(λ)σ3 , λ ∈ γ̂5

Φ+(λ) = Φ−(λ)SD, λ ∈ [−λ∗, λ∗]
• The function Φ(λ) is normalized,

Φ(λ) = I +O
(
λ−1

)
, λ→ ∞.

Notice that the jumps on the infinite branches γk for k = 1, 3, 4, 6 are exponentially close to the unit matrix
in the double scaling limit (5.1) as long as we stay away from λ = ±λ∗. On the remaining infinite branches
we have for λ ∈ ∂D(λ∗, r) ∪ ∂D(−λ∗, r), r > 0 with our choice λ∗ = 1

2 ,

GΦ(λ) = I +O
(
eκte−ĉtr2

)

with a universal constant ĉ > 0. Thus recalling (5.2), we could choose a contracting radius r = r(t), compare
Section 5.3 below, and obtain again sufficiently fast decay for the jumps on the latter infinite branches. We
will work out all necessary details after the following two subsections.

5.1. The outer parametrix. The required outer parametrix is given by

ΨD(λ) =

(
λ+ λ∗

λ− λ∗

)νσ3

, λ ∈ C\[−λ∗, λ∗]; ν =
κt

2πi
(5.3)

and appeared in [20], chapter 9, §4. Its relevant analytical properties are summarized below

• ΨD(λ) is analytic for λ ∈ C\[−λ∗, λ∗]
• The boundary values are related via the equation

ΨD
+(λ) = ΨD

−(λ)e−κtσ3 , λ ∈ (−λ∗, λ∗)
• ΨD(λ) is square integrable on the closed interval [−λ∗, λ∗]
• As λ→ ∞, we have

ΨD(λ) = I +
νσ3
λ

+O
(
λ−2

)
.

5.2. The edge point parametrices. Near the end points λ = ±λ∗ the required parametrices are con-
structed in terms of parabolic cylinder functions, see again [20], chapter 9, §4. We briefly summarize the
results:

Let Dν(ζ) denote the unique solution to Weber’s equation

w′′ +

(
ν +

1

2
− ζ2

4

)
w = 0, w = w(ζ)

subject to the boundary condition

Dν(ζ) = ζνe−
1
4 ζ

2

(
1− ν(ν − 1)

2ζ2
+O

(
ζ−4

))
, −3π

4
< arg ζ <

3π

4
.
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Observe that w = Dν(ζ) is entire in ζ ∈ C. We define for ζ ∈ C the Wronskian type matrix

Z0(ζ) = 2−
1
2σ3

(
D−ν−1(iζ) Dν(ζ)
iD′

−ν−1(iζ) D′
ν(ζ)

)(
ei

π
2 (ν+1) 0
0 1

)

and assemble

ZRH(ζ) = Z0(ζ)





I, arg ζ ∈ (−π
4 , 0)

H0, arg ζ ∈ (0, π2 )

H0H1, arg ζ ∈ (π2 , π)

H0H1H2, arg ζ ∈ (π, 3π2 )

H0H1H2H3, arg ζ ∈ ( 3π2 ,
7π
4 )

where

H0 =

(
1 0
h0 1

)
, H1 =

(
1 h1
0 1

)
, Hn+2 = eiπ(ν+

1
2 )σ3Hne

−iπ(ν+ 1
2 )σ3 , n = 0, 1, 2

and

h0 = − i
√
2π

Γ(1 + ν)
, h1 =

√
2π

Γ(−ν)e
iπν , 1 + h0h1 = e2πiν .

Using standard properties of parabolic cylinder functions, cf. [30] this setup leads to the following RHP for
the bare parametrix ZRH(ζ)

• ZRH(ζ) is analytic for ζ ∈ C\{arg ζ = 0, π2 , π,
3π
2 ,

7π
4 }

• The jumps along the contours shown in Figure 19 are as follows

ZRH
+ (ζ) = ZRH

− (ζ)Hk, arg ζ =
πk

2
, k = 0, 1, 2, 3

ZRH
+ (ζ) = ZRH

− (ζ)e2πiνσ3 , arg ζ =
7π

4

• As ζ → ∞, valid in a full neighborhood of infinity,

ZRH(ζ) ∼ 1√
2
ζ−

1
2σ3

(
1 1
1 −1

)[
I +

∞∑

s=1

(
(ν)2s (−)s

(
(−ν)2s − (−ν − 1)2s

)

(ν + 1)2s − (ν)2s (−)s(−ν − 1)2s

)
ζ−2s

s! 2s

]

× e(
ζ2

4 −(ν+ 1
2 ) ln ζ)σ3

where we used the full asymptotic series

Dν(ζ) ∼ e−
ζ2

4 ζν
∞∑

s=0

(−1)s
(−ν)2s
s! 2s

ζ−2s, ζ → ∞, −3π

4
< arg ζ <

3π

4
,

involving Pochhammer’s symbol (a)s = a(a+ 1)(a+ 2) · . . . · (a+ s− 1), combined with the identity

D′
ν(ζ) =

ζ

2
Dν(ζ)−Dν+1(ζ), ζ, ν ∈ C.

Next, we employ the locally conformal change of variables

ζ(λ) = 2
√
t
(
ϑ(λ∗)− ϑ(λ)

) 1
2 = 2

√
2t ei

3π
4 (λ− λ∗)

(
1 +

2

3

(
λ− λ∗

)) 1
2

, |λ− λ∗| < r,

and define the edge point parametrix near λ = λ∗ as

Ψr(λ) = B(λ)ZRH
(
ζ(λ)

)
e−

1
4 ζ

2(λ)σ3etϑ(λ
∗)σ3

(
−h1
s3

) 1
2σ3

where

B(λ) =

(
ζ(λ)

λ+ λ∗

λ− λ∗

)νσ3
(
−h1
s3

)− 1
2σ3

e−tϑ(λ∗)σ32−
1
2σ3

(
ζ(λ) 1
1 0

)
, |λ− λ∗| < r

is analytic at λ = λ∗. After a local contour deformation we check that the jumps of Ψr(λ) near λ = λ∗ are
identical to the ones in the initial Φ-RHP, i.e. (compare Figure 20)
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e
2πiνσ3

H0H2

H1

H3

Figure 19. Jump
contour for the bare
parametrix ZRH(ζ).

γ1

γ6

γ2

γ̂5

λ∗

Figure 20. Jump contour of the
model function Ψr(λ) near λ = λ∗.

Ψr
+(λ) = Ψr

−(λ)e
−tϑ(λ)σ3S1e

tϑ(λ)σ3 , λ ∈ γ1r; Ψr
+(λ) = Ψr

−(λ)e
−tϑ(λ)σ3S2S

−1
U etϑ(λ)σ3 , λ ∈ γ2r

Ψr
+(λ) = Ψr

−(λ)e
−tϑ(λ)σ3S6e

tϑ(λ)σ3 , λ ∈ γ6r; Ψr
+(λ) = Ψr

−(λ)e
−tϑ(λ)σ3S−1

L etϑ(λ)σ3 , λ ∈ γ̂5r

Ψr
+(λ) = Ψr

−(λ)SD, λ ∈ (λ∗ − r, λ∗),

where γjr = γj ∩D(λ∗, r). Moreover, with the previous asymptotic expansion of ZRH(ζ),

Ψr(λ) ∼
(
β(λ)

)σ3

(
−h1
s3

)− 1
2σ3

ζ
1
2σ3

(
1 0
1 1

)[
I +

∞∑

s=1

C2s(ν)
ζ−2s

s! 2s

]
ζ−

1
2σ3

(
−h1
s3

) 1
2σ3 (

β(λ)
)−σ3

ΨD(λ)

=

[
I +

σ−
ζ(λ)

(
β(λ)

)−2
(
−h1
s3

) ∞∑

m=0

(ν + 1)2m
ζ(λ)−2m

m! 2m
+ σ+

(
β(λ)

)2
(
− s3
h1

)

×
∞∑

m=1

(−1)m
(
(−ν)2m − (−ν − 1)2m

)ζ(λ)−2m+1

m! 2m
+

∞∑

m=1

(
(ν)2m 0
0 (−1)m(−ν)2m

)
ζ(λ)−2m

m! 2m

]
ΨD(λ),

(5.4)

as t→ +∞ (and thus |ζ| → ∞). Here we used the abbreviations

β(λ) =

(
ζ(λ)

λ+ λ∗

λ− λ∗

)ν

e−tϑ(λ∗); σ+ =
(
0 1
0 0

)
, σ− =

(
0 0
1 0

)

Expansion (5.4) establishes the matching relation between the model functions Ψr(λ) and ΨD(λ) valid as
t→ ∞ for 0 < r1 ≤ |λ− λ∗| ≤ r2 <

1
4 .

Near the other edge point λ = −λ∗ we can use the symmetry of the problem and define the required local
parametrix as

Ψℓ(λ) = σ2Ψ
r(−λ)σ2, |λ+ λ∗| < r (5.5)

which replaces the matchup (5.4) by

Ψℓ(λ) ∼
[
I +

σ+
ζ(−λ)

(
β(−λ)

)−2
(
h1
s3

) ∞∑

m=0

(ν + 1)2m
ζ(−λ)−2m

m! 2m
+ σ−

(
β(−λ)

)2
(
s3
h1

)

×
∞∑

m=1

(−1)m
(
(−ν)2m − (−ν − 1)2m

)ζ(−λ)−2m+1

m! 2m
+

∞∑

m=1

(
(−1)m(−ν)2m 0

0 (ν)2m

)
ζ(−λ)−2m

m! 2m

]
ΨD(λ).

(5.6)

Collecting the model functions ΨD(λ),Ψr(λ) and Ψℓ(λ) we move on to the final transformation.
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5.3. Ratio problem. Assemble

χ(λ) = Φ(λ)





(
Ψr(λ)

)−1
, |λ− λ∗| < r(

Ψℓ(λ)
)−1

, |λ+ λ∗| < r(
ΨD(λ)

)−1
, |λ± λ∗| > r

(5.7)

with 0 < r < 1
4 which we will choose more specifically below. This leads to the RHP formulated on the

contours as shown in Figure 21

γ̃3 γ̃2

γ̃1

C`

Cr

γ̃4

γ̃5

γ̃6 γ̃7

γ̃8

Figure 21. Jump contour for the ratio problem as introduced in (5.7).

• χ(λ) is analytic for λ ∈ C\(Cr ∪ Cℓ ∪ {infinite branches γ̃j})
• The following jumps are valid:

χ+(λ) = χ−(λ)Ψ
D(λ)S̃j

(
ΨD(λ)

)−1
, λ ∈ γ̃j , j = 1, . . . , 8

along the infinite branches γ̃k with piecewise constant matrices S̃j which are given in the Φ-RHP.
There are no jumps inside the circles and along the line segment [−λ∗, λ∗] since we constructed
“exact” local parametrices ΨD(λ),Ψr(λ) and Ψℓ(λ). However on the circle boundaries,

χ+(λ) = χ−(λ)Ψ
r(λ)

(
ΨD(λ)

)−1
, λ ∈ Cr; χ+(λ) = χ−(λ)Ψ

ℓ(λ)
(
ΨD(λ)

)−1
, λ ∈ Cℓ

• As λ→ ∞, we have that
χ(λ) = I +O

(
λ−1

)
.

For the jumps on the infinite branches γ̃j , j = 1, . . . , 8 we obtain immediately

Gχ(λ) = I +O
(
ed1κt−d2tr

2
)

with universal constants d1, d2 > 0. If we choose a (in general) contracting radius r such that

1

4
> r =

1

v
≥ t−

1
k+1 > 0,

then by (5.1) for t ≥ vk+1 > 0, t ≥ t0,

d1κt− d2tr
2 ≤ d1t

1
k+1 − d2t

k−1
k+1 ≤ −d3t

k−1
k+1 , d3 > 0, k ≥ 3;

hence all contributions from the infinite branches are approaching the identity matrix exponentially fast, i.e.

‖Gχ(·; t, |s1|)− I‖L2∩L∞(∪γ̃j) ≤ d4e
−d5t

k−1
k+1

, k ∈ Z≥3 (5.8)

for t ≥ vk+1 > 0, t ≥ t0. For the circle boundaries we use (5.4) and (5.6), for instance for λ ∈ Cr we use

|ζ(λ)| ≥ 4
√
2 t

k−1
2(k+1) as well as

h1 = O
(
(κt)

1
2 e

3
4κt
)
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which follows from Stirling’s approximation. Thus for λ ∈ Cr,

∣∣Gχ(λ; t, |s1|)− I
∣∣ ≤ c

{
(κt)

1
2

r
√
t

(
0 e−

3
4κteϕ(r)

e
3
4κte−ϕ(r) 0

)
+ Ê

(
λ; t, |s1|

)
}

where

ϕ(r) =
κt

π
arg

(
ζ(λ)

λ+ λ∗

λ− λ∗

)
⇒

∣∣∣∣
3

4
κt− ϕ(r)

∣∣∣∣ ≤
κt

π
arctan(r) =

κt

π
r
(
1 +O

(
r3
))

=
1

π
(1 + o(1)) .

Bounds for the error term Ê(λ; t, |s1|) follow from known error-term estimates of the parabolic cylinder
function, see for instance [30], section 12.9: there exists t0 = t0(k) > 0 and constants dj = dj(t0) such that

‖Ê(λ; t, |s1|)‖ ≤ d6e
d7κt−d8

√
tr ≤ d6e

−d9t
k−1

2(k+1)
, ∀ t ≥ vk+1 > 0, t ≥ t0, k ∈ Z≥3.

For the latter estimation to hold for k = 3, we have to adjust the radius r 7→ c
v
with a sufficiently large, but

k, t, |s1| independent, constant c > 0. Notice that with (5.5) completely similar estimations will also hold for
Gχ(λ; t, |s1|) when λ ∈ Cℓ. Thus, summarizing

‖Gχ(· ; t, |s1|)− I‖L2∩L∞(Cr∪Cℓ) ≤ d10t
− k−2

2(k+1) , ∀ t ≥ vk+1 > 0, t ≥ t0, k ∈ Z≥3. (5.9)

The latter estimation combined with (5.8), we obtain from general theory [13] the unique solvability of the
ratio problem for the values of (t, v) satisfying (5.1). Moreover its unique solution satisfies

‖χ−(· ; t, |s1|)− I‖L2(ΣR) ≤ d11t
− k−2

2(k+1) , ∀ t ≥ vk+1 > 0, t ≥ t0, k ∈ Z≥3. (5.10)

5.4. Derivation of leading order asymptotics subject to (5.1). We need to trace back the transfor-
mations

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ Φ(λ) 7→ χ(λ)

in order to obtain with (1.16),

u(x|s) = 2 lim
λ→∞

[
λ
(
Y (λ)

)
12

]
= 2

√
−x lim

z→∞

[
zΦ(z)

]
12

= 2
√
−x lim

z→∞

[
zΨD(z)χ(z)

]
12

= 2
√
−x
[
νσ3 +

i

2π

∫

Σχ

χ−(w)
(
Gχ(w)− I

)
dw

]

12

=
i
√
−x
π

∮

CR∪Cℓ

(
Gχ(w)− I

)
12

dw +O
(
(−x)−

2k−7
2(k+1)

)
, k ∈ Z≥4

where we already neglected all exponentially small contributions from the infinite branches, compare (5.8).
Also the latter error estimation follows from (5.10) and the following computation: observe that by the
residue theorem and (5.4) as well as (5.6),

∮

Cr

(
Gχ(w)− I

)
12
dw ∼

∞∑

m=1

(−1)m
(
(−ν)2m − (−ν − 1)2m

) 1

m! 2m

(
− s3
h1

)∮

Cr

β2(w)ζ(w)−2m+1 dw

= ν

(
− s3
h1

)
(−2πi)e−2tϑ(λ∗)

(
2
√
2t ei

3π
4

)2ν−1

+O
(
t−

3k−2
2(k+1)

)
;

∮

Cℓ

(
Gχ(w)− I

)
12
dw ∼

∞∑

m=0

(ν + 1)2m
1

m!2m

(
h1
s3

)∮

Cℓ

β−2(−w)ζ(−w)−2m−1 dw

=

(
−h1
s3

)
(−2πi)e2tϑ(λ

∗)
(
2
√
2t ei

3π
4

)−2ν−1

+O
(
t−

3k−2
2(k+1)

)
.

