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Transition matrix and generalized matrix
exponential via the Peano-Baker series
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We give a closed form for the unique solution to the n X n regressive time varying linear dynamic system
of the form x'^it) = A(t)x(t),x{to) = xg, via use of a newly developed generalized form of the Peano-
Baker series. We develop a power series representation for the generalized time scale matrix exponential
when the matrix A{t) = A is a constant matrix. We also introduce a finite series representation of the
matrix exponential using the Laplace transform for time scales, as well as a theorem which allows us to
write the matrix exponential as a series of (n — 1) terms of scalar C^(T, R) functions multiplied by
powers of the system matrix A.
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1. Introduction

The fact that there exists a unique solution to the regressive linear dynamic system

x \ t ) ^ A i t ) x i t ) , xito) = x o , r o G T (1.1)

on arbitrary time scales T is well-known and this is proven in the excellent introductory text
by Bohner and Peterson [4]. However, in their work, there is no closed form given for the
solution of equation (1.1). Of course, the common forms are stated for the standard cases ofa
constant matrix A(f) = A with T = IR (i.e. x{t) = e'^^'~'oho) and with J = hZ, h>0,
(i.e. x{t) = (/-(- M)<'~'''>/''xo).

Adamec [1] has recently made an attempt to derive explicit formulae for the generalized
matrix exponential for equation (1.1) when A{t) = A is a constant matrix and the transition
matrix of (1.1) for time dependent A{t). The solution is derived by restricting a principal
fundamental matrix Y{t, to) of an ordinary differential equation x' = H(t)x, t G.U.. However,
the explicit forms of the matrix exponential and transition matrix are only valid if very strong
and conservative hypotheses are satisfied—i.e. for the matrix A(t) (resp. A) and the time scale
T, it must be that ||A(Oll • I|T|| < 1 (resp. ||A|| • ||T|| < 1), where the first norm is the spectral
norm and the second norm is defined to be ||T|| := sup {/u,(0 : t GT].
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In this paper, we introduce a more general solution to equation (1.1) that has virtually no
restrictions on the system matrix A{t) and the time scale of interest. Also, unlike [1] the
development remains in the time scales setting throughout the paper. There is no need for
carrying over to a corresponding ODE to obtain a principal fundamental matrix, and then
bringing that solution back to the time scale domain. In this work, a thorough development
with proof is given for a generalized time scales version ofthe Peano-Baker series, including
new generalizations of popular theorems from basic analysis to convergence of sequences
and series on intervals in a time scales setting.

We begin where [4] has left off. Section 2 states necessary definitions and theorems are
given for use in the derivation ofthe solution to (1.1). In section 3, we develop a closed fonn
of the transition matrix for the system in (1.1) on arbitrary time scales via a generalized
version of the Peano-Baker series. The formulation of the solution generalizes the classical
derivation using Picard iterates [9] for a first order linear differential equation to any time
scale. We demonstrate that this closed form of the solution is valid for equation (1.1). From
this closed form, section 4 shows that we also gamer a generalized power series
representation for the matrix exponential on arbitrary time scales. Section 5 first shows,
through the use of the generalized Laplace transform [4], that one can obtain a finite series
representation of the matrix exponential through a partial fraction expansion of the Laplace
transformation of the exponential. Second, we give an existence result which yields an
explicit form of the matrix exponential as a finite sum of infinitely rd-continuous delta
differentiable functions multiplied by powers of the matrix A{t) from equation (1.1), when
A(0 = A is a constant matrix. To conclude, section 6 illustrates the generalized Peano-Baker
series in several nontrivial examples to emphasize the legitimacy and utility of this form.

Before beginning, we wish to highlight for the reader the two main themes of the theory of
time scales. The first is the unification of the previously disparate cases of continuous
differential equations on IR and discrete difference equations on Z. The second, which is of
more mathematical and application-oriented interest, is the extension of continuous and
discrete analysis to (previously unexplored) arbitrary domains, such as PQ;,, the harmonic
numbers H, ^^(^ > 0), or something as exotic as the Cantor set IK. For a brief summary see
the Appendix; for a complete introduction, the reader is referred to [4,5,6].

2. General definitions

In this section, we give definitions for certain types of convergence. We also give
generalizations of two fundamental theorems from analysis.

