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Transition in circular Couette flow 
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Two distinct kinds of transition have been identified in Couette flow between 

concentric rotating cylinders. The first, which will be called transition by spectral 

evolution, is characteristic of the motion when the inner cylinder has a larger 

angular velocity than the outer one. As the speed increases, a succession of 
secondary modes is excited; the first is the Taylor motion (periodic in the axial 

direction), and the second is a pattern of travelling waves (periodic in the circum- 

ferential direction). Higher modes correspond to harmonics of the two funda- 

mental frequencies of the doubly-periodic flow. This kind of transition may be 

viewed as a cascade process in which energy is transferred by non-linear 

interactions through a discrete spectrum to progressively higher frequencies in 

a two-dimensional wave-number space. ,At sufficiently large Reynolds numbers 
the discrete spectrum changes gradually and reversibly to a continuous one by 

broadening of the initially sharp spectral lines. 
These periodic flows are not uniquely determined by the Reynolds number. 

For the case of the inner cylinder rotating and the outer cylinder at rest, as many 
as 20 or 25 different states (each state being defined by the number of Taylor cells 

and the number of tangential waves) have been observed at a given speed. As 

the speed changes, theso states replace each other in a repeatable but irreversible 

pattern of transitions; vortices appear or disappear in pairs, and waves are added 

or subtracted. More than 70 such transitions have been found in the speed range 

up to about 10 times the first critical speed. Regardless of the state, however, the 

angular velocity of the tangential waves is nearly constant at 0.34 times the 

angular velocity of the inner cylinder. 

The second kind of transition, which will be called catastrophic transition, is 

characteristic of the motion when the outer cylinder has a larger angular velocity 

than the inner one. At a fixed Reynolds number, the fluid is divided into distinct 

regions of laminar and turbulent flow, and these regions are separated by inter- 

facial surfaces which may be propagating in either direction. Under some condi- 
tions the turbulent regions may appear and disappear in a random way; under 

other conditions they may form quite regular patterns. One common pattern of 

particular interest is a spiral band of turbulence which rotates at very nearly the 

mean angular velocity of the two walls without any change in shape except 

possibly an occasional shift from a right-hand to a left-hand pattern. One 

example of this spiral turbulence is being studied in some detail in an attempt to 

