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Transition from spherical cap to toroidal bubbles

Thomas Bonometti?) and Jacques Magnaudet”
Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, Allée Camille Soula,
31400 Toulouse, France

Large gas bubbles rising under the effect of buoyancy are known to adopt either a spherical cap
shape or to undergo a topological transition after which they become toroidal. We carry out an
axisymmetric numerical investigation of the evolution of such large bubbles in the presence of both
capillary and viscous effects. The numerical approach is of the volume of fluid type (it solves the
Navier-Stokes equations on a fixed grid and transports the local volume fraction of one of the
fluids), but does not involve any explicit reconstruction of the interface. The transition from
spherical cap to toroidal bubbles is studied in the parameter space built on the Bond (Bo) and
Archimedes (Ar) numbers, which compare the strength of inertial effects to that of capillary and
viscous effects, respectively. Preliminary tests show that the position of this transition is very
sensitive to the grid resolution; these tests are used to select grid characteristics that yield
grid-independent results. Two markedly different transition scenarios, corresponding to the limit of
large Ar and large Bo, respectively, are then identified. In the first case, the front of the bubble is
pierced by an upward jet coming from the rear of the bubble. In contrast, in the limit of large Bo,
a downward jet develops at the front part and pierces the rear of the bubble, unless viscous effects
are sufficient to stabilize the front. We also determine the position of the transition for intermediate
values of Bo and Ar and discuss the connection between present axisymmetric results and
experimental situations in which the bubble is followed by a turbulent wake. We finally examine a
puzzling feature of these large bubbles which is that, given an initial gas volume, the final bubble
topology appears to depend dramatically on the initial conditions. Indeed, we find that initially
oblate bubbles may result in stable spherical cap bubbles for values of Bo and Ar well beyond those
for which initially spherical bubbles of similar volume undergo the topological transition. This
remarkable influence of the initial shape is shown to be due to the influence of the oblateness on
both the bubble acceleration and the hydrostatic pressure difference between the two bubble

poles.

I. INTRODUCTION

Toroidal buoyancy-driven gas bubbles are fascinating
objects frequently produced by divers and dolphins.l’2 They
may also be easily generated in laboratory experiments or in
swimming pools by opening and closing rapidly a valve clos-
ing a small vessel in which air has been previously stored.’
These large bubbles are remarkably stable and may rise over
distances of several tens times their diameter. Small toroidal
bubbles are also encountered as the result of the collapse of
cavitation bubbles near a wall.*” Walters and Davidson” car-
ried out a detailed experimental study of the formation and
evolution of toroidal buoyancy-driven bubbles rising in wa-
ter. Their bubbles had volumes ranging from approximately
6 to 115 cm?. They also analyzed theoretically the first stages
of the evolution of large, initially spherical bubbles by con-
sidering that the bubble shape evolution is driven by the
competition of inertia and buoyancy only. This simple irro-
tational model shows that the rear part of the bubble, which
experiences a (relatively) high pressure owing to the hydro-
static head, rises faster than the front, and comes in contact
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with it at a finite time, leading eventually to the formation of
a toroidal bubble. Walters and Davidson modeled these tor-
oidal bubbles as hollow vortex rings rising in an irrotational
inviscid environment, still disregarding surface tension ef-
fects. By monitoring the rise velocity and the ring and core
diameters of the bubbles they produced, they were able to
validate this simple model, showing that the circulation re-
mains almost constant during the rise. Moreover, they ob-
tained a reasonable estimate of this circulation by evaluating
the velocity potential difference between the front and the
rear of the initial bubble just before the pinch-off. A theoret-
ical investigation of the evolution of a toroidal bubble in
both inviscid and slightly viscous fluid was carried out by
Pedley.® His study shows in particular that, while viscous
effects do not alter the evolution of the ring radius (which
grows as the square root of time 7 to satisfy the conservation
of the vertical impulse), they slightly reduce the rise velocity
which decays as 2.

The first detailed numerical investigation of the forma-
tion and evolution of toroidal bubbles in an inviscid fluid
with nonzero surface tension was achieved by Lundgren and
Mansour' using the boundary element method. Since their
technique could not deal with the topological change right at
the time of the pinch-off, they had to compute separately the



simply- and doubly-connected stages of the bubble evolu-
tion. They were able to determine the critical size beyond
which the bubble becomes toroidal and the corresponding
pinch-off time. Then, they studied the toroidal stage by de-
termining the circulation in the same manner as Walters and
Davidson and by considering several arbitrary values of the
initial ratio between the core and ring diameters. This en-
abled them to examine the evolution of the ring diameter and
the deformation of the core cross section as a function of the
bubble aspect ratio. In agreement with theoretical
predictions,®” they found the ring diameter to evolve essen-
tially linearly with the vertical position of the bubble. How-
ever, they also pointed out the presence of small-amplitude
high-frequency oscillations of the ring diameter and rise ve-
locity, a phenomenon due to the combined effect of the
added-mass force and the Kutta-Joukowski lift force.
During the last decade, computational techniques ca-
pable of dealing directly with free-surface flows in the pres-
ence of viscous effects and topological changes have become
available. Sussman and Smereka® employed a level set tech-
nique to study various axisymmetric two-phase flows with
large density contrasts. Regarding the formation of toroidal
bubbles, they also used in parallel a boundary element tech-
nique very similar to that of Lundgren and Mansour, but with
some additional numerical “surgery” making it able to over-
come the pinch-off singularity. They essentially concluded
that the two numerical approaches yield results in close
agreement up to the pinch-off time. However, they also no-
ticed that significant differences, which develop from the
pinch-off region, take place in the subsequent evolution of
the toroidal bubble shape. A more detailed numerical inves-
tigation was performed by Chen et al’ using the volume of
fluid approach. They explored separately the role of surface
tension, viscosity, and density ratio on the evolution of the
bubble geometry. As may be expected, they observed that,
when surface tension or liquid viscosity is increased beyond
a certain value, the bubble geometry remains simply con-
nected, the final bubble taking a spherical cap shape. They
also noticed that a toroidal bubble rises more slowly than its
spherical cap counterpart, an effect of the circulation around
the toroidal bubble which slows down its upward motion.
While the mechanisms governing the formation of toroi-
dal bubbles and the qualitative influence of the various
physical parameters on their evolution have been clarified in
the above studies, the precise localization of the transition
from spherical cap to toroidal bubbles in the appropriate pa-
rameter space has not been achieved in the presence of finite
viscous effects. Also, a puzzling, still poorly understood fea-
ture of large buoyancy-driven bubbles is that, depending on
the geometry of the injection system used to generate them,
they seem to be able to evolve either towards a spherical cap
shape or to become toroidal.!" For instance, while Walters
and Davidson® observed toroidal air bubbles whose volume
ranged from 6 to 115 cm?, Davies and Taylor10 were able to
produce spherical cap bubbles with a volume up to 200 cm?.
The formation and dynamics of spherical cap bubbles
are better understood and have been the subject of detailed
studies.'"™* However, an intriguing question is the existence
of very large spherical cap bubbles followed by a turbulent

