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In the present article, we discuss the late inspiral and then the transition regime to the plunge
phase of a secondary, less massive compact object into a more massive braneworld black hole, in
the context of an extreme-mass-ratio inspiral. We obtain the approximate expressions for fluxes
due to slowly evolving constants of motion, such as the energy and the angular momentum, in the
presence of the tidal charge inherited from the higher spacetime dimensions for an extreme-mass-
ratio system. These expressions for fluxes are further used to introduce dissipative effects while
modeling the inspiral to the plunge phase through the transition regime. Within our setup, we
provide a qualitative understanding of how the additional tidal charge present in the braneworld
scenario may affect the timescale of the late inspiral to the plunge, in particular, by enhancing the
time scale of the transition regime. Finally, we provide an estimate for the tidal charge from the
higher dimensions, using the observable aspects of the transition regime from the late inspiral to
the plunge by the gravitational wave detectors.

I. INTRODUCTION

The overwhelming success story of general relativity (GR) is prospered with the addition of recent observational
predictions, especially in terms of the gravitational wave (GW) astronomy [1–3] and black hole shadow [4, 5]. The GWs
emitted during the merger of two compact objects hold rich information about the background spacetime and hence
about the theory of gravity under consideration [6–8]. So far, all the GW signals originating from such merger events
are consistent with the predictions from general relativity [9, 10]. The same holds true for the shadow measurements of
M87* and SgrA* black holes by the Event Horizon Telescope, whose findings are also consistent with general relativity
[11, 12]. However, the black hole solutions in general relativity are riddled with singularities [13, 14], the existence
of the Cauchy horizon threatens the deterministic nature of the field equations [15, 16], and finally, the information
loss paradox [17–19] questions the validity of the equivalence principle. All of these suggestions motivate us to look
for alternatives to general relativity, or, maybe alternatives to black holes [20, 21].

Here, we will consider one particular approach, namely the braneworld scenario, which is an alternative to general
relativity [22, 23]. In this theory, the compact objects are quantum corrected and hence need not satisfy the properties
of a classical black hole spacetime [24–26]. The modifications over and above Einstein’s equations in the vacuum are
due to the projected bulk Weyl tensor, i.e., the presence of a non-trivial bulk geometry alters the gravitational field
as seen by a four-dimensional observer [27–29]. If such modifications can be probed, they will provide tantalizing
evidence in favour of the existence of extra spatial dimensions. Moreover, such extra dimensions are often endowed
with a negative cosmological constant, and hence by the AdS/CFT correspondence, there will be non-trivial effects
due to the quantum CFTs on the brane. All of these modifications lead to corrections to the background geometry and
also modify the near horizon behaviour of the spacetime. Implications on the stability of the braneworld geometry, due
to such modified near horizon behaviour, for both rotating and non-rotating spacetimes have already been explored
[30–35]. Further, the effect of such corrections on the tidal properties of compact objects, as well as on the quasi-
normal mode frequencies, have been computed and contrasted with the real GW data from GW150914 and GW170817
[36–38]. However, all of these results are in the context of binaries, having equal/nearly-equal mass ratios. In what
follows, we will concentrate on the binaries having extreme mass ratios and in particular, we will consider the plunge
phase, which joins the inspiral phase to the merger phase. For, equal/nearly-equal mass ratio binaries, this phase is
very short-lived and hence is not of much importance, but for binary systems with extreme mass ratio, this phase
will have a significant imprint on the GW waveform. The presence of an extra spatial dimension will also affect the
inspiral phase and may depict a significant departure from the prediction of general relativity, at least for extreme
mass ratio binaries. However, an accurate description of the inspiral phase of any such extreme mass ratio binary
also involves various subtle effects, e.g., the self-force. Though these effects are well understood in general relativity,
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their behaviour in the presence of extra spatial dimension has not been attempted before and is a challenging task to
perform. Thus, in this work we concentrate on the plunging phase of an extreme mass ratio binary system, with an
extra spatial dimension, rather than studying the inspiral phase. Moreover, the plunging phase happens close to the
horizon, and hence one expects the corrections from the higher spatial dimension to be of importance. It is worthwhile
to mention that these braneworld models are favoured in the context of black hole shadow measurement, however, the
existence of large uncertainties in the measurement of the shadow radius, hinders any stronger predictions [39, 40].

Till now, we have observed numerous merger events between compact objects through the ground-based GW
detector, namely, the LIGO-Virgo collaboration [41]. These events are characterized by equal or nearly equal mass
ratios in which the GW frequency falls in the Hz to kHz range. In order to probe the other spectrum, e.g., the merger
of compact objects having extreme/intermediate mass ratios, which requires the GW detectors to be sensitive to the
frequencies ranging from mHz to Hz [42–45]. In that regard, the Laser Interferometer Space Antenna (LISA), a future
space-based GW detector, is going to detect such low-frequency GW signal, typically radiated in the binary systems
undergoing extreme mass ratio inspiral (EMRI) [46, 47]. These GW sources are extremely interesting in their own
right, since they have a prolonged inspiral phase there are many subtle effects which can be observed through them,
e.g., gravitational self-force [48]. In addition, due to this long timescale involved with the inspiral, the modelling of
gravitational waves emitted in these systems becomes extremely challenging, and some of the recent findings in this
field can be found in Refs. [49–51]. In the present article, as already emphasized, we are interested in modelling an
EMRI at its final stage, i.e., inspiral to plunge [52–54]. Due to the proximity of the infalling smaller mass compact
object to the horizon of the supermassive object and the significant duration spent in this plunge phase, it is expected
that this phase will hold important information about the nature of geometry in the strong gravity regime. Thus
we wish to explore, the possibility of distinguishing a spacetime inheriting an extra spatial dimension from the usual
four-dimensional spacetime using the plunge phase in an EMRI system.

The paper is organized as follows: We start Section II with the geometrical aspects of the rotating BH solution
on the brane and then discuss the properties of circular geodesics in this spacetime. Subsequently, in Section III,
we compute the fluxes of the energy, the angular momentum, and the Carter constant for an inspiralling secondary
compact object, treated as a test particle in the spacetime of the more massive primary object, described by the
braneworld BH. Using these fluxes, we compute the trajectory of the secondary object as it progresses from the late
inspiral to the plunge through a transition regime, in Section IV and then also point out the observational implications.
We conclude with a discussion of the results obtained. Several derivations have been reserved for the appendices,
namely Appendix A to Appendix D.

Notations and Conventions: Throughout this work, we set the fundamental constants, namely G and c to unity. The
Greek indices, µ, ν, · · · denote the four-dimensional spacetime coordinates. We follow the mostly positive signature
convention, e.g., the four-dimensional flat metric will take the form, ηµν = diag.(−1,+1,+1,+1).

II. ROTATING BLACK HOLE ON THE BRANE

In this section, we will briefly review the basic properties of the rotating black hole solution on the brane and
then we will explore the nature of circular orbits in this spacetime. Since our analysis will be in a region, which
is away from the horizon and will depend only on the geometry of the exterior spacetime, without any reference to
the horizon properties, it does not matter if we consider the compact object as a classical or, a quantum black hole.
The construction of the rotating metric starts from the effective gravitational field equations on the four-dimensional
brane hypersurface, embedded in a five-dimensional spacetime, namely the bulk. The effective field equations are
obtained by projecting the bulk Einstein’s equations on the lower dimensional brane hypersurface and in this process,
non-trivial bulk physics gets imprinted on the brane. Such that, the gravitational dynamics on the vacuum brane gets
described by [27],