clarify the role played in transition by interfaces and intermittency. 
~~~~ 

t On leave of absence from Graduate Aeronautical Laboratories, California Institute of 
Technology, Pasadena, California. 
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1. Introduction 1.1. Historical background 

Prior to the beginnings of modern experimental research in fluid mechanics, the 

steady motion of a viscous fluid between concentric rotating cylinders was 

thought to be a simple linear combination of (1) rotation like a solid body and 

(2) circulation like a potential vortex, the relative proportion of each being 

determined by the angular velocities assigned to the two cylindrical walls. Such 

a flow is now commonly referred to as Couette flow, just as the flow in a circular 

pipe is commonly referred to as Poiseuille flow, and for the same reason. The 

primary object of these early experimenters was to test the validity of the 

Newtonian stress approximation in the Navier-Stokes equations. The method 

was first to verify the existence of the hypothetical fluid property called the 

viscosity, using the scaling laws for the known laminar solutions, and then to 

determine its value, using the solutions in detail. Except for certain difficulties 

arising from the finite geometry of the experiment as compared to the theo- 

retical model, the test in each case was successful provided only that the flow 

velocities were sufficiently small. 

These same early experiments, which included work by Hagen, Reynolds, and 

Mallock, also revealed that the elementary laminar flow was always replaced at 
sufficiently large velocities by some more complicated eddying flow. In  parti- 

cular, the experiments with concentric cylinders by Couette (1890) and by 

Mallock (1888,1896) indicated that the critical speed was very much lower when 

the inner cylinder was rotating and the outer cylinder was at rest than vice versa. 

More or less independently of these researches, the problem of instability in 

rotating fluids had also attracted attention because of its importance in meteoro- 

logy, and a simple criterion for inertial instability was worked out by Rayleigh 

(1916). According to this criterion, an inviscid circulatory flow is unstable 
whenever the sense of the local rotation (the vorticity) is opposite to the sense 

of the overall rotation (the angular velocity). t Applied to the cylinder problem, 

the criterion states that the potential flow is neutrally stable, as is the flow with 

the inner cylinder at rest, and that the region of instability includes all flows for 

which the two cylinders rotate in opposite directions. 

In  a brilliant contribution to the literature of fluid mechanics, Taylor (1923) 

improved this stability criterion for Couette flow to take account of viscosity, 

verified his calculations experimentally, and described the secondary flow which 

appears after the first onset of instability. This secondary flow consists of a 

regular cellular vortex structure in which closed ring vortices alternating in sign 

are wrapped around the axis of rotation. To a good approximation, the secondary 
vorticity is confined to the part of the fluid where there is instability according to 

the inviscid criterion. If the cylinders are rotating in thesame direction, thisis the 

whole of the fluid, but if they are rotating in opposite directions, it  is only the re- 

gion between the inner cylinder and the surface of vanishing tangential velocity. 

t The form usually given to Rayleigh’s criterion is that the flow is unatable if the square 
of the circulation decreases outwards; i.e. if drava/dr < 0. Inasmuch as w/r is the angular 
velocity W ,  and drvjrdr is the axial vorticity 6, the condition 06 < 0 stated in the text is 
an entirely equivalent form of the criterion. 



Transition in circular Couette flow 387 

Because only a very dim light is shed on the physical mechanism of Taylor 

instability by the Rayleigh criterion, it is worth pointing out that the heart of 

this mechanism is a kind of gyroscopic precession in the fluid. Suppose that the 

tangential velocity is initially non-uniform in the axial direction, so that the 

fluid is locally rotating about a line which is not quite parallel to the cylinder axis. 

The radial pressure gradient and the centripetal accelerations arising from the 

curvature of the main flow field are also non-uniform, and exert a net torque 
(about a tangent) causing the axis of the local vorticity to precess into the 

tangential direction. The precession generates radial velocities in a meridional 

plane, and these in turn are coupled to tangential Coriolis accelerations which 

OUTER CYLINDER AT REST 

FIGURE 1. Laminar and turbulent r6gimes in circular Couette flow according to Wendt 
(1933, Abb. 9b;  rJri = 1.176). Height of surface indicates ratio of meamred torque to 
theoretical laminar torque. Reynolds numbers R, = w,r;/v and R, = w,$/v are based on the 
radii and surface speeds of the inner and outer cylinders, respectively. 

maintain the non-uniformity of the tangential velocity, thereby closing the 

circle. This description confirms that this type of instability cannot occur if 

either the vorticity or the streamline curvature is zero in the basic flow. It also 

shows how viscosity can stabilize the motion by providing tangential viscous 

forces to balance the Coriolis accelerations and by providing a diffusive 

mechanism to compensate the generation of tangential vorticity by precession. 

Linearized stability analysis is a game which any number can play, and the 

problem of Taylor instability has by now given rise to a quite extensive analytical 

literature. Experimental work on transition in Couette flow, on the other hand, 

has moved at a somewhat slower pace. The researches published up to the 

beginning of the present investigation, in 1955, tended for the most part to  cover 
25-2 
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the same limited ground explored in the earliest work, using flow visualization 

to determine the Taylor boundary or using torque (sometimes mean-velocity) 

data to study flow conditions with one or the other cylinder a t  rest. A useful 

exception is the investigation by Wendt (1933), who obtained torque data for 

more general combinations of speed for the two cylinders. Wendt’s results for 

the case ro/ri = 1.176 have been used to construct figure 1. Except for a lack 

of detail near the transition boundary, and except for mild reservations about 

the reality of the observed decrease in torque to  the left of the ray R, = 0, the 

figure provides a satisfactory overall view of the transition problem. In parti- 
cular, the figure emphasizes the question of the flow behaviour along the ray 

Ri = 0, where Taylor instability does not occur, and where a hysteresis in the 

transition was noticed by both Mallock and Taylor (1936). Finally, a valuable 

contribution to experimental knowledge of the problem was made by Pai (1943), 

who found for the case of the outer cylinder at rest that the cellular structure 

persisted far into the turbulent regime, with a hysteresis in the dependence of 

the flow structure on speed for this case as well. 

1.2. The present research 

The present experimental investigation of stability and transition in Couette 

flow was begun in 1955 with the object of exploring a number of questions raised 

by previous work. Interest was initially centred in the problem of the origin of 

turbulence in the absence of Taylor instability. It was supposed, by analogy with 
the problem of boundary-layer transition, that a secondary flow periodic in the 

circumferential direction, with a motion like that of rollers in a roller bearing, 

might occur as a result of an instability to infinitesimal disturbances. This conjec- 

ture is now known on both analytical and experimental grounds to be entirely 

mistaken. It was with this problem in mind, nevertheless, that it  was decided to 

make the experimental apparatus large enough to permit detailed hot-wire 

measurements in air. It was also intended that quantitative observations in this 

apparatus would concentrate on the case of one cylinder rotating and the other at  

rest. However, the limitations of this approach became apparent as soon as pre- 

liminary hot-wire observations hadshown the complicated nature of the transition 

process. With the inner cylinder rotating, the appearance of turbulence was pre- 

ceded by regular low-frequency oscillatory motions like those described by Taylor 

(1923). With the outer cylinder rotating, on the other hand, patterns of alternating 

laminar and turbulent flow were observed. At some speeds these patterns were 

quite irregular, even random. At other speeds they showed a highly regular alterna- 
tion at about half the frequency of rotation of the outer cylinder (this was the first 

observation of the phenomenon now called spiral turbulence). Finally, the 

expected strong hysteresis was found for the transition in the case of the outer 

cylinder rotating. When the cylinder speed was slowly increased from zero, the 
flow remained laminar and steady up to a relatively high speed, at which inter- 

mittent turbulence appeared with almost explosive suddenness. Once this transi- 

tion had occurred, the speed had to be decreased to a fraction of the original value 

before the turbulence would die out completely and permanently. 
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Following these preliminary measurements, the research remained for a time 

at top dead centre, except for continuing work on the problem of hysteresis. The 

tripping effect of several different finite disturbances, for example, was studied 

at some length. The principle obstacle to progress was the lack of a real point of 

view in the research, combined with the prospect that there would inevitably be 

a great deal of lost motion if further exploration of the various new phenomena 

had to depend on tedious hot-wire methods alone. 

This impasse was broken in 1957, after a visit to Pasadena by Prof. Schultz- 

Grunow. Using a small portable Couette-flow apparatus, t he demonstrated 
a beautiful flow-visualization technique making use of suspended metallic 

particles. A second apparatus was immediately constructed at GALCIT to 
exploit this method of flow visualization, and the technique has been of immense 

value in illuminating many details of transition in Couette flow. In  early 1958 

some of the more interesting phenomena observed in this second machine were 

recorded in a short motion picture. $ During this period, also, several boundaries 

separating different flow regimes were identified and located quantitatively, 

although not with utmost precision. The results are shown in figures 2 (a), (b), (c), 

which all employ the same co-ordinates as figure 1 but which emphasize different 

ranges of Reynolds number in anticipation of more specialized discussions later 

on. The letters A, B, C . . . scattered about in figure 2 mark the operating points 

a t  which certain of the photographs in figures 14-22 (plates 1-12), were taken. 

The nature of the changes in flow structure which occur at the various boundaries 

will be made clear in @ 4  and 5 of the present paper. 

At first the small Couette-flow apparatus was expected to yield only qualitative 

data, except in the matter of the boundaries between different regimes of flow. 

However, it  was soon realized that the suspended-particle technique could also 

yield quantitative results when combined with suitable optical instrumentation. 

In  order to make the two pieces of experimental apparatus more complementary 

over the whole range of variables, therefore, a number of changes were under- 

taken. These included the addition of torque-measuring devices to the small 

machine; the development of a light source for making shadowgraph pictures of 

the flow; the replacement of the original glass cylinders by others of greater 

precision; the provision of a second motor and transmission for the large machine; 

and the design and fabrication of movable end closures and remotely operated 

probe-traversing gear for this machine as well. Most of these modifications are 

described in more detail in $ 5  2 and 3, which deal with experimental equipment 

and instrumentation. First, however, a brief indication should be given of the 

principal results of the experiments carried out during the period 1958-61. 

One result which emerged almost immediately from the research was the 

recognition of two quite different processes of transition from laminar to turbulent 

t Some photographs of the Bow in this appamtus have been published by Schultz- 
Grunow & Hein (1956). 

f: This motion picture is listed as No. C-2, ‘Transition in Circular Couette Flow’, in the 
catalogue of the ASME-ESL Film Library. A copy of the film may be borrowed from the 
Engineering Societies Library, 345 E. 47th St, New York 17, N.Y., for a nominal fee ($5.00 
a t  the time of writing). 



FLOW 

(Cl / 
I L I I I 

- 4000 - 2000 0 2000 4000 

RO 

FIQURE 2. Different regimes in circular Couette flow from visual observations with the 
small apparatus (rough cylinders; ro/ri = 1.135). Reynolds numbers R,, R, are baaed on 
radius and surface speed. Data in (b) and (c) are for Y = 0.11 cm2/sec; otherwise 
Y = 0.01 cm2/sec. Circled letters refer to photographs in plates 2, 3, 4, 5 and 12. 
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which are recognizably either laminar or turbulent and which are separated by 

quite well-defined interfaces. These interfaces may be propagating in either 

direction, i.e. into the laminar or into the turbulent regions, and the pattern of 

mixed laminar-turbulent flow may itself be persistent or non-persistent, random 

or regular, depending on the particular combination of speeds for the two 

cylinders. 

Probably the most challenging problem in connexion with catastrophic transi- 

tion is to determine the factors which control the direction and velocity of 

propagation of laminar-turbulent interfaces. Study of this problem in the case 

of Couette flow is aided by the fact that a special configuration of mixed flow, 

a configuration which will be called spiral turbulence, occurs quite generally 

throughout the transition region. In  a typical flow (cf. figure 22, plate 12), 

a turbulent strip and a laminar strip are wrapped around the cylinders in a spiral 

pattern much like the pattern of stripes on a barber’s pole. This spiral pattern 

rotates at  very nearly the mean angular velocity of the two cylinders, without 

any significant change in size or shape. As a result, the flow observed from either 

wall shows an astonishing regularity of alternation between laminar and turbu- 

lent characteristics, a regularity which has recently been taken as a basis for an 

elaborate and ambitious investigation of spiral turbulence in the large machine. 

This investigation will be reported separately, and the further discussion of 

catastrophic transition in tj 5 of the present paper will be concerned mainly with 

a number of preliminary experiments carried out to lay a proper foundation. 

The second transition process, which will be called transition by spectral 
evolution, is typical of Couette flows dominated by rotation of the inner cylinder 

(the region above the origin of co-ordinates in figures 2(a), (b) and (c)). As the 

speed increases, the flow as a whole undergoes a slow, superficially reversible 

passage through a limited sequence of regular but increasingly complicated 

patterns. The process begins with the Taylor instability. This is followed by 

a second instability which leads to the appearance of a tangential wave pattern 

rotating at approximately the mean speed of the two cylinders. The ensuing 

motion then remains laminar and doubly periodic for a time, as successively 

higher-order harmonics of the basic frequencies are excited. At sufficiently high 

speeds, however, the flow becomes noticeably no longer quite laminar, in the 

sense that irregularities have begun to appear, especially in the motions of 

smallest scale. Further increases in speed then increase the degree of irregularity 

until finally the flow can only be described as fully turbulent. In  this same 

evolutionary process the spectrum is a t  first discrete, although it may become 

quite complex as new frequencies are added by non-linear interactions of existing 

modes. With increasing speed there is a gradual appearance of noise, which is to 

say a gradual broadening of the spectral lines, until the final spectrum is con- 
tinuous, with perhaps some vague residual periodicities in the motions of largest 