wake.'>!® Computer limitations still prevent reliable simula-

tions of such situations in which the flow is three-
dimensional and time-dependent; the shape of the bubble
evolves in time and its path is not strictly rectilinear. How-
ever, some insight into the mechanisms that contribute to
ensure the stability of these large bubbles in the presence of
small-scale turbulence may perhaps be gained by analyzing
the effects of viscosity on the flow at the back of the bubble
and making use of the concept of eddy viscosity.

The above points are the central subject of the present
numerical investigation. The method employed here, briefly
described in Sec. II, borrows some features from the volume
of fluid approach (since it is essentially based on the trans-
port of the volume fraction of one of the fluids) as well as to
the level set technique (as no explicit reconstruction of the
interface is carried out). Validations focused on bubble evo-
lution in contrasted flow regimes are provided in Sec. III; the
influence of the spatial resolution on the evolution of large
spherical cap/toroidal bubbles is also investigated. Then, ac-
curate axisymmetric computations involving larger computa-
tional domains and finer grid resolutions than those used in
previous studies (especially in Ref. 9) are performed and
discussed in Sec. IV to determine properly the topological
transition as a function of the Bond and Archimedes numbers
which compare the magnitude of inertial effects to that of
surface tension effects and viscous effects, respectively. Fi-
nally, in Sec. V we investigate the influence of the initial
bubble shape on the evolution of its subsequent topology and
show that, compared to initially spherical bubbles, bubbles
with an initial oblateness are able to remain simply-
connected over a much larger parameter range.

Il. NUMERICAL APPROACH

We assume the suspending liquid and the gas filling the
bubble to be both Newtonian and incompressible, with uni-
form surface tension. The evolution of the two-phase flow is
then classically described using the one-fluid formulation of
the Navier-Stokes equations, viz.,

vV 1 1
—+V.-VW=—=VP+g+-V - [(VV+'VV)]
at p p

~Z(V-mms; V-v=o0, (1)
p

where V, P, p, and u are, respectively, the local velocity,
pressure, density, and dynamical viscosity in the flow, g de-
notes gravity, and o is the surface tension. The surface delta
function &; is zero outside the interface, the unit normal of
which (directed toward the liquid) is denoted by n. The local
volume fraction of gas obeys

aC
—+V-VC=0- (2)
ot

This volume fraction equals 1 (respectively, zero) in
cells filled with gas (respectively, liquid) and takes interme-
diate values in cells belonging to the transition region, the



thickness of which will be specified below. The local density
and dynamical viscosity are evaluated using a linear interpo-
lation law, namely

p=Cp,+(1=C)p;; pu=Cuy+(1-C)w, (3)

where the subscripts g and [ refer to the gas and liquid,
respectively. The capillary force is transformed into a vol-
ume force using the continuum surface force model proposed
by Brackbill er al.'” Hence, we write

Zv.-nns=2v .(£>Vc. (4)

P p o \ve]

The Navier-Stokes equations (1) and (2) are solved using
the JADIM code developed in our group. Details on the spatial
discretization and time-advancement algorithm used in this
code for constant density situations may be found in several
previous publications..]s_20 Briefly, the momentum equations
are discretized on a staggered grid using a finite volume ap-
proach. The spatial discretization is performed using second-
order centered differences. Time advancement is achieved
through a third-order Runge-Kutta method for advective and
source terms and a Crank-Nicolson method for viscous
stresses. Incompressibility is satisfied at the end of each time
step through a projection method. The overall algorithm is
second-order accurate in both time and space.

The main changes introduced in this procedure by the
two-phase nature of the flows considered here are related to
the treatment of Eq. (2) [which drives the variable density
and viscosity in (1)] and to the capillary force. To solve Eq.
(2), we split it into successive one-dimensional steps along
each grid direction i (i=1,3) and use a Zalesak scheme?!
during each substep. This flux-limiting procedure, which
combines the use of a low-order (here, first-order) and high-
order (here, eighth-order) approximation of the advective
flux in (2) guarantees the positivity and monotonicity of C
with second-order spatial accuracy. To prevent the transition
region 0<<C<1 from thickening as time proceeds, we make
the velocity field involved in (2) locally constant across this
region. To this end, instead of advecting C with the actual
velocity Vi(x,r) at points x located within the transition re-
gion, we advect it with the velocity Vi(x,?), x, being the
point closest to x that lies on the iso-C line C=0.5 and is
located either on the ith grid line or on the streamline passing
through x, depending on which of them makes the smallest
angle with the local volume fraction gradient. With the above
procedure, the thickness of the transition region is main-
tained within three cells, except in some regions of very
large curvature. The modified velocity field is only used for
the computation of C, while the actual velocity field V(x,7)
remains the only one involved in the Navier-Stokes equa-
tions (1). Nevertheless, the above procedure and the one-
dimensional splitting of (2) results in small mass errors that
may accumulate as time proceeds. Therefore, a final modifi-
cation of the local volume fraction C is performed within the
transition region, so as to maintain the variation of the global
mass in each fluid below a given percentage of the initial
mass (generally 0.1%), while keeping C between 0 and 1
everywhere. This correction results in a stiffening of the tran-

sition region and a slight displacement of the position of the
iso-C line C=0.5 within it. Further details about the transport
strategy for C may be found in Ref. 22.