Recalling the definition of h1 and applying standard symmetrization techniques, we obtain with k = 4,

u(x|s) = (−x)− 1
4

√
−2β cos

(
2

3
(−x) 3

2 + β ln
(
8(−x) 3

2

)
+ φ

)
+O

(
(−x)− 1

10

)
, (5.11)
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uniformly as x → −∞ subject to the scale (5.1) with k = 4. Estimation (5.11) appears in Corollary 1.11,
expansion (1.28). Moreover, with (4.11), we have now shown that

u(x|s) = −ǫ
√
−x
2

1− k√
1 + k2

cd

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+ J1(x, s),

where

Proposition 5.1. There exists positive constants t0 and c such that
∣∣J1(x, s)

∣∣ ≤ ct−
1
15 , ∀ t ≥ t0, 0 < v ≤ t

1
5

Propositions 5.1 and 4.2 combined together (for η = 4
5 in the latter) form the content of Theorem 1.10,

estimation (1.26). In order to complete the proof of Theorem 1.10 we have to derive the outstanding
estimation (1.27) by extending the region

{(
t, v
)
: t ≥ t0 : 0 < v ≤ t

(
2

3

√
2− δ

)}

at the upper end. This will be achieved in the next section.

6. Extension at the upper end for regular transition - κ ∈
[
2
3

√
2− f1

t
, 23

√
2
)
, f1 > 0

In the analysis of the lower end extension presented in Section 4 we used the crucial fact that for κ ↓ 0,
we have −iτ → +∞, compare (3.9). Thus at the lower end, the oscillations in the Jacobi theta functions
become strictly periodic and their amplitudes vanish exponentially fast. In turn we obtained

N−(λ) = O(1),
(
N−(λ)

)−1
= O(1), κ ↓ 0, λ ∈ ΣR\

⋃
Dj

which lead us to the central estimation (4.3). At the upper end the oscillations in the theta functions still

vanish, however this time not through vanishing amplitudes but increasing periods: as κ ↑ 2
3

√
2 we get with

(3.10),

−iτ =
2π

| lnσ| +O
(
ln | lnσ|
ln2 σ

)
= o(1), σ =

2

3

√
2− κ ↓ 0.

This implies the necessity of using modular transformations for the Jacobi theta functions appearing in the
construction of the outer parametrix (3.26), i.e. we use (cf. [30])

θ3(z|τ) =
√

i

τ
θ3(zτ

′|τ ′)eiπτ ′z2

, θ2(z|τ) =
√

i

τ
θ4(zτ

′|τ ′)eiπτ ′z2

, z ∈ C, τ ′ = −1

τ
.

Going back to (3.26) the transformation identities imply for λ ∈ C\J ,

N(λ) = ei
π
4 ǫσ3

θ(0|τ ′)
θ(τ ′tV |τ ′)e

−2πiτ ′tV u(∞)σ3

(
Ñ

(+)
1 (λ)φ(λ) Ñ

(+)
2 (λ)φ̂(λ)

−Ñ (−)
1 (λ)φ̂(λ) Ñ

(−)
2 (λ)φ(λ)

)
e2πiτ

′tV u(λ)σ3e−iπ4 ǫσ3

where (
Ñ

(±)
1 (z), Ñ

(±)
2 (z)

)
=

(
θ(τ ′(u(z) + tV ± d)|τ ′)
θ(τ ′(u(z)± d)|τ ′) ,

θ(τ ′(−u(z) + tV ± d)|τ ′)
θ(τ ′(−u(z)± d)|τ ′)

)
.

Notice that from (3.10), for λ ∈ CP
1\[−M,M ] chosen from compact subsets,

e±2πiτ ′tV u(λ) ∼ exp

[
∓σt

(
1 +O

(
ln2 | lnσ|
ln2 σ

))
u(λ)

]
, σ ↓ 0 (6.1)

and for the same values of λ we have at the same time

u(λ) = O
(

1

lnσ

)
, u(∞) = O

(
1

lnσ

)
(6.2)

since with (3.23),

c(κ) =
i√

2 | lnσ|

(
1 +

ln | lnσ|
lnσ

+O
(

1

lnσ

))
, σ ↓ 0.
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Along the line segment [−M,M ], by direct computation

u−(λ) = O
(

1

lnσ

)
, σ ↓ 0, λ ∈ (−M,−m− r] ∪ [m+ r,M), 0 < r <

1

2
fixed,

and hence all together

e±2πiτ ′tV u(λ) = O(1), σ ↓ 0, λ ∈ CP
1\D(0, r̂),

for any fixed r̂ : m < r̂ < M , provided we ensure that

σt

lnσ
= o(1), σ ↓ 0. (6.3)

We shall in fact impose a stronger condition on κ than implied by (6.3): suppose subsequently that t = (−x) 3
2

and v = − ln
(
1− |s1|2

)
are sufficiently large such that

2

3

√
2− f1

t
≤ κ <

2

3

√
2 ⇔ 0 < σ ≤ f1

t
, f1 > 0. (6.4)

Subject to this constraint we obtain directly with (3.10),

Ñ
(±)
1 (λ) = 1 +O

(√
σ

| lnσ|

)
, Ñ

(±)
2 (λ) = 1 +O

(√
σ

| lnσ|

)
, (6.5)

uniformly for λ ∈ CP
1\J . Moreover

Proposition 6.1. As x→ −∞, |s1| ↑ 1 subject to (6.4) we have

N(λ) =

(
I +O

(√
σ

| lnσ|

))
e−2πiτ ′tV u(∞)σ3Υ(λ)e2πiτ

′tV u(λ)σ3 =

(
I +O

(
1

ln t

))
Υ(λ) (6.6)

uniformly for λ chosen from ∂D(0, r̂) for any r̂ : m < r̂ < M . Here, Υ(λ) equals

Υ(λ) = ei
π
4 ǫσ3α(λ)σ2e−iπ4 ǫσ3 =

1

2
ei

π
4 ǫσ3

(
α(λ) + α−1(λ) −i(α(λ)− α−1(λ))

i(α(λ)− α−1(λ)) α(λ) + α−1(λ)

)
e−iπ4 ǫσ3 , (6.7)

where

α(λ) =

(
λ− 1√

2

λ+ 1√
2

) 1
4

→ 1, λ→ ∞

is defined and analytic on C\
[
− 1√

2
, 1√

2

]
.

At this point let us get back to the nonlinear steepest descent analysis. We start from the initial RHP
1.4 and use the transformation sequence

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ T (λ) 7→ S(λ)

just like it occurred in Section 2 and parts of Section 3 in the analysis for κ ∈ [δ, 23
√
2− δ]. However, instead

of using the “opening of lens” transformation (3.21) we will not split the jump contours near (−m,m) but
instead introduce a new model problem on the (contracting) line segment (−r̂, r̂) ⊂ (−M,M) with

r̂ = m+
d

t
1
3

, d > 0. (6.8)

In more detail

Riemann-Hilbert Problem 6.2. Find a 2 × 2 matrix-valued piecewise analytic function J(λ) = J(λ;κ)
such that

• J(λ) is analytic for λ ∈ C\(−r̂, r̂)
• The limiting values of J(λ) are related via the jump condition

J+(λ) = J−(λ)

(
e−t(κ−Π(λ)) iǫ

iǫ 0

)
, λ ∈ (−r̂, r̂)

where κ − Π(λ) ∈ C1(−M,M) has been explicitly computed in Proposition 3.4. Also, J±(λ) are
bounded on (−r̂, r̂).
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• As x→ −∞, |s1| ↑ 1 subject to (6.4),

J(λ) =
(
I + o(1)

)
Υ(λ)

uniformly for λ ∈ ∂D(0, r̂) and Υ(λ) has been introduced in (6.7).

We choose a solution to this model problem in the following form,

J(λ) = Bu(λ)e
iπ4 ǫσ3

(
1 1

2πi

∫M

−M
e−t(κ−Π(µ)) dµ

λ−µ

0 1

)


(
0 1

−1 0

)
e−iπ4 ǫσ3 , λ ∈ D(0, r̂) : ℑλ > 0

e−iπ4 ǫσ3 , λ ∈ D(0, r̂) : ℑλ < 0,

(6.9)

where Bu(λ) is locally analytic,

Bu(λ) = Υ(λ)ei
π
4 ǫσ3





(
0 −1

1 0

)
e−iπ4 ǫσ3 , λ ∈ D(0, r̂) : ℑλ > 0

e−iπ4 ǫσ3 , λ ∈ D(0, r̂) : ℑλ < 0.

Let us quickly verify that (6.9) indeed satisfies the properties of RHP 6.2. First, analyticity of the multiplier
Bu(λ) follows from the jump of Υ(λ),

Υ+(λ) = Υ−(λ)e
iπ4 ǫσ3

(
0 1
−1 0

)
e−iπ4 ǫσ3 , λ ∈ (−r̂, r̂) ⊂

(
− 1√

2
,
1√
2

)
.

Thus the jump behavior of J(λ) is a consequence of the Plemelj-Sokhotskii formula,

ei
π
4 ǫσ3

(
1 −e−t(κ−Π(λ))

0 1

)(
0 1
−1 0

)
e−iπ4 ǫσ3 =

(
e−t(κ−Π(λ)) iǫ

iǫ 0

)
, λ ∈ (−r̂, r̂).

Secondly, as x→ −∞, |s1| ↑ 1 with (6.4),
∫ M

−M

e−t(κ−Π(µ))

λ− µ

dµ

2πi
=

i

2π
ln

(
λ−m

λ+m

)
+

∫ M

m

e−t(κ−Π(µ))

λ− µ

dµ

2πi
+

∫ −m

−M

e−t(κ−Π(µ))

λ− µ

dµ

2πi

=
i

2π
ln

(
λ−m

λ+m

)
+O

(
ln

1
6 t

t
1
2

)
= O

(
1

t
1
6 ln

1
2 t

)
+O

(
ln

1
6 t

t
1
2

)

uniformly for λ ∈ ∂D(0, r̂). Here we used a Laplace-type argument for the two remaining integrals based on
the behavior

κ −Π(λ) ∼ 16

3

√
2m(M2 −m2) (λ−m)

3
2 , λ ↓ m

κ −Π(λ) ∼ 16

3

√
2m(M2 −m2) (−λ−m)

3
2 , λ ↑ −m

as well as the expansions

m =

√
σ√

2| lnσ|

(
1 +

ln | lnσ|
2 lnσ

+O
(

1

lnσ

))
, M =

1√
2

(
1− σ√

2| lnσ|
+O

(
σ ln | lnσ|

ln2 σ

))
; σ ↓ 0.

Thus

J(λ) =

(
I +O

(
1

t
1
6 ln

1
2 t

))
Υ(λ) (6.10)

as t→ +∞, |s1| ↑ 1 subject to (6.4) uniformly for λ ∈ ∂D(0, r̂) with r̂ as in (6.8).

Instead of the ratio transformation (3.53), introduce for (7.1),

Ru(λ) = S(λ)





(
J(λ)

)−1
, |λ| < r̂(

P (λ)
)−1

, |λ−M | < r̄(
Q(λ)

)−1
, |λ+M | < r̄(

N(λ)
)−1

, |λ| > r̂, |λ∓M | > r̄

(6.11)

where 0 < r̂ = m+ dt−
1
3 < 1

3 and 0 < r̄ < 1
4 remains fixed. The model functions N(λ), P (λ) and Q(λ) are

(as before) given in (3.26), (3.47) and (3.51).
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γ̃5

γ̃2

γ̂2

γ̂5

γ1

γ6

γ3

γ4

Cr2C`2

C0

Figure 22. The jump contour ΣRu
of the ratio function Ru(λ) defined in (6.11). The two

vertical lines represent the branch points λ = ±m.

The RHP for Ru(λ) is formulated on the contour shown in Figure 22. Compared to the ratio problem for
R(λ) the only difference in the jump behavior occurs inside the circle C0 centered at the origin,

(
Ru(λ)

)
+
=
(
Ru(λ)

)
−

[
I + J−(λ)

(
iǫ s3e

itΩ(λ) − 1 e−t(κ−Π(λ))(−iǫ− s3e
itΩ(λ))

−iǫ e−t(κ+Π(λ)) −iǫ s1(1 + e−κt)e−itΩ(λ) − 1 + e−2tκ

)(
J−(λ)

)−1
]
,

for λ ∈ (−r̂, r̂) as well as
(
Ru(λ)

)
+
=
(
Ru(λ)

)
−J(λ)

(
1 (s1 + s2)e

−κteitΩ(λ)

0 1

)(
J(λ)

)−1
, λ ∈ γ̃2 ∩D(0, r̂)

(
Ru(λ)

)
+
=
(
Ru(λ)

)
−J(λ)

(
1 0

−(s1 + s2)e
−κte−itΩ(λ) 1

)(
J(λ)

)−1
, λ ∈ γ̃5 ∩D(0, r̂),

and on the circle boundary ∂D(0, r̂),

(
Ru(λ)

)
+
=
(
Ru(λ)

)
−J(λ)

(
N(λ)

)−1
, |λ| = r̂.

Notice that (since r̂ = O(t−
1
3 ) → 0)

tΩ(λ) = O
(

σt

| lnσ|

)
= O

(
1

ln t

)
, λ ∈ [−r̂, r̂]

subject to (6.4) as well as

λ ∈ (m+ dt−
1
3 ,M − r̄) : t(κ −Π(λ)) ≥ 8t

∫ m+dt
− 1

3

m

√
(M2 − µ2)(µ2 −m2) dµ ≥ c

√
mt→ +∞.