scale. The essential feature of this process is the absence of intermittency, and 

the essential consequence is that no method is available for defining or measuring 

the degree of turbulence in the flow except in terms of the spectral broadening 
concept itself. 

Finally, a different but equally important feature of transition by spectral 



392 Donald Coles 

evolution is an elegant and nearly unprecedented question of experimental 

uniqueness. Throughout the singly- and doubly-periodic rbgimes, it is found that 

a variety of different flows, characterized by different combinations of axial and 

tangential wave-number, can exist at a given speed. Which one of these will 

actually be observed in a particular experiment is determined by the whole 

operating history of the experiment, and especially by the rate and direction of 

approach to the speed in question. In  these circumstances, there is little doubt 

that the issue of uniqueness hangs on the relative stability of alternative and 

closely equivalent modes, rather than on the absolute stability of a single mode. 

What is new in the present experiments is a sudden and inescapable emphasis on 

relative stability as a practical experimental matter, together with a set of 

observations which provide an accurate and reasonably complete description of 

the behaviour of the flow in one particular apparatus. The latter observations, 

which are set out at length in $4, are viewed as the main contribution of this 

paper to the literature of hydrodynamic stability. 

2. Design and instrumentation of the large machine 

2.1. Mechanical details 

The first apparatus constructed a t  GALCIT for the study of circular Couette flow 

was put into operation in 1956. The working fluid in this apparatus is air, and 

observations of the motion are made using standard techniques of hot-wire 

anemometry. The original objective, which was to make the machine as large as 

available funds would permit, was met and even slightly exceeded. The nominal 

diameters chosen for the inner and outer cylinders were 32 and 36in., respec- 

tively ; the nominal length was 60 in. The actual measured dimensions at 21 "C are 

shown in figure 3. The cylinders and shafts were mounted in a large gimbal frame 

to allow the axis of rotation to be changed from the normal horizontal position 

to a vertical one if necessary to cope with effects of free convection on hot-wire 

response at low speeds. One end of the gimbal frame could be opened for installa- 

tion or removal of the cylinders, and a hoist was provided for handling the 

heavier components. The machine itself was supported from the ceiling in order 

to keep the floor area free for instrumentation and other uses. 

With the object of increasing the rigidity of the cylinders and reducing their 

cost, each cylinder was assembled in five 1 ft.  flanged sections. The material is 

a cast aluminium alloy chosen primarily for dimensional stability rather than 

for machinability, and a certain sacrifice in surface finish had to be accepted. 

The final finish shows circumferential grooves with an axial pitch of 0.010 in. 

and a depth of perhaps 0-0002in., together with numerous minute air pockets 

resulting from the casting process. Inasmuch as the individual aluminium see- 

tions had to be machined while clamped by one flange to a steel machine bed, 

some distortion of the final surface resulted from unavoidable variations in 

temperature during machining. Before the cylinders were assembled, therefore, 

the diameter of each section was measured at various points around the circum- 

ference, and the two flanges to be joined were selected so that nearly equal and 

opposite deflexions would be required to force them into a true circular shape 
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while the connecting bolts were installed. By this method nearly true cylinders 

were obtained at reasonable cost. The final runout of the cylinders is determined 
primarily by runout at the ends, where a set of adjustable spokes like those in 

a bicycle wheel is used to connect each cylinder to its shaft. The angle of these 

spokes was chosen so that negligible stresses would be produced by differential 

t' 
I 

FIGURE 3. Plan view and section of large rotating-cylinder apparatus = 1.125). 
Dimensions given are in inches at 21 "C. 

thermal expansion of the aluminium and steel components. With reasonable 
care, the runout at any point on either cylinder can be made less than f 0.001 to 

& 0.002 in. This figure includes contributions from machining tolerances for 

shafts and cylinders, from bearing eccentricity, and from inaccuracies of 
adjustment. 

2.2. Problems in operation 

At the outset of the research, only three operating conditions were contemplated. 

These were (1) inner cylinder rotating, outer at rest; (2) outer cylinder rotating, 

inner at rest; (3) both cylinders rotating in the same direction, with irrotational 
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flow in the working space. A gear box and a single driving motor were to be used 

for the three conditions mentioned. Because the interesting speeds for conditions 

(1)  and (2) were very much different from each other, however, the original 

motor had to be replaced almost immediately by a larger motor and variable 

transmission to permit wider variations in speed. A second similar motor and 

transmission have since been added, and each motor is now coupled directly to 

the appropriate shaft, by-passing the gear box. A V-belt coupling was first tried 

for the sake of quietness, but unacceptable fluctuations in speed were observed. 

The belts were therefore replaced by timing chains, which are satisfactory as 

long as they are kept quite slack to minimize noise and vibration. The useful 

speed range for either cylinder lies between 1 r.p.m. and 400r.p.m. This speed 

is monitored continuously with the aid of an electronic counter which measures 

the period between successive pulses generated once per revolution by a magnetic 

pickup. There is no provision for static or dynamic braking; in fact, over-running 

clutches are installed on the motor shafts to prevent power transmission in the 

reverse direction. 

Once the cylinders had been equipped for independent operation, it was found 
that if only one cylinder rotated it could be made to run true, but if both cylinders 

rotated neither ran true, as if the central shaft were not straight. On the other 

hand, the various components of the bare shaft had run almost perfectly true 

before the installation of the cylinders. The trouble was finally traced to the fact 

that the spokes used to support the cylinders were attached alternately to 

opposite sides of the hub flange, as shown at the top in figure 3. Since the spokes 

were not all under the same tension, a substantial couple could be applied to the 

shaft a t  the hub-attachment point. The solution was to move all the spokes to 

the same side of the hub flange, as shown at the bottom in figure 3. Although the 

spokes now necessarily run in a radial direction in an end view, no difficulty arises 

in transmitting the required torques from the shafts to the cylinders. Quite 

recently, the deflexion of the central shaft under the weight of the two cylinders 

has been measured. According to these measurements, the axis of rotation of 

the inner cylinder lies 0.006 in. below the axis of the outer cylinder. 

Finally, since the instrumentation is usually unsymmetrical, some means had 

to be found to balance the cylinders, especially for very high and very low speeds. 

This has been accomplished by using a switch, actuated by the teeth of the shaft 

gear, to detect variations in speed during a single revolution. By adding appro- 

priate weights (the effect of a 10 g weight at the rim of the 70 kg cylinder is readily 

observable), these variations can be made less than 2 or 3 % at a speed of 1 r.p.m., 
which is roughly the inner cylinder speed for Taylor instability. 

2.3. Instr~mentation and probe-traversing mechanism 

The means provided for making electrical connexions to the inner and outer 

cylinders, through the bottom and top ends of the shaft assembly, respectively, 

are shown in figure 3. At first, measurements were made with one stationary 

cylinder which also carried the hot-wire instrumentation. Later on, an %channel 

slip-ring assembly was added a t  each end of the main shaft. The electrical noise 

originating at these rings, although it varies with current and with speed, and 
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also from one ring to another, is usually negligibly small compared to a typical 

hot-wire signal. At the present time, ten additional channels of slip-ring com- 

munication have been installed to accommodate more complex instrumentation. 

Each of the ten cylinder sections is equipped with two removable pads 180" 

apart for mounting probes. For various reasons it has sometimes been desirable 
to make radial traverses of the flow without stopping the machine. Such 

traverses are easily carried out if either cylinder is at rest. If both cylinders are 

rotating, however, a problem arises not in moving the probe but in keeping track 

of its radial position under adverse circumstances of high speed, large radial 

accelerations of 20g or more, and occasional vibration due to unbalance of the 

heavy cylinders. This problem has been solved with the aid of remotely indi- 

cating traversing units driven by special motors which are supplied with 115 V 
400 c/s power through the slip rings just mentioned. In  each traversing unit the 

gear train driving the probe is arranged so that 10,000 motor revolutions corre- 

spond to 1 in. of radial travel. The special feature of these motors is the provision 

of an integral two-pole permanent-magnet generator producing an oscillating 

signal at the motor frequency of about 10,000 c/min or 160 c/s. This signal is led 

out of the machine to an electronic counter which shows the probe radial position 
directly in inches. Inasmuch as the counter continues to add when the probe 

motion is reversed, a second counter is used to keep track of motion in the 

opposite direction. Two of the three motor-equipped instrumentation pads also 

have provision for adjusting the probe in pitch and yaw, in order to allow a 

complete hot-wire calibration in situ. 
The last point of interest here concerns the occasional necessity for traversing 

hot-wire probes in the axial direction, again with the cylinders rotating. In early 

attempts to drag a light sled axially by means of cables extending through the 

end closures and serving also as electrical leads for a hot wire, it  was found that 

the flow was greatly disturbed by the wake of the sled. Inasmuch as provision 

has already been made for mounting probes 1 ft. apart in the axial direction along 

both cylinders, it was decided to try to move the flow past these probes, rather 

than vice versa, by installing end closures which could themselves be traversed 

axially. The original sheet-metal end plates were split midway between the 

cylinders, as shown a t  the top in figure 3, with half of each plate rotating with 

each cylinder. For mechanical reasons, and also to remove an undesirable 

vorticity concentration a t  the mid-radius on the end-walls (the kind of private 

instability which can occur in this vorticity layer is shown in several of the 

photographs in plates 1-12), the new end-plates span the working space and 

rotate with the outer cylinder. These new closures are transparent to allow probe 

radial positions to be checked optically with a cathetometer. Each end-plate 

can be independently moved in the axial direction by a set of four ball screws 

having rotating nuts connected by shafts as shown a t  the bottom in figure 3. 

Power is supplied either directly, if the outer cylinder is at rest, or through slip 

rings, if the outer cylinder is rotating. The total travel of each end-plate is 14in., 

and the position is indicated by an aluminium ring which also helps to support 

the free end of the ball screws. 
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3. Design and instrumentation of the small machine 

3.1. Mechanical details 

The second apparatus for the study of circular Couette flow has glass cylinders 

and is roughly a 1/8-scale model of the first one. The major difference is that the 

cylinders are supported at one end only, because of the need for access to  the 

interior for optical instrumentation. The general arrangement of the apparatus 

931 A 

PMT 

- I -  
FIGUE~E 4. Section of small rotating-cylinder apparatus. Dimensions given are in cm for 
precision cylinders (v,,/ri = 1-144). Early experiments with this apparatus used rough 
cylinders (r0/ri = 1.135). 
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is shown in figure 4. This small machine was put into operation late in 1957. The 

electric motors used have good speed regulation in the range between 5 and 100 % 
of full speed, and can be readily changed from one to another of three gear ratios 

to provide any speed from 3 to 1600 r.p.m. in either direction for either cylinder. 

This speed is measured by using a magnetic pickup, energized by a 60-tooth gear 

on the motor shaft, to drive an electronic counter. 

3.2. Flow-visualization methods and optical instrumentation 

The working fluid in the small machine is a silicone oil which is commercially 

available in various viscosity grades. The flow-visualization technique is the 
same one used by Schultz-Grunow & Hein (1956), and earlier in a somewhat 

diluted form by Terada & Hattori (1926), Lewis (1928), and Hagerty (1946). 

When a small amount of aluminium paint pigment is suspended in the oil, the 

minute flakes of metal take up, on the average, a preferred orientation which is 

almost certainly determined by the direction of the principal axes of the local 

rate-of-strain tensor. For a very slow laminar flow, for example, observations 

with an ordinary microscope suggest that the flakes are oriented at a constant 

angle with respect to the walls, except for an occasional rapid rotation by 180" 

at what seem to be random intervals. In  more complicated flows, variations in 
particle orientation affect the optical properties of the suspension for both 

reflected and transmitted light. The aluminium pigment used here consists of 

irregular flakes with a typical maximum dimension of 10-3in. and a thickness 

(estimated from the manufacturer's figure for covering power on a water surface) of 

perhaps in. The particles tendto settleout (half in about 2 hfora kinematicvis- 

cosity of 0.01 cm2/sec; half in about 48 h for 0.20 cm2lsec) when the fluid is at rest, 

but a brief period of operation with turbulent flow restores the uniformity ofthe sus- 

pension. Centrifuging of the pigment at high speeds for the less viscous fluids is a 

major factor in limiting the Reynolds numbers for which this flow-visualization 

technique is useful. It has also been found that the pigment may sometimes tend 

to adhere to the glass surfaces of the apparatus, unless scrupulous care is taken in 

removing all traces of oil, solvents, and other contaminants before assembly. 

Previous applications of the suspended-particle method of flow visualization 

seem to have made use only of reflected light. In  the present work, however, an 

unpremeditated but highly successful extension of the technique has been made 

by using transmitted light to obtain quantitative information about the flow 

structure. The optical arrangement is indicated in figure 4. Light from an 
incandescent lamp inside the cylinders passes through the fluid to a photo- 

multiplier tube outside. The light beam is restricted to a diameter of about 
0-5 mm by a lens which forms an image inside the fluid of a diaphragm actually 

located between the lens and phototube. With an optical path length in the fluid 

of about 7 mm, a pigment concentration of about 0.0005 g/c.c. produces quite 

satisfactory signals. No effect of the pigment on the apparent viscosity could be 

detected in a laminar flow of the same fluid through a capillary-tube viscometer, 

even for appreciably heavier concentrations. 

More recently this same optical technique has been adapted to another purpose. 

A piece of film is wrapped around the outer cylinder, and a line light source is 
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placed along the axis. A baffle around the light source passes light only in a 

direction nearly normal to the axis of rotation. The original baffle, consisting of 