The time-advancement procedure of the coupled system
(1)—(3) starts by solving (2), prior to solving the momentum
equation. Hence, starting from C"(x) and V"(x) at time nAzt
(At being the time step), we first obtain the solution C"*!(x)
corresponding to time (n+1)Ar using the technique de-
scribed above, and use it to evaluate the density p"*!(x) and
the viscosity u"*'(x) through (3). Then, we define the
second-order approximations of p and w at time (n+1/2)A¢
as pn+1/2=(pn+pn+1)/2’ Mn+1/2=(Mn+/_Ln+l)/2 and use them
throughout the time step [nAt,(n+1)Af] to solve (1) and
obtain a provisional velocity field #”. As the volume fraction
is defined at pressure nodes, linear interpolations are used to
obtain the density and viscosity at velocity nodes. Finally,
the variable density projection method by which the final
velocity field #"*! is made divergence-free requires the solu-
tion of a pseudo-Poisson equation of the form V-(V¢/p)
=V-u" for the pressure increment ¢. The corresponding lin-
ear system is solved by a Jacobi preconditioned conjugate
gradient technique (JCG routine of the ITPACK Library).

The capillary term (4) is evaluated by approximating C
at time (n+1/2)Ar as C™V2=(C"+C™")/2. To obtain the
volume integral of the right-hand side of (4) over a
computational cell bounded by a surface I' with a unit nor-
mal N, we rewrite this term in the form
o{[rN-(VC/|VC|)dT}VC/p, where VC/p is a volume aver-
age of VC/p over the cell, all contributions being evaluated
at velocity nodes using centered differences and second-
order interpolations. As is well known, the sharp variations
of C throughout the transition region tend to generate spuri-
ous peaks in the curvature and lead to a poor evaluation of
the capillary force. To avoid such artifacts, the capillary force

is calculated using a smoothed distribution C of the volume
fraction obtained from C through several successive applica-
tions of a weighted average over the surrounding grid points.
In two dimensions, the elementary smoothing procedure
around a given grid point (i,;) takes the form éi‘j=3/4Ci,j
+(Ciyy j+Ciny j+Cijy +Ci i)/ 16.

Extensive tests of the code based on the above method
were carried out and may be found in Ref. 22. Tests con-
cerned with the computation of capillary-gravity waves show
in particular that the spatial accuracy of the overall method
lies between first and second order, even though the initial
wave amplitude is much less than the grid spacing.

lll. PRELIMINARY TESTS WITH RISING BUBBLES

Before we apply the above method to discuss the forma-
tion of toroidal bubbles, we consider some extra test cases
with a double goal. First, we wish to confirm that our code
properly captures the dynamics of buoyancy-driven bubbles
in contrasted well-documented regimes. Second, we need to
determine the grid characteristics required to obtain grid-
independent solutions in the regime where the transition
from spherical cap to toroidal bubbles is likely to occur.

For given density and viscosity ratios, the dynamics of
isolated bubbles may be characterized using the rise Rey-
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FIG. 1. (a) Comparison of the computed bubble shape and streamlines (left)
with those reported in Fig. 1(a) of Hnat and Buckmaster (Ref. 13) (right)
(pi/ pe=10°, ;/ =102, Mo=0.065, Bo=39.6). The black zone on the left
part corresponds to cells with C>0.99, whereas the white zone corresponds
to cells with C<0.01. (b) Time evolution of the bubble Reynolds number.
The final Reynolds number is Re=19.3.

nolds number Re=p,UD/ p; (which is an output of the ex-
periment), the Bond (or E6tvos) number Bo=p,gD?/ o and
the Morton number Mo= g,uj/ p,0>, D being the equivalent
diameter of the bubble [equivalently we could use the
Kapitza number Ka=Mo~"®, which is the ratio of the viscous
length scale l,,=(,u,2/ p,zg over the capillary length scale
1.=(0/p,g)""?]. The rise velocity U of the bubble centroid is
defined through

)1/3

J Clx,t)V(x,1) - e,dO
U == , (5)
J C(x,t)dd
3

where C is the gas volume fraction, e, is the unit vector in
the vertical direction, and ¥ denotes the volume of the whole
computational domain. The computations are axisymmetric
and are performed within a cylindrical (r,z) domain 5.5D
X 12.6D large. We use a 140X 700 grid size with a regular
spacing in the z direction (Az/D=1.8X 1072, corresponding
to 55 grid cells per bubble diameter). In the r direction, a
similar regular spacing (Ar/D=1.8X1072) is used over a
central zone of radius D corresponding to the region crossed
by the bubble and that of maximum liquid entrainment,
while larger cells are used beside this region, following an

arithmetic distribution. Free-slip boundary conditions are im-
posed on the top, bottom, and lateral boundaries, so that the
fluid entrained upward by the bubble slowly goes down near
the lateral boundary; obviously computations are stopped be-
fore the bubble comes close to the upper boundary, to avoid
contamination of the results by confinement effects.

We first select the physical parameters so as to obtain a
Bond number Bo=39.6 and a Morton number Mo=0.065, as
in Fig. 1(a) of Hnat and Buckmaster."” The density and vis-
cosity ratios of the two fluids are set to 10 and 107, respec-
tively. The final bubble shape and near-wake structure,
reached after a time of O(p,D?/,), are shown in Fig. 1(a).
The agreement with the original photograph of Hnat and
Buckmaster'® is excellent. Figure 1(b) shows the evolution
of the bubble Reynolds number as the bubble rises; the final
Reynolds number is 19.3. A second computation with the
lateral boundary located 10.5D away from the symmetry axis
was also carried out and yielded a final Reynolds number of
19.9. Both values agree within 2% with the experimental
value of 19.6 and indicate that the initial computational do-
main induces little artificial confinement.

As a second example we consider a slightly deforming
bubble rising at higher Reynolds number. For this purpose,
we select Mo=5X 1078, Bo=1, and keep the density and
viscosity ratios unchanged. To study this situation, we extend
the numerical domain in the vertical direction, since the
bubble requires a longer distance to reach its final speed. The
corresponding grid is made of 140900 cells in the (r,z)
directions. The final shape of the bubble shown in Fig. 2(a)
(left) is close to an oblate spheroid of aspect ratio 1.42. The
evolution of the Reynolds number, displayed in Fig. 2(b),
yields a final value of 101.6. As the Weber number We
=p,U*D/o may be expressed as We=Re?(Mo/Bo)"?, we
have We=2.31. Detailed experiments in pure water™ indi-
cate that the aspect ratio of an air bubble having this Weber
number is 1.43, in excellent agreement with the numerical
prediction. We also run the same case using the single-phase

boundary-fitted version of the JADIM code,"* ™ which makes
use of the same Navier-Stokes solver as the present
interface-capturing version but employs an orthogonal grid
to map exactly the bubble shape, allowing the exact bound-
ary conditions to be applied right at the bubble surface.**?