The latter combined with (6.6),(6.8),(6.10), using also the boundedness of N−(λ) away from the three disks
Dj centered at λ = 0 and λ = ±M and recalling at the same time our estimations for the jumps given in
Section 3.9, we obtain

‖GRu
(·; t, |s1|)− I‖L∞(ΣRu ) ≤

d

ln t
, t→ +∞, |s1| ↑ 1 :

2

3

√
2− f2

t
≤ κ <

2

3

√
2. (6.12)
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Opposed to this L∞-estimate we can obtain better L2-estimations through
∫ r̂

−r̂

∣∣∣1− eitΩ(λ)
∣∣∣
2

dλ =
2d

t
1
3

(
1− cos(2πtV )

)
+ 2

∫ m

−m

(
1− cos(tΩ(λ))

)
dλ = O

(
1

t
1
3 ln2 t

)

and ∮

∂D(0,r̂)

|u(λ)|2 |dλ| ≤ cr̂

ln2 t
= O

(
1

t
1
3 ln2 t

)
.

The last estimation is required for the L2-estimation of the jump on ∂D(0, r̂):

J(λ)N−1(λ) = J(λ)
(
Υ(λ)

)−1
Υ(λ)N−1(λ)

(6.10)
=

(
I +O

(
1

t
1
6 ln

1
2 t

))
Υ(λ)

(
N(λ)

)−1

(6.6)
=

(
I +O

(
1

t
1
6 ln

1
2 t

))
Υ(λ)e−2πiτ ′tV u(λ)σ3

(
Υ(λ)

)−1
e2πiτ

′tV u(∞)σ3

(
I +O

(
1

t
1
2 ln

1
2 t

))

=
(
I − 2πiτ ′tV u(λ)Υ(λ)σ3

(
Υ(λ)

)−1
+O

(
|u(λ)|2

))
e2πiτ

′tV u(∞)σ3

(
I +O

(
1

t
1
6 ln

1
2 t

))
.

We summarize,

‖GRu
(·; t, |s1|)− I‖L2(ΣRu ) ≤

d

t
1
6 ln

1
2 t
, t→ +∞, |s1| ↑ 1 :

2

3

√
2− f1

t
≤ κ <

2

3

√
2, f1 > 0 (6.13)

and combining (6.12), (6.13) this implies from general theory [13] the unique solvability of the Ru-RHP in
L2(ΣRu

), moreover its unique solution satisfies

‖(Ru)−(·; t, |s1|)− I‖L2(ΣRu ) ≤
d

t
1
6 ln

1
2 t
.

In the same way as we derived (3.61), we obtain

u(x|s) =
√
−x e2tℓ

[
−ǫ(M −m)

θ3(0|τ)
θ2(0|τ)

θ2(tV |τ)
θ3(tV |τ)e

iπtV + Eu(κ)
]

with

Eu(κ) =
i

π

∫

ΣRu

(
GRu

(w)− I
)
12

dw +O
(

1

t
1
3 ln t

)
=

i

π

[∮

∂D(0,r̂)

+

∫ r̂

−r̂

]
(
GRu

(w)− I
)
12

dw +O
(

1

t
1
3 ln t

)
.

However, by direct computation,
∫ r̂

−r̂

(
GRu

(w)− I
)
12

dw = O
(

1

t
1
3 ln t

)
,

∮

∂D(0,r̂)

(
GRu

(w)− I
)
12

dw = O
(

1

t
1
3 ln t

)

and thus

u(x|s) = −ǫ
√
−x
2

1− k√
1 + k2

cd

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+ J1(x, s), (6.14)

with

Proposition 6.3. For any given f1 > 0 there exist positive constants t0 = t0(f1), v0 = v0(f1) and c = c(f1)
such that ∣∣J1(x, s)

∣∣ ≤ c

ln t
, ∀ t ≥ t0, v ≥ v0 :

2

3

√
2 t− f1 ≤ v <

2

3

√
2 t.

Together with Propositions 4.2 and 5.1, Proposition 6.3 completes the proof of Theorem 1.10. In order to
derive (1.29) in Corollary 1.11, we choose t ≥ t0, v ≥ v0 such that 0 < σ ≤ 1

t
. Since

θ3(0|τ)
θ3(tV |τ)

θ2(tV |τ)
θ2(0|τ)

=
θ3(0|τ ′)

θ3(tV τ ′|τ ′)
θ4(tV τ

′|τ ′)
θ4(0|τ ′)

(6.15)

we get with (3.10) at once

θ3(0|τ ′)
θ4(0|τ ′)

= 1 +O
(√

σ

| lnσ|

)
= 1 +O

(
1

t
1
2 ln

1
2 t

)
.
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Similarly,

θ3(tV τ
′|τ ′) = 1 +O

(
1

t
1
2 ln

1
2 t

)
, θ4(tV τ

′|τ ′) = 1 +O
(

1

t
1
2 ln

1
2 t

)
.

Moving ahead (recall (3.6)),

− ǫ

√
−x
2

1− k√
1 + k2

θ3(0|τ)
θ3(tV |τ)

θ2(tV |τ)
θ2(0|τ)

= −ǫ
√

−x
2
+O

(
1

(−x) 1
4 ln

1
2 |x|

)
(6.16)

uniformly as x → −∞, |s1| ↑ 1 such that 0 < σ ≤ 1
t
. In view of Proposition 6.3, the latter estimation

completes the proof of Corollary 1.11.

Remark 6.4. The introduction of J(λ) in (6.9) together with bounds on N−(λ) in (6.5),(6.6) allowed us to
control the error J1(x, s) in the region (6.4). The analysis of J1(x, s) inside the region

{(
t, v
)
: t ≥ t0, v ≥ v0 :

f1
t
< σ ≤ δ, f1 > 0, 0 < δ <

1

3

√
2

}

which is not covered by Propositions 4.2, 5.1 and 6.3 is much more difficult. In this case (6.3) is violated in
general and thus N−(λ) may become unbounded. For instance, if we were to choose

t ≥ t0, v ≥ v0 :
1

t
≤ σ ≤ χ

ln t

t
< δ, χ > 0,

then from (3.6) and (3.10), using again (6.15),

−ǫ
√

−x
2

1− k√
1 + k2

θ3(0|τ)
θ3(tV |τ)

θ2(tV |τ)
θ2(0|τ)

= −ǫ
√

−x
2

(
1 +O

(
tχ−

1
2

))
= −ǫ

√
−x
2
+O

(
(−x) 3

2 (χ− 1
6 )
)
.

Hence we only restore the leading Hastings-McLeod asymptotics for χ < 1
6 . For the values of χ ≥ 1

6 more
terms will contribute to the leading order, or equivalently, the leading asymptotics changes once the Stokes
line

v =
2

3

√
2 t− 1

6
ln t

is crossed. We provide further detail on this interesting feature in Section 8 below.

7. Regular transition analysis near and above the separating line - κ ∈
[
2
3

√
2− f2

t
,∞), f2 ∈ R

In this section we assume that both t = (−x) 3
2 and v = − ln(1− |s1|2) are sufficiently large such that

κ ≥ 2

3

√
2− f2

t
, f2 ∈ R. (7.1)

Again, we use the transformation sequence

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ T (λ)

but subsequently the nonlinear steepest descent analysis of the T -RHP in (2.2) is very different from the
one used in Sections 3 and 5. In fact, the steps carried out below are a modification of the ones used in the
analysis for |s1| = 1, see [20], chapter 11, §4. The details are as follows.

7.1. g-function transformation. We fix

λ∗ =
1√
2

in (2.2) and define for λ ∈ C\ΣT with ΣT = [−λ∗, λ∗] ∪ γ̂2 ∪ γ̂5 ∪ γ̃2 ∪ γ̃5
⋃
γk,

̟(λ) = T (λ)et(g(λ)−ϑ(λ))σ3 ; with g(λ) =
4i

3

(
λ2 − 1

2

) 3
2

= ϑ(λ) +O
(
λ−1

)
, λ→ ∞. (7.2)
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This transforms the T -RHP to a RHP with jumps on [−λ∗, 0] ∪ [0, λ∗] such that

̟+(λ) = ̟−(λ)

(
(1− s1s3)e

tΠ(λ) s1 + s1(1− s1s3)
−s3 (1− s1s3)e

−tΠ(λ)

)
, λ ∈ [−λ∗, 0] (7.3)

̟+(λ) = ̟−(λ)

(
(1− s1s3)e

tΠ(λ) −s3
s1 + s1(1− s1s3) (1− s1s3)e

−tΠ(λ)

)
, λ ∈ [0, λ∗] (7.4)

where

Π(λ) = g+(λ)− g−(λ) =
8

3

(
1

2
− λ2

) 3
2

> 0; λ ∈
(
− 1√

2
,
1√
2

)
.

For the (11)-entries in (7.3) and (7.4) we use (3.1) and observe that

κ −Π(λ) > 0 ⇔ |λ| > λ0 ≡ 1√
2

(
1−

(
3κ

2
√
2

) 2
3

) 1
2

.

Hence the strict inequality for κ − Π(λ) will fail on the (shrinking) interval [−λ0, λ0]. We thus face the
necessity to consider an additional model problem at the origin. Besides this new feature, we however still
expect (and will prove) that the outer model problem is given by a problem in which we neglect the diagonal
entries in (7.3),(7.4) and apply estimations (3.2) and (3.3) for the off-diagonal, i.e. on the full line segment
[−λ∗, λ∗] we require a function Υ(λ) such that

Υ+(λ) = Υ−(λ)

(
0 iǫ
iǫ 0

)
, λ ∈

(
− 1√

2
,
1√
2

)
; ǫ = sgn(ℑs1) ∈ {±1}. (7.5)

Furthermore, along the remaining infinite branches, i.e. along

Σ̟∞
= γ̂2 ∪ γ̂5 ∪ γ̃2 ∪ γ̃5 ∪

⋃
γk, (7.6)

the jumps in the ̟-RHP are once more of the form

̟+(λ) = ̟−(λ)e
−tg(λ)σ3GT (λ)e

tg(λ)σ3 , λ ∈ Σ̟∞
.

Hence by triangularity and the sign of ℜ(g(λ)) these jumps are asymptotically close to the unit matrix away
from the endpoints λ = ±λ∗. We proceed now with the analysis of the relevant model problems.

7.2. The outer parametrix. The outer problem consists in finding a 2 × 2 piecewise analytic function
Υ(λ) = Υ(λ; ǫ) such that

• Υ(λ) is analytic for λ ∈ C\[− 1√
2
, 1√

2
]

• If the cut is oriented from − 1√
2
to 1√

2
, the boundary values of Υ(λ) are related via

Υ+(λ) = Υ−(λ)

(
0 iǫ
iǫ 0

)
, λ ∈

(
− 1√

2
,
1√
2

)
(7.7)

• Υ(λ) is square integrable on the closed interval [− 1√
2
, 1√

2
]

• As λ→ ∞,

Υ(λ) = I +O
(
λ−1

)

A solution to this quasi-permutation RHP appeared already in Proposition 6.1, formula (6.7). Note also that

Υ(λ) = I −
√
2ǫ

4λ
σ1 +O

(
λ−2

)
, λ→ ∞. (7.8)
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7.3. Origin parametrix. Our construction is motived by the local expansion

κ −Π(λ) = κ − 2

3

√
2 + 2

√
2λ2 − λ4

2
√
2
+O

(
λ6
)
, λ→ 0, (7.9)

and solves the following problem.

Riemann-Hilbert Problem 7.1. Determine a 2× 2 piecewise analytic function F (λ) such that

• F (λ) is analytic inside the disk D(0, r)\(−r, r) for some fixed 0 < r < 1√
2

• Orienting the segment (−r, r) from left to right, we have the jump condition

F+(λ) = F−(λ)

(
e−t(κ−Π(λ)) iǫ

iǫ 0

)
, λ ∈ (−r, r) ; Π(λ) =

8

3

(
1

2
− λ2

) 3
2

(7.10)

• As x→ −∞, |s1| ↑ 1 subject to (7.1) we have

F (λ) = (I + o(1))Υ(λ)

uniformly for |λ| = r > 0. Here, Υ(λ) is the outer model function introduced in Section 7.2.

The difference between this problem and RHP 6.2 is only marginal: Recall that σ = 2
3

√
2− κ and set

FRH(ζ) = ei
π
4 ǫσ3

(
1 eσt

2πi

∫
R

e−µ2

ζ−µ
dµ

0 1

)


(
0 1

−1 0

)
e−iπ4 ǫσ3 , ℑ ζ > 0

e−iπ4 ǫσ3 , ℑ ζ < 0.

(7.11)

We require the following Lemma.

Lemma 7.2. As ζ → ∞, we have

I(ζ) = 1

2πi

∫

R

e−µ2

µ− ζ
dµ =





−
√
π

2πiζ

(
1 +O

(
ζ−1

))
, ζ /∈ R

−
√
π

2πiζ

(
1 +O

(
ζ−1

))
+ e−ζ2

{
1, ℑζ > 0

0, ℑζ < 0
, ζ ∈ R

Proof. Assume first that ζ /∈ R, hence

I(ζ) = − 1

2πiζ

∫

R

e−µ2

1− µ
ζ

dζ = − 1

2πiζ

[∫

R

e−µ2

dµ+O
(
ζ−1

)]
= −

√
π

2πiζ

(
1 +O

(
ζ−1

))
, ζ → ∞.

Secondly for ζ ∈ R we apply Plemelj formula

I±(ζ) = ±1

2
e−ζ2

+
1

2πi
v.p.

∫

R

e−µ2

µ− ζ
dµ.

The principal value integral can be simplified as follows: let γR,δ denote the contour shown in Figure 23 with
0 < δ < R. From Cauchy’s theorem

∀R > δ > 0 :

∮

γR,δ

e−µ2

µ− ζ
dµ = 0.

On the other hand ∫

Cδ

e−µ2

µ− ζ
dµ = −i

∫ π

0

e−(ζ+δeiθ)2dθ
δ↓0−→ −iπe−ζ2

,

as well as(∫ ζ+R+i

ζ+R

+

∫ ζ−R

ζ−R+i

)
e−µ2

µ− ζ
dµ = i

∫ 1

0

e−(ζ+R+it)2 dt

R+ it
+ i

∫ 1

0

e−(ζ−R+it)2 dt

R− it

R→∞−→ 0,

and

lim
R→∞
δ↓0

(∫ ζ−δ

ζ−R

+

∫ ζ+R

ζ+δ

)
e−µ2

µ− ζ
dµ = v.p.

∫

R

e−µ2

µ− ζ
dµ.
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λ+Rλ−R

λ−R+ i

λ− δ λ+ δ

λ+R+ i

Figure 23. Integration contour γR,δ for a possible choice λ > 0.

Thus

I±(ζ) =
1

2πi

∫

R+i

e−µ2

µ− ζ
dµ+ e−ζ2

{
1, ℑζ > 0

0, ℑζ < 0
= −

√
π

2πiζ

(
1 +O

(
ζ−1

))
+ e−ζ2

{
1, ℑζ > 0

0, ℑζ < 0

which completes the proof. �

The solution to the model problem is now given by

F (λ) = B0(λ)F
RH
(
ζ(λ)

)
, |λ| < r; ζ(λ) =

√
t (σ + κ −Π(λ))

1
2 = (2

√
2 t)

1
2λ

(
1− λ2

4
− 11

96
λ4 +O

(
λ6
))

where we introduce the (locally analytic) multiplier

B0(λ) = Υ(λ)ei
π
4 ǫσ3





(
0 −1

1 0

)
e−iπ4 ǫσ3 , λ ∈ D(0, r) : ℑλ > 0

e−iπ4 ǫσ3 , λ ∈ D(0, r) : ℑλ < 0

; B0(0) =
1√
2

(
1 −iǫ
−iǫ 1

)
.