(4)Gµν + Eµν = 0 , (1)

where (4)Gµν is the Einstein tensor constructed using brane geometry alone and Eµν is the projection of the bulk
Weyl tensor on the brane hypersurface. Thus the bulk dynamics makes its presence felt on the brane, through this
tensor Eµν . Given the traceless nature of Eµν , owing to the symmetry properties of the Weyl tensor, one can assume
this term to be equivalent to the energy-momentum tensor of a Maxwell field, with an overall negative sign [55, 56].
The Maxwell charge, e.g., would be related to the length of the extra dimension, through the bulk geometry. In
the presence of static and spherical symmetry, the correction to the gtt and grr components of the Schwarzschild
spacetime, due to the projection of the bulk Weyl tensor, is of the form qM2/r2, where q is a dimensionless constant,
which can be negative as well. While, in the context of axisymmetry, the metric of a rotating black hole on the brane,
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is presented by the following line element [57],

ds2 = −
(
1− 2Mr − qM2

ρ2

)
dt2 −

2a sin2 θ
(
2Mr − qM2

)
ρ2

dtdϕ+ ρ2
(
dr2

∆
+ dθ2

)
+

{
r2 + a2 +

a2 sin2 θ
(
2Mr − qM2

)
ρ2

}
sin2 θdϕ2 . (2)

Here, in analogy with the Kerr spacetime, we have defined, ρ2 ≡ r2 + a2 cos2 θ and ∆ ≡ r2 − 2Mr + a2 + qM2. The
main difference of the above line element with that of the Kerr-Newman spacetime is that the charge term q can
take negative values. In particular, for positive values of q one recovers the Kerr-Newman spacetime from Eq. (2),
by substituting, qM2 → Q2. Normally, astrophysical black holes cannot have electric charge, either due to charge
neutralization with surrounding plasma, or, due to novel shielding effect [58], but since the origin of q is from the bulk
geometry, the presence of extra dimension can lead to non-zero and negative values for q [29].

Since we wish to study EMRI, circular orbits play the most important role in this analysis. In what follows, we will
first determine the geodesic equations on the equatorial plane and then shall restrict ourselves to the circular orbits.
In particular, we are interested in the inner-most stable circular orbit (ISCO), as the smaller mass black hole, after
crossing the ISCO, plunges into the higher mass black hole. For this purpose, we note that the rotating spacetime
on the brane has two Killing vectors, (∂/∂t)µ and (∂/∂ϕ)µ, owing to the fact that the metric elements in Eq. (2)
neither depend on t, nor on ϕ. As a consequence, the energy and the angular momentum of the geodesics must be
conserved. On the equatorial plane, the conserved energy and the conserved angular momentum, per unit mass, can
be expressed as,

E =

(
1− 2M

r
+
qM2

r2

)
ṫ+ a

(
2M

r
− qM2

r2

)
ϕ̇ , (3)

Lz = −a
(
2M

r
− qM2

r2

)
ṫ+

{
r2 + a2 + a2

(
2M

r
− qM2

r2

)}
ϕ̇ . (4)

Note that on setting q = 0, we will get back the respective expressions for energy and angular momentum of geodesics
on the equatorial plane of Kerr spacetime. One can also invert Eq. (3) and Eq. (4), in order to express the velocities

ṫ and ϕ̇ in terms of the metric parameters and the energy E and the angular momentum Lz. Moreover, the radial
motion of the geodesics on the equatorial plane will be governed by,

ṙ2 =
∆

r2

[
− δ1 +

r2 + a2 + a2
(

2M
r − qM2

r2

)
∆

E2 −
2a

(
2Mr − qM2

)
r2∆

ELz −
∆− a2

r2∆
L2
z

]
. (5)

Keeping future utility in mind, we wish to rewrite the above equation in a particular form, by multiplying it throughout
by r2 and rearranging terms appropriately, yielding,

r2ṙ2 = −∆δ1 + r2E2 +
(
a2E2 − L2

z

)
+

(
2M

r
− qM2

r2

)
(aE − Lz)

2
. (6)

Such that, for a massive particle the radial geodesic equation becomes,

ṙ2 =
1

r4

[
−∆r2 + r2

(
r2 + a2

)
E2 − r2L2

z −
(
−2Mr + qM2 + r2 + a2

)
(aE − Lz)

2
+
(
r2 + a2

)
(aE − Lz)

2
]

=
1

r4

[
−∆

{
r2 + (aE − Lz)

2
}
+
(
r2 + a2

)2
E2 + a2L2

z − 2aELz

(
r2 + a2

)]
=

1

r4

[
−∆

{
r2 + (aE − Lz)

2
}
+
{(
r2 + a2

)
E − aLz

}2
]
. (7)

Note that the limit of this equation to the Kerr and the Schwarzschild spacetime is straightforward and yields the
desired result for the radial geodesics in these spacetimes. As evident, the effect of the tidal charge arises through the
metric coefficient ∆(r). This equation, along with Eq. (3) and Eq. (4) describes geodesics moving on the equatorial
plane of the rotating braneworld scenario. We would like to emphasize once again that this analysis is going to be
unaffected by the nature of the compact objects, i.e., whether the central compact object is a black hole or, an exotic
compact object. For simplicity we will assume the above solution to describe a black hole spacetime.

Having derived the geodesic equations on the equatorial plane, let us concentrate on the determination of the
circular geodesics. These geodesics will satisfy both ṙ = 0, as well as r̈ = 0, yielding two algebraic equations for the
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conserved energy and angular momentum. Solving these two equations, we obtain the energy and angular momentum
associated with a circular orbit on the equatorial plane of the braneworld black hole, located at radius r, to yield,

E(circ) =
1− 2M

r + qM2

r2 ± a
r

√
M
r − qM2

r2√
1− 3M

r + 2qM2

r2 ± 2a
r

√(
M
r − qM2

r2

) , (8)

Lz(circ) = ±
√
Mr

(
1 + a2

r2

)√
1− qM

r ∓ 2a
r

(√
M
r − qM2

2r
√
Mr

)
√
1− 3M

r + 2qM2

r2 ± 2a
r

√(
M
r − qM2

r2

) . (9)

In the above expressions for energy and angular momentum associated with a circular orbit, of radius r, on the
equatorial plane of the braneworld black hole, the ‘+’ sign corresponds to circular orbits co-rotating with the black
hole and ‘-’ sign describes circular orbits counter-rotating to the black hole. The determination of the ISCO requires
one additional conditions, namely, not only ṙ and r̈ should vanish, but

...
r should vanish as well. These conditions can

be understood as follows — first of all, ṙ = 0 demands that the energy and the effective potential should match at that
radius, and then r̈ = 0 demands that, at this radius the potential should have a minima, such that (dV/dr) = 0. In
general, for stable circular orbits (d2V/dr2) > 0, but the ISCO being the limiting case, actually satisfies (d2V/dr2) = 0
and hence we have to set

...
r = 0, as well. This yields,

−2 + 2E2
(circ) +

(
4M

r3
− 6qM2

r4

)(
aE(circ) − Lz(circ)

)2
= 0 . (10)

We now have three equations, the expressions for energy and angular momentum follows from Eq. (8) and Eq. (9),
respectively, while Eq. (10) provides the condition for ISCO. One can substitute for E(circ) and Lz(circ) from Eq. (8)
and Eq. (9), respectively, in Eq. (10), and the following algebraic equation satisfied by the radius of the ISCO can be
obtained (see Appendix A for a derivation),

r3 − 6Mr2 − 4q2M3 + 9qM2r − 3a2r + 4qMa2 ± 8 (r − qM) a
√
Mr − qM2 = 0 . (11)

One can check that in the limit q → 0, the above algebraic equation reduces to the one satisfied by ISCO in Kerr
spacetime. Once again, the ‘+’ sign refers to ISCO, co-rotating with the black hole, while the ‘-’ sign refers to the
counter-rotating ISCO, moving opposite to the direction of rotation of the black hole. The solution of the above
equation is complicated, and hence will not be presented here in analytic form. We would like to emphasize that the
ISCO denotes the transition regime between the in-spiral and the plunge and hence will find numerous use in the
subsequent sections.

III. COMPUTING FLUXES DURING IN-SPIRAL ON THE BRANE

In this section, we will discuss the dynamics of EMRI, in which the central massive black hole inherits contributions
from the brane, while the other smaller mass black hole, in-spiraling around the more massive black hole, can be
treated as a test particle. The background spacetime due to the massive central black hole has three hairs — the
mass M , the rotation parameter a, and the contribution from the brane q — all of these hairs affect the movement of
the smaller black hole of mass m. Note that, the charge q, inherited from the extra dimensions can have both positive
and negative signs and we wish to determine how the energy loss in the form of gravitational radiation, arising out of
the in-spiral of the smaller mass black hole around the larger mass, gets affected by a non-zero choice for this tidal
charge.