alternate layers of black paper and clear plastic, was completely ineffective 

because of total light reflexion from the plastic-paper interfaces. The assembly 

was transparent even when viewed at a quite oblique angle, and the paper might 

as well have been omitted. The plastic surfaces were therefore roughened by 

sandblasting before assembly, and the baffle is now satisfactory except that the 

thickness of the plastic spacers is not quite uniform. The lamp behaves every- 

where along its length like a concentrated area source with a dimension of about 

1.5mm. Little would be gained by attempting to reduce this dimension further, 

because the unavoidable separation of film and fluid, as well as the relative 

motion, prevent the resolution of details of the motion having a scale of less than 

about 0.01 in. 
Two shadowgraphs obtained with this system are shown in figure 14 (plate 1). 

The film used was chosen primarily for its dimensional stability rather than for 

its speed or resolving power. The main object in taking these pictures was to 

verify that light intensity, baffle geometry, particle density in the fluid, film 
sensitivity, and development procedure were reasonably well matched. It is 

evident from the shadowgraphs that a photometer trace in the circumferential 

direction would be entirely equivalent to a direct light-probe signal. The shadow- 
graph, however, allows traces to be made in other directions as well. In  fact, 

a useful application of the method may well be found in the measurement of axial 

and tangential correlation data by the optical method of Kovasznay (1949). 

3.3. Recent rnodi$cutions 

The glass cylinders used in the initial experiments were made of commercial 

tubing and were far from round. The working space was 7-60 in. long, with inside 

and outside diameters of 3.998 0~005in. and 4.535 5 0.015 in., respectively. Thus 
the nominal thickness of about 0.27 in. for the working space varied by several yo 
from one point on the circumference to another, with a corresponding variation in 

the optical density of the fluid. Under these conditions, measurements with trans- 

mittedlight were quite difficult because of refraction errors andvariations in back- 

ground signal. The flow itself was also affected by surface irregularities and by 

vibration at high speed. Consequently, the original cylinders have been replaced 

by a pair of precision ground and polished glass cylinders with a working space 

having the dimensions shown in figure 4. The runout for either cylinder can be 

kept below a value of about 5 0.001 in. by care in assembly. 

A further modification of the drive system for the small machine has also been 
made in an effort to obtain useful torque data. Each cylinder is now driven 

through a coupling consisting of two sections capable of rotating with respect 

to each other against a spring torque. Mirrors on the two sections alternately 

reflect a light beam onto a photocell, allowing the angular deflexion of the 

coupling to be measured during operation. This arrangement obviously yields 

only the total torque, including that required to overcome friction in the seals 

and bearings. 
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4. Transition by spectral evolution; the ‘state’ problem 

4.1. The Taylor boundary 

As soon as the small Couette-flow apparatus was completed in late 1957, the 
flow-visualization technique described in 0 3 was used to verify the position of 

the Taylor stability boundary. The result is shown by the open circles in figure 2, 

in which the co-ordinates Ri = wirSlu and R, = w,rilv are the usual Reynolds 

numbers based on radius and surface speed for the inner and outer cylinders re- 

spectively. Some of the scatter in these early observations is due to out-of-round- 

ness of the cylinders or to poor control of temperature. Some uncertainty about 

the position of the boundary also arises from the fact that the cellular secondary 

motion does not appear simultaneously all along the length of the apparatus, but 

begins in the vorticity concentration at the ends and only reaches the centre after 
a slight increase in speed. 

Three photographs taken with a spark-gap light source and reproduced in 

plate 2 show the secondary vortex pattern at  the three points marked A, B, C 
respectively in figure 2(b). In  particular, the weak spiral configuration at the 

point C seems to be quite typical of Taylor instability for opposite rotation of the 

two cylinders in this apparatus, except at low Reynolds numbers for the outer 

cylinder. When the strength of the secondary motion is moderately strong with 

opposite rotation, one layer of cells can occasionally be distinguished spiralling 
up in the fluid while another layer is spiralling down. 

The fourth photograph in plate 2 is a single frame from the motion picture 

prepared early in 1958. This photograph illustrates the secondary vortex struc- 

ture at the point D in figure 2 (c), well above the Taylor boundary, as viewed with 

transmitted light. t The light sowce was a strong lamp placed inside the cylinders; 

the inner surface of the inner cylinder was covered with a thin sheet of translucent 

white plastic as a light diffuser. The feature of special interest in this photograph 

with transmitted light is the lens-shaped inclusion near the centre of the flow, 
where a single vortex filament doubles back on itself and closes at another point 

on the circumference-in this case, on the far side of the apparatus. Irregularities 

of this lens type sometimes occur during a rapid transit of the stability boundary 

(necessary here because of the limited period of operation of the motion-picture 

camera), but tend eventually to work themselves out, usually by diminishing in 

length and disappearing. 

4.2. The second boundary 

The position of a second stability boundary separating two distinct regimes of 

flow is shown by the filled circles in figure 2. When this boundary is crossed (at 
least at any point to the right of the triple intersection at Ri = 2500, R, = - 4500 

in the left quadrant of figure 2(b) or (c)), the new motion which appears is a 

rotating pattern of tangential waves superimposed on the original cellular 

t In interpreting this and other photographs of the Taylor motion, it need only be kept 
in mind that the aluminium flakes in the fluid are seen roughly face-on near the centre of 
the vortex cells and roughly edge-on near the boundaries between cells. The latter regions 
are therefore relatively transparent to transmitted light but appear dark when viewed by 
reflected light, with some differences also noticeable between stagnation and separation 
lines at the surface of the cylinders. 



40 0 Donald Coles 

motion. This is the doubly-periodic flow which was first described qualitatively 

by Taylor (1923) and later photographed by Schultz-Grunow & Hein (1956). 

As demonstrated by the first of the two shadowgraphs in plate 1, an important 
feature of this doubly-periodic flow is a marked phase shift for alternate cell 

boundaries. Provided that the visible cell boundaries are stream surfaces (as 

(a) 
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they are in the singly-periodic Taylor motion), and provided that the mean 

tangential flow does not vanish in a co-ordinate system rotating with the wave 

pattern, the new secondary flow is essentially a combined rotation and transla- 

tion in a stream tube of periodically varying area. 

Except for one paper by DiPrima (1961), no attempt has been made so far to 
treat this second instability theoretically. Among the major obstacles to progress 
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is uncertainty about the actual flow at the onset of the instability, in spite of 

some important explorations of the non-linear Taylor regime which have been 

carried out by Stuart (1958) and Davey (1962) from a base on the Taylor 

boundary. Their method is to represent the secondary motion by the eigen- 

functions of linearized theory (including certain essential second-order terms in 

the case of Davey’s paper) and to determine the amplitude by an energy balance. 

For the present geometry, Davey’s analysis implies the equilibrium amplitude 

A,  = v*/wiri shown in figure 5(a), where v* is the modulus of the first-order 

perturbation in tangential velocity. Figure 5 (b) shows the corresponding linear 

amplification factor c, defined in terms of an initial disturbance growth like 

exp (avt /d2) ,  where d is the gap; and figure 5 (c) shows the relative torque MIM,,, 
(cf. also figure 1). 

A vague clue to the nature of the tangential instability is provided by the fact 

that wave motions are known to occur in a confined fluid undergoing combined 

translation and rotation if the helix angle of the bounding streamlines is steep 

enough (Fraenkel 1956). Another and probably related criterion permits wave 

motions in rotating fluids when the frequency of rotation is large enough com- 

pared to some disturbing frequency (Gortler 1944). To test the usefulness of such 

criteria in the present problem, the quantity w* = lau/axl,,, has been taken as 
a measure of the intensity of rotation about a tangent within the Taylor cells, and 

curves of constant frequency ratio 2w*/(wo + w i )  have been computed and plotted 

in figure 5 (d). 1- Whatever they may be worth as an attempted fit to the second 

stability boundary in figure 5 (d), these curves are computed for fixed geometry 

and are therefore also curves of constant helix angle w*d/(wo+wi)r i  (say). The 
idea of a critical helix angle, however, is not consistent with an impression 

produced by the available experimental data, that the two stability boundaries 

tend to approach each other$ as ro/ri+ 1. 

t The shape of these curves depends on the fact that the theory makes the angular 
velocity w* increase at first more rapidly than the mean cylinder velocity but then become 
asymptotically constant. The latter behaviour is almost certainly not realistic, inasmuch 
as the theory also requires the amplification factor u to be small compared (probably) to 
n2, and according to figure 5(b) such a condition is only satisfied quite near the Taylor 
boundary. For other reasons, the theory also becomes less accurate when moving from 
right to left in the figure, and fails altogether for strong opposite rotation of the two 
cylinders in the left quadrant. Hence the region in which Stuart’s or Davey’s analysis is 
capable of describing the real motion is quite limited, and includes at most only a small 
fragment of the second boundary where the speed of the outer cylinder is relatively low, 

$ The present speculations, which are in no sense an explanation of the tangential 
instability, can be criticized on numerous grounds. Nevertheless, it is worth noting that 
Davey’s analysis for the limiting case of a small gaplradius ratio with w, = 0 can be used 
to iustifv a formula ” .  (T)c = 1.86 (1 -$)I*, 
where To and Ti are Taylor numbers for the first and second instabilities, respectively. 
Some Chicago data (DoMelly 1963) give the experimental value TOIT, = (w&,)* = 1.15 
for r,,/ri = 1.053, and the present GALCIT data for precision cylinders give TOIT, = 1.55 

for ro/ri = 1.144. In both cases the formula just cited yields a value (2w*/wI), = 2.9. These 
results provide a tentative empirical criterion for the occurrence of the second instability, 
including, incidentally, a prediction that the conditions for instability CaMOt be satisfied 
if rJri is greater than about 1.4. 

26 Fluid Mech. 21 
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Further details of some typical doubly-periodic motions are illustrated in 

plates 3 and 4. The first two photographs in plate 3, taken from the motion picture 

mentioned earlier, are front-lighted and back-lighted views of the flow at the 

point E in figure 2 (c). It should be noted that similar constraints are applied to 

the motion at the two ends, in spite of the fact that the fluid is bounded below by 

solid walls and above by a free surface. Closeup views of this same motion are 

reproduced in plate 4. 

The third photograph in plate 3, taken with the spark-gap light source, shows 

a complex (but completely correlated, and hence technically laminar) doubly- 

periodic flow at the point F in figures 2 (a) and (b), well above the first and second 

stability boundaries. The fourth photograph in plate 3 shows a nominally singly- 

periodic flow at the point G in figure 2 (b). In  this case, however, it  appears that 

a higher-order tangential mode has been excited before the fundamental. t This 

behaviour seems to be typical of the more energetic flows close to the doubly- 

periodic boundary for cylinders rotating in the same direction, and the nature of 

the second or tangential instability in this region is therefore not yet clear. 

4.3. The tangential wave velocity; uniqueness 

It is an experimental fact in figure 2 (c) that the boundary separating the singly- 

and doubly-periodic flow rbgimes in the right quadrant is not unique, but depends 

on an axial wave-number which can itself take on several discrete values. This 

property of non-uniqueness for the circular Couette flow was noticed quite early 

in the present research, to be sure, but its importance was at first completely 

overlooked. When precision glass cylinders finally became available in early 1960, 

a closer study began of the doubly-periodic motions for the case of the inner 

cylinder rotating and the outer cylinder at rest. Particular attention was paid 
at first to the characteristic angular velocity of the tangential waves. The results, 
shown in figure 6, include data obtained in the small apparatus using a light 

probe and photomultiplier tube to measure phase velocity and using photo- 

graphic or other means to determine wave number. Also shown are data obtained 

by C. Van Atta in the large apparatus using hot-wire anemometers to determine 

the same quantities through observations of the flow from both cylinders. $ 
When the waves first appear, their angular velocity is close to half the angular 

velocity of the rotating inner cylinder, in agreement with a tentative theoretical 

t At sufficiently high speeds, a private instability leading to tangentially periodic 
disturbances can occur in the vorticity anomaly at the ends of the working space. In 
several of the spark photographs, which were taken with the space between the cylinders 
completely filled with fluid, these disturbances can be seen at both top and bottom of the 
apparatus. 

$ The relatively large scatter in these measurements in air is almost unavoidable. 
Toward the low-speed end of the experimental range in figure 6 (b), the inner cylinder 
is rotating at perhaps 6 r.p.m., and the wave pattern is rotating at about one-third of this 
speed. The wave periods which have to be measured are therefore of the order of several 
seconds. Under these conditions, moreover, the relative velocity at the hot-wire probes is 
less than 10 cm/sec, and the heat loss from the wires is dominated by free rather than 
forced convection. If the probe happens to be on the horizontal inner cylinder, for example, 
large but irrelevant periodic signals are generated solely by the steady rotation of the 
velocity vector with respect to the direction of the gravitational field. 
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estimate by DiPrima (1961). As the speed increases, however, the dimensionless 
wave velocity rapidly approaches a value of approximately 0.34 in both 
machines. This latter value is then practically constant (i.e. independent of 
Reynolds number) out to the present limit of observation, where the noise level 
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FIGURE 6. Relative angular velocity of the tangential wave pattern in doubly-periodic 
Couette flow when the outer cylinder is at rest. Reynolds number R = wirf  (ro - r f ) / v  is baaed 
on gap m d  on surface speed of inner cylinder. Data in (a) are for silicone oil in small apparatus 
(precision cylinders; ro/r, = 1.144). Data in (b) are for air in large apparatus (ro/ri = 1-126). 
In both cmes the number of tangential waves may be 3,4,5,6, or 7 in various ranges of R. 

is so high that a dominant frequency for the largest-scale motions can no longer 
be isolated by conventional filtering techniques. 

In  the course of these measurements of wave velocity, a fascinating peculiarity 
of the Couette flow was discovered. As the speed of the inner cylinder was slowly 
increased or decreased in the doubly-periodic rdgime, with the outer cylinder a t  

26-2 