Given an infinite series of vector valued functions

Xiit) (2.1)
1=0

with eachxiit) defined on [ro, ti]j, convergence is defined in terms ofthe sequence of partial
sums

k

Skit) = "^Xiit). (2.2)
1=0
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The series (2.1) converges pointwise to the function xit) if for each t G [fo, ti]j,

\im\\xit) - skit)\\ = 0.
k-'oo

The series (2.1) converges uniformly to the function xit) if, given e > 0, there exists an
integer Ne> 0 such that for every t G [ro, ti]j,

We remark that there is an equivalent convergence relationship between the series in (2.1)
and the sequence of partial sums {skit)}^^^. The series (2.1) converges uniformly to xit) on

if and only if the sequence of partial sums {ijt(r))^o converges uniformly to xit) on

The following theorem is the generalized time scales version of the basic theorem in
analysis that states "the uniform limit of continuous functions is continuous."

THEOREM 2.1 iThe Uniform Limit ofCrd Functions is Crd). Suppose that equation (2.1) is
an infinite series of rd-continuous vector valued functions on [ro,ri]T that converges
uniformly to xit) on [to, ti]j. Then xit) is rd-continuous for all t G [ro, ti]j.

Proof. We need to show that xit) is continuous for all right dense points in [ro, ti]j and its
left-sided limits exists (finite) at all left dense points in [ro, riJj.

Choose any r G [ro, t\]j that is right dense and define the sequence of partial sums Sj^it) as
in (2.2). Given e > 0, we know that there exists an Âe > 0 such that, for any n> N and all
r G [ro, ri l j , we have \\snit) - xit)\\ < (s/3). Also, since Stit) G C^ for all i = 0,1,.. . and all
r G [ro, t\]j, we know that there exists a S > 0 such that for all right dense t G [ro, ti]j and
for all ^ G [ro,ri]T with 0 < |r - .fl < S, we have |U,(0 - Siis)\\ < e/3.

We now show that for all right dense r G [ro,ri]j, the limit jc(r) of the partial sum is
continuous. Given e > 0, for any s G [ro, t\]j with 0 < |r - s| < S, and n> N, as above,

IU(r) - 4̂ )11 < ||x(r) - Snit)\\ + Kit) - s„is)\\ -f WsAs) - xis)\\ < f - F f + f = e.

Now choose any t E. [to, ti]j that is left dense and define the sequence of partial sums s^it)
as in equation (2.2). We wish to show that the left hand limit of ;i:(r), denoted xit ~), exists
(finite). Thus, given e > 0, we prove that there exists a S* > 0 such that for all s, T G
(r - S*,t)j, we have \\xis) - JC(T)|| < e. Observe, setting 6*: 8 and n> N^ from above,
given s, T E. it - 8*,t)j C [to, ti]j we have

Wxis) - xiT)\\ < lU(̂ ) - Snis)\\ + \\SM - SniT)\\ + KU) - 4T)II < | + | + | = « - °

We remark that term-by-term differentiation of a uniformly convergent series of functions
does not always give the derivative of the sum. Therefore, we state the next theorem to
establish criteria that make this possible.

THEOREM 2.2 Suppose that equation (2.1) is an infinite series of rd-continuously-
differentiable vector valued functions on t G. [ro,ri]T (i.e. xtit) G C'j([ro,ri]T, IR))/c»r all
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t E [to, ti]j and all i E No) that converges uniformly to x{t) on [to, t\]j. Then if the series
Yl'iLoxfit) converges uniformly on [to, ti]j, it converges to x (t).

A detailed proof of Theorem 2.2 can be found in [4, Thm. 8.12].
We say that the infinite series (2.1) converges absolutely if the series of real functions

^)^QIU,(OII converges on the interval. We will also employ the Weierstrass M-Test in the
following section.

Lastly, we ask the reader to refer to the Appendix for the definitions of two types of
polynomials used throughout this paper, the generalized polynomial hk(t, T) and the
generalized A-polynomial p^{t, T).

An important fact that will be used in the sequel is that on an arbitrary time scale T, for all
A: e No and t ^ to, we have hk{t, to) ^ (t - tof/k\.

3. The solution to the linear dynamic system

3.1 Existence of a solution

We answer the question of existence of a solution to the regressive homogeneous first order
linear dynamic system

xHt) ^ A{t)x(t), x(to)=^xo, toEJ. (3.1)

Given any initial time fo G T, initial state x(fo) = ^o, and an arbitrary time T> 0, we
define a sequence of vectors {A:,(O}^O ^'^ ^^^ closed interval [to, to + T]j. This sequence can
be thought of as a sequence of approximate solutions to equation (3.1).