More detail on the local behavior of B0(λ) near λ = 0 will be needed later on, first

B0(λ) = ei
π
4 ǫσ3

{
1√
2

(
1 −1
1 1

)
+

i

2

(
1 1
−1 1

)
λ+

√
2

8

(
1 −1
1 1

)
λ2 +

3i

8

(
1 1
−1 1

)
λ3

+
11
√
2

64

(
1 −1
1 1

)
λ4 +

31i

64

(
1 1
−1 1

)
λ5 +O

(
λ6
)}

e−iπ4 ǫσ3 , λ→ 0,

followed by

(
B0(λ)

)−1
= ei

π
4 ǫσ3

{
1√
2

(
1 1
−1 1

)
+

i

2

(
1 −1
1 1

)
λ+

√
2

8

(
1 1
−1 1

)
λ2 +

3i

8

(
1 −1
1 1

)
λ3

+
11
√
2

64

(
1 1
−1 1

)
λ4 +

31i

64

(
1 −1
1 1

)
λ5 +O

(
λ6
)}

e−iπ4 ǫσ3 , λ→ 0,

and thus

B0(λ)σ+
(
B0(λ)

)−1
=

1

2

(
iǫ 1
1 −iǫ

)
−

√
2

2
σ2λ+

i

2
ǫσ3λ

2 −
√
2

2
σ2λ

3 +
3i

4
ǫσ3λ

4 − 3
√
2

4
σ2λ

5 +O
(
λ6
)
.

We directly verify the required jump condition (7.10), and as t→ ∞ (subject to (7.1)),

F (λ) =
(
I − iǫ eσtI

(
ζ(λ)

)
B0(λ)σ+

(
B0(λ)

)−1
)
Υ(λ)

=

(
I +

ǫ

2π

eσt

ζ(λ)
B0(λ)σ+B

−1
0 (λ) +O

(
t−1
))

Υ(λ) =
(
I +O

(
t−

1
2

))
Υ(λ), σ+ =

(
0 1
0 0

)
(7.12)
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uniformly for 0 < r1 ≤ |λ| ≤ r2 <
1√
2
with rj > 0 fixed.

7.4. Edge point parametrices near λ = ±λ∗. The construction is almost identical to the one presented
in Section 3.8. More precisely for the right edge point we take

∆r(λ) = Br3(λ)Â
RH
(
ζ(λ)

)
e

2
3 iζ

3
2 (λ)σ3e−iπ4 ǫσ3 , |λ− λ∗| < r, (7.13)

where ÂRH(ζ) was introduced in (3.45) and we have

Br3(λ) = Υ(λ)ei
π
4 ǫσ3

(
1 −1
−i −i

)
α(λ)σ3

(
ζ(λ)

λ+ 1√
2

λ− 1√
2

) 1
4σ3

, |λ− λ∗| < r

with the locally conformal change of variables

ζ(λ) =

(
3t

2
e−iπ2 g(λ)

) 2
3

∼
√
2(2t)

2
3

(
λ− 1√

2

)
, |λ− λ∗| < r.

The reader easily checks that ∆r(λ) defined in (7.13) has the same jump behavior as shown in Figure 14
with M replaced by λ∗ and g(λ) as in (7.2). Moreover

∆r(λ) =

[
I +Υ(λ)

{
i

48ζ
3
2

(
−1 6ǫ
−6ǫ 1

)
+O

(
ζ−

6
2

)}(
Υ(λ)

)−1
]
Υ(λ), ζ → ∞

so that for t→ +∞, |s1| ↑ 1 such that κ ≥ 2
3

√
2− f2

t
,

∆r(λ) =
(
I +O

(
t−1
))

Υ(λ) (7.14)

uniformly for 0 < r1 ≤ |λ− λ∗| ≤ r2 <
1√
2
.

Near the remaining edge point, we choose

∆ℓ(λ) = Bℓ3(λ)Ā
RH
(
ζ(λ)

)∣∣∣
γ=1

e
2
3 ζ

3
2 (λ)σ3e−iπ4 ǫσ3 , |λ+ λ∗| < r (7.15)

with ĀRH(ζ) as in (3.49) and

Bℓ3(λ) = Υ(λ)ei
π
4 ǫσ3

(
1 −1
−i −i

)
α(λ)σ3

(
ζ(λ)

λ− 1√
2

λ+ 1√
2

)− 1
4σ3

, |λ+ λ∗| < r

where we use the change of variable

ζ(λ) =

(
3t

2
g(λ)

) 2
3

∼
√
2(2t)

2
3

(
λ+

1√
2

)
, |λ+ λ∗| < r.

The jump behavior of (7.15) is depicted in Figure 16 with −M replaced by −λ∗ and the g-function as in
(7.2). We note that

∆ℓ(λ) =

[
I +Υ(λ)

{
1

48ζ
3
2

(
1 6ǫ

−6ǫ −1

)
+O

(
ζ−

6
2

)}(
Υ(λ)

)−1
]
Υ(λ), ζ → ∞,

hence, as t→ +∞, |s1| ↑ 1 such that κ ≥ 2
3

√
2− f2

t
,

∆ℓ(λ) =
(
I +O

(
t−1
))

Υ(λ) (7.16)

uniformly for 0 < r1 ≤ |λ + λ∗| ≤ r2 <
1√
2
. This completes the parametrix construction and we can move

ahead with the ratio transformation.
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7.5. Final transformation - ratio problem. Define

ξ(λ) = ̟(λ)





(
∆r(λ)

)−1
, |λ− 1√

2
| < r̄

(
∆ℓ(λ)

)−1
, |λ+ 1√

2
| < r̄

(
F (λ)

)−1
, |λ| < r(

Υ(λ)
)−1

, |λ± 1√
2
| > r̄, |λ| > r

(7.17)

where 0 < r̄ < 1√
2
and 0 < r < 1

4 remain fixed throughout. This leads to the RHP shown in the Figure

below.

γ1

γ6

γ3

γ4

γ̂5

γ̃2

γ̂2

γ̃5

Cr3

C`3

C0

Figure 24. The jump contour Σξ of the ratio function ξ(λ) defined in (7.17).

Riemann-Hilbert Problem 7.3. The ratio function ξ(λ) = ξ(λ; t, |s1|) ∈ C
2×2 has the following properties

• ξ(λ) is analytic for λ ∈ C\Σξ where Σξ = [−λ∗, λ∗] ∪ C0 ∪ Cr3 ∪ Cℓ3 ∪ Σ̟∞
, compare (7.6).

• The jump matrix Gξ(λ) = (ξ−(λ))−1ξ+(λ), λ ∈ Σξ is described as follows: Inside the two circles Cr3

resp. Cℓ3 we simply copy the corresponding expressions from Section 3.9, namely the jumps inside
Cr2 resp. Cℓ2 with the proper identification of the g-function (7.2) and the replacement Ω(λ) ≡ 0.
The same applies to the infinite branches γ̃2 ∪ γ̃5 outside C0 as well as for γ1 ∪ γ3 ∪ γ4 ∪ γ6, with
the replacement N(λ) 7→ Υ(λ) as determined through (7.7). On the line segments (−λ∗ + r̄,−r) ∪
(r, λ∗ − r̄), observe that

ξ+(λ) = ξ−(λ)Υ−(λ)

(
−iǫ s1(1 + e−κt) −iǫ e−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) iǫ s3

)(
Υ−(λ)

)−1
, λ ∈ (−λ∗ + r̄,−r),

ξ+(λ) = ξ−(λ)Υ−(λ)

(
iǫ s3 −iǫ e−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) −iǫ s1(1 + e−κt)

)(
Υ−(λ)

)−1
, λ ∈ (r, λ∗ − r̄)

and inside C0, first for λ ∈ (−r, 0), secondly for λ ∈ (0, r),

ξ+(λ) = ξ−(λ)F−(λ)

(
−iǫ s1(1 + e−κt) (s1(1 + e−κt)− iǫ)e−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) iǫ s3 + e−2tκ

)(
F−(λ)

)−1

ξ+(λ) = ξ−(λ)F−(λ)

(
iǫ s3 (−iǫ− s3)e

−t(κ−Π(λ))

−iǫ e−t(κ+Π(λ)) −iǫ s1(1 + e−κt) + e−2tκ

)(
F−(λ)

)−1
.

Notice that for λ ∈ (−λ∗ + r̄,−r) ∪ (r, λ∗ − r̄),

t
(
κ −Π(λ)

)
≥ t
(
κ −Π(±r)

)
> −f2 + t

(
2

3

√
2− 8

3

(
1

2
− r2

) 3
2

)
> −f2 + d8t, d8 > 0
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and for λ ∈ (−r, r),
∣∣∣(−iǫ− s3)e

−t(κ−Π(λ))
∣∣∣ ≤ d9e

− 2
3

√
2t,

∣∣∣(s1(1 + e−κt)− iǫ)e−t(κ−Π(λ))
∣∣∣ ≤ d10e

− 2
3

√
2t

But since Υ−(λ) is bounded on the full segment [−λ∗, λ∗] and F−(λ) inside (−r, r), we obtain that

‖Gξ(·; t, |s1|)− I‖L2∩L∞([−λ∗,λ∗]) ≤ d11e
−d12t, t→ ∞, |s1| ↑ 1 : κ ≥ 2

3

√
2− f2

t
, f2 ∈ R. (7.18)

The jumps along γ̃2 ∪ γ̃5 inside C0 are again exponentially close to the unit matrix, hence we now
list the contributions on the circle boundaries Cr3 , Cℓ3 and C0,

ξ+(λ) = ξ−(λ)∆
r(λ)

(
Υ(λ)

)−1
, λ ∈ Cr3 ; ξ+(λ) = ξ−(λ)∆

ℓ(λ)
(
Υ(λ)

)−1
, λ ∈ Cℓ3 .

and

ξ+(λ) = ξ−(λ)F (λ)
(
Υ(λ)

)−1
, λ ∈ C0.

From (7.14),(7.16) with fixed radius r̄,

λ ∈ Cr3 ∪ Cℓ3 : Gξ(λ) = I +O
(
t−1
)
, t→ ∞, |s1| ↑ 1 : κ ≥ 2

3

√
2− f2

t
, f2 ∈ R. (7.19)

On the other hand with (7.12) and again fixed radius r,

λ ∈ C0 : Gξ(λ) = I +O
(
t−

1
2

)
, t→ ∞, |s1| ↑ 1 : κ ≥ 2

3

√
2− f2

t
, f2 ∈ R. (7.20)

• As λ→ ∞ we have that ξ(λ) → I.

We solve the RHP for ξ(λ) iteratively.

7.6. Iterative solution. The following estimation is obtained as in Section 3.9, we only have to keep in
mind (7.18),(7.19) and (7.20),

‖Gξ(·; t, |s1|)− I‖L2∩L∞(Σξ) ≤ d t−
1
2 , t→ +∞, |s1| ↑ 1 : κ ≥ 2

3

√
2− f2

t
, f2 ∈ R.

Thus the ratio problem has a unique asymptotic solution in L2(Σξ) which satisfies

‖ξ−(·; t, |s1|)− I‖L2(Σξ) ≤ d t−
1
2 , d > 0.

7.7. Extraction of asymptotics - proof of Theorem 1.12. Through the transformation sequence

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ T (λ) 7→ ̟(λ) 7→ ξ(λ)

we obtain

u(x|s) = 2 lim
λ→∞

[
λ
(
Y (λ;x)

)
12

]
= 2

√
−x lim

z→∞

[
zξ(z)Υ(z)e−t(g(z)−ϑ(z))σ3

]
12
.

Since

g(z)− ϑ(z) =
i

8z
+O

(
z−3

)
, Υ(z) = I −

√
2ǫ

4z
σ1 +O

(
z−2

)
, z → ∞

we deduce from the integral equation for ξ(λ) the exact identity

u(x|s) =
√
−x
[
− ǫ√

2
+ E(κ)

]
,

where (as t→ ∞, |s1| ↑ 1 such that κ ≥ 2
3

√
2− f2

t
, f2 ∈ R),

E(κ) = i

π

∫

Σξ

(
ξ−(w)

(
Gξ(w)− I

))
12

dw =
i

π

∮

C0

(
Gξ(w)− I

)
12

dw +O
(
t−1
)
=

ǫ

2π

eσt

(2
√
2 t)

1
2

+O
(
t−1
)
,

and the last contour integral was computed by the residue theorem, compare (7.12). Hence, as x→ −∞, |s1| ↑
1,

u(x|s) = −ǫ
√
−x
2

(
1− 1

2π

eσt

(t
√
2)

1
2

+ J2(x, s)

)
, σ =

2

3

√
2− κ, t = (−x) 3

2 (7.21)

with
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Proposition 7.4. For any given f2 ∈ R there exist positive t0 = t0(f2), v0 = v0(f2) and c = c(f2) such that

∣∣J2(x, s)
∣∣ ≤ ct−1 ∀ t ≥ t0, v ≥ v0, v ≥ 2

3

√
2 t− f2.

This completes the proof of Theorem 1.12 and at the same time allows us to derive Corollary 1.2.

7.8. Proof of Corollary 1.2. Suppose both t and v are sufficiently large such that

κ = − ln(1− |s1|2)
(−x) 3

2

>
2

3

√
2.

In this case σ < 0 is bounded away from zero and hence (7.20) can be improved to

Gξ(λ) = I +O
(
t−

1
2 eσt

)
= I +O

(
t−∞) , λ ∈ C0,

compare (7.12). Therefore,

‖Gξ(·; t, |s1|)− I‖L2∩L∞(Σξ) ≤
d

t
, t→ +∞, |s1| ↑ 1 : κ >

2

3

√
2

and (7.7) gets replaced by

E(κ) = u1
t

+
u2
t2

+
u3
t3

+O
(
t−4
)
.

with x and γ independent coefficients uk. These could in principle be computed by the residue theorem
in (7.7) using (7.14) and (7.16), but it is easier to work with the differential equation (1.10) itself: As
x→ −∞, |s1| ↑ 1,

u(x|s) = −ǫ
√

−x
2

(
1 +

1

8x3
+O

(
x−6

))
, (7.22)

uniformly for κ > 2
3

√
2 and the asymptotic expansion can be differentiated with respect to x.

Remark 7.5. The modulus |s1| will appear explicitly in (7.22), but only contained in exponentially small
error terms. All power like terms are |s1|-independent and in fact identical to the ones derived in [14],
Theorem 1.28.