Of course, the general scenario requires a full numerical analysis, however, in this work we will show that analytical
results can be derived by ignoring terms O(a2/r2), as well as terms of O(aM2/r3) and O(aq/r3). The above terms
can be ignored under the assumptions of slow rotation and large distance approximation, which is valid as long as
the smaller mass black hole is at a distance comparable to that of the ISCO of the central massive black hole. The
motion of the smaller mass can be derived using the following Lagrangian (for a derivation, see Appendix B),

Leff =
m

2

[
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

]
+
mM

r
− 2maM sin2 θϕ̇

r
− mqM2

2r2
, (12)
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where ‘dot’ denotes derivative with respect to the Boyer-Lindquist time coordinate ‘t’. It is to be noted that in
the q = 0 limit, it reduces to the corresponding Lagrangian for Kerr spacetime, derived in [59]. Also note that
for θ = (π/2), i.e., on the equatorial plane, under the small rotation and large distance approximation, the above
expression coincides with the one in Eq. (4), with ṫ = 1. Moreover, as evident, the above effective Lagrangian
does not depend explicitly on the ϕ coordinate and as a consequence, we have the conserved angular momentum
Lz = (∂Leff/∂ϕ̇), whose explicit evaluation yields,

Lz = mr2 sin2 θϕ̇− 2maM

r
sin2 θ . (13)

It is possible to invert this relation and obtain, ϕ̇ in terms of the conserved angular momentum Lz. In addition to the
angular momentum, due to the existence of a Killing tensor, there is another conserved quantity, namely the Carter
constant, which can be expressed as (see Appendix B for a derivation),

Q+ L2
z = m2r4

[
θ̇2 + sin2 θϕ̇2

]
− 4am2Mr sin2 θϕ̇ . (14)

For the radial coordinate, on the other hand, the geodesic equation derived from the above effective Lagrangian Leff

reads,

r̈ = r(θ̇2 + sin2 θϕ̇2)− M

r2
+
qM2

r3
+

2aMϕ̇ sin2 θ

r2
. (15)

Using Eq. (13), we can replace the sin2 θϕ̇ term in terms of the conserved angular momentum Lz, in the above geodesic

equation for the radial coordinate. Besides, the term involving θ̇2 and ϕ̇2 can also be expressed in terms of the Carter
constant Q and conserved angular momentum Lz, from Eq. (14). Such an exercise yields

r̈ =
Q+ L2

z

m2r3
− M

r2
+
qM2

r3
+

6aMLz

mr4
. (16)

Therefore, we have arrived at the desired form of the radial geodesic equation. As evident, the above differential
equation for the radial coordinate is a second-order equation, with terms involving r−2, r−3, and r−4, respectively.
Such a differential equation can be solved exactly in a parametrized form, yielding (see Appendix C),

r =
1

1 + e cosψ

(
qM +

Q+ L2
z

m2M

)[
1 +

6am3M2Lz

(Q+ L2
z + qm2M2)2

(
1 +

e

3
cosψ

)]
. (17)

Here e is the eccentricity of the orbit, and we define the parameter ψ as a solution of the differential equation,

dt

dψ
=

(
Q+ L2

z + qm2M2
)3/2

m3M2

[
1 +

6am3M2Lz

(L2
z + qm2M2)

2

]
1

(1 + e cosψ)2
. (18)

Note that the radial coordinate depends explicitly on the tidal charge q. For a = 0, the above solution for r reduces to
that of an ellipse, as expected for a Keplerian problem, and ψ in that context would correspond to the angle between
the location of the object and its periastron, as seen from the central compact object.

For equatorial circular orbits, we can set the eccentricity e = 0 and the Carter constant identically vanishes, so that
we have Q = 0 and the radius of the circular orbit becomes,

rcirc =

(
qM +

L2
z

m2M

)[
1 +

6am3M2Lz

(L2
z + qm2M2)2

]
. (19)

Interestingly, it is also possible to arrive at the above expression by some approximations. In particular, we can start
with the ansatz r = rkerr + g(q, a), where rkerr is the equatorial plane circular orbit with q = 0, i.e., the Kerr case
and g(q = 0, a) = 0. By substituting the above ansatz into Eq. (16), and setting r̈ = 0, we will arrive at the above
expression for the circular orbit, rcirc (for a derivation, see Appendix D).
For non-equatorial but circular orbits, the radius can be derived from Eq. (16), by setting r̈ = 0 and then solving the

corresponding algebraic equation in the radial coordinate r, or, by simply setting eccentricity to be zero in Eq. (17).
Either of these yields the same result, i.e.,

rnoneq,circ =

(
qM +

Q+ L2
z

m2M

)[
1 +

6am3M2Lz

(Q+ L2
z + qm2M2)2

]
. (20)
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On the other hand, for any circular orbit, the energy associated with the orbit reads (for a derivation, see Eq. (B16)
in Appendix B).

Enoneq,circ =
m

2
r2

(
θ̇2 + sin2 θϕ̇2

)
− mM

r
+
mM2q

2r2
,

=

(
Q+ L2

z

)
+ 4am2Mr sin2 θϕ̇

2mr2
− mM

r
+
mM2q

2r2
,

= −mM
r

+
Q+ L2

z +m2M2q

2mr2
+

2JLz

r3
, (21)

where, J = aM . In the above expression we have used Eq. (14) in order to arrive at the second line, and then we
have used Eq. (13) to get the final expression. Note that the energy E , defined above, differs from the conserved
energy E, defined in the previous section, by the rest energy of the test particle, aka the smaller mass black hole, i.e.,
E = m(E − 1). Finally, substituting for the radius of the circular orbit r from Eq. (20), we obtain the energy of the
particle on a non-equatorial circular orbit as,

Enoneq,circ = − m3M2

Q+ L2
z +m2M2q

[
1− 6m3MJLz

(Q+ L2
z + qm2M2)2

]
+

m3M2

2 (Q+ L2
z +m2M2q)

[
1− 12m3MJLz

(Q+ L2
z + qm2M2)2

]

+
2m6M3JLz

(Q+ L2
z +m2M2q)

3

= − m3M2

2 (Q+ L2
z +m2M2q)

[
1− 4m3MJLz

(Q+ L2
z + qm2M2)2

]
. (22)

It should be emphasized that, even though we mention the above orbit to be circular, it is simply in the sense that
r = constant, since the orbit is not even confined to a single plane. This can be seen from Eq. (13) and Eq. (14), from
which it is clear that,

ϕ̇− 2J

r3
=

Lz

r2 sin2 θ
, (23)

m2r4

[
θ̇2 +

(
ϕ̇− 2J

r3

)2
]
= Q+ L2

z , (24)

and hence the effect of rotation is to modify the ϕ̇ term by (2J/r3), with J = aM . Thus the motion of the particle is
not confined to a plane, rather it precesses about the x3 axis with a frequency (2J/r3). This information is sufficient
to convert the spherical polar coordinates, we have used so far, to the Cartesian coordinate system. This is necessary
to obtain the rate of loss of energy due to GW emission during the plunge phase. For that we notice the following
properties of the circular orbit — (a) the circular orbit is in a plane inclined at an angle ι with the equatorial plane,
and (b) the circular orbit precesses about the x3 axis with a frequency (2J/r3). Therefore, the relation between the
spherical polar coordinates and the Cartesian coordinates can be found in the following manner. To start with note
that the motion consists of circular motion, such that x′′1 = r cos(Ωt) and x′′2 = r sin(Ωt), with x′′3 = 0. Then we
perform rotation about the x′′2 axis by the inclination angle ι, leading to (x′1, x