We show now that the sequence converges absolutely and uniformly on [to,to + T]j.
Define the sequence {xi{t)}'^Q on [to, to -\- T]j as

f

ft

.x:,(0 =-^0 + '4(i'i)x,-i(si)Asi. w-^J
J to

We can write Xi{t) as a sum of terms involving nested integrals of the system matrix A(t),

- f A f r
J to J to J tQ

-\- \ A{s\)\ A{s2)---\ A{Si)xoAsr--Asi. (3.3)
J to ^ to J to

To analyze the convergence of our sequence, we can write Xi(t) as a telescoping sum

i - l

Xiit) = Xoit) + Y^ [Xj+iit) - Xjit)], J = 0, 1, . . .
J=0
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This sequence of partial sums of the infinite series of vector functions
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(3,4)
j=0

is exactly the sequence {JC,(O}"O- S ° ^^ ^^'^ " ° ^ analyze the convergence properties of the
infinite series in (3,4), since they are equivalent to those of the sequence of vectors in (3,2),
We now apply a direct convergent argument to the series.

Since the matrix A(t) E Crd(T, R"^) for all f £ T, we see that on the compact interval
[to, to + T]j, by [4, Thm, 1,65], ||A(Oll is bounded. Thus we let

fto+T

a= max ||A(Oll and j8 =
iG[ti+T] J,̂

[to, to

Now using the terms in the infinite series (3.4),

I A(,S)A:OA5I < [

Following this we have

Wxiit) -

=1 = a/3(f - to), t G [fo, to + T]j.

In general we have

lk+i(f)-x,(f)ll =

, , ^
(3,5)

With these bounds, we apply the Weierstrass M-Test, In equation (3,4), the terms are
bounded for any r G [to,to + T]j since

and

So the series (3.4) is bounded by a convergent series of bounds

1=0 '•

So the infinite series (3,4) converges absolutely and uniformly on [to, to + T]j, and since
each term in the series is rd-continuous on the interval, by Theorem 2.1, the limit, which will
be denoted x{t), is rd-continuous on the interval. Since the convergence properties of the
series in (3.4) are equivalent to the sequence in (3.2), the sequence converges absolutely and
uniformly on [fo, fo + T]j.
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^From equation (3.3), letting i —• oo, the limit of the sequence (3.2) can be written as the
infinite series

xo-\- Ais])xoAsi -\- A(si) ^(.^2)^0^52^51 H
J Io J '0 J '0

+ f A(5,) [ 'A(52). .. [' 'Aisdxo^Si.. .Ai, -t-... (3.6)
ho Jto Jto

The last step involves showing that this limit xit) G C^j, and that it satisfies the linear
dynamic system (3.1). Evaluating equation (3.6) at r = ro, we obtain xito) = xo. Delta
differentiating equation (3.6) term by term on the right hand side, yields

C ft p-1
0-I-A(r)xo + A(r) Ais2)xoAs2-\ I-A(r) A(52)... AiSi)xo^Si.. .As2 + ... (3.7)

ho ho ho

The ith partial sum of equation (3.7) is the ith partial sum of the series Ait)xit)—this
can be seen by comparing equation (3.6) to (3.7)—and uniform convergence of (3.7) on
[ro,ro + T]j follows. By Theorem 2.2, this term by term differentiation yields the delta
derivative of xit) and that derivative is exactly Ait)xit). We note that since solutions to
equation (3.1) are required to be C'j, we note that the terms in (3.7) are Crj. We know that by
Theorem 2.1, an infinite series of rd-continuous functions that converges uniformly to x ^it)
on [ro,ro -I- r j j implies that x\t) G Crd. Thus, we have shown that (3.6) is a solution of
equation (3.1). We can use the same process for elements r G [ro - T, to]j, with appropriate
uses of absolute value signs in certain inequalities.