We go back to the Fredholm determinant and note that for fixed γ < 1,

∂

∂x
ln det

(
I − γKAi

)∣∣∣
L2(x,∞)

=

∫ ∞

x

u2AS(y; γ)dy =
(
u′AS(x; γ)

)2 − xu2AS(x; γ)− u4AS(x; γ), x ∈ R.

Hence with Remark 1.6 and (7.22) after integration,

ln det
(
I − γKAi

)∣∣∣
L2(x,∞)

=
x3

12
− 1

8
ln |x|+ c(γ) + r(x, γ); (7.23)

where c(γ) is x independent and there exist universal t0, v0 > 0 and d > 0 such that

∣∣r(x, γ)
∣∣ ≤ d

|x|3 , ∀ t = (−x) 3
2 ≥ t0, − ln(1− γ) ≥ v0, κ >

2

3

√
2.

Now keep t ≥ t0 fixed and let γ ↑ 1 in (7.23), so that with (1.7),

lim
γ↑1

c(γ) = ln c0 =
1

24
ln 2 + ζ ′(−1).

This, together with (7.23), completes the proof of Corollary 1.2.
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8. Appearance of Stokes lines - κ ∈
[
2
3

√
2− f3

ln t
t
,∞), f3 ∈ R. Proof of Theorem 1.13

We assume that t = (−x) 3
2 and v = − ln(1− |s1|2) are sufficiently large such that

κ ≥ 2

3

√
2− f3

ln t

t
, f3 ∈ R. (8.1)

Working with this scale, several steps in the nonlinear steepest descent analysis of Section 7 can still be
applied. In fact, the only difference appears in the matching relation (7.12). Subject to (8.1), we have that

eσt ≤ max
{
1, tf3

}

and thus the two model functions F (λ) and Υ(λ) are in general no longer asymptotically close to each other
on ∂D(0, r). In order to deal with this feature, we choose f3 ∈ Iq ≡ (−∞, 12 (q + 1)) ⊂ R with q ∈ Z≥0 and
notice that for ζ /∈ R,

I(ζ) = 1

2πi

∫

R

e−µ2

µ− ζ
dµ = − 1

2πiζ

q−1∑

n=0

ζ−n

∫

R

µne−µ2

dµ+
ζ−q

2πi

∫

R

µqe−µ2

µ− ζ
dµ

= − 1

2πiζ

⌊ q−1
2 ⌋∑

n=0

ζ−2n Γ

(
1

2
+ n

)
+
ζ−q

2πi

∫

R

µqe−µ2

µ− ζ
dµ,

which implies with Lemma 7.2, as t→ ∞ subject to (8.1),

eσtI
(
ζ(λ)

)
= − e

σt

2πi

⌊ q−1
2 ⌋∑

n=0

ζ−2n−1(λ) Γ

(
1

2
+ n

)
+O

(
tmax{f3− 1

2−⌊ q+1
2 ⌋),− 1

2−⌊ q+1
2 ⌋}

)
,

and the last term is small because of our assumption f3 ∈ Iq. We now factorize (7.12),

F (λ) =
(
I − iǫ eσtI

(
ζ(λ)

)
B0(λ)σ+

(
B0(λ)

)−1
)
Υ(λ)

= B0(λ)


I + ǫ

2π
eσt

⌊ q−1
2 ⌋∑

n=0

ζ−2n−1(λ) Γ

(
1

2
+ n

)
σ+


(B0(λ)

)−1

×B0(λ)

(
I − ǫ

2π
eσtζ−q(λ)

∫

R

µqe−µ2

µ− ζ(λ)
dµσ+

)
(
B0(λ)

)−1
Υ(λ) ≡

(
E(λ)× F̂ (λ)

)
Υ(λ) (8.2)

and go back to Section 7. After the explicit transformations

Y (λ) 7→ X(λ) 7→ T (λ) 7→ ̟(λ) 7→ ξ(λ)

we use another: With (7.17) and Figure 24, let

Θ(λ) =

{
ξ(λ)E(λ), |λ| < r

ξ(λ), |λ| > r

so that by definition, the function Θ(λ) solves the following (singular) RHP.

Riemann-Hilbert Problem 8.1. Determine a 2× 2 matrix valued function Θ(λ) such that

• Θ(λ) is analytic for λ ∈ C\(Σξ ∪ {0})
• Along Σξ we have jumps, Θ+(λ) = Θ−(λ)GΘ(λ), with

GΘ(λ) =

{
F̂ (λ), |λ| = r

Gξ(λ), λ ∈ Cℓ3 ∪ Cr3 ∪ Σ̟∞

(8.3)

where F̂ (λ) appeared in (8.2) and Gξ(λ) denotes the jump matrix in the ξ-ratio RHP 7.3.
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• Θ(λ) has a pole of order 2⌊ q−1
2 ⌋ + 1 at λ = 0 provided q ∈ Z≥1. In order to be more precise about

the singular structure, notice that for q ∈ Z≥1,

ξ(λ) = Θ(λ)
(
E(λ)

)−1
=



n(q)∑

k=1

Θ−k

λk
+

n(q)−1∑

ℓ=0

(
λn(q)Θ(λ)

)(n(q)+ℓ)
∣∣∣∣
λ=0

λℓ

(n(q) + ℓ)!


(E(λ)

)−1
,

with n(q) = 2⌊ q−1
2 ⌋ + 1, is analytic at λ = 0. Thus with (8.2) and comparison, we can express the

full singular part {Θ−k} in terms of the first n(q) terms of the regular part of Θ(λ). This is done
explicitly for q ∈ {1, 2},

Θ−1 ≡ res
λ=0

Θ(λ) = −
(
λΘ(λ)

)′∣∣∣
λ=0

1

2

(
iǫ 1
1 −iǫ

)
p

1− ǫp√
2

, p = − ǫ

2π

√
π

2

eσt

(t
√
2)

1
2

, (8.4)

but becomes much more involved in case q ∈ Z≥3; we shall postpone the general case q ∈ Z≥3 to a
forthcoming publication.

• As λ→ ∞, we have Θ(λ) → I.

The jump matrices in RHP 8.1 are asymptotically close to the unit matrix, however Θ(λ) has a pole at
the origin. Such type of problems have been analyzed in nonlinear steepest descent literature, see e.g. [9, 10],
at least for the case of a first order pole. Following loc. cit., we first note that (8.4) is equivalently stated as

Θ(λ) = Θ̂(λ)

(
1 −κ

λ

0 1

)
T−1, |λ| < r; T =

1√
2

(
1 −iǫ
−iǫ 1

)
, κ =

p

1− ǫp√
2

where Θ̂(λ) is analytic at λ = 0. Hence, Θ(λ) is indeed characterized uniquely by the properties stated
in RHP 8.1. Secondly we can resolve the singular structure for q ∈ Z≥1 via another transformation, the
dressing transformation,

Θ(λ) =
(
λ2⌊

q−1
2 ⌋+1I + λ2⌊

q−1
2 ⌋B2⌊ q−1

2 ⌋ + . . .+ λB1 +B0

)
Ξ(λ)

1

λ2⌊
q−1
2 ⌋+1

, λ ∈ C\Σξ (8.5)

where {Bj}2⌊
q−1
2 ⌋

j=0 are λ-independent. The function Ξ(λ) is characterized as follows.

Riemann-Hilbert Problem 8.2. Determine a 2× 2 matrix valued function Ξ(λ) subject to the following
conditions

• Ξ(λ) is analytic for λ ∈ C\Σξ

• We have that Ξ+(λ) = Ξ−(λ)GΘ(λ) for λ ∈ Σξ, with GΘ(λ) given in (8.3).
• As λ→ ∞,

Ξ(λ) = I +O
(
λ−1

)
.

Notice that the unknowns Bj are algebraically determined from the singular structure in the Θ-RHP and
(8.5), i.e. for q ∈ {1, 2} we have

B0 = −κ
2
Ξ(0)

(
iǫ 1
1 −iǫ

)(
Ξ(0) +

κ

2
Ξ′(0)

(
iǫ 1
1 −iǫ

))−1

or for more general q ∈ Z≥3 equations for the remaining unknowns in term of Ξ(0) and higher derivatives
thereof. Observe that all jumps in the Ξ-RHP are close to the identity since

‖GΘ(·; t, |s1|)− I‖L2∩L∞(Σξ) ≤ c tmax{f3− 1
2−⌊ q+1

2 ⌋,− 1
2−⌊ q+1

2 ⌋,−1}, c > 0

uniformly for t→ ∞, |s1| ↑ 1 such that κ ≥ 2
3

√
2− f3

ln t
t

and −∞ < f3 <
1
2 (q + 1).
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8.1. Extraction of asymptotics. The RHP 8.2 is iteratively solvable and we have for its solution

‖Ξ−(·; t, |s1|)− I‖L2(Σξ) ≤ c tmax{f3− 1
2−⌊ q+1

2 ⌋,− 1
2−⌊ q+1

2 ⌋,−1}.

Notice that from a direct computation, by tracing back the transformations,

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ T (λ) 7→ ̟(λ) 7→ ξ(λ) 7→ Θ(λ) 7→ Ξ(λ),

we get

u(x|s) =
√
−x
[
− ǫ√

2
+ 2B12

2⌊ q−1
2 ⌋ +

i

π

∫

ΣΘ

(
Ξ−(w)

(
GΘ(w)− I

))
12
dw

]
, q ∈ Z≥0 : B−2 ≡ 0.

We will now continue with the special case q ∈ {1, 2}, i.e. we compute

u(x|s) =
√
−x
[
− ǫ√

2
+ 2B12

0 − 3p

16
√
2 t

+
ǫ

8
√
2 t2

+O
(
tmax{2f3−3,f3− 5

2 ,−3}
)]
. (8.6)

Notice that (using here the integral representation for Ξ(0) and Ξ′(0))

Ξ(0) = I +O
(
tmax{f3− 3

2 ,−1}
)
, Ξ′(0) = O

(
tmax{f3− 3

2 ,−1}
)
,

and thus

B0 = −κ
2

[(
iǫ 1
1 −iǫ

)
+O

(
tmax{f3− 3

2 ,−1}
)]
. (8.7)

From this it follows in (8.6) that

u(x|s) = −ǫ
√
−x
2

(
1 + ǫp√

2

1− ǫp√
2

)
+ J3(x, s),

ǫp√
2
= − 1

2π

√
π

2

eσt

(2
√
2 t)

1
2

, σ =
2

3

√
2− κ

and

Proposition 8.3. For any given f3 ∈ (−∞, 76 ) there exist positive t0 = t0(f3), v0 = v0(f3) and c = c(f3)
such that ∣∣J3(x, s)

∣∣ ≤ ct−min{ 7
6−f3,

2
3}, ∀ t ≥ t0, v ≥ v0, v ≥ 2

3

√
2 t− f3 ln t.

If we were to choose f3 ∈ (−∞, 16 ), then p = O(tf3−
1
2 ) = o(1) and we restore the leading order Hastings-

McLeod asymptotics,

u(x|s) = −ǫ
√

−x
2
+ J3(x, s),

∣∣J3(x, s)
∣∣ ≤ ct−min{ 1

6−f3,
2
3}.

In other words,

S1 : v =
2

3

√
2 t− 1

6
ln t

forms the first Stokes line and we have completed the proof of Theorem 1.13.

8.2. Proof of Corollary 1.19. Observe that (8.6) and (8.7) allow us to derive a slightly better expansion
than the one given in Theorem 1.13, as x→ −∞, |s1| ↑ 1,

u(x|s) = −ǫ
√

−x
2

[(
1 + ǫp√

2

1− ǫp√
2

)
+

1

8x3
+ f(x, γ)

]
(8.8)

where, uniformly for κ ≥ 2
3

√
2− f3

ln t
t
, f3 ∈ (−∞, 76 ),

∣∣f(x, γ)
∣∣ ≤ c

{
max{t−2e2σt, t−3}, f3 ∈ (−∞, 12 ]

max{t− 3
2 eσt, t−3}, f3 ∈ ( 12 ,

7
6 ).

(8.9)

Next, we use identity (1.4) and combine it with (8.8),

− ∂2

∂x2
ln det

(
I − γKAi

)∣∣∣
L2(x,∞)

= u2AS(x; γ) = −x
2

(
1 + ǫp√

2

1− ǫp√
2

)2

− 1

8x2
+R1(x, γ)
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and from (8.9), noting that eσt = e−ve
2
3

√
2t with v fixed,

∫∫ ∣∣R1(x, γ)
∣∣d2x = O

(
t−min{ 2

3 ,
3
2−f3}

)
, x→ −∞, |s1| ↑ 1, κ ≥ 2

3

√
2−f3

ln t

t
, f3 ∈

(
−∞,

7

6

)
. (8.10)

However, by straightforward computation,

∂2

∂x2
ln

(
1− ǫp√

2

)
=
x

2

(
1 + ǫp√

2

1− ǫp√
2

)2

− x

2
+R2(x, γ)

and R2(x, γ) satisfies also (8.10). Hence, we have shown that for x→ −∞, |s1| ↑ 1,

ln det
(
I − γKAi

)∣∣∣
L2(x,∞)

=
x3

12
− 1

8
ln |x|+ ax+ b+ ln

(
1− ǫp√

2

)
+O

(
t−min{ 2

3 ,
3
2−f3}

)
,

uniformly for κ ≥ 2
3

√
2− f3

ln t
t
, f3 ∈ (−∞, 76 ) with some x-independent constants a = a(γ), b = b(γ). These

can be computed as in the proof of Corollary 1.2, i.e. we use

∂

∂x
ln det

(
I − γKAi

)∣∣∣
L2(x,∞)

=

∫ ∞

x

u2AS(y; γ)dy =
(
u′AS(x; γ)

)2 − xu2AS(x; γ)− u4AS(x; γ), x ∈ R.

together with (8.8) to conclude a(γ) = 0 and the limit γ ↑ 1, with t ≥ t0 fixed, yields

lim
γ↑1

b(γ) = ln c0 =
1

24
ln 2 + ζ ′(−1).

9. Singular transition analysis for κ ∈ [δ, 23
√
2− δ] with 0 < δ < 1

3

√
2 fixed

Several steps of the analysis carried out below have their natural counterpart in the regular analysis. One
major difference however lies in the construction of a new outer parametrix which naturally involves the
exceptional set Zn as defined in (9.7) below. First we let

κ =
v

t
∈ (0,∞); t = (−x) 3

2 > 0, 0 < v = − ln
(
|s1|2 − 1

)
≡ −2πβ̂, 1 < |s1| <

√
2

and keep κ ∈ [δ, 23
√
2− δ] with 0 < δ < 1

3

√
2 fixed. Also here, the following expansions will prove useful.

9.1. Preliminary expansions. Note that

ℜ(s1) = −s2
2
e−κt, |s1| = 1 +

1

2
e−κt +O

(
e−2κt

)

and

s1 = eiarg(s1)
(
1 +

1

2
e−κt +O

(
e−2κt

))
= s̄3, s1 + s1(1− s1s3) = eiarg(s1)

(
1− 1

2
e−κt +O

(
e−2κt

))
.