′′
2 , x

′
3) and finally, we consider rotation

about the modified x′3 axis (taken as x3, which we take to be the spin axis of the black hole) by the precession angular
velocity (2J/r3). Therefore, we obtain the following time evolution for the Cartesian coordinates,x1x2

x3

 =

cos
(
2Jt
r3

)
− sin

(
2Jt
r3

)
0

sin
(
2Jt
r3

)
cos

(
2Jt
r3

)
0

0 0 1

×

cos ι 0 − sin ι
0 1 0

sin ι 0 cos ι

×

r cos(Ωt)r sin(Ωt)
0

 (25)

yielding,

x1 = r cos(Ωt) cos

(
2Jt

r3

)
cos ι− r sin(Ωt) sin

(
2Jt

r3

)
(26)

x2 = r cos(Ωt) sin

(
2Jt

r3

)
cos ι+ r sin(Ωt) cos

(
2Jt

r3

)
(27)

x3 = r cos(Ωt) sin ι (28)
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where Ω needs to be determined. Note that Ω corresponds to the angular velocity of the circular orbit with zero
inclination angle, and should be identified with the combination of θ̇2 with {ϕ̇−(2J/r3)}2. With the above expressions,
we can now use Eq. (24), and obtain,

Ω =

√
θ̇2 +

(
ϕ̇− 2J

r3

)2

=

√
Q+ L2

z

mr2

=

√
Q+ L2

z

m
(
qM +

Q+L2
z

m2M

)2

[
1− 12am3M2Lz

(Q+ L2
z + qm2M2)2

]

=
M2m3

(Q+ L2
z)

3/2

(
1 +

qM2m2

Q+ L2
z

)−2
[
1− 12am3M2Lz

(Q+ L2
z)

2

(
1 +

qM2m2

Q+ L2
z

)−2
]
, (29)

where, in the second line we have used the expression for the radius of the circular orbit, from Eq. (20). Note that in
the limit, q = 0, we get back the angular velocity expression of [59]. The same expression for Ω can also be arrived at

from the result that, Lz = mr2Ωcos ι, and hence using Eq. (20), along with the result, cos ι = Lz/
√
Q+ L2

z, we will
arrive at Eq. (29).

It is natural to re-write the above expression for the angular velocity Ω in terms of the velocity of the secondary
object moving on a circular trajectory, which we take to be v2 = {m2M2/(Q + L2

z)} [59]. In terms of the linear
velocity v, the angular velocity becomes,

MΩ = v3
[
1− 2qv2 − 12

( a

M

)
v3 cos ι

]
+O(a2, qa, q2) . (30)

For q = 0, it reduces to the corresponding expression for a Kerr spacetime [59], while in the presence of q, the angular
velocity depends on the tidal charge more strongly than the rotation — a result, which will be shared by the energy
loss through GW as well.

As emphasized earlier, we need to express all the quantities in Cartesian coordinates, using the simple transformation
x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, and x3 = r cos θ. In particular, we will be interested in the rate of change of
the energy, the angular momentum, and the Carter constant, as the smaller mass black hole makes a transition from
one circular orbit to another. Therefore, we should express these conserved quantities in terms of the Cartesian
coordinates, leading to,

E =
m

2
ẋj ẋj −

mM
√
xjxj

+
mM2q

2(xjxj)
, (31)

Lz = mϵ3jkxj ẋk − 2maM(x21 + x22)

(xjxj)3/2
, (32)

Q+ L2
z = m2 (ϵijkxj ẋk) (ϵilmxlẋm)− 4am2Mϵ3jkxj ẋk√

xjxj
. (33)

In order to reconcile the above expressions with their spherical polar counterparts, we note the following re-
sults, ϵ3jkxj ẋk = x1ẋ2 − x2ẋ1 = r sin θ cosϕ(sin θ sinϕṙ + r cos θ sinϕθ̇ + r sin θ cosϕϕ̇) − r sin θ sinϕ(sin θ cosϕṙ +

r cos θ cosϕθ̇ − r sin θ sinϕϕ̇) = r2 sin2 θϕ̇. Also, (ϵijkxj ẋk)(ϵilmxlẋm) = (xjxj)(ẋkẋk) − (xj ẋj)
2 = r2 × (ṙ2 + r2θ̇2 +

r2 sin2 θϕ̇2) − r2ṙ2 = r4(θ̇2 + sin2 θϕ̇2). Note that besides energy, neither Lz, nor Q + L2
z depend upon the presence

of the tidal charge q explicitly, and hence Eq. (32) and Eq. (33) coincides with the expressions in [60].
As we have indicated before, for the case of our interest, e.g., the EMRI system, the above constants of motion

are not really constants, since the lower mass compact object inspiralling around the more massive compact object
will slowly move towards smaller and smaller radii. Therefore, the above constants will change due to the radiation
reaction from the emitted GW. These changes can be quantified by taking derivatives of Eq. (31) to Eq. (33), with
respect to time. These yields, in the Cartesian coordinates,

Ė = mẋj ẍj +
mM(xj ẋj)

(xjxj)3/2
− mM2q(xj ẋj)

(xjxj)2
, (34)

L̇z = mϵ3jkxj ẍk − 4maM(x1ẋ1 + x2ẋ2)

(xjxj)3/2
+

6maM(x21 + x22)(xj ẋj)

(xjxj)5/2
, (35)

Q̇+ 2LzL̇z = 2m2 (ϵijkxj ẋk) (ϵilmxlẍm)− 4am2Mϵ3jkxj ẍk√
xjxj

+
4am2Mϵ3jkxj ẋk(xmẋm)

(xjxj)3/2
. (36)
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In the above expressions, we are only interested in the radiation reaction contributions to the rate of change of these
quantities, and hence the term ẍj , which we refer to as aj is the one of importance. Therefore, apart from the first
term in the energy and the angular momentum expressions, and the first and second terms in the Carter constant
expression, we will not consider the other terms. It is to be emphasized that we are only taking the terms which have
an acceleration component since our interest is in the radiative part, and we are not ignoring any terms in the above
expressions. This will lead to the following results for the radiative change of the conserved quantities,

Ė(rad) = mẋjaj , L̇(rad)
z = mϵ3jkxjak , ˙(Q+ L2

z)
(rad)

= 2m2 (ϵijkxj ẋk) (ϵilmxlam)− 4am2Mϵ3jkxjak√
xjxj

. (37)

For the acceleration term aj , arising out of radiation reaction forces, we follow the prescription given in Ref. [60]
which in the Cartesian coordinates read,

aj = −2

5
I
(5)
jk xk +

16

45
ϵjpqJ

(6)
pk xqxk +

32

45
ϵjpqJ

(5)
pk xkẋq +

32

45
ϵpq[jJ

(5)
k]pxqẋk +

8J

15
J
(5)
3i . (38)

In the above, we have introduced the anti-symmetry notation, i.e., A[ij] = (1/2)(Aij − Aji), and the superscripts
in the brackets denote how many times the respective quantity has been differentiated with respect to time, e.g.,

I
(5)
jk = (d5/dt5)Ijk. Moreover, the quantities Ijk and Jjk has the following expressions in the Cartesian coordinates,

Iij =
[
mxixj

]STF

; Jij =
[
mxiϵjkmxkẋm − 3

2
mxiJδj3

]STF

, (39)

with “STF” standing for the symmetric and trace-free part of the tensor. Note that we are only keeping terms
involving mass and current quadrupole moments, this is because, all the higher order moments of mass and current
multipoles involving terms O(a2), O(aq) and O(q2), respectively, have been ignored. To express the rate of change
of energy, angular momentum, and Carter constants in terms of the parameters of the problem, e.g., the mass, the
rotation parameter, and the extra-dimensional charge, we need to substitute the above expression for acceleration in
Eq. (37). Subsequently, we have to average out over a complete period of revolution. With this approach, we obtain
the following expression for the energy flux:

⟨Ė⟩(rad) = −32

5
η2v10

[
1− 8qv2 − 433

12
(a/M)v3 cos ι

]
+O(a2, qa, q2), (40)

where, η is the mass ratio, defined as m/M , with m being the mass of the smaller object and M is the mass of the
heavier object. Similarly, we can also construct the flux due to angular momentum and Carter constant, averaged
over a complete period of revolution, yielding,