Next we factor out the initial vector XQ in the series (3.6) to obtain

f Aisl)^Sl + [ Ais
ho ho

A(5,) [ \is2)... [' 'A(5,)Ai,.. .
to ho ho

xit) =
\ Jto ho ho

(3.8)

We denote the n X n matrix series in the parentheses of (3.8) by <I>A(̂  fo)—the transition
matrix for the system (3.1). We can write our solution to equation (3.1) in terms of the
transition matrix as

For any XQ, the « X 1 vector series $/i(r, ro) in equation (3.6) converges absolutely and
uniformly at every r G [ro - T, ro -I- T\j, for any T > 0. It follows that the n X n matrix series
<I>̂ (r, ro) converges absolutely and uniformly on the same interval. To prove this fact, choose
xo = Vj, theyth column of/„, to show the convergence properties of theyth column of 3>A(r, ro).
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We may also view this transition matrix as a function of two variables, written as $^(f, T),
defined by the generalized Peano-Baker series

+

+ [ A(5i) r 'A(*2).. . f ^AisdAsi.. .Asi -h...
J T J T J T

(3,9)

3.2 Uniqueness ofthe solution

We now show that the there is only one solution to the linear dynamic system (3.1). The
strategy is to show that any two solutions of equation (3.1) are necessarily identical.

THEOREM 3.1 {Uniqueness of Solutions) Consider the regressive linear dynamic system
(3.1) with arbitrary, but fixed, initial conditions x{to) = xo- Ifx{t),y{t) G C]^ are solutions to
equation (3.1), then xit) = yit)for ail t G T.

Proof Define zit) = xQ) - y{t). Then z(f) satisfies

zHt) = A(t)z{t), z(fo)-0. (3.10)

We now show that (3,10) implies zit) = 0 for all t S: fo.
Integrating both sides of (3.10) from fo to any t 3: to and taking norms of both sides we

have the inequality

Applying the Gronwall's inequality [4], this inequality yields ||z(f)|| = 0 for all f > fo.
For f :£ fo, a similar development is used which concludes uniqueness of solutions for

all f G T. D

THEOREM 3,2 For any initial conditions xito) = xo, the regressive iinear dynamic system
(3.1) has the unique solution

where xQ) G Cl^iJ, W'"').
The transition matrix 'pAit, fo) is given by the Peano-Baker series (3,9) that converges

absolutely and uniformly for f, fo G [ — T, 7], where T> 0 is arbitrary.

4. The constant matrix case

We now give a special case of when we can simplify the generalized Peano-Baker series into
the form of the matrix exponential e (̂f, T).
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THEOREM 4.1 Suppose that Ait) = A is a constant matrix. Then the transition matrix for
equation (3.1) is

where, the matrix exponential is defined by the power series

,=0 v-'-*/

which converges absolutely and uniformly on [—T, T]j.,for any T> 0.

Proof Choose any T> 0 and set T*: — IT. On any interval [ -T ,Tl j , the matrix valued
function in the series (4.1) are bounded by

By the Weierstrass M-Test, since the bounding series of positive real numbers

1=0 " •

converges, the series in (4.1) converges absolutely and uniformly on [ - T, 7], for any

Example 1 In this example, we give insight for the series definition of the matrix
exponential in (4.1). From equation (3.1) with A{i) = A, a constant matrix, we have the time
invariant linear dynamic initial value problem

Using equation (3.2) as an approximating sequence, the general term in the sequence is

AxoAii + 4̂ Ax()Ls2l^s\ H h A A...\

'[ ['...[' \si...
JroJ'o J'o

The limit of this sequence is

x{t)= ( / + A [ A*I + - - - - F A ' [ [ ' . . . [ ' ' A . S , . . .
\ J'o J'oJ'o J'o

[ [[ (^A'7i,(f,fo))A:o. (4.2)
'o JroJ'o J'o / \ (=0 /

\ .=0 /
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Delta differentiating equation (4.3) term by term, we obtain

f' [I (^2 fSi-l \

J to V IQJ to J IQ /

= A{I -I- A/ii(f, fo)... -I- A '" 'hi-1 (f, fo) -I-, , ,)jco = AI ^ A 'hi{t, to) I xo = Ax{t).
V '=0 /

We remark that when T = R, (4.3) becomes

x{t) = , 1=0 / \ (=0

Thus, from Theorem 4.1 and Example 1, we obtain an infinite series representation for the
time scale matrix exponential in (4.1),