Moreover,

arg(s1) =
ǫπ

2

(
1 +

s2
π
e−κt +O

(
e−2κt

))

so that

Proposition 9.1. As t→ ∞, |s1| ↓ 1 with ei
π
2 ǫ = iǫ,

s1 = iǫ

(
1 +

1

2
(1 + iǫs2) e

−κt +O
(
e−2κt

))
, s3 = −iǫ

(
1 +

1

2
(1− iǫs2) e

−κt +O
(
e−2κt

))
,

s1 + s1(1− s1s3) = iǫ

(
1− 1

2
(1− iǫs2) e

−κt +O
(
e−2κt

))
.

uniformly for κ ∈ [δ, 23
√
2− δ] with 0 < δ < 1

3

√
2 fixed.
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9.2. g-function transformation. The bijective correspondence between κ ∈ (0, 23
√
2) and k ∈ (0, 1) has

already been established in Proposition 3.2, and all local expansions in Corollary 3.3 can directly be applied
to the singular transition analysis. With this in mind we define (formally just as in (3.12)),

g(z) = 4i

∫ z

M

(
(µ2 −M2)(µ2 −m2)

) 1
2 dµ, z ∈ C\[−M,M ]

where

0 < m =
1√
2

k√
1 + k2

<
1

2
< M =

1√
2

1√
1 + k2

<
1√
2
,

and k = k(κ) is determined through (1.22). The relevant analytical properties of g(z) are summarized in
Proposition 3.4 and we choose in the T -RHP (2.2) (as before),

λ∗ =M.

After that, introduce,

S(λ) = e−tℓσ3T (λ)et(g(λ)−ϑ(λ))σ3 , λ ∈ C\ΣT

where we shall use the same notation S(λ) for the transformed function as in the regular transition analysis.
Observe that, for λ ∈ (m,M),

S+(λ) = S−(λ)

(
−e−t(κ−Π(λ)) −s3
s1(1− e−κt) −e−t(κ+Π(λ))

)
, κ −Π(λ) = 8

∫ λ

m

√
(M2 − µ2)(µ2 −m2) dµ > 0,

so that (as before)

GS(λ)

(
0 −e−iπ2 ǫ

ei
π
2 ǫ 0

)−1

→ I, x→ −∞, |s1| ↓ 1 : κ ∈
[
δ,
2

3

√
2− δ

]
, δ > 0.

Similarly, for λ ∈ (−M,−m),

S+(λ) = S−(λ)

(
−e−t(κ−Π(λ)) s1(1− e−κt)eitΩ(λ)

−s3e−itΩ(λ) −e−t(κ+Π(λ))

)
, κ −Π(λ) = 8

∫ −m

λ

√
(M2 − µ2)(µ2 −m2) dµ > 0,

hence (as before)

GS(λ)

(
0 ei

π
2 ǫ+itΩ(λ)

−e−iπ2 ǫ−itΩ(λ) 0

)−1

→ I, x→ −∞, |s1| ↓ 1 : κ ∈
[
δ,
2

3

√
2− δ

]
, δ > 0.

The only difference occurs in the gap, first for λ ∈ (0,m),

S+(λ) = S−(λ)

(
−1 −s3eitΩ(λ)

(s1 + s1(1− s1s3))e
−itΩ(λ) −(s1s3 − 1)2

)

= S−(λ)

(
1 0

−(s1 + s1(1− s1s3))e
−itΩ(λ) 1

)(
−1 0
0 −1

)(
1 s3e

itΩ(λ)

0 1

)

≡ S−(λ)e
iπ2 σ3SL1

(λ)e−iπ2 σ3SD(λ)ei
π
2 σ3SU1

(λ)e−iπ2 σ3 , λ ∈ (0,m),

and secondly for λ ∈ (−m, 0),

S+(λ) = S−(λ)

(
−1 (s1 + s1(1− s1s3))e

itΩ(λ)

−s3e−itΩ(λ) −(s1s3 − 1)2

)

= S−(λ)

(
1 0

s3e
−itΩ(λ) 1

)(
−1 0
0 −1

)(
1 −(s1 + s1(1− s1s3))e

itΩ(λ)

0 1

)

= S−(λ)e
iπ2 σ3SL2(λ)e

−iπ2 σ3SD(λ)ei
π
2 σ3SU2(λ)e

−iπ2 σ3 , λ ∈ (−m, 0).



TRANSITION ASYMPTOTICS FOR THE PAINLEVÉ II TRANSCENDENT 61

Here, SLj
(λ) and SUj

(λ) have appeared in (3.18), (3.19) and SD(λ) = −I. Hence, we can use Proposition
3.6 in the given context as well and open lens: Compare Figure 7 and define

L(λ) =





S(λ)ei
π
2 σ3S−1

U1
(λ)e−iπ2 σ3 , λ ∈ L+

1

S(λ)ei
π
2 σ3SL1

(λ)e−iπ2 σ3 , λ ∈ L−
1

S(λ)ei
π
2 σ3S−1

U2
(λ)e−iπ2 σ3 , λ ∈ L+

2

S(λ)ei
π
2 σ3SL2(λ)e

−iπ2 σ3 , λ ∈ L−
2

S(λ), otherwise.

This leads to the following RHP

Riemann-Hilbert Problem 9.2. Determine a 2× 2 matrix valued function L(λ) such that

• L(λ) is analytic for λ ∈ C\
(
[−M,−m] ∪ [−m,m] ∪ [m,M ] ∪ γ±1 ∪ γ±2 ∪ ΣS∞

)

• The jumps are as follows, see Figure 7 for orientations,

L+(λ) = L−(λ)





GS(λ), λ ∈ (−M,−m) ∪ (m,M) ∪ ΣS∞

ei
π
2 σ3SU1

(λ)e−iπ2 σ3 , λ ∈ γ+1
ei

π
2 σ3SL1(λ)e

−iπ2 σ3 , λ ∈ γ−1
ei

π
2 σ3SU2(λ)e

−iπ2 σ3 , λ ∈ γ+2
ei

π
2 σ3SL2

(λ)e−iπ2 σ3 , λ ∈ γ−2
SD(λ), λ ∈ (−m,m)

(9.1)

with SD(λ) = −I.
• As λ→ ∞,

L(λ) = I +O
(
λ−1

)
.

The jumps in this problem along the lens boundaries γ±j and along the infinite contours are exponentially

close to the unit matrix in the (singular) double scaling limit as long as we stay away from the branch points
λ = ±m,±M and λ = 0. Compared to the L-RHP in the regular transition analysis, the outer parametrix
will now also have a jump in the gap (−m,m).

9.3. New outer parametrix. In case of the singular transition analysis the outer model problem is posed
on the full segment (−M,M) and reads as follows

Riemann-Hilbert Problem 9.3. Determine a 2 × 2 matrix-valued piecewise analytic function N(λ) =
N(λ; t, ǫ) such that

• N(λ) is analytic for λ ∈ C\[−M,M ]
• We have jumps

N+(λ) = N−(λ)

(
0 ei

π
2 ǫ+itΩ(λ)

−e−iπ2 ǫ−itΩ(λ) 0

)
, λ ∈ (−M,−m) (9.2)

N+(λ) = N−(λ)e
iπσ3 , λ ∈ (−m,m) (9.3)

N+(λ) = N−(λ)

(
0 −e−iπ2 ǫ

ei
π
2 ǫ 0

)
, λ ∈ (m,M) (9.4)

• N(λ) has L2 boundary values on [M,M ]
• As λ→ ∞,

N(λ) = I +O
(
λ−1

)

Notice that the function

N̂(λ) = e−iπ4 ǫσ3N(λ)ei
π
4 ǫσ3 , λ ∈ C\[−M,M ]
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has jumps on (−M,M) described as follows

N̂+(λ) = N̂−(λ)

(
0 eitΩ(λ)

−e−itΩ(λ) 0

)
, λ ∈ (−M,−m)

N̂+(λ) = N̂−(λ)e
iπσ3 , λ ∈ (−m,m)

N̂+(λ) = N̂−(λ)

(
0 1
−1 0

)
, λ ∈ (m,M).

Up to the presence of the diagonal jump in the gap (−m,m), the jumps are thus identical to the ones which
we generated in Proposition 3.11. To compensate for the diagonal part, we slightly modify our construction
of Section 3.5: Let u(z) denote again the Abel (type) map

u : CP1\[−M,M ] → C, z 7→ u(z) =

∫ z

M

ω = u(∞)− c

z
+O

(
z−3

)
, z → ∞; c = c(κ) =

i

2

M

K ′

for which we summarized certain properties in Proposition 3.9. We require

N̂ (±)(z) =

(
θ
(
u(z) + tV + τ

2 ± d
)

θ
(
u(z)± d

) ,
θ(−u(z) + tV + τ

2 ± d)

θ(−u(z)± d)

)
≡
(
N̂

(±)
1 (z), N̂

(±)
2 (z)

)
, (9.5)

where (formally as before, see also (1.23)),

V (κ) ≡ V = − 4

π

∫ m

−m

√
(M2 − µ2)(m2 − µ2) dµ ≡ 1

2π
Ω(z), z ∈ (−M,−m); d = −τ

4

and

θ(z|τ) ≡ θ3(z|τ) =
∑

k∈Z

exp
[
iπk2τ + 2πikz

]
, z ∈ C

is the third Jacobi theta function. With this, we have the following analogue to Proposition 3.11 for the
current situation (9.2)-(9.4).

Proposition 9.4. The function

N(λ) = ei
π
4 ǫσ3

θ(0)

θ( τ2 + tV )
e−iπu(∞)σ3

(
N̂

(+)
1 (λ)φ(λ) N̂

(+)
2 (λ)φ̂(λ)

−N̂ (−)
1 (λ)φ̂(λ) N̂

(−)
2 (λ)φ(λ)

)
eiπu(λ)σ3e−iπ4 ǫσ3 (9.6)

is single-valued and analytic in CP
1\[−M,M ]. Its jumps are stated in (9.2),(9.3) and (9.4), furthermore, as

λ→ ∞,

N(λ) = I +
1

λ


 −c θ

′( τ
2+tV )

θ( τ
2+tV ) − iπc − θ(0)

θ( τ
2+tV )

θ(u(∞)− τ
2−tV−d)

θ(u(∞)−d)
M−m

2i e−2πiu(∞)ei
π
2 ǫ

θ(0)
θ( τ

2+tV )

θ(u(∞)+ τ
2+tV−d)

θ(u(∞)−d)
M−m

2i e2πiu(∞)e−iπ2 ǫ c
θ′( τ

2+tV )

θ( τ
2+tV ) + iπc




+O
(
λ−2

)
,

provided (x, s1) are uniformly bounded away from the discrete set

Zn =
{
(x, s1) : 2tV (κ) = n ∈ Z\{0}

}
. (9.7)

Proof. The stated jump behavior follows from a direct computation using Proposition 3.9 and the properties
of Jacobi theta functions. For the normalization, we take into account the shift by the half period appearing
in the numerators in (9.5), hence we have to guarantee that

θ
(τ
2
+ tV

)
6= 0

which is ensured for the values (x, s1) away from the set Zn given in (9.7) as the simple roots of θ(z) ≡ θ3(z|τ)
are located at z ≡ 1

2 + τ
2 mod Z+ τZ. �

Remark 9.5. The latter Proposition is in sharp contrast to Proposition 3.11. There we do not require the
half-period shift and thus we always have that θ(tV ) 6= 0 since tV (κ) ∈ R, i.e. there is no exceptional set.
From now on we shall always assume that (x, s1) is bounded away from the set Zn.
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9.4. Local parametrices. The required model functions near λ = 0 and λ = ±m slightly differ from the
ones used in the case of the regular transition. Near λ = 0 we analyze

Riemann-Hilbert Problem 9.6. Determine a 2× 2 piecewise analytic function H(λ) such that

• H(λ) is analytic for λ ∈
(
C ∩D(0, r)

)
\
(
γ±1 ∪ γ±2 ∪ (−r, r)

)
with 0 < r < m

2 .
• For the boundary values,

H+(λ) = H−(λ)

(
1 −iǫ eitΩ(λ)

0 1

)
, λ ∈ D(0, r) ∩ (γ+1 ∪ γ+2 )

H+(λ) = H−(λ)

(
1 0

−iǫ e−itΩ(λ) 1

)
, λ ∈ D(0, r) ∩ (γ−1 ∪ γ−2 )

H+(λ) = −H−(λ), λ ∈ (−r, r)

• As t→ ∞, |s1| ↓ 1 such that κ ∈ [δ, 23
√
2− δ], uniformly for λ ∈ ∂D(0, r),

H(λ) =
(
I + o(1)

)
N(λ).

A solution to the latter problem is derived in two steps. First define

Ho(ζ) =





eiζσ3 , arg ζ ∈ (0, π4 ) ∪ ( 3π4 , π)

−eiζσ3 , arg ζ ∈ (−π
4 , 0) ∪ (π, 5π4 )

eiζσ3

(
1 −iǫ eitΩ(0)

0 1

)
, arg ζ ∈ (π4 ,

3π
4 )

−eiζσ3

(
1 0

iǫ e−itΩ(0) 1

)
, arg ζ ∈ (− 3π

4 ,−π
4 )

with Ω(0) = πV (κ) from (1.23) and where we orient all six rays from zero to infinity. Second, the required
parametrix itself: With N(λ) from (9.6),

H(λ) = N(λ)P(λ)Ho
(
ζ(λ)

)
e−iζ(λ)σ3 , λ ∈ D(0, r); P(λ) =

{
+1, ℑλ > 0

−1, ℑλ < 0
(9.8)

where

ζ(λ) =
t

2

(
Ω(λ)− Ω(0)

)
= 8tMmλ

(
1 +O

(
λ2
))
, λ ∈ D(0, r).

The required jump behavior follows from a direct computation using a local contour deformation, moreover
we have

H(λ) =
(
I +O

(
t−∞))N(λ)

as t→ +∞, |s1| ↓ 1 such that κ ∈ [δ, 23
√
2− δ] uniformly for 0 < r1 ≤ |λ| ≤ r2 <

m
2 .

Near λ = m we have to modify (3.33). Consider

ARH(ζ) = ei
π
2 σ3A0(ζ)e

−iπ2 σ3





I, arg ζ ∈ (0, 2π3 )(
1 1

0 1

)
, arg ζ ∈ ( 2π3 , π)

−
(
1 1

0 1

)
, arg ζ ∈ (π, 4π3 )

−
(
1 1

0 1

)(
1 0

−1 1

)
, arg ζ ∈ ( 4π3 , 2π)

with A0(ζ) as in (3.34). This leads to the following bare RHP

• ARH(ζ) is analytic for ζ ∈ C\{arg ζ = 0, 2π3 , π,
4π
3 }
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arg ζ = 2π

3

arg ζ = 4π

3

+

−

+

−

−

+

+

−

arg ζ = π arg ζ = 0

Figure 25. Jump
contour for the bare
parametrix ARH(ζ).

(

1 iε e
itΩ(λ)

0 1

)

(

e
−t(κ−Π(λ))

iε

iε 0

)

λ = m

(

1 0

iε e
−itΩ(λ)

1

)

(

−1 0

0 −1

)

Figure 26. Jumps of the model
function U(λ) near λ = m.