FIG. 2. (a) Left: bubble shape and
streamlines obtained using the present
method for p,/p,= 103, M,//.Lg=102,
Mo=5X 1078, Bo=1; the final aspect
ratio of the bubble is 1.42. Right:
streamlines ~ obtained ~ with  the
boundary-fitted method around a sphe-
roidal bubble with an aspect ratio 1.42.
The black zone on the left part corre-
sponds to cells with C>0.99, whereas
the white zone corresponds to cells
with €<0.01. (b) Time evolution of

6 8 10 the bubble Reynolds number. The final

4
12
Wg/0) Reynolds number is Re=~101.6.

(b)
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FIG. 3. Evolution of a bubble corresponding to p/p, =10, p/pu,=10%
Bo=10% Mo=107. (a) Ar/D=1/55; (b) Ar/D=1/110. Time between suc-
cessive views is 2.21(g/D)"?; is0-C=0.01, 0.5, and 0.99.

Here, we use this boundary-fitted version to obtain the final
drag force, assuming that the bubble stays fixed in a uniform
stream of velocity V|, far upstream and keeps a frozen sphe-
roidal shape of aspect ratio 1.42 (i.e., we do not consider the
normal stress balance at the bubble surface). For a given
Reynolds number Rey=p,V(D/ w,;, this methodology yields a

drag force F,=p,mD*C5V;/8, from which the drag coeffi-
cient C5(Re,) is obtained. On the other hand, the present
interface-capturing method provides a final rise velocity U
and a drag coefficient Cp, resulting from a balance between
the buoyancy force and the drag force, viz., Cp=4g(1
—p,/p)D/3U*. We find Cp=0.572, in excellent agreement
with the value C5'(Rey=101.6)=0.576 provided by the
boundary-fitted computation. This agreement extends beyond
global parameters, as Fig. 2(a) indicates that both methods
provide very similar streamline patterns. The above two tests
show that the present method, combined with a grid resolu-
tion about 55 cells per bubble diameter, yields accurate re-
sults for deformable bubbles with Reynolds number of O(10)
to 0(107).

Finally, we compute the evolution of a bubble corre-
sponding to p,/ p,= 103, il = 10%, Bo=10%, Mo=10"3 with
the grid used in the first example above. Figure 3(a) shows
that the rear part of the bubble quickly comes in contact with
its front. The resulting thin layer of gas then pinches off and
yields the formation of a toroidal bubble followed by a long
skirt. Later this skirt rolls up on itself and detaches from the
torus, forming a second toroidal ring. To examine the influ-
ence of the spatial resolution in this regime, we doubled it
(i.e., we used Ar/D=1/110 for r<D and Az/D=1/110)
and recomputed the same case. The resulting evolution is
shown in Fig. 3(b). No pinch-off is now noticed. Instead, the
bubble evolves towards a spherical cap shape with a short
skirt. Therefore, we have to conclude that the toroidal bubble
predicted in Fig. 3(a) is an artifact due to a somewhat inad-
equate resolution. Grid resolution is of course a common
issue in all problems involving topological changes, such as
breakup and coalescence, as the gas or liquid film always
ruptures when its thickness becomes of the order of a grid
cell. The question is then, for a given physical problem and a
given range of physical parameters, to determine the mini-
mum grid resolution beyond which the results become grid
independent in a macroscopic sense, i.e., the final interface

geometry, the breakup or coalescence time, and the global
dynamics do not vary any more with the grid resolution. In
the present case, based on several examples in the same flow
regime, resolutions ranging from 55 to 170 cells in the region
r<D were used in preliminary tests. These tests revealed
that the results become grid independent when the number of
cells in this central region exceeds 100. This is especially the
case of computations reported in Secs. IV A and IV B, which
were also run on grids with 170 cells per bubble diameter.
Having established this, the computations that led to the re-
sults described below were all run on a grid with 111 uni-
form cells in the region r<D. Note the difference between
present grid requirements imposed by the topological change
and conclusions of the previous tests, which indicate that the
other stages of bubble dynamics are properly captured with a
twice coarser grid. The computational domain extends up to
5.5D (respectively, 6.3D) in the radial (respectively, vertical)
direction to avoid confinement effects. The outer region D
<r=5.5D is discretized with 29 cells whose size increases
with r following an arithmetic distribution. In the vertical
direction, the grid is uniform and still comprises 700 cells,
i.e., the grid spacing Az/D is about 1/111. Note that with the
above choice, the grid cells crossed by the bubble have a
squared cross section.

IV. THE TRANSITION FROM ELLIPSOIDAL CAP
BUBBLES TO TOROIDAL BUBBLES

We are now in position to deal with the range of param-
eters where the formation of toroidal bubbles is likely to
occur. Throughout this section, the density and viscosity ra-
tios are set to 10° and 102, respectively. We only vary the
Bond number Bo=p,gD?/ o and the Archimedes number Ar
=p,g'? D32/ u, which may be thought off as the Weber and
Reynolds numbers based on the gravitational velocity
(gD)"2, respectively [strictly speaking the relevant velocity
scale is (1-p,/p)(gD)"* but the selected density ratio
makes the effect of the gas density negligible]. All computa-
tions presented in this section are axisymmetric and start
from rest with a spherical bubble shape.

A. High-Ar regime

We first consider the regime where viscous effects are
weak. Hence, we choose the physical parameters so that the
final bubble Reynolds number is of O(10%), which is ex-
pected to correspond to values of the Archimedes number
about 1.5X10% Keeping Ar constant, we vary the Bond
number from low values (Bo~ 1) to high values (Bo~ 103)
and detect the range within which the topological transition
takes place. Figure 4 shows the evolution of two bubbles
corresponding to Bo=32 and Bo=35, respectively, with Ar
=1.4X10? in both cases. The two bubbles first strongly de-
form due to the extra pressure provided by the hydrostatic
head p;gD in the rear-pole region. The pressure difference
between the two poles generates a liquid jet which quickly
reduces the vertical diameter of the bubble. However, for
Bo=32, surface tension is still strong enough to limit the
curvature of the apex of the jet and to slow down its upward
motion in a way that preserves a simply-connected shape.
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FIG. 4. Evolution of two high-Re bubbles (Ar=1.4X10%) with slightly
different Bond numbers. (a) Bo=32. (b) Bo=35. The time interval between
successive views is A7=0.664 [r=1(g/D)"?].