5. Explicit representation of the matrix exponential

We now develop two explicit representations of the time scale matrix exponential. The first
form employs the generalized version of the Laplace transformation [4], while the second
shows that the exponential can be expressed as a finite sum of the powers of the matrix
constant A in equation (5.1), For the remainder of this section, we consider the regressive
matrix initial value problem

x\t)=AX{t), X{to) = I. (5.1)

Taking the Laplace transformation of both sides of equation (5,1) with fo = 0, we obtain

jr{X''{t)} = zC{X{t)] - X{0) =

which yields

{zl - A)C{X{t)] = I

and thus

C{X{t)} = {zl - A)-\

Since we know the unique solution to equation (5,1) is X{t) = e (̂f, 0), by the generalized
aplace t

formula
Laplace transform, we see that the Laplace transformation of e (̂f, 0) is (zl - A)" ' . Using the

adj(z / -A)
d e t ( z / - A ) '

we see that (zl - A)~' is an n X n matrix of strictly proper rational functions of z. This is true
because the det {zl — A) is a degree n polynomial in z while the adj {zl — A) is, at most, an
n — 1 degree polynomial in z.
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We can represent the determinant as follows. Letting Aj,.. ..A^ be the distinct eigenvalues
of A and s\,.. .,5^ be the respective multiplicities (with m •^ n), we have

Thus, the partial fraction expansion of each entry in (z/ — A)~' yields

— . , (5.2)

where each R^j is an n X n matrix of partial fraction expansion coefficients (i.e. each entry in
Rkj is the coefficient of l/(z - \]^ in the expansion of the corresponding entry in the matrix
(z/ - A)~'). We note that R^j will be complex valued if the corresponding eigenvalue A* is
complex valued. Using a formula for partial fraction expansion coefficients, R^j can be
written as

*̂J = i v (tl-J ^̂^ ~ ̂ kY'izl - A)-']

Taking the inverse Laplace transform, utilizing the Laplace transform in the Appendix, we
obtain an explicit representation for the time scale matrix exponential

m SI,

El
k=l j=\

The following theorem, motivated by [7,10], shows that we can express the matrix
exponential as a finite sum of powers of the matrix A with infinitely rd-continuous delta
differentiable functions (i.e. C^(T, IR)) as coefficients.

THEOREM 5.1 Consider the matrix linear dynamic IVP (5.1). Then there exist scalar
C^(T, R) functions yo{t, to),.. .,yn-i{t, to) such that the unique solution has the representation

k=0

Proof. The strategy we will use is to show that there exist scalar C^(T, IR) functions
t, to),.. .,yn.i{t, to) such that

i=0 k=0 k=0

By the Cayley-Hamilton theorem, we have that A satisfies its characteristic polynomial. In
other words, we may write

where CQ,. . .,£„.] are the coefficients in the characteristic polynomial of A. Now we may
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express (5.3) in terms of /, A,.. . 3 "~ as
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n-\
(5.4)

keeping the initial conditions the same.
We solve equation (5.4) by solving the coefficient dynamic equation power of A

separately. We obtain the time invariant linear dynamic matrix equation

0 ..

1 ..

0 - C o

0 -Cl

0 . . . 1 -Cn-x

yoit,to)

y\it,to)

yn-\it,to)

^(fo , to)

yiito,to)

Existence of a solution to this linear dynamic matrix equation proves existence of
infinitetly rd-continuous delta differentiable functions yoit, to),.. .,yn-iit, h) that satisfy
equation (5.4), thus satisfying equation (5.3).

D

We present the following simple example to illustrate Theorem 5.1.

Example 2. Consider the regressive linear matrix dynamic system

0 r
X\t) =

-1 0
Xit),

The characteristic polynomial is p(a) = a^ + 1. Thus, as in Theorem 5.1, we see that
= 1 and Ci = 0. The system we solve is

y^it,to)

yfit,to) =
0 - r
1 0

'yoit, to)'

yiit,to)

'yoito,to)

yiito,to)

It is easy to verify that

yoit, to) = cos i(r, to) and yiit, to) = sin i(;, fo).

Thus, we can write the solution Xit) = e^it, to) as the finite series

it=O

"cosi(f,fo) 0

0 cos lit, to)

0

—sin i(f, 1

sin lit, to)'

0

which is exactly the solution we expected.
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6. The transition matrix on specific time scales

We have shown in the first part of this paper how the generalized Peano-Baker series is the
unique solution to all first order regressive linear dynamic equations of tbe form (1,1), (3.1)
and (5.1) on arbitrary time scales. In this section, we have chosen some examples to illustrate
the Peano-Baker series as the unique solution to the linear dynamic system.