⟨L̇z⟩(rad) = −32

5
η2v7

[
(1− 6qv2) cos ι+

61− 687 cos2 ι

24
(a/M)v3

]
+O(a2, qa, q2) , (41)

⟨ ˙Q+ L2
z⟩(rad) = −64

5
η2v6

[
1− 6qv2 − 313

12
(a/M)v3 cos ι

]
+O(a2, qa, q2) . (42)

The above flux laws show an intriguing feature, the effect of the tidal charge appears at a lower post-Newtonian (PN)
order than that of the rotation. The leading term in the energy flux balance law corresponds to a 2.5 PN term, while
the effect of charge appears at 3.5 PN and that of rotation at 4 PN. Therefore, the presence of a small tidal charge,
originating from the extra dimension, can affect the energy loss formula by a considerable amount, simply because, it
is appearing at a lower PN order. For example, if we take the inclination angle to be ι ∼ 77o, then it follows that for
the ratio (qM/a) ∼ v, the contributions from both the tidal charge and the rotation will be of the same order. This
implies that the existence of a tidal charge can indeed contribute significantly to the GW energy loss. We will observe
similar conclusions from the subsequent sections as well. This is also consistent with similar explorations with charge
studied in various contexts [61]. In the limiting case of q = 0, the above relations match with the expressions given
in Refs. [60, 62].

IV. MODELING THE INSPIRAL TO PLUNGE PHASE IN BRANEWORLD GRAVITY

In this section, we will discuss the transition regime from the inspiral to the plunging phase of an EMRI in the
braneworld scenario. We closely follow the seminal work by Ori and Thorne in Ref. [52], which describes this phase
in the Einstein’s gravity. By using the aforementioned fluxes in Section III, we evolve the system close to ISCO
and study how the presence of the tidal charge q is affecting the inspiral. In addition to that, we briefly discuss
an elementary analysis to obtain the accumulated SNR during this phase, and investigate whether q can introduce
considerable change in the GW signal in order to render it detectable.
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A. Evolving braneworld EMRI with fluxes

In our simple setup, the secondary, i.e., the less massive object is moving on a circular orbit around the primary,
i.e., the more massive central object. The secondary object is considered as a point particle, while the spacetime
around the primary object contains the signature of the higher dimensional spacetime, in the form of the tidal charge
q, introduced in the previous section. To start with, we note that the rate of change of energy carried out by the
GW is simply the negative of the rate of change of energy radiated by the system, as given by Eq. (40). This in turn
results into the orbit to shrink, at a rate, given by the following expression,

dr

dt
=

Ė
(dE/dr)

=
Ė

(dE/dr)
. (43)

Here, we have used the result E = m(E− 1), where E is the relativistic energy per unit mass, such that Ė = mĖ and

(dE/dr) = m(dE/dr). Since, Ė and hence Ė is a negative quantity, as evident from Eq. (40), it follows that (dr/dt) is
negative as well, implying that the secondary object moves closer to the primary object as time increases, consistent
with our expectations. Note that the time coordinate used here corresponds to the Boyer-Lindquist time coordinate.

As the secondary object inspirals towards the primary, it does so adiabatically in the inspiral phase and then as
it nears the ISCO, the transition regime to the final plunge into the primary object begins, and the evolution of the
motion ceases to be adiabatic. However, till the final plunge scenario is reached, i.e., during the transition regime,
which is close to the innermost stable circular orbit, and evolution is still primarily due to the radiation reaction from
the outgoing gravitational radiation. After reaching the plunge phase, the effect of the radiation reaction of the GWs
on the evolution of the orbit can be ignored. Since the transition regime happens close to the ISCO, the energy and
the angular momentum of the secondary object can be taken to be constant and equal to their values for the ISCO.
These values are simply given by Eq. (8) and Eq. (9), with the radius being equal to that ISCO, which is a solution to
Eq. (10). Since the transition phase happens close to the ISCO, for our purpose it will be sufficient to write down the
following relation between energy per unit secondary mass E and the angular momentum per unit secondary mass
Lz as,

E = Eisco +ΩiscoΓ ; Γ ≡ Lz − Lz, isco , (44)

where, the subscript ‘isco’ denotes the relevant quantities for the ISCO. Notice that the above equation can also be

cast in terms of the following quantities, L̃z = Lz/M and Ω̃isco = MΩisco and has an identical structure. The above
relation arises from the assumption that close to the ISCO, the rate of change of energy and the rate of change of
angular momentum are related through the angular velocity at the ISCO, such that,

dE

dτ
= Ωisco

dΓ

dτ
, (45)

where, τ is the proper time associated with the trajectory for the secondary object. The implication being, by
computing either one among the flux of energy and angular momentum, we can obtain the other one. The above
relation can be further modified by changing the derivative of energy with respect to the proper time to a derivative
with respect to the Boyer-Lindquist time coordinate t, such that,

M
dE

dτ
=
M

m

dE
dτ

=
1

η

(
dt

dτ

)
dE
dt

, (46)

Therefore, substituting the above equation for (dE/dτ) in Eq. (45), we can finally write

M
dΓ

dτ
=

M

Ωisco

dE

dτ
=

1

ηΩisco

(
dt

dτ

)
dE
dt

, (47)

Since we are working with circular and equatorial orbits, the average over a complete revolution is the same as the
instantaneous expression for dE/dt, and hence by substituting the expression of the radiative energy flux Ė(rad) from
Eq. (40), we arrive at:

dΓ

dτ
= −kη , (48)

with

k ≡ 32

5

(
dt

dτ

)(
1

MΩisco

)
v10

[
1− 8qv2 − 433

12

( a

M

)
v3
]
. (49)
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As our interests are in the equatorial orbits, we have vanishing Carter constant Q, and hence the linear velocity of the
secondary object simply becomes, v = (M/Lz). The benefit of writing down the rate of change of angular momentum
per unit mass as above highlights certain points — firstly, the explicit mass dependence of Eq. (48) comes through η,
since the quantity k is dimensionless. This implies that the momentum/energy is decaying very slowly for an EMRI
system, as η is a small number for the case of extreme mass ratio. Secondly, for a given value of the black hole’s
parameters, k is a constant and depends on the properties of the ISCO. Therefore, Eq. (48) can be immediately
integrated, with the boundary condition, Γ(τ = 0) = 0, i.e., the transition regime starts at the ISCO, to obtain,

Γ = −kητ . (50)

Thirdly, presence of the tidal charge q and most importantly, its sign will further affect the decay rate. Therefore, a
true braneworld scenario, involving a negative tidal charge can be distinguished from the existence of a Maxwell field
through the rate of change of angular momentum, since the rate depends explicitly on the sign of q.
Given the above expressions for the rate of change of energy and angular momentum, we can also obtain the change

of the radial coordinate r as the EMRI evolves from the ISCO, through the transition regime, towards the final plunge
phase. For this purpose, we start with the geodesic equation along the radial direction,(

dr

dτ

)2

= E2 − Veff(r, E, Lz), (51)

which is an alternative form to Eq. (7) and Veff(r, E, Lz) is the effective potential, having the following expression,

Veff(r, E, Lz) = E2 − 1

r4

[{
E
(
r2 + a2

)
− aLz

}2 −
(
r2 − 2Mr + a2 + qM2

) {
r2 + (Lz − aE)2

}]
. (52)

Note that E being the energy per unit mass, is dimensionless and Lz has the dimension of length, such that the effective
potential is dimensionless. Moreover, from our previous analysis it is clear that at ISCO, we have Veff(risco) = E2

isco,
as well as (∂Veff/∂r) and (∂2Veff/∂r

2) must vanish at the ISCO radius. Using these and expanding the energy and
the angular momentum as well about their values at the ISCO, we obtain,

Veff(r, E, Lz) = E2
isco +

1

3!