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rest, the flow pattern was observed to change abruptly, discontinuously, and irre- 
versibly from one state to another at certain well dejhed and repeatable critical speeds. 

The term ‘state’ is used here in a deliberately vague sense, the state variables 

being taken a t  least temporarily as the two integers denoting the number of 

Taylor cells and the number of tangential waves respectively. A change of state, 

or a transition, then implies a discrete change in one or both of these integers. 

The actual physical processes by which the number of cells or the number of 
waves increases or decreases will be described in detail in 9 4.5. 
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FIGURE 7. Hysteresis loops in state diagram for 22 Taylor cells (precision cylinders; 
r,,/ri = 1.144). Speed of inner cylinder is varying slowly with outer cylinder a t  rest. 
Ordinate is ratio of period of wave passage T to period of cylinder rotation 2 7 ~ 1 ~ .  Abscissa R 
is Reynolds number based on gap and on surface speed of inner cylinder. 

The property of non-uniqueness is most vividly demonstrated by the existence 

of a number of hysteresis loops, in which the flow changes from one state to 

another and back again as the speed of the inner cylinder is slowly increased and 

decreased. t Several such hysteresis loops, involving changes in tangential wave- 

number only, are shown in figure 7. The ordinate in this figure is the ratio of the 

period of the tangential wave passage, r ,  to the period of rotation of the inner 

cylinder, 27r/w, both measured in laboratory co-ordinates. These are raw data, 

t Other physical situations are of course known in which rotational fluid motions show 
a tendency toward hysteresis or non-uniqueness. Examples which come readily to mind 
include: the stalling behaviour of many airfoil sections; Pai’s (1943) study of turbulent 
Taylor cells in Couette flow; Roshko’s (1955) study of boundary-layer flow pa& a cavity 
of variable depth; Fultz’s (1961) study of tangential wave patterns in a rotating annulus 
in the presence of radial heat transfer. Wave patterns occurring in cellular convection 
between horizontal surfaces must also exhibit this same kind of behaviour. In  none of 
these cases, however, is the property of non-uniqueness so conspicuous, or so well docu- 
mented, or so compelling of attention, as in the experiments reported here. 
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incidentally, of the kind that first called attention to the existence of state transi- 

tions involving the tangential wave number. No attempt has been made so far 
to modify or control the form of these hysteresis loops, e.g. by changing the noise 

level in the environment. 

In  view of the tangible non-uniqueness of Couette flow, the measurements of 

tangential wave velocity in figure 6 are remarkable for the absence of dispersion. 

The normalized wave velocity is so nearly independent of speed, and at fixed 

speed is so nearly independent of wave number, that it is essentially an invariant 

of the whole experiment. These measurements extend well into the transition 

rdgime, where a dominant tangential wave-number is most easily detected by 

observing the heavily damped motion very near the ends of the apparatus (note 

the position of the lamp, lens, and phototube in figure 19(f), plate 7). The results 

therefore suggest that doubly-periodic Couette flow may provide a model for 

study of at least one important property of turbulent flow; namely, the charac- 

teristic velocity of the large-eddy structure.-f At the same time, the present data 

are a warning that an eddy which is continuously exchanging fluid with its 

environment, meanwhile operating on the vorticity of this fluid so as to preserve 

the local flow pattern, cannot usefully be viewed either as a quasi-solid-body 

motion or as a quasi-two-dimensional motion in which vorticity remains perma- 

nently attached to each fluid element (except for the diffusive effects of viscosity) 
during distortion. 

4.4. The state problem 

For obvious reasons, as soon as the nature of the problem had been realized, the 

investigation of state transitions became for a time the central object of the 

experimental work. For the particular apparatus used in these experiments, and 

for the range of speeds up to about 14 times the critical speed for Taylor in- 
stability, a total of 74 such transitions were definitely identified. Each was 

observed 3 or more times, the critical Reynolds number being repeatable in most 
cases within 2 or 3 %. The same fluid, a silicone oil with a kinematic viscosity of 

0.213 cm2/sec at 21 "C, was used throughout. 

In  figure 8, which is in the nature of a generalization of figure 7 to three dimen- 

sions, an attempt has been made to show entire this complex phenomenon of 
state transitions. The base of figure 8 is a rectangular grid laid off in one direction 

according to the number of Taylor cells in the flow, and in the other direction 

according to the number of tangential waves. The height above the base is taken 
proportional to the speed of the inner cylinder. Each transition can then be 

represented by a horizontal bridge or arrow from one column to another, indi- 

cating the nature and direction of the transition in wave-number space as well 

as the critical speed. Information equivalent to this figure is also presented in 
table 1. 

t It is obviously desirable to extend these measurements of wave velocity to flows with 
both cylinders rotating, including certain fully turbulent flows which are known to show 
a dominant tangential as well as axial wave number. An example is provided by the 
motion at  the point I in figure 2 (a) (plate 5 (i)). A slowly rotating tangential wave pattern 
in this flow is clearly visible in the motion picture mentioned earlier. 
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Inner cylinder rotating; outer cylinder at rest. 
Gaplinner radius = 0.144; lengthlgap = 27.9 

Reynolds number 
R = wiri(ro-r i ) /v  

& 
Increasing 

speed 

114 
143 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

20 1 
203 
- 
- 

211 
215 
217 
217 
219 
225 
226 

239 
244 
244 
247 
260 
286 
297 
297 

366 
407 

- 

- 

- 

Decreasing 
speed 

- 
- 
144 
152 
152 
154 
154 
158 
163 
163 
164 
165 
167 
168 
170 
177 
188 
200 
- 
- 
206 
207 
- 
- 
- 
- 
- 
- 
- 
228 
- 
- 
- 
- 
- 
- 
- 
- 
334 
- 
- 
453 

Number 
Initial Final of Expected 
stab state accessible state 

(cells/waves) (cellslwavos) 

010 
2810 
2214 
2616 
3016 
2816 
3216 
2416 
2216 
2617 
2817 
3017 
2417 
3217 
2215 
2217 
2015 
2016 
2214 
3215 
2017 
1815 
3216 
2414 
3015 
3214 
3016 
3217 
3014 
1816 
2816 
2815 
3017 
2814 
2614 
2616 
2615 
2817 
2817 
2415 
2215 
2616 

2810 
2814 
2614 
2614 
3014 
2814 
3214 
2414 
2214 
2615 
2815 
3015 
2415 
3215 
2214 
2215 
2415 
2416 
2215 
3015 
2417 
2215 
2816 
2415 
2815 
2814 
2816 
3017 
2614 
2216 
2616 
2615 
2817 
2415 
2615 
2416 
2215 
2617 
2617 
2215 
2216 
2416 

states 

lo t  
11 

13 

15 

16 

18 
19 

20 
21 
22 
23 
24 
25 
26 
25 
24 
25 
26 
25 
24 

22 
21 
20 
19 
20 
19 

17 
16 
15 
14 

12 
13 
12 
11 

(cells/waves) 

Taylor boundary 
Wave boundary 

27.514.5 

27.514.7 

27.914.9 
27-614.9 

27.215.1 
27.315-2 
27.415-3 
27.215.4 
27-515.5 
27.215-4 
27-015.5 
26-715.5 
20.5/5.5 
26.6l5.6 
26-415.6 
26-2/5*6 
25.915.6 
25.615.6 
25-715.7 

25.215.8 
25.0/5*8 
24615.7 
24.315-8 
24.015.8 
23.815-8 

23.215-8 
22.915.9 
22-716.0 
22-416-0 

21.716.0 
22.216.1 
22.016.2 
22.016.3 

t For the ten states 24/4,24/5,26/4,26/5,28/4,28/5,30/4,30/5,32/4,32/5, the tangential 
waves disappear as R decreases from 144 to 143; the Taylor cells then disappear at R N 114. 
Finer details in this range have not been resolved. 

TABLE 1. State transitions in doubly-periodic flow 
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Inner cylinder rotating ; outer cylinder at rest. 
Gap/inner radius = 0.144; lengthlgap = 27.9 

Reynolds number 
R = O * T ~ ( ~ ~ - T ~ ) / Y  Number 
& Initial Final of 

Increasing 
speed 

- 
- 
- 
- 
- 
- 
- 
- 
- 

667 
67 1 

725 
732 

759 

810 

833 

851 
866 
969 
988 
995 

1046 
1069 
1091 

1207 
1231 
1348 

- 

- 

- 

- 

- 

1119$ 

- 

Decreasing state state accessible 
speed 

453 
464 
482 
515 
534 
562 
590 
624 
650 
- 
- 
679 
- 
- 

7561 

772 

817 

836 

- 

- 

- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1609 

(cells/waves) (cells/waves) 

3017 
1814 
2215 
2816 
2415 
2014 
2615 
3016 
2815 
2417 
2217 
2214 
2617 
20/7 
3217 
2216 
2414 
2016 
1813 
2416 
2614 
2817 
2015 
2215 
2616 
1815 
1816 
3017 
2816 
3217 
3016 
1814 
2014 
2013 

2817 
1815 
2216 
2616 
2416 
2015 
2415 
2816 
2615 
2416 
2215 
2215 
2616 
2015 
2816 
2215 
2214 
2014 
1814 
2415 
2214 
2816 
2014 
2214 
2615 
1813 
1813 
3016 
2815 
2614 
2815 
1813 
1813 
1813 

states 

13 
14 
15 
16 
17 
18 
19 
20 
21 
20 
19 
20 
19 
18 
19 
18 
19 
18 
19 
18 
19 
18 
17 
16 
15 
14 
13 
12 
11 

10 
9 
8 
7 

a §  

407 

Expected 
state 

(cellslwaves) 

22-916.3 
22-6/6-1 
22.516.1 
22.916.1 
22.9/6*0 
22.815.9 
23*0/5.8 
23.315-9 
23.515.8 
23.515.8 
23.615.7 
23.515.6 
23.415-5 
23.615-4 
24.015.5 
24-115.5 
24.115.4 
24.315-4 
24.015.3 
24.015.2 
24-115.2 
23.915.1 
24.115.1 
24-315.1 
24-115.0 
24.615.0 
25.114.9 
24.714.8 
24.414.6 
23.614-4 
22.914-2 
23.514.3 
24-014.3 
23.514.1 

$ These two transitions are quite violent, and sometimes lead to a final state other than 
the one given. 

8 The eight accessible states for R > 1609 are 1813, 2013, 2214, 2414, 2415, 2614, 2615, 
and 2815. All are quite noisy, and all persist to somewhat higher speeds without further 
transition. 

TABLE 1. (continued) 

It should be emphasized that the data of figure 8 and table 1 are limited to those 

state transitions which occur as the speed of the inner cylinder varies slowly. The 
initial state for each transition is considered as given, although in practice some 

of these initial states can themselves be realized only after abrupt changes in 
speed for the inner cylinder or after preliminary operation of the outer cylinder 
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in one direction or the other.? In  any case, no effort has been spared to establish, 

by whatever means, as many as possible of the states which can maintain them- 

selves indefinitely in the present apparatus for steady rotation of the inner 

cylinder alone. In  the later stages of the investigation, this effort was guided by 
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FIGURE 8. State transitions in doubly periodic Couette flow with outer cylinder at rest 
(precision cylinders; yo/ri = 1.144). Ordinate R is Reynolds number based on gap and on 
surface speed of inner cylinder. Geometry and fluid properties are fixed. For tabulation 
of these data, including Reynolds number for each transition, see table 1. 

t It is worth noting that the hysteresis loops in figure 7 are accessible with only very 
slow changes in speed starting from rest. As the speed of the inner cylinder is slowly 
increased from zero, 28 Taylor cells appear at R = 114, followed by four waves at R = 143. 

At R = 247, four of the cells drop out in two separate pairs, and the number of waves 
simultaneously changes to five (this transition makes a knight's move in figure 8). At 
R = 366, two more vortices drop out, and the resulting state of 22 cells and five waves 
then lies in the operating space of figure 7. An instance of an unnatural trajectory is also 
provided by this same figure. By chamging the speed of the inner cylinder sufficiently 
rapidly, the state can be made to jump to right or left across the gap between R = 407 and 
R = 482 in the curve for five waves, or even across the gap between R = 201 and R = 679 

in the curve for four waves. In  both of these examples, of course, the same h a 1  states are 
also accessible through slow changes in speed alone. 
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an appreciation of the gradually emerging pattern of transitions, and several 

permissible operating states were in fact found by being deliberately sought in 

certain ranges of speed. 

4.5. The concept of a mean state 

The structural details of the three-dimensional representation in figure 8 will 

obviously vary from one experimental situation to another. This figure is only 

a single section through a much more complicated figure incorporating the 

several additional dimensions needed to describe the effects of changes in 

geometry (e.g. gaplradius ratio or lengthfgap ratio), changes in noise level 
(cf. the influence of end conditions), steady rotation of the outer cylinder in 

either direction, and so on. The best hope for a successful interpretation of the 

3O t 

R 

FIGURE 9. Number of accessible states as a function of speed (precision cylinders; 
rJr< = 1.144). Reynolds number R is based on gap and on surface speed of inner cylinder. 

data therefore lies not in a study of fine detail in figure 8, but in a study of the 

general topological properties of the figure as a typical collection of trajectories 

in wave-number space. 

The experimental fact is  that the steady Couette flow of a given fluid in a given 
apparatus is not uniquely determined by the speed of rotation, and that the issue of 

uniqueness raised by this f inding i s  of a different order from the issue of uniqueness 

usually at stake in discussions of ~tability. As shown in figure 9, at any specified 
speed in the doubly-periodic r6gime there exists a variety of possible operating 

states, sometimes 20 or more in number, among which the one actually observed 

is determined by the whole previous history of the experiment. In  figure 10, the 

distribution of these accessible states in wave-number space is examined for 

several Reynolds numbers. The solid points denote states which are definitely 

stable, in the sense that the flow is permanent as long as the speed is held constant. 

The open points denote states which are definitely unstable; i.e. they can be 

observed, if a t  all, only momentarily during the transient phase following a 
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rapid adjustment of the speed to the value in question, and are then replaced by 

some other state. The solid lines, derived in part by interpolation in figure 8, 

denote a hypothetical continuous boundary between the stable and unstable 

regions. 

It is clear in figure 10 that the accessible region in wave-number space depends 

on Reynolds number. In  order to obtain a measure of this dependence, the 
ensemble of accessible states at each speed can be replaced by a fictitious mean 

state defined by taking the average wave-numbers over the states actually 

observed. The result lies as shown by the quartered circles in the figure. Because 
this concept of a mean state may be a meaningful abstraction in any comparison 

of one experiment with another experiment or with theory, mean wave-numbers 

have been computed for all of the various intervals between state transitions and 

entered in table 1. The same quantities are also plotted against Reynolds number 

in figure 11. 

Unfortunately, it  is also clear in figure 10 that the data are defective in certain 

ranges of Reynolds number, in that the boundary between the stable and unstable 

regions is not completely defined. In  the range R = 250-450, for example, a few 

states with eight waves probably should have been uncovered.? In  the range 

R = 800-1300, one or more additional high-wave-number states, and especially 

the state 3015, are almost certainly stable. In  this same range R = 800-1300, 

finally, there is good reason to believe that several permissible states with 16 or 
even 14 cells should have been observed, except that mechanical limitations on 

the apparatus prevented the manipulation of speed or acceleration necessary for 
their establishment. $ 

To illustrate the evolution of the doubly-periodic Couette flow with increasing 

speed, figure 19 (plates 6 and 7), shows a sequence of six photographs taken at the 

circledpoints marked 19a, 19b, etc., infigure 11. The state in each case is as close 

as possible to  the mean state just defined. The last two photographs, in particular, 

show how transition to turbulence begins in this apparatus a t  R - 1300 with 

a gradual emergence of noise in the form of a gradually increasing irregularity of 
the flow. 

At each of three Reynolds numbers R N 455, 785, and 1040, the physical 

appearance of two extreme states far from the mean state is shown in figure 20 

t The usual experimental method for establishing a flow with a high tangential wave- 