The bubble then eventually reaches a skirted spherical cap
shape. The situation is dramatically different in the second
case [Fig. 4(b)] where the curvature in the top region of the
jet is slightly larger, owing to the somewhat smaller surface
tension. The bubble then pinches off along its vertical diam-
eter at time 7= 1.37 [with 7=(g/D)"?] and becomes toroi-
dal. Since the bubble has a large thick skirt just before the
pinch-off, its cross section is far from circular and rather
takes a kidney-like shape just after the topological change.
Surface tension effects then make it retract to become more
circular and large shape oscillations take place. The radial
expansion of the toroidal bubble required to preserve mo-
mentum conservation'® is clearly visible in Fig. 4(b).
Further computations performed for Bo<<32 at both
higher and lower values of Ar confirm that the bubble re-
mains simply-connected in all cases. Hence, we conclude
that the transition from spherical cap bubbles to toroidal
bubbles takes place in the range 32<Bo =35 when viscous
effects are negligibly small, which corresponds to 2.1 cm?
bubbles for water under standard conditions. This conclusion
is in full agreement with that obtained through boundary
element computations by Lundgren and Mansour," who con-
sidered the inviscid limit (Ar=%) and found the topological
change to occur in the range 32 <Bo=<40. The shape evolu-
tion displayed for both Bo=32 and Bo=40 in their Figs. 2(d)
and 2(e) and reprinted here as Fig. 5 reveals excellent agree-
ment with present results up to pinch-off (since their numeri-
cal method could not handle the topological change, the first
part of their computations stopped just before the singularity
occurred). Note that Lundgren and Mansour normalized their
time 7 by the initial bubble radius, so that 7 has to be divided
by 22 to be compared with the times 7 of our snapshots in
Fig. 4. With this renormalization, Figs. 4(a) and 5(b) reveal
an excellent agreement on both the shape and the position of
the bubble for a given 7. Moreover the pinch-off time found
by Lundgren and Mansour for Bo=40 becomes 1.26, which
is slightly less than the value of 1.37 found here for Bo
=35, a difference to be expected since the pinch-off time
increases as Bo decreases towards its critical value.
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FIG. 5. Lundgren and Mansour’s figures [Figs. 2(d) and 2(e)] showing the
evolution of two bubbles with slightly different Bond numbers and infinite
Archimedes number. Left: Bo=32; right: Bo=40.

Figure 6 shows the evolution of the bubble velocity for
the two cases computed above. After an initial transient dur-
ing which the bubble accelerates at a rate dU/dt=2g (cor-
responding to an approximate balance between the added-
mass force on the initial hollow sphere and the buoyancy
force), the acceleration of its front strongly decreases due to
viscous effects. Nevertheless, in the case Bo=32, the front
velocity of the bubble keeps on increasing slightly until 7
~2.5. In later stages this velocity stabilizes itself at a value
close to 0.64(gD)"?. According to the final snapshot in Fig.
4(a), the final radius of curvature R, of the corresponding
spherical cap bubble is about 0.90D, so that we have U
~0.67(gR,)"?, in excellent agreement with the theoretical
prediction of Davies and Taylor'’ U=2/3(gR,)". The evo-
lution of the centroid velocity is more complex because it
also reflects the changes of shape of the bubble. For instance
the centroid velocity exceeds the front velocity for 7=0.5
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FIG. 6. Evolution of the bubble velocity and Reynolds number for two
nearby Bond numbers at Ar=1.4X 103 Open circles: front velocity for Bo

=32; Solid line: centroid velocity for Bo=32; dashed line: centroid velocity
for Bo=35; dotted line: U=2gt.
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FIG. 7. Evolution of the bubble velocity (=), thickness of the vertical diam-
eter (...), ring radius (-—), and core radius (-.-.) for Bo=35, Ar=1.4 X 10°.
The velocity and lengths are scaled by (g/D)"* and D, respectively.

because the liquid jet forms at the rear and makes the gas
located near the symmetry axis in the rear part of the bubble
move faster than the front. Similarly, for Bo=32, a signifi-
cant part of the gas located in the skirt at time 7=2.0 then
moves up towards the central part of the bubble which thick-
ens, thus resulting in a strong increase of the centroid veloc-
ity up to 7=2.7. Slightly later, the thin curved skirt breaks
up and is entrained in the wake, making the centroid velocity
decrease sharply for 2.7<r7=3.2. In contrast, the centroid
velocity of the toroidal bubble decreases by more than 50%
for 1.8=<¢=<2.5 owing to the radial expansion of the ring
(Fig. 7), whereas it reincreases by the same amount for 2.7
=< r=3.2, a stage during which the ring diameter decreases.
The evolution of the bubble geometry after it becomes toroi-
dal may also be appreciated from Fig. 7, where the radii of
both the ring and the core are plotted (the ring radius R, is
computed as R.(t)=[¢C(x,t)rdS/[¢C(x,t)dS, where S de-
notes the cross section of the computational domain, while
the core radius « is obtained by equating the bubble volume
to 27°R,a?). Initially this aspect ratio has a quite small value
about 1.7 and increases up to 4.8 at the point where the
computation stops.