(
∂3Veff
∂r3

)
isco

R3 +

(
∂Veff
∂Lz

+
∂Veff
∂E

Ω

)
isco

Γ +
1

2

(
∂2Veff
∂Lz∂r

+
∂2Veff
∂E∂r

Ω

)
isco

ΓR+O(Γ2),

(53)

where, we have defined a new radial coordinate R ≡ r − risco and have kept only leading order terms in the radial
coordinate R and the angular momentum difference Γ. In addition, we have used Eq. (44) to replace the energy in
terms of Γ. For brevity, we rewrite the above effective potential as,

Veff(R,Γ) =
2α

3
R3 − 2βΓR+ γΓ + constant , (54)

and hence the evolution of the newly defined radial coordinate R through the transition regime can be obtained by
solving the following differential equation,

d2R

dτ2
= −1

2

∂Veff(R,Γ)

∂R
= −αR2 + βΓ = −αR2 − ηβkτ . (55)

We have used Eq. (50) in order to arrive at the final expression for the evolution of the radial coordinate R. Moreover,
the expressions for the constants α and β, appearing in the expression for the effective potential are given as,

α =
1

4

(
∂3V

∂r3

)
isco

= 3

[
M

r4
+

2

r5

{
a2(−1 + E2)− L2

z − qM2
}
+ 10

M

r6
(Lz − aE)2 − 10(Lz − aE)2

qM2

r7

]
isco

,(56)

β = −1

4

( ∂2V

∂Lz∂r
+Ω

∂2V

∂E∂r

)
isco

= 2
[Lz − a2EΩ

r3
− 3

M

r4
(Lz − aE)(1− aΩ) + 2

qM2

r5
(1− aΩ)(Lz − aE)

]
isco

.(57)

Note that both α and β are dimension-full quantities, and can be converted to a dimensionless one, by rescaling the
radial coordinate R, the angular momentum Lz and the rotation parameter a by the mass M , while the angular
velocity needs to be rescaled by the inverse of the mass. With the above expressions, we can now attempt to evaluate
how the presence of the tidal charge q is affecting the transition from the inspiral to the plunge. The differential
equation for the evolution of the radial coordinate cannot be solved analytically and hence we solve it using numerical
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routines for solving differential equations. The results of which have been presented in Fig. 1. The left-hand figure, in
Fig. 1, depicts the evolution of the radial distance from the ISCO, during the transition regime, with the proper time
of the secondary object. As evident, the evolution of the radial coordinate is different for different values and signs of
the tidal charge. In particular, for a negative tidal charge, the rate of change of the radial coordinate is slow, and the
secondary object takes a longer time to reach the plunge phase. By changing the sign of the charge to be positive,
we observe that it has similar effects to that of the black hole’s spin – they both accelerate the inspiral phase, and
the plunge phase is reached more quickly. As one approaches radii far beyond ISCO, the adiabatic approximation is
likely to deviate strongly from the true inspiral and ultimately lead to divergent results. This behavior is visible from
Fig. 1 and can be seen more explicitly if we extend τ to larger values. The right hand figure in Fig. 1 depicts how
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FIG. 1. The above figures demonstrate how the radial coordinate in the transition regime changes as a function of the proper
time for various values of the tidal charge q in the braneworld parameter and the rotation parameter a. For the left figure,
we set the rotation parameter of the BH to be a = 0.1M and it depicts that the radial coordinate changes very slowly for
negative values of the tidal charge q compared to its positive values. Here, τ = 0 is the time slice, from where the plunge phase
starts. Note that the starting of the plunge phase is somewhat arbitrary, but should be around the ISCO radius. In the right
figure, τisco corresponds to the time taken by the secondary object to reach the ISCO radius, and we have plotted the same as
a function of the tidal charge q, for different values of the black hole rotation parameter a. Note that, on the right-hand figure,
we have presented both co-rotating and counter-rotating configurations. See text for further discussions.

the proper time taken to reach the ISCO changes with the tidal charge q and the rotation parameter a. As evident,
for a given tidal charge q, increasing the rotation parameter, leads to a shorter proper time to reach ISCO. On the
other hand, for a given rotation parameter, if the tidal charge is negative, it takes a longer time to reach ISCO, while
for a positive tidal charge, it takes shorter time to reach ISCO. These are consistent with our earlier findings as well.
Having derived the general properties of the transition phase and its nature of dependence on the tidal charge and
rotation parameter, we now turn to the observational consequences of the tidal charge and its detection is the future
GW experiments.

B. Possible observational implications

During the transition from the inspiral to the plunge, the binary system radiates energy and angular momentum
in the form of GWs. Given that our set up is based on the assumption of circular and equatorial geodesic, the
frequency of this GW, denoted as ΩGW, is twice of the orbit’s angular velocity. In our case, the only angular velocity
of importance is that of the ISCO, and therefore, ΩGW = 2Ωisco. Let us now consider that the radiated energy is
uniformly distributed, i.e., isotropic, and therefore, with per unit time dt, and per unit area dA, we have

dE
dAdt

=
Ė

4πD2
, (58)

where D is the distance between the source and the detector. Note that since we are discussing about EMRI systems,
the detector will be LISA, since that is sensitive to the signals with frequency in the mHz range. Following Ref. [63],

we can relate Ė with the plus (h+) and cross (h×) polarization as follows:

Ė
4πD2

=
⟨ḣ2+ + ḣ2×⟩avg

16π
. (59)
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where, we have to perform the sky average of the GW perturbations. Note that the expression for Ė in the braneworld
scenario has already been derived and appears in Eq. (40). Following which, and assuming that GWs satisfy a plane
wave solution, we have h ∼ exp(iΩGWt) for both the polarizations, the sky average can be calculated and finally we
obtain,

h2rms = ⟨h2+ + h2×⟩avg =
8Ė
D2

1

(2πf)2
=

8Ė
D2

1

Ω2
GW

=
2Ė
D2

1

Ω2
isco

. (60)

where, we have used the result that the frequency of the GWs are twice of the angular velocities of the secondary
object around the primary, generating the GWs. With the above expression for hrms being obtained, we may introduce
the noise spectral density of LISA, namely Sh(f), which takes the form [64],

Sh(f) =
10

3L2

[
POMS(f) + 2

{
1 + cos2(f/f∗)

} Pacc

(2πf)4

][
1 +

6

10

( f
f∗

)2]
, (61)

where L is the arm-length of the detector and f∗ is the frequency at which the detector has the maximum sensitivity.
For LISA, these two quantities take the values, L = 2.5× 109 m and f∗ = 19.09 mHz. In addition to these, there are
two more functions on which the noise spectral density of LISA depends on, and these are given by,

POMS = (1.5× 10−11 m)2
[
1 +

(2 mHz

f

)4]
Hz−1 , (62)

Pacc = (1.5× 10−11 ms−2)2
[
1 +

(0.4 mHz

f

)2][
1 +

( f

8 mHz

)4]
. (63)

Given the energy carried out by the GW, whose expression is given by Eq. (60) and the noise spectral density Sh(f),
we are fully equipped to compute the signal to noise (SNR) ratio. This ratio is essentially related with the detectablity
of a particular GW event. For example, an event is likely to be detectable if its SNR is more than the threshold
value of SNR of the corresponding GW detector, which is detecting the event. For a signal with duration of ∆t which
corresponds to a bandwidth of ∆f , the rms value of the SNR, ρrms, is given as [? ]

ρrms =

〈
S

N

〉
rms

=
hrms√

Sh(fisco)∆f
, (64)

where hrms is the rms value of a signal, and the noise spectral density Sh(f) is computed at the ISCO. The expression

for hrms is given in Eq. (60), with Ωisco and Ė are supplied from Eq. (30) and Eq. (40) respectively. However, the
above expression excludes the average contributions from antenna functions of the detectors. By considering them,
the above expression would transform into [64]:

ρ2rms =
3

10

h2rms

Sh(fisco)
∆t , (65)

where the factor of (3/10) comes from averaging over the antenna pattern and ∆t is the timescale associated with
the transition from the inspiral to the plunging phase, and is given by the inverse of the bandwidth, i.e., ∆t = 1/∆f .
We have tabulated estimates for ∆t for various choices of the rotation parameter a and tidal charge q in Table I
and Table II, respectively. It should be emphasized that, unlike LIGO, for LISA, the antenna functions have explicit
frequency dependence, and the factor of (3/10) gives the leading contribution to the averaged antenna function. The
result of the above analysis, using the energy loss formula derived in the previous section for the braneworld black
holes, have been presented in Fig. 2. The left figure in Fig. 2 demonstrates the variation of the SNR with the tidal
charge parameter, for both positive and negative values of the tidal charge and also for different choices of the rotation
parameter. On the other hand, the right-hand figure in Fig. 2 depicts the variation of the SNR with the rotation
parameter for different choices of the tidal charge, both positive and negative. As evident from these plots, the value
of SNR largely depends on the tidal charge q. In particular, the nonzero and negative values of tidal charge increase
the SNR value. This also implies that the energy released by GW in the transition regime is larger for braneworld BH,
than for a Reissner-Nordström BH and is a direct observational probe of the existence of higher spatial dimensions.
This suggests that excess power in the GWs emitted during the transition regime of EMRI, identified with the result
that GW frequency should be twice the angular velocity at the ISCO, signals the possible existence of higher spatial
dimensions. Albeit, we use a simple setup that should be replaced with a more accurate formalism to obtain the SNR
appropriately. We emphasize that our study is merely indicating the order of magnitude of SNR during the inspiral
to plunge phase and how the charge is modifying these results. For practical detection purposes, these results should
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FIG. 2. In the above figures, we depict the SNR values as a function of the tidal charge q and the rotation parameter a.
We have used Eq. (65) with mass ratio η = 10−5, distance D = 1 Gpc [52]. The value of ∆t is different for different orbital
parameters. This is given in Table I and Table II. We have presented the SNR values for both the co-rotating (a > 0) and
the counter-rotating (a < 0) orbital configurations. In the left figure, the SNR is shown for different values of the rotation
parameter, as a function of the charge. For the negative values of the tidal charge, the SNR is much higher compared to the
positive values. Also, for negative q, a larger rotation gives larger SNR. This feature is flipped in the positive branch, i.e., for
q > 0. Interestingly enough, there is a peak in the right figure, which shows that positive values of the rotation parameter
a, i.e., when the motion during the transition regime from inspiral to plunge happens along the direction of rotation of the
primary BH spacetime, is going to be dominant in the GW signal. Moreover, negative values of the tidal charge enhance the
SNR. Thus, the existence of an extra spatial dimension will have a distinct signature on the plunge phase of the GW waveform
of an extreme mass ratio inspiral.

be modified by incorporating an accurate waveform model, introducing eccentricity and inclination in the motion,
etc. Even then, it is expected that the structural dependence of the SNR on the tidal charge q would be similar to
that of Fig. 2, and the transition regime continues to be relevant to study braneworld BHs. Hopefully, as and when
LISA becomes operational, it will open a new window for the search of extra spatial dimensions, or, in general for
scenarios beyond general relativity.

TABLE I. We have tabulated the timescale associated with the plunging phase for zero rotation and for a set of values for
the tidal charge. These plots are produced by assuming that the inspiral starts at a distance close to the ISCO, in particular,
Rinitial = 0.01M . We then numerically evolve Eq. (55) and note down the time when the secondary object crosses the ISCO.
The difference is given by ∆t, which we express in seconds, by scaling the mass with appropriate scaling factors, i.e., (GM/c3).
Note that the negative values of the tidal charge significantly increase the timescale which would also increase their chance of
getting detected, as evident from Fig. 2.

Rotation parameter (a/M) Tidal charge (q) Frequency (f) ∆t
(in Hz) (in sec)

-0.40 0.004 8733
-0.20 0.004 4966

0.0 0.00 0.004 3703
0.20 0.005 2979
0.40 0.005 2530

V. DISCUSSION AND CONCLUDING REMARKS

In the present article, we have studied the transition from the inspiral to the plunge for a braneworld EMRI,
consisting of a secondary object and a primary object, whose geometry is that of a braneworld BH. By assuming
that the central supermassive object is endowed with corrections from higher dimensions, we model the final stage of
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TABLE II. We have tabulated the timescale associated with the plunging phase for a set of rotation parameters involving
both co-rotating and counter-rotating cases, for a negative value of the tidal charge parameter. In these plots, we assume that
the inspiral starts at a distance close to the ISCO, in particular, at Rinitial = 0.01M , where R = r − risco. Evolving Eq. (55)
numerically we determine ∆t, which we express in seconds using appropriate scaling.

Rotation parameter (a/M) Tidal charge (q) Frequency (f) ∆t
(in Hz) (in sec)

-0.4 0.003 5484
-0.2 0.004 4830
0.0 -0.1 0.004 4233
0.2 0.005 3699
0.4 0.006 3235

the binary evolution, as the secondary object inspiralling around the primary makes its transition to the final plunge
phase. The aim of this article is to develop a quantitative understanding of how the existence of the tidal charge in
the braneworld scenario influence the transition phase and hence the energy emitted by the GWs in this phase. Since
the transition phase happens close to the ISCO, where the gravitational effects of the central primary braneworld BH
is strong enough, we expect the GWs emitted during this phase to encode significant information about the spacetime
geometry, and as we have demonstrated this is indeed the case. Intriguingly, the modifications due to the braneworld
scenario considered here, is akin to the Kerr-Newman spacetime for a certain parameter range of the tidal charge and
also some other metric solutions in Horndeski theories [65]. Therefore, the results presented in this work are expected
to be valid for a larger spectrum of gravity theories beyond the general relativity.

In the first part of the work, we introduce the orbital dynamics in the braneworld gravity, with emphasis on the
circular geodesics and their properties. We then evaluate the fluxes for the energy, the angular momentum and the
Carter constant. These fluxes are evaluated by ignoring O(a2, q2, aq) terms of the central BH, which makes the
analysis valid for slowly rotating and weakly tidally charged BHs. Expressions for fluxes are obtained in the case of
off-equatorial circular/spherical orbits. Interestingly, our results demonstrate that the contribution in the above fluxes
from the tidal charge appears at a lower PN order than the contribution from the rotation of the BH. This opens up
the tantalizing possibility, that even if the tidal charge parameter is an order of magnitude smaller than the rotation
parameter of the black hole, it actually contributes equally to the energy loss through GWs and hence is detectable.

In the second part of the work, we have used the expression for the energy flux in order to find out the energy
carried out in the form of GW during the transition regime. The transition regime is important as it bridges between
the inspiral and the plunge phase, and since this phase happens close to the ISCO, it is expected that signatures
from the strong gravity regime, e.g., that of the tidal charge will be embedded into the signal. The effect will only
be appreciable for EMRI, since then the time scale the secondary object spends during the transition regime will be
significant. Following this, we indeed found that the transition regime is significantly affected due to the tidal charge,
and most importantly, on its sign. For example, with q > 0, the transition to the plunge phase happens much faster
and the effect of the tidal charge on the GW waveform will be less pronounced. On the contrary, for q < 0, the
transition to the plunge phase happens at a much slower rate and it takes a longer time to reach even to the ISCO.
Therefore, any effect of the negative tidal charge will be enhanced by the GW waveform as it emits a larger amount of
energy through GWs. These features are reflected in Fig. 1. The signal to noise ratio ρrms, also tells a similar story.
Existence of negative tidal charge and motion along the direction of rotation of the black hole enhances the signal to
noise ratio. This suggests that, if the braneworld BHs are indeed realized in nature and have negative tidal charge,
they will contribute more to the energy flux in the form of GWs, than their general relativistic counterpart. Thus,
EMRI systems and in particular the transition phase is one of the promising avenue to look for any signatures of the
deviations from general relativity.