number was to approach the h a 1  operating condition from the singly-periodic side with 
the two cylinders rotating initially in the same direction. A sufficiently fast stop for the 
outer cylinder then usually led to a flow with a large number of tangential waves, probably 
as a result of Tollmien instability in the unsteady viscous layer on the wall of the outer 
cylinder (cf. figure 22(0), plate 12). 

$ The usual experimental method for establishing a flow with a low axial wave number 
waa to run the inner cylinder at the highest practicable speed, and then to run the outer 
cylinder briefly in the opposite direction to obtain an irregular turbulent motion. When 
the outer cylinder was stopped, the resulting flow was usually one with 20 or 18 cells. 
States with 16 or 14 cells, however, could not be achieved by this method. Further 
increases in speed for the inner cylinder were not thought to be mechanically safe, and 
a reduction of the viscosity to increase the Reynolds number would have moditied the 
whole experiment by introducing new problems with speed regulation and thermal con- 
vection near the Taylor boundary. 
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(plates 8 and 9), in order to demonstrate the remarkable differences in flow con- 

figuration which can be observed at a given speed. Among these photographs, 

which correspond to the joined pairs of points marked 20a, 20b, etc., in figure 11,  

the one at the point 20c is noteworthy on account of a subharmonic disturbance 

in the axial direction, a disturbance which is repeated in four cells rather than 
two. 
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FIUURE 10. Accessible states (filed circles) and inaccessible states (open circles) in wave- 
number space at various Reynolds numbers R baaed on gap and on surface speed of inner 
cylinder (precision cylinders; r,,/ri = 1.144). Quartered circles show position of mean state, 
defined aa centre of gravity for observed population of accessible states. Dashed lines show 
constant ratio of axial to tangential wave-number. 

Finally, a representative group of photographs taken at  the points marked 

21 a, 2Ib, etc., in figure 11 is presented in figure 21 (plates 10 and 1 l), to illustrate 

some further experimental observations. At the point 21a there is a well- 

developed second harmonic in the tangential direction. At the point 21 b there 

is a complicated but quite well correlated pattern at a moderately high Reynolds 

number. The flow at the point 21c shows, near the centre of the apparatus, 

a striking example of the kind of disturbance which characterizes the first 

appearance of noise. At the point 12d there is a marked distortion or non- 

uniformity in the axial direction, indicating the presence of strain and the 
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imminence of a change in state. In  this case the pressure on the flow pattern is 

actually relieved by an increase in the number of tangential waves from four to 

five, the number of cells remaining unchanged but the spacing becoming much 

more regular. 
The photograph at the point 21 e shows a flow undergoing just such a transi- 

tion, with the number of tangential waves changing fromfour to five. The physical 

process involved is that the tangential waves first become gradually unequal in 
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FIGURE 11. Expected (mean) values for axial and tangential wave-numbers as a function 
of speed (precision cylinders; r0/rt = 1.144). Reynolds number R is based on gap and on 
surface speed of inner cylinder. For photographs of flow at points 19a, 19b, e ta ,  see figures 
19, 20 and 21 (plates 6-11). 

wavelength and amplitude; a long wave may then change into two, or a short 

wave may disappear, and the pattern then becomes once more very regular. 

This process sometimes begins at one end of the apparatus and proceeds toward 

the other, as in the photograph, but it can also occur uniformly and with perfect 

phase along the whole length of the working space. Certain of these transitions 

in tangential wave-number forecast their coming by inducing the strong axial 
non-uniformity already illustrated in figure 21 (d), (plate 1 l), and others do so by 

way of a strong beat in the optical signal whenever the change in the pattern is 

relatively slight during one revolution of the distorted tangential wave pattern. 

This phenomenon of beating, incidentally is useful in providing an automatic 
check on the number of waves. 

The last photograph in plate 11, at the point marked 2 l f  in figure 11, shows 

the flow during a transition in which the number of cells is decreasing from 
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30 to 28. Two adjacent cells have apparently merged at one point, forming an 

elongated loop (similar to the one in figure 15 (d), plate 2, but much less regular) 

which rapidly shrinks in length and disappears while the rest of the pattern 

expands into the space thus made available. Such changes are often encountered 

in fairly violent transitions, while less violent ones seem to involve only an axially 

symmetric collapse of a vortex pair. Transitions of both types also forecast their 

coming. Reference to the first shadowgraph in plate 1 shows that adjacent 

vortices are normally separated by partitions which are alternately in and out 

of phase along the length of the apparatus. The first sign of weakness in a vortex 

pair which is about to drop out during a state transition is a shift of the internal 

partition into phase with its two neighbours, and this is followed by local 

damping of the tangential wave motion and finally by collapse of the two vortices 

into each other, symmetrically or otherwise. The whole process is essentially a 

rapid traverse backwards through the same changes in flow structure which 

occurred when the doubly-periodic flow was originally established. 

4.6. The concept of a preferred or expected state 

So far, the concept of a mean state has been treated entirely as a static concept 

requiring no special information about the nature of the individual state transi- 

tions. As it  happens, this concept can also be interpreted dynamically. To begin 

with, the trajectory of the mean state through the space of the state diagram, 

figure 8, is a skewed curve whose projections on the vertical co-ordinate planes 

have been given in figure 11. If now the various levels of the state diagram are 

moved horizontally so as to make the mean-state curve a vertical straight line, 

the skewness is transferred to the trajectories for fixed wave-number. Several 

views of the resulting surface for the case of six waves are shown in figure 12. The 

filled arrows in the top and bottom views indicate the direction of the local 

trajectory (with respect to the mean state) when each transition occurs, and the 

arrows drawn in outline indicate the direction and magnitude of the transition 
itself. With the aid of this and similar figures which can be drawn for the remain- 

ing data, it  can be shown that for an overwhelming majority of the 74 state 

transitions the initial trajectory in wave-number space i s  moving definitely away 

f rom the mean or preferred state just before the transition occurs, and for a large 

if not overwhelming majority of cases (60 out of 74)t  the transition itself is  
definitely toward the mean or preferred state. 

At two points along the lower boundary of the surface depicted in figure 12, 

the number of waves remains the same during the transition, but the number of 

cells increases by four. Transitions of this type are quite spectacular. What is 

observed is always the sudden appearance of four vortices in two pairs, with one 

pair springing into view between the first and second vortex at each end of the 

working space. This phenomenon can be qualitatively understood with the aid 

of figure 13, in which the co-ordinates are Reynolds number and axial wave- 

t The exceptions seem for the most part to point toward the area of low axial wave 
numbers at high speeds in figure 10, where mechanical problems may have prevented the 
realization of certain possible states. As a consequence of this failure, the mean state 
has probably been misplaced in this range of Reynolds number. 
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number, both normalized to unity at  the Taylor boundary in order to suppress 
some of the effects of gaplradius ratio. When the condition of neutral stability 
is applied in the linearized problem of axially symmetric disturbances, the 
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FIQURE 12. Accessible region and state transitions for case of 6 tangential waves with 
outer cylinder at rest (precision cylinders; ro/r* = 1-144). Vertical co-ordinate R is. 
Reynolds number based on gap and on surface speed of inner cylinder. Filled arrows in 
top and bottom views show trajectory with respect to mean state before transition; open 
arrows show change of state during transition. 
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relationship between wave-number and speed is a curve which is very slightly 

concave upward.t For the least value of the critical Reynolds number, which is 

the only relevant one when the speed increases monotonically from zero, the cell 

cross-section is very nearly square. However, the experimental situation can 

easily be arranged so that this same stability boundary is approached from above, 

with the speed of the inner cylinder decreasing, while the axial wave-number is 

abnormally small. Under these conditions, a speed must eventually be reached - 
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TAYLOR 

BOUNDARY 
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FIGURE 13. Normalized trajectories in axial wave-number space above the Taylor 
boundary. Axial wave-number a = 2n(r0 - r,)/h where h is axial wave length. ‘Maximum 
amplification’ curve is computed from linearized theory for ro/rd = 1-111 (Donnelly; 
private communication). ‘Expected state ’ curve is taken from present experiments for 
r,,/ri = 1-144 (of. figure 11). Arrows show spontaneous state transitions for slowly de- 
creasing speed (left side of figure) or slowly increasing speed (right side of figure). Bars on 
arrows indicate number of tangential waves. 

at which the flowis no longer unstable for the wavelength actually present. The 

cells cannot disappear, however, as long as the flow is still unstable for a cell 

structure which is more nearly square. Thus it is not surprising in an apparatus 
of fixed dimensions to observe the abrupt appearance of new cells. For the 

experimental apparatus used here, this phenomenon occurs as indicated by the 

arrows at  the left in figure 13. With one marginal exception, such transitions 

t The curve in the figure reproduces Taylor’s original calculation for the limiting case 
rJri -+ 1, extrapolated outside the original range of definition by fitting a parabola to the 
graph on p. 311 of Taylor’s 1923 paper. 



416 Donald Coles 

actually belong to the doubly-periodic rather than the singly-periodic flow 

r6gime. 

It was entirely a matter of luck that the GALCIT Couette-flow apparatus was 

made short enough to allow a reasonably complete survey of the state problem, 

but not so short that the mean data suffer from excessive dispersion. If similar 
experiments were to be carried out in a much longer but still finite apparatus, 

however, with a proportionately greater number of state transitions in the same 

range of speed, the effort required to maintain a deterministic point of view 

might be prohibitive. Even in the case of the present measurements, it can be 

argued that a completely deterministic point of view toward the experiment in the 

case of steady flow i s  already almost untenable, even though the motion itself is 

laminar by every ordinary standard. The central experimental difficulty is that 

an observer who knows the currFnt steady operating conditions for the apparatus 

(geometry, fluid properties, speed), but does not know the previous operating 

history, will be unable to specify the two characteristic wave-numbers which are 

needed to determine the flow in detail. In  principle, of course, a sufficiently 

accurate knowledge of the previous history should be enough to remove the 

indeterminacy; and in practice a skilled operator can usually-but not always- 

produce on demand a specified flow at a specified permissible speed. The occa- 

sional failures, however, and the prospect of much greater difficulties with a 

much longer apparatus, are significant. They suggest that the phenomenon is 

already complicated enough to allow, and perhaps to require, an appeal to the 

doctrine of indeterminacy. According to this doctrine, when the result of it single 

observation of an event is controlled by factors some of which are unknown, or 

difficult to measure, or capable of producing disproportionately large effects, it  

is customary to say that the result depends on chance. An application of this 

doctrine usually requires an analysis of the results of a large number of observa- 

tions in terms of relative frequency, and the analysis is considered to be successful 

if it  yields a plausible and well-defined probability structure for the result. 

In  the present context, the implication is that statistically generated data 

might be used to define an expected state for the flow in the usual statistical sense 

as the position of the centre of gravity for a large number of results distributed in 

wave-number space according to their relative frequency. Although it may not 

be practical to conduct a real experiment in this manner, either because of bias 

on the part of the operator or because of mechanical limitations, the problem 

could in principle be approached analytically as a random-walk process (for a 

slowly changing speed of the inner cylinder, say) punctuated by occasional 

encounters with state transitions of known type and position. At any rate, it 
strong impression was gained during the experiments that the mechanical diffi- 

culty in achieving a particular state increased rapidly, so that presumably the 

probability of achieving this same state by random means decreased rapidly, as 

the state in question became more remote from the mean state already defined. 

Finally, it  has already been pointed out that the concept of a mean state has a 

dynamic significance; the flow tends to resist large excursions from the mean or 

preferred state and to respond by a spontaneous return toward it through a state 

transition. For all of these reasons, it  is not obvious that there is any significant 
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FIGURE 14. Shadowgraphs of circular Couette flow (precision cylinders; ro/rz = 1.144). 
Light source is baffled xenon flash lamp on axis of rotation. Upper photograph shows 

doubly-periodic laminar flow (24 cells, 6 waves) for R, = wzrz/v  = 3700, R, = O I , T ~ / V  = 0. 

Lower photograph shows turbulent flow with residual axial periodicity at  R, = 9200, 

R, = - 11,900. 
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FIGURE 15. Singly periodic laminar Couette flows near the Taylor stability boundary 
(rough cylinders; ro/ri = 1.135). Light source for (a), (b), (c) is spark ga.p; scene in (d) is 
taken from motion picture. (a) Flow a t  A in figures 2(b) and (c); Ri = 830, R, = 0. 

(b) Flow at B in figure 2 (b) ; Ri = 8090, R, = 7350. (c) Flow at C in figure 2 (b) ; Ri = 3820, 

R,= - 12,900. (d) Flow at D in figure 2(c); Ri = 1780, R, = 560. 
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FIGURE 16. Doubly-periodic laminar Couette flows above the second stability boundary 

(rough cylinders; ro/ri = 1.135). Scenes in (e) are taken from motion picture: light soiirce 
for ( f )  and (6) is spark gap. (e) Flow at E in figure Z(c), front-lighted and back-lighted; 
Ri = 1800, R, = 0. (f) Flow at F in figures 2 (a) and (b) ; R j  = 7440, R, = 0. ( g )  Flow at 
G in figure 2(b); Ri = 8050, R, = 2280. 
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FIGURE 17. Close-up views of doubly-periodic laminar Couette flow a t  E in figurc 2(c), 

front-lighted and back-lighted (rough cylinders; rJri = 1.135). Scenes taken from motion 

picture. R, = 1800; R, = 0. 
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FIGURE 18. Turbulent Couette flows showing disappearance of residual periodicity when 
outer cylinder rotates opposite tr, inner one (rough cylinders; rJr ,  = 1.135). All scenes are 

taken from motion picture. (h) Flow a t  H in figure 2 (a); R, = 18,800, R, = 0. (i) Flow at 