• We have jumps on the contours sketched in Figure 25,

ARH
+ (ζ) = ARH

− (ζ)

(
1 −1
0 1

)
, arg ζ =

2π

3

ARH
+ (ζ) = ARH

− (ζ)

(
−1 0
0 −1

)
, arg ζ = π

ARH
+ (ζ) = ARH

− (ζ)

(
1 0
1 1

)
, arg ζ =

4π

3

ARH
+ (ζ) = ARH

− (ζ)

(
−1 1
−1 0

)
, arg ζ = 0

• As ζ → ∞,

ARH(ζ) = P(ζ)ζ−
1
4σ3

i

2

(
1 i
1 −i

)[
I +

1

48ζ
3
2

(
−1 −6i
−6i 1

)
+O

(
ζ−3

)]
e

2
3 ζ

3
2 σ3

Now define

U(λ) = Br3(λ)A
RH
(
ζ(λ)

)
e−

2
3 ζ

3
2 (λ)σ3e−iπ4 ǫσ3 , λ ∈ D(m, r) (9.9)

where (as before)

ζ(λ) =

[
6tei

π
2

∫ λ

m

((
M2 − µ2

) (
m2 − µ2

)) 1
2 dµ

] 2
3

∼
(
4t
√

2m(M2 −m2)
) 2

3

(λ−m), |λ−m| < r

and

Br3(λ) = N(λ)P(λ)ei
π
4 ǫσ3

(
−i −i
−1 1

)
δ(λ)σ3

(
ζ(λ)

λ−M

λ−m

) 1
4σ3

, δ(λ) =

(
λ−m

λ−M

) 1
4

is analytic near λ = m. This leads to the jump behavior of U(λ) as indicated in Figure 26, moreover we
have the matching relation,

U(λ) =

[
I +N(λ)

{
1

48ζ
3
2

(
−1 6ǫ
−6ǫ 1

)
+O

(
ζ−3

)} (
N(λ)

)−1
]
N(λ)

and thus, as t→ +∞, |s1| ↓ 1 such that κ ∈ [δ, 23
√
2− δ] with 0 < δ < 1

3

√
2 fixed,

U(λ) =
(
I +O

(
t−1
))
N(λ)

uniformly for 0 < r1 ≤ |λ−m| ≤ r2 < min{m
2 ,

1
2 (M −m)}.
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arg ζ = π

arg ζ = π

3

arg ζ = −

π

3

+
−

+
−

+
arg ζ = 0

−

+

−

Figure 27. Jump
contour for the bare
parametrix ÃRH(ζ).

(

e
−t(κ−Π(λ))

iε e
itΩ(λ)

iε e
−itΩ(λ)

0

)

(

1 iε e
itΩ(λ)

0 1

)

(

1 0

iε e
−itΩ(λ)

1

)

λ = −m

(

−1 0

0 −1

)

Figure 28. Jumps of the model
function V (λ) near λ = −m.

For the remaining endpoint λ = −m, we put

ÃRH(ζ) = ei
π
2 σ3Ã0(ζ)e

−iπ2 σ3





−I, arg ζ ∈ (−π,−π
3 )

−
(

1 0

e−iπ(1−γ) 1

)
, arg ζ ∈ (−π

3 , 0)

(
1 0

e−iπ(1−γ) 1

)
, arg ζ ∈ (0, π3 )

(
1 0

e−iπ(1−γ) 1

)(
1 −eiπ(1−γ)

0 1

)
, arg ζ ∈ (π3 , π)

with Ã0(ζ) as in (3.41). We obtain that

• ÃRH(ζ) is analytic for ζ ∈ C\{arg ζ = −π
3 , 0,

π
3 , π}

• Along the curves shown in Figure 27,

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
1 0

e−iπ(1−γ) 1

)
, arg ζ = −π

3

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
−1 0
0 −1

)
, arg ζ = 0

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
1 −eiπ(1−γ)

0 1

)
, arg ζ =

π

3

ÃRH
+ (ζ) = ÃRH

− (ζ)

(
−1 eiπ(1−γ)

−e−iπ(1−γ) 0

)
, arg ζ = π

• As ζ → ∞,

ÃRH(ζ) = P(ζ)ζ
1
4σ3

i

2
e−iπ(1−γ)

(
1 ieiπ(1−γ)

1 −ieiπ(1−γ)

)[
I +

i

48ζ
3
2

(
1 −6i eiπ(1−γ)

−6i e−iπ(1−γ) −1

)

+O
(
ζ−3

) ]
e

2
3 iζ

3
2 σ3 .

For the parametrix itself, we put

V (λ) = Bℓ3(λ)Ã
RH
(
ζ(λ)

)
e−

2
3 iζ

3
2 (λ)σ3e−iπ4 ǫσ3 , λ ∈ D(−m, r) (9.10)
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with

ζ(λ) =

[
6t

∫ λ

−m

(
(M2 − µ2)(m2 − µ2)

) 1
2 dµ

] 2
3

∼
(
4t
√
2m(M2 −m2)

) 2
3

(λ+m), |λ+m| < r

and the locally analytic multiplier

Bℓ3(λ) = N(λ)P(λ)ei
π
4 ǫσ3

(
−ieiπ(1−γ) −ieiπ(1−γ)

−1 1

)
δ̃(λ)−σ3

(
ζ(λ)

λ+M

λ+m

)− 1
4σ3

V (λ) =

[
I +N(λ)

{
i

48ζ
3
2

(
1 6ǫ eiπ(1−γ)

−6ǫ e−iπ(1−γ) −1

)
+O

(
ζ−3

)} (
N(λ)

)−1
]
N(λ)

so that as t→ ∞, |s1| ↓ 1 such that κ ∈ [δ, 23
√
2− δ],

V (λ) =
(
I +O

(
t−1
))
N(λ)

uniformly for 0 < r1 ≤ |λ+m| ≤ r2 < min{m
2 ,

1
2 (M −m)}. This completes the construction of the relevant

local model functions. For λ close to ±M , we can simply work with the same functions P (λ) and Q(λ) as
in (3.47) and (3.51).

9.5. Ratio transformation. We work with the ratio function R(λ) defined in (3.53) but with H(λ) from
(9.8), U(λ) from (9.9), V (λ) from (9.10) and N(λ) as in (9.6). By construction, R(λ) is characterized by the
following properties.

• R(λ) is analytic for λ ∈ C\ΣR where the contour ΣR is shown in Figure 17. This follows directly
from our construction of N(λ) and H(λ) as both functions precisely match the jump behavior of
L(λ) in the gap (−m,m), compare (9.1).

• The jumps of R(λ) are only slightly different from the ones listed in Section 3.9. We choose not to
list all expressions explicitly, instead only collect the important estimation

R+(λ) = R−(λ)GR(λ; t, |s1|), ‖GR(·; t, |s1|)− I‖L2∩L∞(ΣR) ≤
c

t
, c > 0 (9.11)

as t → +∞, |s1| ↓ 1 such that κ ∈ [δ, 23
√
2 − δ] for 0 < δ < 1

3

√
2 fixed, provided we stay away from

the singular points (x, s1) ∈ Zn.
• As λ→ ∞, we have that R(λ) → I.

With the help of estimation (9.11) the RHP for R(λ) can be solved asymptotically in L2(ΣR) and we have
for its unique solution

‖R−(·; t, |s1|)− I‖L2(ΣR) ≤
c

t
.

9.6. Singular transition asymptotics. Just as in the regular case, we have the exact identity

u(x|s) = 2
√
−x lim

z→∞

[
zetℓσ3N(z)R(z)e−t(g(z)−ϑ(z))σ3

]
12

= 2
√
−x e2tℓ

[(
N1

)
12

+
1

2
Ẽ(κ)

]

where

Ẽ(κ) = i

π

∫

ΣR

(
R−(w)

(
GR(w)− I

))
12
dw = O

(
t−1
)
.

Notice that with (3.24) and (B.1),

(
N1

)
12

= − θ(0)

θ( τ2 + tV )

θ(u(∞)− τ
2 − tV − d)

θ(u(∞)− d)

M −m

2i
e−2πiu(∞)ei

π
2 ǫ =

θ3(0|τ)
θ2(0|τ)

θ3(tV |τ)
θ2(tV |τ)e

iπtV M −m

2i
ei

π
2 ǫ

and hence we obtain

u(x|s) =
√
−x e2tℓ

[
−ǫ(M −m)

θ3(0|τ)
θ2(0|τ)

θ3(tV |τ)
θ2(tV |τ)e

iπtV + Ẽ(κ)
]
. (9.12)

Now using Proposition 3.17, combining it with (1.34) and the identities

M −m =
1√
2

1− k√
1 + k2

,

(
θ2(0|τ)
θ3(0|τ)

)2

=
1− k

1 + k
,
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one deduces

u(x|s) = −ǫ
√
−x
2

1 + k√
1 + k2

dc

(
2tV K

(
1− k

1 + k

)
,
1− k

1 + k

)
+ J4(x, s),

and

Proposition 9.7. For any given δ ∈ (0, 13
√
2) there exist positive constants t0 = t0(δ), v0 = v0(δ) and

c = c(δ) such that
∣∣J4(x, s)

∣∣ ≤ ct−
2
3 , ∀ t ≥ t0, v ≥ v0 : tδ ≤ v ≤ t

(
2

3

√
2− δ

)

provided (x, s1) are uniformly bounded away from the exceptional set Zn introduced in (9.7).

10. Extension at the lower end of singular transition - κ ∈
[
t−η, 23

√
2− δ

]
, η ∈ (0, 1)

The relaxation of the lower bound for κ is handled via the same approach as in Section 4, i.e. for t = (−x) 3
2

and v = − ln(|s1|2 − 1) sufficiently large such that

0 < t−η ≤ κ ≤ 2

3

√
2− δ, with fixed 0 < η < 1,

we obtain with the help of contracting radii the following analogue of (4.4)

u(x|s) = −ǫ
√
−x
2

1 + k√
1 + k2

dc

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+O

(
(−x)−1+ 3

2η
)

(10.1)

uniformly as x→ −∞, |s1| ↓ 1 such that 0 < t−η ≤ κ ≤ 2
3

√
2−δ for any 0 < η < 2

3 away from the exceptional
set (9.7). After that we would use the analogue of (4.6), respectively Remark 4.1, for the singular analysis
and this combined with improved L2 estimations gives

Ẽ(κ) = O
(
t−2+ 3

2η
)
+O

(
t−1
)
.

We summarize,

Proposition 10.1. For any given δ ∈ (0, 23
√
2), η ∈ (0, 1) there exist positive constants t0 = t0(δ, η), v0 =

v0(δ, η) and c = c(δ, η) such that

∣∣J4(x, s)
∣∣ ≤ ct−min{ 2

3 ,
5
3− 3

2η}, ∀ t ≥ t0, v ≥ v0 : t1−η ≤ v ≤ t

(
2

3

√
2− δ

)
,

provided (x, s1) are bounded away from the exceptional set (9.7).

In order to obtain estimation (1.38) in Corollary 1.15, we would choose t ≥ t0 such that 0 < κ ≤ t−
4
5 and

again (x, s1) stay away from (9.7). Then, by Corollary 3.3 we have

− ǫ

√
−x
2

1 + k√
1 + k2

dc

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
= − ǫ

√
−x

cos
(
πtV (κ)

) +O
(
(−x)− 1

10

)
. (10.2)

Next, for 0 < κ ≤ t−
4
5 with (3.10), (compare (4.7)),

πtV (κ) = −2

3
(−x) 3

2 − β̂ ln
(
8(−x) 3

2

)
+ β̂ ln

∣∣ ln
(
|s1|2 − 1

)∣∣− β̂(1 + ln 2π) +O
(
t−

3
5

)

and from Stirling’s formula

arg Γ

(
1

2
+ iβ̂

)
= argΓ

(
1

2
− i

2π
κt

)
= β̂ ln

∣∣ ln
(
|s1|2 − 1

)∣∣− β̂(1 + ln 2π) +O
(
t−

1
5

)

as κt = O
(
t
1
5

)
→ +∞. Together

πtV (κ) = −2

3
(−x) 3

2 − β̂ ln
(
8(−x) 3

2

)
− ϕ− ǫπ

2
+O

(
t−

1
5

)
(10.3)

where (compare Theorem 1.20),

ϕ = −arg Γ

(
1

2
+ iβ̂

)
− arg s1.
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We substitute (10.3) into (10.2), use the addition theorem for cosine as well as the identity

cos
(
z +

ǫπ

2

)
= −ǫ sin z, z ∈ C

to obtain, as x→ −∞,

−ǫ
√
−x
2

1 + k√
1 + k2

dc

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
=

√
−x

sin
(

2
3 (−x)

3
2 + β̂ ln

(
8(−x) 3

2

)
+ ϕ

)
+O

(
(−x)− 3

10

)

+O
(
(−x)− 1

10

)
, (10.4)

uniformly for 0 < κ ≤ t−
4
5 and away from the zeros of the trigonometric function appearing in the last

denominator. Hence, the Jacobi elliptic function leading term reproduces also here the known singular
oscillatory leading order of (1.20) for (t, v) such that t ≥ t0 and 0 < κ ≤ t−

4
5 . Next we will also obtain

control over the error J4(x, s) in the same region.

11. Further extension at the lower end for singular transition - κ ∈
(
0, t−η

]
, η ∈ ( 34 , 1)

We go back to Section 5.3 and assume throughout that both t and v = − ln(|s1|2−1) are sufficiently large
such that

t ≥ vk+1 > 0, t ≥ t0, k ∈ Z≥3. (11.1)

The difference between regular and singular transition asymptotics can be read off from (5.3),

ν = − 1

2πi
ln
(
1− |s1|2

)
= − 1

2πi
ln
(
|s1|2 − 1

)
− 1

2
≡ ν0 −

1

2
. (11.2)

Hence we can still use most of the nonlinear steepest analysis worked out in Section 5, however a crucial
differences occurs in the matching relations (5.4) and (5.6), compare [9] where the same approach was first
used in the derivation of (1.20) for fixed |s1| > 1. We shall factorize (5.4),

Ψr(λ) ∼ Er(λ)

[
I + σ−

(
β(λ)

)−2
(
−h1
s3

) ∞∑

m=1

(
(ν + 1)2m − (ν)2m

)ζ(λ)−2m−1

m! 2m
+ σ+

(
β(λ)

)2
(
− s3
h1

)

×
∞∑

m=1

(−1)m
(
(−ν)2m − (−ν − 1)2m

)ζ(λ)−2m+1

m! 2m
+

∞∑

m=1

(
(ν)2m 0
0 (−1)m(−ν − 1)2m

)
ζ(λ)−2m

m! 2m

]
ΨD(λ)

with

Er(λ) =

(
1 0

−h1

s3

β−2(λ)
ζ(λ) 1

)
.