The following example is motivated by [8],

Example 3. Consider the regressive (on T = Z) time varying homogeneous discrete linear
dynamic system

AX{t) = A{t)X{t), X{O) = I, (6,1)

where.

A{t) =
- 1

+(-i
2

2

- 1

We verify that the transition matrix for equation (6.1) is given by

^A{tn,O) = / + f
Jo

A{SI)ASI + • • • + [ "A(5I). . . f '
Jo Jo

A{Si)ASi. . .Asi +...,

where, f, = j G Z. By the composition property of the transition matrix, we have

Thus, for any 1 :^ ^ :^ n, by the properties of time scales integration and the fact that
= 1 in Z, we have

c'k
\

t;
= I + fJi{tk-\)A{tk-x) = I+A{tk-i).

It is clear that after the second term in the Peano-Baker series above, all terms become
zero. Thus, with the assumption that an empty product of matrices is the identity matrix.

i=0

which becomes

(6,2)

In the following example, we show the calculation of the transition matrix via the Peano-
Baker series in equation (3.6) produces the solution to the linear dynamic system.
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Example 4. For the 2 X 2 matrix linear dynamic system

X\t) =
iO

X(t), X{to) =
0 0

L

the transition matrix via the Peano-Baker series is

1 Ol

0 0 0 0

1 01

0 1 '

Fi ro .J2

JJo 0 -I- ....

It is easy to see that all terms of the Peano-Baker series are the zero matrix after the second
term. Hence,

0 1

The complete solution can be used along with the solution to the homogeneous scalar
linear dynamic system

X (t) — a{t)x{t), x{to) = Xo,

for t s to, which is given by eait, ?o)̂ o- The next example illustrates a divide and conquer
approach to finding the transition matrix which is motivated by [10].

(6.3)

Example 5. To find the solution to the linear dynamic system

fait) 1 •

0 bit)

we write the system out as a pair of scalar dynamic equations

x^it) ^ ait)xiit)

X^it) = bit)X2it),

It is straightforward that ^2(0 = ebit, ?o).̂ 2o- The first scalar equation can be viewed as the
forced scalar dynamic equation

x^it) = ait)x,it) + ebit.

We can verify the solution is

Jto

Putting into matrix form, we obtain.

xit) =
, to)

0 eb(t, to)

and immediately obtain <1'A(̂  '0).
It can be verified that the solution obtained by implementing the Peano-Baker series, along

with our knowledge of the series representation of the generalized exponential function in
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equation (4.1), is in fact the series representation of the transition matrix <I>A(?, fo) for
equation (6.3).
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Appendix: A time scales primer

A.I What are time scales?

A thorough introduction to dynamic equations on time scales is beyond the scope of this
appendix. In short, the theory springs from the 1988 doctoral dissertation of Stefan Hilger [6]
that resulted in his seminal paper [5] in 199O.These works aimed to unify and generalize
various mathematical concepts from the theories of discrete and continuous dynamical
systems. Afterwards, the body of knowledge concerning time scales advanced fairly quickly,
culminating in the excellent introductory text by Bohner and Peterson [4] and their more
recent advanced monograph [3]. The material in this Appendix is drawn mainly from [4].
A succinct survey on time scales can be found in [2].

A time scale T is any nonempty closed subset of the real numbers IR. Thus time scales
can be any of the usual integer subsets (e.g. Z or N), the entire real line U, or any
combination of discrete points unioned with continuous intervals. The majority of research
on time scales so far has focused on expanding and generalizing the vast suite of tools
available to the differential and difference equation theorist. We now briefly outline the
portions of the time scales theory that are needed for this paper to be as self-contained as is
practically possible.

The forward jump operator of T, oit): T—•¥, is given by ait) = inf JETI'? > *}•
The backward jump operator of T, pit) :¥—•¥, is given by pit) = sup^ejl'S < t}- The
graininess function fiit): T —• [0, oo) is given by fx,it) = CT(/) - t. Here we adopt the
conventions inf 0 = supT (i.e. ait) = r if T has a maximum element t), and sup0 =
inf T (i.e. p{t) = f if T has a minimum element /)• For notational purposes.
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the intersection of a real interval [a, b] with a time scale T is denoted by

T : = [ « , % .
A point f e T is right-scattered if cj{t) > t and right dense if ait) = t.A point r e T is left-

scattered if pit) < t and left dense if pit) = t.lft is both left-scattered and right-scattered, we
say t is isolated. If t is both left-dense and right-dense, we say t is dense. The set T" is defined
as follows: if T has a left-scattered maximum m, then T" = T - {m}; otherwise, T" = T.
If/ : T—• R is a function, then the composition/(CT(O) is often denoted by/"'(/).