I in figure 2 (a) ; R, = 18,800, R, = - 10,850. ( j )  Flow at J in figures 2 (a) and (b) ; R, = 8350, 

R, = -10,850, (k) Flow at K in figure 2(a); R, = 18,900, R, = -27,700. 
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FIGURE 19. For legend see facing page. 
' 
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E’ILXJEE 19. Development of doubly-periodic Couctte flow with speed when flow is close to 
expected state (precision cylinders; ro/r,  = 1.144). Note appearance of ond disturbance 

bot.ween (b) and (c) a t  R - (390. Note also first appoarance of randomness between (d) and 

(e) at R N 1300. Operating states in figure 11 are denoted by points numbered 6a, 6b, etc., 
to  correspond to  photos. Reynolds number R is based on gap and surface speed of inner 

cylinder. 
(a) Photo. no. 35, R = 143, state 28/4. 

(b) Photo. no. 46, R = 515, state 24/6. 

(c) Photo. no. 42,  R = 842, state 2415. 

(d) Photo. no. 127, R = 1185, state 24/4. 

( e )  Phcto. no. 126, II = 1400, state 24/4. 

( f )  Photo. no. 150, R = 1M5,  sta.te 22/4. 
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FIGURE 20. For legend see facing page. 
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FIGURE 20. Comparison of extreme states in doubly-periodic Couette flow at fixed Reynolds 

number (precision cylinders; ro/rz = 1.144). Operating states in figure 11 are denoted by 
joined pairs of points numbered 7a, 7b, etc., to correspond to photos. Reynolds number R 
is based on gap and surface speed of inner cylinder. Further comments: (a), (b) State 30/7 

in (b) changes to 28/7 a t  R = 419 (speed decreasing). (c), (d) Note axial subharmonic in 

(c). State 32/7 in (d) changes violently to 28/6 at R = 756 (speed decreasing). (e). ( f )  
State 18/6 in (e) changes to 18/3 at  R = 1046 (speed increasing). State 3217 in ( f )  changes 
violently to 26/4 at  R = 1119 (speed increasing). 

(a) Photo. no. 144, R = 453, state 18/5. 

( b )  Photo. no. 136, R = 459, state 30/7. 
(c) Photo. no. 142, R = 794, state 18/4. 
(d) Photo. no. 157, R = 778, state 3217. 

(e) Photo. no. 147, R = 1030, state 18/6. 
( f )  Photo. no. 156, R = 1051, state 32/7. 
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FIGURE 21. For legend see facing page. 
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FIGURE 21. Details of several phenomena in doubly-periodic Couette flow (precision 

cylinders; T J T ~  = 1.144). Operating states in figure 11 are denoted by points numbcrcd 
8a, 8b, etc., to correspond to photos. Reynolds number R is based on gap and surface 

speed of inner cylinder. Further comments : (a) Note strong tangential second harmonic. 
(b) Highly correlated laminar flow; compare figure 19 (e) (plate 7 ) ,  for expected flow at same 

Reynolds number. Data book says ‘quite unsteady’. (c) Note quantum of noise ncar 
centre of working space. Data book says ‘very strong beat every five waves’. (d) Note 
distortion of axial wave length. Data book says ‘quite unsteady’. Flow changes from 
state 26/4 to 26/5 a t  R = 260 (speed increasing). (e) Flow in process of changing from 

state 2214 to 2215 at nominal R = 679. ( f )  Flow in process of changing from state 30/6 to 
2815 a t  nominal R = 1207. Note reflexion of end disturbance in second cell. 

(a) Photo. no. 145, R = 446, state I8/6. 

(b) Photo. no. 44, R = 1369, state 24/5. 

(c) Photo. no. 124, R = 1314, state 28/5. 

(d) Photo. no. 66, R = 230, state 26/4. 

(0) Photo. no. 129, R = 675, state changing from 2214 to 2215. 

( f )  Photo. no. 134, R = 1158, state changing from 30/6 to 28/5. 
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FIGURE 22. Intermittently turbulent flows, especially spiral turbulence, for opposite 

cylinder rotation (rough cylinders; r,/r, = 1.135). Light source for (1) and (n) is spark gap; 
scenes in (m) and (0) are taken from motion picture. (1) Flow a t  L in figures 2 (a) and (b) ; 

R, = 5250, R, = - 15,880. (m) Flow at M in figures 2 (a) and (b); R,  = 6210, R, = - 27,700. 
(n) Flow at N in figure 2 (a) ; R,  = 7280, R,) = - 40,500. (0) Instability following start-stop 

motion of outer cylinder. 
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difference between (a) the concept of an expected state, defined in the statistical 
sense; (b) the concept of a preferred state, defined in the dynamic sense, and 

(c) the concept of a mean state, defined in terms of measurements like those in 
figure 10. 

4.7, Some unjinished business 

An attempt has been made in figure 13 to collect some experimental and 

analytical material bearing on the uniqueness problem at relatively low speeds. 

As usual, the figure refers only to the simplest case of the inner cylinder rotating 

and the outer cylinder a t  rest. On the experimental side, the curve labelled 

‘expected state ’ is taken from table 1 and illustrates the observed tendency for 
the axial wave-number to decrease with increasing speed above the Taylor 

boundary. t A number of state transitions are again shown by arrows to empha- 

size the compulsive natural drive of the flow toward this expected or preferred 

state. On the analytical side, the main element is the Taylor boundary, together 

with an improvised second boundary through the experimental point 

R/R,,,. = 1.245, a/acrft = 1. 

One fundamental problem can now be simply stated. Consider a hypothetical 
steady Taylor flow at a higher speed than the first critical speed in figure 13, and 

suppose that the cylinders are infinitely long, or at any rate suppose that the 

axial constraints of a real experimental situation vanish, so that no one wave- 

number or set of wave-numbers is distinguished a priori from any other. The 

question is: how is a unique wave-number to be determined, either analytically or 

experimentally, for such a flow 1 In particular, does the amwer to this question have 

to be sought outside the framework of the Navier-Xtokes equutions? 

Experimentally speaking, i t  is entirely feasible to avoid discrete changes in 

axial wave-number by continuously adjusting the length of a finite apparatus to 

the requirements of the motion for a fixed integral number of Taylor cells. How- 

ever, for a given number of tangential waves and a given speed, there would still 

be some finite (not necessarily continuous) range of permissible lengths for the 

working space.$ Within this range, which would vary with noise level, the axial 

wave-number would not be uniquely determined by the experiment. Discrete 

and irreversible changes in tangential wave-number might also continue to occur 

at  certain speeds in such an experiment, regardless of measures taken to prevent 

discrete changes in axial wave-number (a possible case in point is provided by 

t Some support for these data is provided by the sequence of photographs published 
by Schultz-Grunow & Hein (1956), in which there is a similar tendency for the axial wave- 
number initially to decrease with increasing speed (Bilde 2, 3, 4, 5) up to a speed of about 
20 times the f is t  critical speed (ro/ri = 1.19 for this apparatus). Without a knowledge of 
the operating history, of course, this information is not very useful. 

Some direct experimental evidence on this point has been obtained by Hagerty (1946) 

in a quite short apparatus with ro/rc = 1.3. For the case of the inner cylinder rotating at 
constant speed and the outer cylinder at rest, Hagerty found that the length of the working 
space could be varied by approximately a factor of two without a change in the number of 
Taylor cells. This same apparatus wae apparently also operated over a wide range in speed 
at constant length without encountering the phenomenon of state transitions. Because of 
the relatively wide gap and short length of the apparatus, the role of the tangential 
instability in these observations is not clear. 

27 Fluid Mech. 21 
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figure 12). The number of tangential waves is normally an integer, and a con- 
tinuous variation in the tangential wave-number is not physically realistic unless 
the Taylor vortices have a spiral structure allowing a variation in phase between 
waves on adjacent vortex pairs. Such spiral configurations can be dealt with 
analytically, and they can also be realized experimentally, especially by a fast 
transit of the Taylor boundary when there is residual radial or tangential vorti- 
city in the fluid. Except in the case of opposite rotation, however, these spiral 
motions are not permanent, at least in a short apparatus, and tend to change more 
or less rapidly to the usual configuration of closed vortex rings. All of these con- 
siderations make it doubtful that the question of uniqueness in a real experiment 
can ever be laid to rest by strictly experimental means. 

The analytical methods recently developed by Stuart and Davey for dealing 
with the non-linear regime of Taylor flow have been mentioned in $4.2. These 
methods avoid the question of uniqueness by a ‘shape assumption’, in which the 
axial wave-number of the secondary motion is taken to be constant at the value 
given by the linearized solution at the Taylor boundary.? A less arbitrary 
assumption might be that the preferred wave-number, at least close to the Taylor 
boundary, is the one that is least stable in the sense of linearized theory. For 
flows of boundary-layer type, in which time and distance are nearly inter- 
changeable variables, it is known that the linear stability theory is valid up to 
surprisingly large disturbance amplitudes, and that far downstream the parti- 
cular frequency having the largest net amplification rate will tend to stand out 
against the general background because of selective amplification. To illustrate 
the corresponding situation for Couette flow, some analytical results due to 
Donnelly (private communication) have been included in figure 13 as the curve 
labelled ‘maximum amplification ’. This curve, which passes through the wave- 
number having the largest amplification rate at each Reynolds number for the 
particular case r,/ri = 1.111, is evidently a poor approximation to the trajectory 
of the expected state in the figure. 

Finally, a non-linear selection process having at least a superficial bearing on 
the state problem has been described by Segel (1962). This paper is a study of 
interaction between two disturbances (through non-linear coupling between two 
time-dependent amplitude equations of Landau-Stuart type) in flow due to 
thermal convection. The analysis again follows the precedent set by Stuart in 
taking the linearized probleq as a point of departure, and the linearized amplifi- 
cation factors are again required to be small. Segel’s conclusion for the case of 
two unstable disturbances having comparable wave-numbers and amplification 

factors is that the dominant one will be determined by the initial amplitudesalone. 
In  view of the important advances in non-linear technique which are contained 

in this analytical work by Stuart, Davey, Segel, and others, it is disappointing 

t The shape assumption is sometimes justified by the remark that experimental evi- 
dence favours such a constant wave-number for the speed range where the non-linear 
theory should be valid. It would be more accurate to say that the speed of a finite apparatus 
can be slowly increased to a value well above the Taylor boundary (2-16 times the first 
critical speed in the present apparatus; probably less in a longer machine) before there is 
a transition leading to a change in the number of Taylor cells. 
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that such analyses do not serve the present need; but this is unfortunately the 

case. The overriding difficulty, even for strictly laminar flow, is that the state 

problem extends to speeds so large that there is little hope of describing or 
measuring the effects of non-linearity by expansion procedures which are tied to 

linearized theory at the Taylor boundary and which emphasize the ideas of small 

amplitude and of conditions in the remote past. Whatever the speed, the experi- 

mentally observed state transitions have in common that one state or mode is 

initially present with a large amplitude, while other states are at most present as 

a kind of noise in the background. As the speed changes, however, one of these 

background states acquires the ability to extract energy from the original one 

and eventually to replace it. I n  many cases, this process of energy transfer mani- 

fests itself during the transition through a temporary inhomogeneity of the flow 

pattern. The motion depicted in figure 15 (d) (plate 2), for example, has 25 cells 

for part of the circumference and 27 cells for the remainder (this is a flow with 

a free surface). Which of the two competing states will eventually dominate 

depends on whether the partial vortex loop is increasing or decreasing in length. 

The motion depicted in figure 21 (e) (plate l l ) ,  on the other hand, has four waves 

at  one end of the apparatus and five a t  the other. Again, which of the two com- 

peting states will eventually dominate depends on their relative strength in the 

no-man’s-land near the centre of the apparatus. 

A different and more attractive approach to the question of uniqueness has 

been proposed by Malkus & Veronis (1  958) for the problem of cellular convection 

in a fluid layer heated from below. These authors argue, after a brief investigation 

of the relative stability of alternative motions, that the preferred wave-number 

is determined by the operation of an extremum principle. The form of this 

principle is not entirely unambiguous, and there is also room for debate as to 

whether the principle should be treated as part of the content of the equations of 

motion or should be adduced separately. It is the latter view which will be 

adopted here. It may also be supposed, as a working hypothesis, that the 
extremum principle requires a maximum in the entropy production, or more 

practically a maximum in the torque for a given speed. This hypothesis has at 
least two virtues; it  is not limited to any particular range of speed, and it fits well 

with the experimental fact that the possible flow patterns at  a fixed speed are not 

uniformly or indifferently stable relative to each other. There does exist a 

preferred or expected state, which can be determined to a useful degree of 

precision by an empirical study of the dynamics of naturally occurring transi- 

tions. Before the evidence for such a preferred state is taken too seriously, 

however, some comments should be made about the completeness and credibility 
of the present experimental data. 

In  figure 10, the first three sections, a t  R = 162, 216, 270, give an impression 

of virtual completeness. These data correspond to the portion of the trajectory 

of the expected state included in figure 13, and the disagreement already noted 

with the trajectory for maximum amplification factor is therefore real. By the 

end of this range of Reynolds numbers, a t  approximately w/w, = 2.5, the number 

of accessible states in figure 9 has gone through a first oscillation, and the 

expected state in figure 11 has settled down at  roughly 2216. 

27-2 
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The next few sections in figure 10, at R = 400-700, correspond to an increase 

in the number of accessible states in figure 9.t  They also strongly suggest 

a separation of the accessible region of wave-number space into two branches. One 

branch, centred roughly around the state 2615, is fairly well defined by the 

observations. The other branch, centred roughly around the state 16/3, could 

not be observed in detail in these exploratory experiments, but its existence can 

be reliably inferred from the evidence of the various sections at R = 700-1300 

in figure 10. This branching process is also evidentin the upper part of figure 12, 

where there are two stable regions of axial wave-number separated by an 

unstable region (cf. the situation for six waves at R = 864 or 972 in figure 10). 

Whether or not the accessible region in wave-number space can become multiply 

connected at higher speeds is a moot point, inasmuch as the right (and pre- 

sumably subordinate) branch in figure 10 could also be absorbed into the left 

branch by a series of transitions of the usual kind.: 

To recapitulate, the conjecture a t  hand is that the trajectory of the expected state 

corresponds to a path of steepest ascent on a surface of dissipation rate plotted against 
speed and wave-number as independent variables. The surface belonging to the 

plane of figure 13, for example, might resemble the central part of the dissipation 
surface in figure 1, provided that the co-ordinate R, in the latter is read as 