This factorization is necessary since with (11.2)

β−2(λ)

ζ(λ)
=

(
ζ(λ)

λ+ λ∗

λ− λ∗

)−2ν0
(
λ+ λ∗

λ− λ∗

)
e2tϑ(λ

∗) = O(1),

i.e. the multiplier Er(λ) is not close to the unit matrix. Similarly,

Ψℓ(λ) ∼ Eℓ(λ)

[
I + σ+

(
β(−λ)

)−2h1
s3

∞∑

m=1

(
(ν + 1)2m − (ν)2m

)ζ(−λ)−2m−1

m! 2m
+ σ−

(
β(−λ)

)2 s3
h1

×
∞∑

m=1

(−1)m
(
(−ν)2m − (−ν − 1)2m

)ζ(−λ)−2m+1

m! 2m
+

∞∑

m=1

(
(−1)m(−ν − 1)2m 0

0 (ν)2m

)
ζ(−λ)−2m

m! 2m

]
ΨD(λ)

with

Eℓ(λ) = σ2Er(−λ)σ2.
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This means that the ratio problem (5.7) for χ(λ) cannot be solved iteratively at this point and we have to
use further transformations. First, compare [9], equation (38), we let

Φu(λ) =





χ(λ)Er(λ), |λ− λ∗| < r

χ(λ)Eℓ(λ), |λ+ λ∗| < r

χ(λ), |λ∓ λ∗| > r

where we use (this is in fact the only difference to [9]) a shrinking radius

1

4
> r =

1

v
≥ t−

1
k+1 .

The Riemann-Hilbert problem for Φu(λ) was analyzed in [9], its jump contour is identically Σχ as shown
in Figure 21 but with additional first order pole singularities at λ = ±λ∗. We choose not to reproduce the
analysis here, compare equations (40) − (42) in [9]. Subsequently the singular structure was resolved by
another transformation

Φu(λ) = (λI +B)Φd(λ)

(
(λ− λ∗)−1 0

0 (λ+ λ∗)−1

)
, λ ∈ C\Σχ

where the λ independent matrix B is determined algebraically as in equation (46) in [9]. It is well defined
for all values (x, s1) bounded away from the discrete set

2

3
t+ β̂ ln(8t) + ϕ = nπ, (11.3)

compare again [9], shortly before Remark 3. If we agree to stay away from the latter exceptional points, the
jumps for Φd(λ) have the following structure

Φd
+(λ) = Φd

−(λ)

(
(λ− λ∗)−1 0

0 (λ+ λ∗)−1

)
ΨD(λ)S̃j

(
ΨD(λ)

)−1
(
λ− λ∗ 0

0 λ+ λ∗

)
, λ ∈ γ̃j , j = 1, . . . , 8

and

Φd
+(λ) = Φd

−(λ)

(
(λ− λ∗)−1 0

0 (λ+ λ∗)−1

)
E−1

r (λ)Ψr(λ)
(
ΨD(λ)

)−1
(
λ− λ∗ 0

0 λ+ λ∗

)
, λ ∈ Cr

Φd
+(λ) = Φd

−(λ)

(
(λ− λ∗)−1 0

0 (λ+ λ∗)−1

)
E−1

ℓ (λ)Ψℓ(λ)
(
ΨD(λ)

)−1
(
λ− λ∗ 0

0 λ+ λ∗

)
, λ ∈ Cℓ.

Hence we have

GΦd(λ) = I +O
(
ed1κt−d2tr

2
)
, λ ∈ γ̃j , j = 1, . . . , 8

so that (just as before in (5.8)),

‖GΦd(·; t, |s1|)− I‖L2∩L∞(∪γ̃j) ≤ d3e
−d4t

k−1
k+1

, k ∈ Z≥3 (11.4)

For λ ∈ Cr we estimate

|GΦd(λ; t, |s1|)− I| ≤ c

{
(κt)2

rt

(
1 e−

3
4κteϕ̂(r)(κt)−

3
2

e
3
4κte−ϕ̂(r)(κt)−

1
2 1

)
+ Ē(λ; t, |s1|)

}

with

ϕ̂(r) =
κt

π
arg

(
ζ(λ)

λ+ λ∗

λ− λ∗

)
.

Thus, using again bounds for the error term Ē from [30], we obtain that with the contracting radius

‖GΦd(·; t, |s1|)− I‖L2∩L∞(Cr∪Cℓ) ≤ d3t
− k−2

k+1 , ∀ t ≥ vk+1 > 0, t ≥ t0, k ∈ Z≥3. (11.5)

Combining estimations (11.4) and (11.5) we can thus solve the Φd-RHP asymptotically subject to the scale
(11.1) as long as we stay away from the discrete set of points (x, s1) defined via (11.3). The derivation of the
leading order follows now as in [9], we only have to adjust the error terms according to (11.5): from equation
(51) in [9],

u(x|s) = 2
√
−xB12 +O

(
(−x)−

2k−7
2(k+1)

)
, k ∈ Z≥4,
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where we used (11.5) and the a-priori estimation for the unique solution of the Φd-RHP. The matrix entry
B12 is then computed explicitly in [9] and we only have to adjust the error terms. Hence,

u(x|s) =
√
−x

sin
(

2
3 (−x)

3
2 + β̂ ln

(
8(−x) 3

2

)
+ ϕ

)
+O

(
(−x)−

3(k−2)
2(k+1)

) +O
(
(−x)−

2k−7
2(k+1)

)

as x→ −∞ subject to the scale (11.1) for k ∈ Z≥4 provided we stay away from the points (x, s1) defined im-
plicitly via (11.3). The latter estimation, with k = 4, appears in Corollary 1.15, expansion (1.38). Moreover,
with (10.4), we have now shown that

u(x|s) = −ǫ
√
−x
2

1 + k√
1 + k2

dc

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+ J4(x, s),

and

Proposition 11.1. There exist positive constants t0 and c such that
∣∣J4(x, s)

∣∣ ≤ ct−
1
15 , ∀ t ≥ t0, 0 < v ≤ t

1
5

provided (x, s1) are uniformly bounded away from the set (9.7).

This concludes the proof of estimation (1.36) in Theorem 1.14, we just have to combine Propositions 10.1
(with η = 4

5 ) and 11.1.

12. Extension at the upper end for singular transition - κ ∈
[
2
3

√
2− f1

t
, 23

√
2
)
, f1 > 0

We choose t ≥ t0 and v = − ln(|s1|2 − 1) sufficiently large such that

2

3

√
2− f1

t
≤ κ <

2

3

√
2 ⇔ 0 < σ ≡ 2

3

√
2− κ ≤ f1

t
, f1 > 0. (12.1)

This implies with (3.10),

0 <
∣∣2tV (κ)

∣∣ ≤ cf4
ln t

, c > 0 universal.

In other words, we can always guarantee that for sufficiently large t and − ln(|s1|2 − 1) subject to (12.1) the
exceptional set Zn is empty, and thus u(x|s) is asymptotically pole-free. This is important as we can now
go back to Section 6 and simply repeat our line of reasoning, modulo minor adjustments. First, from (9.6),

N(λ) = ei
π
4 ǫσ3

θ(0|τ ′)
θ(τ ′( τ2 + tV )|τ ′)e

−2πiτ ′u(∞)tV σ3

(
N̂

(+)

1 (λ)φ(λ) N̂
(+)

2 (λ)φ̂(λ)

−N̂ (−)

1 (λ)φ̂(λ) N̂
(−)

2 (λ)φ(λ)

)
e2πiτ

′u(λ)tV σ3e−iπ4 ǫσ3 ,

valid for any λ ∈ C\[−M,M ] and where
(
N̂

(±)

1 (z), N̂
(±)

2 (z)

)
=

(
θ(τ ′(u(z) + tV + τ

2 ± d)|τ ′)
θ(τ ′(u(z)± d)|τ ′) ,

θ(τ ′(−u(z) + tV + τ
2 ± d)|τ ′)

θ(τ ′(−u(z)± d)|τ ′)

)
.

But

θ
(
τ ′
(
u(z) + tV +

τ

2
± d
)
|τ ′
)
= θ4

(
τ ′ (u(z) + tV ± d) |τ ′

)
, z ∈ CP

1\[−M,M ],

and thus with (6.1) and (6.2), subject to (12.1),

N̂
(±)

1 (λ) = 1 +O
(√

σ

| lnσ|

)
, N̂

(±)

2 (λ) = 1 +O
(√

σ

| lnσ|

)
.

Summarizing, Proposition 6.1 also applies to the singular transition x→ −∞, |s1| ↓ 1 subject to (12.1). Now
following the logic of Section 6, we would employ the sequence of transformations

Y (λ) 7→ X(λ) 7→ Z(λ) 7→ T (λ) 7→ S(λ)
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but not open lenses, compare (9.1). Instead, just as in Section 6, a new parametrix Ĵ(λ) is introduced on

the contracting segment (−r̂, r̂) ⊂ (−M,M) with r̂ as in (6.8). The difference between Ĵ(λ) and J(λ) as
considered in RHP 6.2 is minor, we would simply enforce

Ĵ+(λ) = Ĵ−(λ)

(
−e−t(κ−Π(λ)) iǫ

iǫ 0

)
, λ ∈ (−r̂, r̂).

This difference amounts to an additional sign in the (12)-entry of (6.9) which contains the Cauchy transform.
However, subsequently all steps are identical to Section 6 and we obtain

u(x|s) = −ǫ
√

−x
2

1 + k√
1 + k2

dc

(
2(−x) 3

2V K

(
1− k

1 + k

)
,
1− k

1 + k

)
+ J4(x, s)

with

Proposition 12.1. For any given f1 > 0 there exist positive constants t0 = t0(f1), v0 = v0(f1) and c = c(f1)
such that

∣∣J4(x, s)
∣∣ ≤ c

ln t
, ∀ t ≥ t0, v ≥ v0 :

2

3

√
2 t− f4 ≤ v <

2

3

√
2 t.

This completes the proof of Theorem 1.14 and expansion (1.39) in Corollary 1.15 is derived as in the
regular transition case.

13. Singular transition analysis near and above the separating line -

κ ∈
[
2
3

√
2− f2

t
,∞
)
, f2 ∈ R

In order to derive Theorem 1.16 we would choose identical steps as those in Section 7: We work with
the same outer parametrix Υ(λ) as in (7.7) and the same endpoint parametrices ∆r(λ) in (7.13) and ∆ℓ(λ)
in (7.15). The only (minor) difference occurs in the definition of F (λ), i.e. in the definition of the origin
parametrix. For the singular transition we require the jump behavior

F̂+(λ) = F̂−(λ)

(
−e−t(κ−Π(λ)) iǫ

iǫ 0

)
, λ ∈ (−r, r); Π(λ) =

8

3

(
1

2
− λ2

) 3
2

instead of (7.10). This difference is resolved by an additional sign in the (12)-entry containing the Cauchy
transform in (7.11). After that we have to replace the matching (7.12) through

F̂ (λ) =

(
I − ǫ

2π

eσt

ζ(λ)
B0(λ)σ+B

−1
0 (λ) +O

(
t−1
))

Υ(λ)

and then simply copy all subsequent steps carried out in Section 7. This leads us to

u(x|s) = −ǫ
√
−x
2

(
1 +

1

2π

eσt

(t
√
2)

1
2

+ J5(x, s)

)
, σ =

2

3

√
2− κ, t = (−x) 3

2

with

Proposition 13.1. For any given f2 ∈ R there exist positive t0 = t0(f2), v0 = v0(f2) and c = c(f2) such
that

∣∣J5(x, s)
∣∣ ≤ ct−1 ∀ t ≥ t0, v ≥ v0, v ≥ 2

3

√
2 t− f2,

and thus completes the proof of Theorem 1.16.

Appendix A. Expansions of complete elliptic integrals

We frequently use the elliptic integrals E(k) and K(k) defined as

E(k) =

∫ 1

0

√
1− k2t2

1− t2
dt, K(k) =

∫ 1

0

dt√
(1− k2t2)(1− t2)

, k ∈ (0, 1).
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For k ↓ 0 or k ↑ 1, the expansions of E(k),K(k) are well known, compare for instance [30]:

K(k) =

∞∑

m=0

( 12 )m( 12 )m

m!m!
(1− k2)m

(
−1

2
ln(1− k2) + d(m)

)
, 0 <

√
1− k2 < 1;

E(k) = 1 +
1

2

∞∑

m=0

( 12 )m( 32 )m

(2)mm!
(1− k2)m+1

(
−1

2
ln(1− k2) + d(m)− 1

(2m+ 1)(2m+ 2)

)
,

with

d(m) = ψ(1 +m)− ψ

(
1

2
+m

)
, d(0) = 2 ln 2; (a)n =

Γ(a+ n)

Γ(a)
, a 6= 0,−1,−2, . . .

and ψ(x) denoting the digamma function. Furthermore,

K(k) =
π

2

∞∑

m=0

( 12 )m( 12 )m

m!m!
k2m, E(k) =

π

2

∞∑

m=0

(− 1
2 )m( 12 )m

m!m!
k2m, |k| < 1.

Appendix B. Jacobi theta and elliptic functions used in the text

The Jacobi theta functions θ2(z), θ3(z), θ4(z) used in the text are defined by the formulæ (see e.g. [30])
where ℑτ > 0,

θ3(z|τ) ≡ θ(z|τ) = 1 + 2

∞∑

k=1

eiπk
2τ cos(2πkz),

θ4(z|τ) = θ3

(
z +

1

2

∣∣∣∣ τ
)

= 1 + 2
∞∑

k=1

(−1)keiπk
2τ cos

(
2πkz

)
,

θ2(z|τ) = ei
π
4 τ+iπzθ3

(
z +

τ

2

∣∣∣∣ τ
)

= 2
∞∑

k=0

eiπ(k+
1
2 )

2τ cos
(
(2k + 1)πz

)
. (B.1)

The zeros of the theta functions are located at

θ4

(τ
2

)
= 0, θ2

(
1

2

)
= 0, θ3

(
1

2
+
τ

2

)
= 0,

up to shifts by vectors of the lattice Λ = Z + τZ; all zeros are simple. Now set q = eiπτ and denote
θj(z|τ) ≡ θj(z, q). With

q = exp

[
−πK

′(k)

K(k)

]
, k =

(
θ2(0, q)

θ3(0, q)

)2

∈ (0, 1), K ′(k) = K(k′), k′ =
√
1− k2

the Jacobi elliptic functions cd(z, k) and dc(z, k) are given by the formulæ

cd(z, k) =
θ3(0, q)

θ2(0, q)

θ2(ζ, q)

θ3(ζ, q)
=

1

dc(z, k)
; ζ =

z

2K(k)

for all values z ∈ C away from the zeros of θ3, resp. θ2 appearing in the denominators. Finally we note that
by an application of a Landen transformation,

2
K(k)

K ′(k)
=
K ′(λ)

K(λ)
, λ =

1− k

1 + k
, λ′ =

√
1− λ2.
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[20] A. Fokas, A. Its, A. Kapaev, V. Novokshenov, Painlevé Transcendents. The Riemann-Hilbert Approach, AMS Series:
Mathematical Surveys and Monographs, vol. 128, 2006

[21] I. Gradshteyn, I. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2007
[22] S. Hastings, J. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de
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