For / : T—• R and f £ T" define/^(r) as the number (when it exists), with the property
that, for any e > 0, there exists a neighborhood U of t such that

Wfioit)) -fis)] -f\t)[ait) - s]\ < e|c7<0 - ^|, V̂  e U.

The function/'^ : T" —• IR is called the delta derivative or the Hiiger derivative of/on J".
We say/is delta differentiable on T" provided/^(O exists for all t GJ".

The following theorem establishes several important observations regarding delta
derivatives.

THEOREM A. 1 Suppose/ : T-^ IR and t E.!".

(i) If fis delta differentiable at t, then fis continuous at t.
(ii) Iffis continuous at t and t is right-scattered, then f is delta differentiable at t and

\f\t)=fiait))-fit)]/tiit).
(iii) If t is right-dense, then f is delta differentiable at t if and only if lims^,\fit) -

fis)]/it - s) exists. In this case, f''it) = lim^,/(O -fis)/t - s.
(iv) Iffis delta differentiable at t, thenfiait)) =fit) -\- tiit)f\t).
Note that f^ is precisely / ' from the usual calculus when T = R. On the other hand,

f'^ = Af = f{t-{- 1) —fit) (i.e. the forward difference operator) on the time scale T = / .
These are but two very special (and rather simple) examples of time scales. Moreover, the
realms of differential equations and difference equations can now be viewed as but special,
particular cases of more general dynamic equations on time scales, i.e. equations involving
the delta derivative(s) of some unknown function.

A function / : T -+ IR is rd-continuous if / is continuous at every right dense point
t e T, and its left hand limit exists at each left dense point t G T. The set of rd-
continuous functions / : T —• R will be denoted by Crd = Crd(T) = CidiJ, U) A function
F : T— IR is called a (delta) antiderivative of / : T-» IR provided F\t) =f[t) holds for
all t G T". The Cauchy integral or definite integral is given by j^fit)At = Fib) — Fia),
for all a,b EJ, where F is any (delta) antiderivative off. Suppose that supT = oo. Then
the improper integral is defined to by JJ/(OA/= lim6_ooF(r)|* fora l laGT. We
remark that the delta integral can be defined in terms of a Lebesgue type integral [3] or a
Riemann integral [4].

THEOREM A . 2 iExistence of Antiderivative s).

(i) Every rd-continuous function has an antiderivative. If ro G T, then Fit) = Jj/"(T)AT,
t G T, is an antiderivative off.

(ii) I f / G C,d and r G T^ then jf'^fiT)AT
(iii) Suppose a,b EJ and fE C^^-
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(a) If T = R, then f'Jit)^t = l''/it)dt (the usual Riemann integral).
(b) If [fl, b\j consists of only isolated points, then

fit) At =

a<b,

a = b.

The last result above reveals that in the continuous case, T = IR, definite integrals are the
usual Riemann integrals from calculus. When T = Z, definite integrals correspond to definite
sums from the difference calculus; see [8].

A.2 The Hilger complex plane

For h> 0, define the Hilger complex numbers, the Hilger real axis, the Hilger alternating
axis, and the Hilger imaginary circle by

•-{' •z> - r

1
"h

respectively. For h = 0, let Co := C, Ro := R, Ao := 0 and Do := 'R- See figure 1.
Let /i > 0 and z G C/,. The Hilger real part ofz is defined by Rshiz) := i\zh - H | - l)/h,

and the Hilger imaginary part of z is defined by hnf,iz) := (Arg(z/z -|- l))/h, where Arg(z)
denotes the principal argument of z (i.e., - IT < Argiz) ^ IT). See figure 1.