wave-number. Quite by accident, the shape of this surface in figure 1 is also 

relevant for a closer discussion of the phenomenon of branching. Due perhaps 

to some peculiarity of Wendt’s experiment, there are two paths of steepest ascent 

on this surface, passing to right and left of a shallow couloir. One path follows 

roughly the line R, = 0, and the other follows roughly the line R, = - Ri. On 

the assumption that the couloir terminates farther up on the surface, the two 

paths must eventually join each other at a branch point of the kind already 
postulated for the present state data. 

The idea of maximum dissipation for the expected state can be investigated 

both analytically and experimentally, although there are formidable difficulties 

in both cases. Analytically, for example, the dependence of dissipation rate (or 

torque) on axial wave-number in a steady Taylor motion might be computed by 

variational methods 8 or by direct numerical integration of the Navier-Stokes 

t In  the speed range 0 < R < 1300, it should be remembered, the spectrum for the 
doubly-periodic flows is still discrete; transition to turbulence has not yet officially begun 
(cf. plates 6 and 7). It is also unlikely that the noise originating at the ends of the apparatus 
for R > 690 plays any decisive part in the state problem. 

$ The hypothesis of branching is not contradicted by the experience of Schultz-Grunow 
& Hein (1956). In their paper, Bilde 2-7 seem to indicate a trajectory along a high-wave- 
nnmber branch in the speed range up to about w/wc = 100. However, Bilde 8-9, in the 
range 100 < w/wc < 200, show a decrease in the axial wave-number by almost a factor of 
two, possibly indicating a transition to a different branch. 

5 This same variational problem might also be attacked experimentally. In  the larger 
GALCIT apparatus, it is possible to vary the length of the working space continuously 
while the cylinders are rotating, and thus to stretch or compress a given pattern of Taylor 
cells in the axial direction at fixed Reynolds number-at least within limits determined by 
the occurrence of state transitions in this machine. In  precisely the sense of the variational 
calculus, therefore, the axial wave length might be varied at fixed Reynolds number, and 
an extremum sought in the dissipation. It wm with such an experiment vaguely in mind, 
over and above the general need for probe traverses in the axial direction, that the 
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equations, perhaps using an expansion method like that developed by Davey. 

The most direct evidence for the operation of an extremum principle, however, 

would be an experimental demonstration of a consistent discontinuity in torque 

during the various state transitions. An attempt has therefore been made to test 

this matter experimentally in the smaller GALCIT apparatus by measuring 

cylinder torque around several of the hysteresis loops mentioned in $4.3. It 
should not matter that the torque so measured includes a large contribution from 

seal drag and from fluid friction outside the working space proper, inasmuch as 

the object is to detect differences in torque for different states at the same speed. 

Unfortunately, these measurements are quite difficult with the means available, 

and the only definite conclusion so far reached is that any change in torque must 

be quite small, of the order of 1 yo or less. An effort might be made to increase 

the contrast between adjacent states by decreasing the noise level, but in practice 
it is much easier to increase the noise level than to decrease it. 

5. Catastrophic transition 
5.1. General survey 

From the standpoint of transition to turbulence, circular Couette flow between 

concentric rotating cylinders is similar in certain respects to flow in a pipe. For 

flows dominated by rotation of the inner cylinder, transition occurs through the 

process of slow spectral evolution associated with Taylor instability and 

described in 0 4. For flows dominated by rotation of the outer cylinder, on the 

other hand, the experimental evidence shows that the basic circulatory motion is 
stable to infinitesimal disturbances, that the flow is, nevertheless, turbulent at 

sufficiently high speeds, and that there is an intermediate range of Reynolds 

numbers in which a stable mixed laminar-turbulent configuration can exist 

provided that sufficiently strong disturbances are present. These are the same 

properties which distinguish the pipe flow, the major difference being that any 
tendency toward periodicity of the intermittency phenomenon in the transition 

regime is reinforced in the case of Couette flow by the closed geometry. 

It is true that the Taylor motion is sometimes a factor in catastrophic transi- 

tion, but only as a source of finite disturbances. For example, consider the 

Taylor flow with opposite rotation depicted in figure 15 (c) (plate 2), and suppose 

that the speed of the inner cylinder is increased. Depending on the speed of the 

outer cylinder, the next stage in the evolution of the flow is either a doubly- 

periodic flow with nearly stationary tangential waves in phase along the axis of 
rotation, or a partly turbulent flow with weak local transition occurring a t  

random throughout the fluid. The two regimes are separated by a triple inter- 

section on the second stability boundary a t  the extreme left in figure 2(c).  

Beyond this intersection, which probably marks the closest approach of turbu- 

lence to the origin, an intermittency factor y may be defined in the usual way as 

the average fraction of the fluid participating in the turbulent motion, and the 

movable end-plates were provided for this large apparatus. The measurements necessary 
for such a variational experiment, however, are of an almost incredible delicacy because 
of the low speeds involved. A more practical and equally elegant investigation might be 
made in the smaller machine by using a fluid-motion microscope or other tracer technique, 
except that this scheme is again almost unworkable in the doubly-periodic r6gime. 
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new second boundary may be labelled y = 0. Slightly above this boundary, the 

main feature of the flow is a cyclic process which repeats itself indefinitely at 
constant speed. Small patches or spots of turbulence (with a turbulence scale 

comparable to the scale of the Taylor motion) appear, persist for a brief time, and 

decay, leaving the fluid calmed; the Taylor cells then reappear, grow in amplitude, 

and precipitate a fresh breakdown to turbulence. As the speed increases, the 

turbulent regions become larger and more viable, and the laminar regions become 

smaller and less viable, until finally, a t  the boundary labelled y = 1 in figure 2, 

laminar flow can no longer be detected. In  general, the turbulence seems to be 

most completely developed and most homogeneous when the cylinders are 

rotating in opposite directions at nearly the same speed. The photographs 

figures 18 ( j )  and (k), in plate 5, for example, show two such flows at the points 

marked J and K in figure 2 (a). The decrease in turbulence scale with increasing 

speed is apparent. The sequence of photographs at the points K, I, H also illu- 

strates the manner in which a dominant axial periodicity can emerge from the 

turbulent background as the operating conditions tend toward the case of the 
outer cylinder at rest. 

For some distance in figure 2(b), the critical boundary for catastrophic 

instability lies slightly above the Taylor boundary. Toward the left side of the 

figure, however, the boundary y = 0 turns downward to cross the Taylor 
boundary, and beyond this intersection there is a region of hysteresis and non- 

uniqueness.? Below the line y = 0, turbulence if present will always decay if 

left to itself. Above the line y = 0,  but below the next higher line in figure 2 (a) 

(a line consisting in part of a continuation of the Taylor boundary), turbulence 

if present will persist indefinitely, but it will not appear spontaneously if the flow 

is not disturbed. In  this region, therefore, the Taylor boundary can still be 

observed if it  is approached from the laminar side. In  practice, of course, laminar 

flow cannot be maintained a t  arbitrarily high speeds, because unavoidable 

natural disturbances originating in the Taylor motion, in the vorticity anomaly 

at the ends of the working space, in the wake behind a probe, in mechanical 

vibration, and so on, will sooner or later trigger the transition to turbulence. 

Artificial disturbances such as an air jet can also be used to trip the flow in the 

hysteresis region. Once turbulence has appeared, for whatever reason, this 

turbulence takes pre-emptive control over the flow situation, and the laminar 

state can only be restored by a period of operation on the laminar side of the 
boundary y = 0. 

A reasonable interpretation of the hysteresis phenomenon is that operating 

conditions along the line y = 0 correspond to an energy threshold. In  the vicinity 

of this threshold, transition to turbulence can be caused by any one of a variety 

of finite disturbances. The local energy delivery to the fluid at the moving walls 

then increases in direct proportion to the increase in wall shearing stress due to 

the turbulence. Provided that the operating point is above the boundary y = 0,  

the increased energy supply can satisfy the increased demand, and thus maintain 

t Two different fluids were used to obtain the data shown in figure 2 (a). The reason for 

the discrepancy in the position of the boundary y = 0 for the two fluids is not known; it is 
possible that the apparatus was not completely med with fluid in one case or the other. 
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the turbulence, even if the disturbances are removed. The interpretation of the 

intermittency, however, is more difficult. If there were three dimensions for the 

volume of turbulent fluid and only two dimensions for the energy source at the 

moving walls, then an increase in the turbulent volume at constant speed would 

not necessarily call up a corresponding increase in the rate of energy supply. The 

operation of such a principle is by no means obvious, however, and an investiga- 

tion of the remarkable stability of these mixed laminar-turbulent flows presents 

a real experimental challenge. 

5.2. Spiral turbulence 

Among the various intermittently turbulent flows which can occur in the region 

of catastrophic transition, there is one quite common and at the same time quite 

special configuration. Two photographs of this flow, at the points L and M 
respectively in figure 2, are shown in figures 22 (1) and (m) (plate 12). The flow 

consists of a spiral band of turbulence, either right-hand or left-hand, which 

rotates steadily at essentially the mean angular velocity of the two cylinders 
without changing its shape or losing its identity. This spiral configuration has 

been observed in flow with the inner cylinder at rest and even in flow with the 
two cylinders rotating in the same direction. In  general, the spiral pattern is 

most regular at the lower speeds in the central part of the transition region in 

figure 2. Near either of the transition boundaries y = 0 or y = 1, there is 

increasing randomness and degeneracy of the spiral structure, as illustrated in 

figure 22 (n) (plate 12), for the flow at the point N in figure 2 (a). Preliminary hot- 

wire measurements in the large GALCIT apparatus by H. Oguro and C. Van Atta 

have also shown that the intermittency factor y is relatively greater near the 

centre of the annular gap than near the walls. In  some extreme cases, the flow 

a t  mid-radius can be fully turbulent even though laminar flow is still present 

near one or both walls. Finally, although the normal configuration is a single 

spiral, one case of a second mode having a double spiral structure has been 

observed by H. Oguro. 

Hot-wire data obtained in these spiral turbulent flows indicate that the fluid 

moves on the average in nearly circular paths, so that a fluid element near either 

wall repeatedly traverses the spiral pattern and hence participates alternately 

in the laminar and turbulent motions. It follows that there must be two kinds 

of interfaces separating regions of laminar and turbulent flow. One kind repre- 

sents transition in the normal sense, with laminar regions becoming turbulent; 

the other kind represents inverse or anti-transition, with turbulent regions 

becoming laminar. The two kinds of interface appear to be almost equally sharply 

defined and to propagate at  comparable speeds with respect to the fluid. Such 

interfaces have been observed previously in other flows, including the pipe and 

channel flow and the boundary layer. It is probably more than coincidence that 

all of these flows are constrained by walls and that there is a relatively high level 

of vorticity in the ambient laminar flow. The experimental conditions for these 

flows are rather awkward, however, in that the intermittency tends to be quite 

irregular unless it is artificially controlled. In  the case of Couette flow, on the 

other hand, the inherent regularity of the spiral turbulence makes it an ideal 
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target of opportunity for an investigation of interfaces and intermittency. In  

fact, the spiral flow in a rotating reference frame may be viewed as an isolated 

region of captive turbulence in equilibrium with its environment. This region 

remains essentially fixed in size and shape even though there is a continuous 

exchange of fluid with the surrounding laminar regions, an exchange which is 

similar to the one noted in $4.3 for the large-eddy motions represented by 

tangential waves in doubly-periodic laminar flow. In  the case of spiral turbulence 

this exchange process implies a continuous catastrophic instability all along the 

transition interfaces, and a statement about interface propagation is likely also 

to be a statement about instability to finite disturbances. 

The main problem in connexion with intermittency is to identify the 

mechanism which accounts for the disappearance of turbulence in certain regions 

of the fluid, and more generally to study the factors which control the rate and 

direction of interface propagation. The observed sharpness of the anti-transition 

interfaces raises the possibility that the anti-transition mechanism is not entirely 

diffusive or viscous in nature. In  other words, part of the turbulent energy may 

actually be transferred from the turbulence back to the mean flow rather than 

merely dissipated as heat. The mechanism which suggests itself is cancellation of 

vorticity, by a process inverse to the one which originally produced the same 

vorticity in another part of the flow. The idea of vorticity cancellation, or 

unstretching, by a reversible non-diffusive process was also encountered in 5 4 
of this paper in connexion with state transitions involving a decrease in the axial 

wave-number of a periodic laminar flow. This idea is also related to the idea of 

energy transfer from smaller to larger eddies in any turbulent motion. At the 

same time, the Reynolds number in flows with anti-transition is usually small 

enough so that at least the large-scale part of the vorticity structure may always 

retain a fairly high degree of organization. 

To investigate these questions, an elaborate experiment is being carried out in 

the large GALCIT apparatus by C. Van Atta and the author. This experiment 

consists of repeated digital sampling of the instantaneous velocity vector at 
various points fixed with respect to the rotating spiral pattern. At each such 

point the mean velocity, the Reynolds stresses, and the mean rate of turbulent 

energy production are to be determined as ensemble averages over a large 

number of such samples. The crucial issue is the algebraic sign of the turbulence 

production: is this quantity positive definite, like its companion the viscous 

dissipation, or can it be negative, indicating transfer of energy from the turbu- 

lence to the mean flow ‘2 This experiment is well advanced at the present writing, 

and there is every reason to believe that the desired quantities have been success- 

fully measured. However, the result of the experiment is not yet known. 

The experimental research reported in this paper was supported from 1955 to 

1961 by the National Science Foundation, and from 1961 to 1963 by the Jet  
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