Finally, we should conclude by discussing the possible extensions of this work. First of all, the fluxes derived
in Eq. (40) to Eq. (42) are based on slow rotation and small tidal charge approximations. It will be interesting
to generalize the setup presented here, to more accurate flux measurement techniques, using e.g., the Teukolsky
formalism [66, 67]. Moreover, the analysis presented for the transition regime is dependent on orbits which are
equatorial and circular. Possible generalization to non-equatorial, eccentric orbit may provide better understanding of
the transition regime and the energy loss by GWs. This is important, since typical EMRIs will have both eccentricity
and inclination when entering the LISA band and should be modelled with generic orbits [68]. We hope to come back
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to these questions in a future work.
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Appendix A: Derivation of the ISCO for rotating braneworld spacetime

In this appendix, we will provide the detailed derivation of the location of the ISCO for the rotating braneworld
spacetime. For this purpose, we recall the expressions of the conserved energy and the conserved angular momentum
of a particle in a circular orbit on the equatorial plane of the rotating braneworld black hole spacetime, these are
given by, Eq. (8) and Eq. (9), respectively. From these, we can work out the following qunatity,

aE(circ) − Lz (circ) = a
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This expression is helpful, since it appears in the relation determine the innermost stable circular orbit (ISCO), as
evident from Eq. (10) in the main text. Further simplification yields,
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From this result, the algebraic expression in the main text, yielding the location of the innermost stable circular orbit
follows. In addition to the above relation, we also note down the expression of the angular velocity at the ISCO,
denoted by Ωisco, to be given by,

Ωisco =M1/2

√
risco − qM

r2isco + aM1/2
√
risco − qM

. (A3)

which will be used in the main text.

Appendix B: Derivation of the Lagrangian for a particle in rotating braneworld spacetime

In this appendix, we will derive the effective Lagrangian for a particle moving in the rotating braneworld black hole
spacetime. For this purpose, we will employ the Hamilton-Jacobi formalism, for which the action can be written as,

A = −Et+ Lzϕ+R(r) + Θ(θ) (B1)

From the equation, gµν∂µA∂νA = −m2, we obtain the following two equations,(
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Here, K is referred to as the Carter’s constant. Again, the above quantities (dR/dr) and (dΘ/dθ) can be related to
the radial and angular momentum, such that,
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(B5)

Thus, Eq. (B2) and Eq. (B3) can be expressed as,
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Along with these relations, we also have two additional ones, arising from (∂A/∂t) = −E and (∂A/∂ϕ) = Lz. Again,
the conserved energy and angular momentum can be written in terms of (dt/dτ) and (dϕ/dτ), such that,
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In the limit of small rotation, ignoring all terms of O(a2), we obtain the following expressions for the velocity
components of a geodesic, with mass m, moving in the rotating braneworld black hole spacetime,
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Here, ∆ = r2−2Mr+M2q, since all terms of O(a2) are being neglected. Given the above components of four-velocity
for geodesic motion in the spacetime, we can construct the following combination,
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where, we have neglected terms of O(aM2/r3) and O(aqM3/r4). We can express all the derivatives with respect to
the proper time τ to derivatives with respect to the Boyer-Lindquist coordinate time t, using (dt/dτ) from Eq. (B10).
Again ignoring terms of O(r3) and higher, we obtain,
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Finally, writing, E = m + E , i.e., separating out the rest mass contribution, we obtain, E2 − m2 = 2mE + O(E2)
and (m/E) = 1− (E/m) +O(E2). Using these results and ignoring all the terms O(E2), as well as terms O(EM/r),
O(Eq/r2), we obtain the following expression for the energy E of the object,
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This completes one part of the story. For the other, we start with (dϕ/dτ) and (dθ/dτ) from Eq. (B11) and Eq. (B13),
respectively. Squaring these quantities, then multiplying appropriate factors and finally adding these up, we arrive at
the following relation,

m2r4

[(
dθ

dτ

)2

+ sin2 θ

(
dϕ

dτ

)2
]
= K −

(
aE sin θ − Lz

sin θ

)2

+
1

sin2 θ

[
Lz +

aE sin2 θ

∆

(
2Mr −M2q

)]2
≃ K + 2aELz

(
1 +

2Mr −M2q

∆

)
≃ K + 2aELz

(
1 +

2M

r
− M2q

r2

)
(B17)

Since, the right hand side is already linear in the rotation parameter a along with the Carter constant K, changing
proper time τ to coordinate time t can be done without introducing any additional factors. Also the term involving
(aq/r2) can be neglected, since both the rotation and the tidal charge is taken to be small. Therefore, we arrive at,
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Here, we have introduced a more conventional Carter constant Q, through the relation, Q+L2
z = K+2aELz. Finally,

from Eq. (B11), we can express the conserved angular momentum as,
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Substitution of the conserved angular momentum Lz from Eq. (B19) in Eq. (B18), and ignoring any terms O(a2), we
obtain,
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This can also be written in the following form,
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Here, we have changed E to m and have changed the proper time τ to coordinate time t, since the conserved angular
momentum Lz is already multiplied by the rotation parameter a. Note that this expression has been used in the main
text. Given all these results, we can find out the effective Lagrangian Leff . First of all, we consider Eq. (B19) and

note that Lz = [∂Leff/∂ϕ̇], where ‘dot’ denotes derivative with respect to the coordinate time t. This suggests that
the effective Lagrangian should have the form,
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We now have the following relation between the effective Lagrangian Leff and the Hamiltonian (which is the same as
the energy E),
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19

This demands, given Eq. (B16), the following form for the function f(r, θ, ṙ, θ̇)

f(r, θ, ṙ, θ̇) =
m

2
ṙ2 +

m

2
r2θ̇2 +

mM

r
− mM2q

2r2
(B24)

and hence the effective Lagrangian can be determined by the substitution of the function f into Eq. (B22), which will
lead to Eq. (12) in the main text.

Appendix C: Solution of the radial differential equation

In this appendix, we will provide a general solution to the differential equation for the radial motion, presented in
Eq. (16). For this purpose, we note that any second order differential equation of the following form can be solved
exactly:

r̈ +
A

r2
− B

r3
− C

r4
= 0 , (C1)

with the solution being given by,
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In the above, the term e is the eccentricity of the orbit, and we define ψ as
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Choosing, A =M , B = qM2+{(Q+L2
z)/m

2} and C = (6aMLz/m), we arrive at the solution of the radial coordinate
in the main text.

Appendix D: Alternative derivation of the circular orbit

In this appendix, we will present an alternative derivation of the radius of the circular orbit, starting from Eq. (16).
First, consider the case of Kerr spacetime, for which setting q = 0 and r̈ = 0 in Eq. (16), we obtain,
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This can be translated to the following algebraic equation,
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with the following solution,
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As evident, this coincides with the q = 0 limit of Eq. (19) in the main text. Choosing the ansatz r = rKerr + g(q, a),
as in the main text, we observe that g will satisfy the following quadratic equation,

6aMLz

m
+
L2
z + qM2m2

m2
(rKerr + g)−M (rKerr + g)

2
= 0 . (D4)
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with the following solution,

g =

(
− 1

2M

)−L2
z + qM2m2

m2
−

√(
L2
z + qM2m2

m2

)2

+
24aM2Lz

m

− rKerr

=
L2
z + qM2m2

m2M
+

6aMLzm

L2
z + qM2m2

− rKerr (D5)

Here the ‘-’ve sign has been chosen before the square root, since we want g = 0, in the limit q → 0. Further,
substituting for rKerr, we obtain,

g = qM +
6aMLzm

L2
z + qM2m2

− 6amM

Lz

= qM +
6aML2

zm− 6amM
(
L2
z + qM2m2

)
Lz (L2

z + qM2m2)

= q

[
M − 6aM3m3

Lz (L2
z + qM2m2)

]
(D6)

Note that, in the limit q = 0, we get back the result g = 0, as expected. Hence adding the expression for rKerr, derived
above, with the g given here, we will recover,

r =
L2
z

m2M
+

6amM

Lz
+ q

[
M − 6aM3m3

Lz(L2
z + qm2M2)

]
=

L2
z

m2M
+ qM +

6amM

Lz

(
1− qm2M2

(L2
z + qm2M2)

)
=

L2
z

m2M
+ qM +

6aMmLz

L2
z + qm2M2

, (D7)

This is what yields the circular orbit radius rcirc in the main text.
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