B. High-Bond number viscous regime

We now set surface tension to zero and seek the critical
Archimedes number at which the transition to a toroidal
shape occurs. Figure 8 shows the shape evolution of two
different bubbles whose Archimedes numbers are Ar=79 and
84, respectively. In the first case, a liquid tongue develops
and quickly broadens while the front part of the bubble flat-
tens. The thickness of the bubble along its vertical axis then
becomes very small. However, pinch-off does not occur be-
cause a large fraction of the liquid previously located in the
external part of the bubble flows towards the center, allowing
the central part to thicken again (Fig. 9). At the same time,
the curvature of the external part becomes very large near the
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FIG. 8. Evolution of the shape of two bubbles with slightly different
Archimedes numbers and infinite Bond number (left: Ar=79; right: Ar
=84). The time interval between successive views is A7=1.107.
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back. In this highly curved region the local shear generates a
very thin toroidal ligament which breaks up and is quickly
entrapped in the wake. The central part of the bubble then
flattens while broadening radially, and the bubble reaches a
final “flat cap” shape with a nearly constant thickness. Note
that in this final stage the central part of the front has recov-
ered a slightly positive curvature, while it was slightly nega-
tive during the transient stage around 7=3.32. The evolution
is pretty similar when Ar=84, except that during the rethick-
ening of the central region, the negative curvature at the front
becomes larger and cannot be reduced anymore by viscous
and transient effects (7=3.32). The corresponding downward
flow then quickly reduces the bubble thickness along its ver-
tical diameter, which eventually leads to pinch-off at =
~4.0 (Fig. 9).
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FIG. 9. Evolution of the bubble thickness along its vertical diameter ()
(Bo=2; Ar=79); (---) (Bo=2; Ar=84).
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FIG. 10. Evolution of the bubble velocity and Reynolds number for two
nearby Archimedes numbers (Bo=c). Open circles: front velocity for Ar
=79; Solid line: centroid velocity for Ar=79; dashed line: centroid velocity
for Ar=84; dotted line: U=2gt. The value of the Reynolds number on the
right axis corresponds to Ar=381.5.

This viscous-inertial pinch-off mechanism appears to
contrast with that prevailing in the high-Ar regime. In the
latter regime, the front part of the bubble does not deform
much and is pierced by the jet born in the rear part. In con-
trast, in the high-Bo viscous regime, the rear part of the
bubble is able to recover an almost flat shape after the initial
liquid tongue has broadened due to viscous effects. Then,
pinch-off occurs because this rear part is pierced by a jet
coming from the front region where the absence of surface
tension makes the interface unable to sustain the overpres-
sure produced by the local divergence of the streamlines. We
are not aware of any previous description of this second for-
mation scenario of toroidal bubbles. However, Collins®® no-
ticed similar features for large two-dimensional bubbles
which he observed to break along their centerline owing to a
downward jet resulting from the instability of the concave
bubble front.

Figure 10 shows the evolution of the bubble velocity in
this high-Bo viscous regime. Again, the velocity of the
bubble front first grows according to the inviscid prediction
U=2gt. Then, for Ar=79, it stabilizes itself around
0.55(gD)'"?. The evolution of the centroid velocity is very
similar for the two bubbles until pinch-off occurs at 7=4.0
for Ar=84. Two maxima are observed in this evolution. The
first of them (7= 0.6) is due to the upward motion in the jet
at the rear of the bubble, while the thickening of the central
region at the expense of the external zone is responsible for
the second maximum (7=2.8). It may be observed that the
centroid velocity corresponding to this second maximum
slightly increases by 1.8% from Ar=79 to Ar=84, owing to
the increased strength of transient effects. This tiny differ-
ence is probably responsible for the ultimate pinch-off of the
bubble in the latter case. During the late stage, the thin skirt
of the bubble corresponding to Ar=79 breaks up and is en-
trained in the wake, which results in a decrease of the cen-
troid velocity. A sharper decrease, due to the impeding effect

TABLE 1. Critical values of the Bond and Archimedes numbers for which
the transition to a toroidal shape occurs, starting from a spherical shape.

Spherical cap Toroidal
bubble bubble
Lundgren and Mansour Bo=32; Ar=» Bo=40; Ar=2%
(Ref. 1)
(a) Bo=32; Ar=1.4X10° Bo=35; Ar=1.4X 103
(b) Bo=35; Ar=1.04X 10> Bo=35; Ar=1.05X 10°
(c) Bo=50; Ar=4.3X 10> Bo=50; Ar=4.4X 10?
(d) Bo=10% Ar=1.8X10> Bo=10% Ar=1.9X 10?
(e) Bo=3X10% Ar=84 Bo=3 X 10% Ar=90
(f) Bo=10%; Ar=79 Bo=10%; Ar=84
Purely viscous regime Bo=%; Ar=79 Bo=; Ar=84

of the circulation round the bubble core, is observed for the
bubble corresponding to Ar=_84 after it has become toroidal.

C. Intermediate regimes

We also carried out a series of finite-Bond number com-
putations in which Bo was varied from 32 to 10%. For each
value of Bo, we sought the critical value of the Archimedes
number for which the transition to a toroidal shape occurs.
These values are reported in Table I and the conclusions are
displayed graphically in Fig. 11. Roughly speaking, the re-
sults indicate that the critical Bond number becomes insen-
sitive to the precise value of the Archimedes number for
Ar=10? (a regime which may be qualified as “purely capil-
lary”), while the critical Archimedes number is almost inde-
pendent of the Bond number for Bo>3X 10%, defining a
“purely viscous” regime. The transition observed in the in-
termediate range is thus quite sharp, as it only covers roughly
one decade in Bo and Ar. Note that in this intermediate re-
gime, Chen et al’ found that an initially spherical bubble
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FIG. 11. Phase diagram of the transition from spherical cap bubbles to
toroidal bubbles. The bubble shapes are those observed just below and
above the transition in the late stages. Vertical and horizontal dashed lines
indicate the location of the transition for the inviscid regime (Ar=) and the
purely viscous regime (Bo=x), respectively.



corresponding to Bo=80 and Ar=79 (in our units) becomes
toroidal, whereas Fig. 11 indicates that the transitional
Archimedes number corresponding to Bo=80 is beyond 200.
Examination of the computational parameters reveals that the
grid used in Ref. 9 is 3.3 times coarser than in the present
computations, and that the outer radius of the computational
domain is only about 1 bubble diameter. In line with the tests
reported in Fig. 3, we suspect that these computations are
under-resolved and probably contaminated by confinement
effects. Hence, we believe the discrepancy between our pre-
dictions and those of Ref. 9 concerning the position of the
topological transition in the intermediate regime to be an-
other illustration of the sensitivity of the numerical evolution
of large buoyancy-driven bubbles to grid characteristics.

An important question concerns the comparison between
present predictions for the position of the topological transi-
tion in the (Bo,Ar) plane and experimental data. For in-
stance, Davies and Taylor10 report observations of spherical
cap bubbles of 200 cm? rising in water with a speed about
0.6 m/s. Using present definitions, the corresponding Bond
and Archimedes numbers are 720 and 6.1 X 10%, respectively,
while the Reynolds number Re=pUD/u, is about 4.35
X 10*, Hence, experiments indicate that, for a given Bond
number, spherical cap bubbles may exist for Archimedes
numbers at least two to three orders of magnitude larger than
the transitional values indicated in Fig. 11. The obvious
cause of this difference is the small-scale turbulence in the
wake of such large-Re bubbles whose effect is not accounted
for in present axisymmetric computations. We guess that this
turbulence has a stabilizing effect on the rear part of the
bubble as it tends to broaden the upward jet as if the liquid
were locally very viscous. In contrast, as there is no turbu-
lence upwards, the front part of the bubble experiences a
purely capillary-inertial dynamics for such high values of Ar.
Hence, the picture that emerges is that of a front part which
evolves as we found numerically in the purely capillary re-
gime, while the rear part evolves as in the purely viscous
regime. No downward jet produced at the front of the bubble
is then to be expected, while the upward jet coming from the
back is considerably softened by the turbulent motion.
Therefore, it is not surprising that spherical cap bubbles with
a turbulent wake have a much larger domain of existence
than predicted by present laminar computations. We can
qualitatively confirm this point by the following reasoning.
Let us assume that the effect of wake turbulence on the large-
scale flow at the rear of the bubble can be represented
through an eddy viscosity u,, even though the detailed
physical relevance of the eddy viscosity concept may cer-
tainly be questioned. Following Prandtl’s mixing length
theory, we have u,= p&ig, where ¢, is the corresponding
mixing length and S is the characteristic strain rate of the
time-averaged flow in the wake. This strain rate is dominated
by the radial velocity gradient whose typical magnitude in
the near wake is 2U/D, as the time-averaged velocity varies
roughly from the rise velocity U on the wake axis to zero
beside the bubble. As the mixing length €, is generally con-
sidered to be about 0.1D in free shear flows (meaning that
there are typically ten large eddies across the wake), we ob-

tain u,/pu;~2 X 10?Re. Defining an effective Archimedes
number characterizing the relative momentum diffusion at
the rear of the bubble as Ar,=p,g"’D*?/u,, we then have
Ar,/ Ar=g,/ 1,~50 Re”!. With Re=4.35X10%, we finally
estimate Ar,=~70. Hence, while the front of the bubble
“sees” a very large Archimedes number Ar in the range
10*-10°, momentum diffusion in the rear part corresponds to
a much lower effective Archimedes number Ar, of O(10?).
Based on Figs. 4(a) and 8(a), we then expect the final shape
at the front to be almost spherical while the rear should be
almost flat. This is indeed what is seen in experimental
photographs.u’ls’16

V. INFLUENCE OF INITIAL CONDITIONS

As mentioned in Sec. I, available experimental results™"’

suggest that generating conditions play a crucial role in the
topological evolution of large gas bubbles. Davies and
Taylor' notice that “considerable difficulty was found in
producing single, large bubbles of gas, and the method fi-
nally adopted was to pivot an inverted beaker containing air,
which was then tilted so that the air was released.” This
device enabled them to obtain spherical cap bubbles with a
volume up to 200 cm®. In contrast, the system used by
Walters and Davidson® to generate toroidal bubbles in the
same range of size consisted of introducing and entrapping
air in a tube closed by a valve; the valve was then rapidly
opened to release the bubble in the tank. That a given volume
of air may give rise to two dramatically different bubbles
topologies depending on the initial conditions deserves some
more investigation. Note in particular that such a sensitivity
to initial conditions is not observed with millimetric spheroi-
dal bubbles rising in water. This point was examined by Yang
et al.,”’ who performed axisymmetric computations of the
evolution of such bubbles starting from various initial
shapes. They found that, in all cases, bubbles of a given
volume relax towards the same final oblate spheroidal shape.

To get some insight into this influence of initial condi-
tions, we carried out a series of computations in which the
initial bubble was given an oblate shape with an aspect ratio
x ranging from 1 to 3 () is defined as the ratio of the major
axis length to the minor axis length). The underlying idea is
that the device used by Davies and Taylor produced fairly
flat bubbles, whereas the photographs reported by Walters
and Davidson indicate that their device created bubbles with
a more or less spherical shape. A typical example of the
results we obtained is shown in Fig. 12. In this case the Bond
and Archimedes numbers are set to 100 and 400, respec-
tively. According to Fig. 11, the critical value of Ar for Bo
=100 is about 185 for an initially spherical bubble, so that
Ar=400 clearly corresponds to supercritical conditions. The
conclusions revealed by Fig. 12 are clear: while the initially
spherical bubble quickly becomes toroidal, the two initially
oblate bubbles remain simply connected (except for a small
secondary ring produced by the breakup of the tip during the
stage where the bubble is skirted) and eventually reach a
spherical cap shape. It is also worth noting that the latter two
bubbles reach the same final shape. In dynamical system
terms, what is suggested by Fig. 12 is that given a set
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FIG. 12. Evolution of a bubble in the regime Bo=100, Ar=400 starting
from (a) a spherical shape; (b) an oblate shape with an aspect ratio y=2; (c)
an oblate shape with an aspect ratio y=3. The time interval between suc-
cessive views is Ar=1.11.

(Bo,Ar) corresponding to supercritical conditions, the sys-
tem has two stable fixed points (the toroidal shape and the
spherical cap shape) with two well-defined basins of attrac-
tion characterized by two different ranges of the initial aspect
ratio x.

We run several other cases, starting from nearly critical
conditions given by Fig. 11, and increasing either the Bond
number or the Archimedes number. These runs led to similar
conclusions. For instance, with Ar=1.4X 103, we observed
that a bubble with an initial oblateness y=2 becomes toroi-
dal only beyond Bo=45. We also run fully three-
dimensional computations to make sure that what we ob-
serve in Fig. 12 is not induced by the assumption of
axisymmetry. These computations (whose spatial resolution
is obviously less than that of the axisymmetric cases) merely
produced the same results. In particular, we always found
that oblate bubbles eventually turn into spherical caps under
slightly supercritical conditions.

To better understand the crucial role of the initial shape
in the bubble evolution, two physical mechanisms must be
considered. First, the length of the minor (vertical) diameter
of an oblate body evolves as Dy >3, which implies that the
hydrostatic pressure difference between its two poles de-
creases as x~>. Hence, the strength of the jet that forms at
the rear of the bubble is a decreasing function of the oblate-
ness. Second, an oblate body displaces more fluid than a
sphere, and hence has a smaller acceleration when it starts to
rise from rest. More precisely, the acceleration of a massless
bubble rising parallel to one of its principal axes is g/Cy,
where C), is the translational added-mass coefficient along
the axis under consideration. The added-mass coefficient
along the minor axis is® Cy=x(a-tg"'a)/(itg ' a-a),
with a=(x*-1)", so that inertia effects resulting from
bubble acceleration are about 3.5 times smaller for y=3 than
for y=1. This implies that the Bond and Archimedes num-
bers based on g/C,, (which, during the transient stages of the
motion, are more meaningful than those based on g alone)
are decreasing functions of the initial oblateness, which in-
dicates that the stability of the system increases with y.
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FIG. 13. Evolution of the centroid velocity, starting from: (a) — a spherical
shape; (b) - an oblate shape with y=2; (c) -.-.-. an oblate shape with y

=3 (Bo=100; Ar=400).

The influence of the initial oblateness on the bubble ac-
celeration may easily be appreciated in Fig. 13. For
t(g/D)"?< 1.0, which corresponds to the transient stage dur-
ing which the upward jet develops, the two oblate bubbles
rise significantly more slowly than the initially spherical
bubble. This makes them capable of resisting more effi-
ciently to the jet, thanks to the (relatively) stronger stabiliz-
ing influence of capillary and viscous forces. Note also on
the second snapshot in Fig. 12 how the jet broadens and
weakens as the oblateness increases, a direct consequence of
the x~** decrease of the pressure difference between the two
poles. Two other interesting features may be observed in Fig.
13. First, the rise velocity of the toroidal bubble is seen to
undergo a huge increase for 4.0=< 7=<15.0. This is due to the
reduction of the ring radius caused by the highly nonlinear
shape oscillations visible in the left column of Fig. 12. This
nonmonotonic evolution of the ring radius may be compared
with the much more regular evolution displayed in Fig. 4(b)
for Bo=35. What this comparison reveals is that an increase
of the Bond number by a factor of 3 is accompanied by a
dramatic increase of the amplitude of core shape oscillations,
which in turns affects the evolution of the rise velocity of the
ring. Figure 13 also indicates that the two oblate bubbles
eventually reach the same rise velocity, which confirms that
they are relaxing towards the same final state, even though
they had different initial oblatenesses. Their final radius of
curvature R, is almost equal to D, so that their final rise
velocity is very close to 0.67(gR,)"?, in agreement with the
theoretical prediction of Davies and Taylor.

VI. SUMMARY

We carried out a numerical investigation of the forma-
tion of gravitationally-driven toroidal bubbles in the presence
of both capillary and viscous effects. For this purpose we
used an original numerical method which solves the full
Navier-Stokes equations on a fixed grid without involving an
explicit reconstruction of the interface. We first checked that



this method provides reliable predictions of the shape and
velocity of bubbles rising in contrasted flow regimes and
carefully examined the influence of the grid resolution on the
predicted evolution of large buoyancy-driven bubbles. Based
on these tests we stress again that the topological transition
from spherical cap to toroidal bubbles is extremely sensitive
to grid resolution, and that the proper description of the dy-
namics of these bubbles requires large resolutions.

After these preliminary steps, we examined in detail the
conditions under which initially spherical bubbles may even-
tually become toroidal. We identified two different transition
scenarios, corresponding to the limit of large Archimedes
number (i.e., negligible viscous effects) and large Bond num-
ber (i.e., negligible capillary effects), respectively. In agree-
ment with previous studies, we found the transition taking
place in the capillary limit to be driven by an upward liquid
jet that forms at the rear of the bubble, owing to the hydro-
static pressure difference existing between the two poles of
the bubble. If surface tension is unable to limit the upward
velocity, this jet eventually pierces the bubble front, yielding
a toroidal bubble. We found this transition to take place in
the range 32<<Bo <35, in agreement with previous results
obtained via the boundary element technique.' The transition
mechanism turns out to be different in the purely viscous
limit. In this case we observed that a similar, however
broader, jet forms at the rear but does not succeed to pierce
the front. However, owing to the absence of surface tension,
the front of the bubble can sustain the local pressure maxi-
mum only if viscous effects are sufficiently large. If not, the
front becomes concave, forming a downward jet which
pierces the rear of the bubble. We found this second type of
transition to take place in the range 79 <Ar<84. We also
explored intermediate situations in which surface tension and
viscosity both play a role, so as to localize the transition for
arbitrary values of Bo and Ar. Corresponding results indicate
that the critical Archimedes number decreases roughly from
10° to 10? when the Bond number increases from 35 to 300.
This contrasts with experimental results which report the ex-
istence of spherical cap bubbles with Bond and Archimedes
numbers of 0(10%) and O(10%), respectively. We attributed
this difference to the wake turbulence which is not accounted
for in the present axisymmetric computations and has a sta-
bilizing influence on the rear part of the bubble, as it broad-
ens and weakens the upward jet. By a crude estimate of the
corresponding eddy viscosity, we showed that the
Archimedes number based on the eddy viscosity, which is
relevant to the dynamics of the rear part of the bubble, is
only of O(10?). Hence, these bubbles appear to evolve in a
very stable mixed regime as their rear part obeys a viscous
dynamics (and is thus almost flat according to our numerical
results), while the front part obeys a purely capillary dynam-
ics (and is almost spherical).

We finally examined the influence of the initial shape on
the final bubble topology by considering bubbles with vari-
ous initial oblatenesses. We found that the bubble evolution
depends dramatically on this initial condition, owing to the
reduction of both the hydrostatic pressure difference between
the two poles and the initial bubble acceleration as the ob-
lateness increases. Since both effects contribute to reinforce

the stabilizing influence of surface tension and viscosity, ini-
tially oblate bubbles may remain simply connected over a
much wider range of Bond and Archimedes numbers than an
initially spherical bubble of similar volume.

Obviously, the main limitation of the present study is
related to the assumption of axisymmetry. Based on some
fully three-dimensional computations we carried out, we do
not believe the possible azimuthal shape instabilities not ac-
counted for here modify dramatically the bubble evolution.
In contrast, capturing the three-dimensional wake dynamics
is of crucial importance to understand the possible influence
of the wake on the bubble path (i.c., the generation of hori-
zontal components of the bubble centroid velocity) as well as
the stabilizing influence of the turbulent wake on the shape
of the rear of the bubble. With this in mind, it is clearly
desirable to develop such three-dimensional computations
with a spatial resolution guaranteeing grid-independent
results.
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