For h>0, define the strip Z^ := {z G C : -TT/h < Im(z) < iT/h], and for h = 0, set
ZQ := C. Then we can define the cylinder transformation /̂, : C^ —»Z^ by

1

where. Log is the principal logarithm function. When h = 0, we define
all z e C. It then follows that the inverse cylinder transformation ^ '
given by

(7.1)

= z, for
-'•Ch is

(7.2)

-Vc Re^(z) -l/f

Im(A)

Ite(A)

Im(A)

Ite(A)

Figure 1. Left: the Hilger complex plane. Right: the cylinder (7.1) and inverse cylinder (7.2) transformations map
the familiar stability region in the continuous case to the interior of the Hilger circle in the general time scale case.
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Since the graininess may not be constant for a given time scale, we will
interchangeably subscript various quantities (such as ^ and ^~') with p,= fxit) instead
of h to reflect this.

A.3 Generalized exponential functions

The function p : T-» IR is regressive if 1 -I- fiit)pit) ¥= 0 for all t E J", and this concept
motivates the definition of the following sets:

n= {p:J^U:pE Crd(T)and 1 + iLit)pit) 5̂  0 "itEl"],

n^ = [pEn.\ + /x(r)/7(0 > 0 forallf e T"}.

The function p : T —• IR is uniformly regressive on T if there exists a positive constant 6
such that 0 < 8~' ^ 11 -H n,it)pit)\, r £ T". A matrix is regressive if and only if all of its
eigenvalues are in IZ. Equivalently, the matrix ^4(0 is regressive if and only if / -|- txit)A is
invertible for all t £ T".

\i p ETl, then we define the generalized time scale exponential function by

[[' \
epit,s)= exp ^^.{,T)ipiT))Ar\, forallf, f £ T .

The following theorem is a compilation of properties of epit, to) (some of which are
counterintuitive) that we need in the main body of the paper.

THEOREM A.3 The function epit, to) has the following properties:

(i) Ifp £ n, then epit, r)epir, s) = epit, s) for all r,s,t E T.
(ii) epidit), s) = il + fiit)pit))epit, s).

(iii) Ifp £ 11+ then epit, to) > Ofor all t E J.
(iv) Ifi + tiit)pit) < Ofor some f £ T*, then epit, to)epiait), to) < 0.
(v) IfJ = U, then epit,s) = gJ/*'̂ "''". Moreover, ifp is constant, then epit,s) = ef''.

(vi) / / T = Z, then epit,s) = U'^lil +piT)). Moreover, ifJ^ hZ, with h>Oandp is
constant, then epit,s) = (1 -h hpf~'^l''

Ifp £ Tl andf : T—• IR « rd-continuous, then the dynamic equation

y\t)=pit)yit)+fit) (7.3)

is called regressive.

THEOREM A.4 iVariation of Constants) Let to El andyito) = yoER. Then the regressive
IVP (7.3) has a unique solution y : T—• R" given by

epit., 'o)+ epit,aiT))fiT)AT.
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We say the n X 1 -vector-valued system

y\t) = Ait)yit) -\-fit) (7.4)

is regressive provided A E TZ and/ : T—• R" is a rd-continuous vector-valued function.
Let to EJ and assume that A E 7?. is an n X n-matrix-valued function. The unique matrix-

valued solution to the IVP

y^W=A(f)K(O, Yito) = In, (7.5)

where In is the n X n-identity matrix, is called the transition matrix and it is denoted by

^Ait. to).
In this paper, we denote the solution to equation (7.5) as 3)^(r, ô) when A(f) is time varying

and denote the solution as e^it, to) = <&/i('. 'o) (the matrix exponential, as in [4]) only when
Ait) = A is a constant matrix. Also, if A(f) is a function on T and the time scale matrix
exponential function is a function on some other time scale S, then Ait) is constant with
respect to ê (r)(T, s), for all T, .y G § and f £ T. The following lemma lists some properties of
the transition matrix.

THEOREM A.5 Suppose A,B E TZ are matrix-valued functions on T.

(i) Then the semigroup property ^^(f, '•)̂ /i('"> s) = ^Ait, s) is satisfied for all r,s,t E T.
(ii) ^Aioit),s) = iI-\-^it)Ait))^Ait,s).

(iii) IfJ = U and A is constant, then ^Ait,s) = eAit,s) = e'^''"^'.
(iv) IfJ = hi, with h>0, and A is constant, then ^AO, S) = eAit, s) ^ il-\-

We now present a theorem that guarantees a unique solution to the regressive n X 1 -vector-
valued dynamic IVP (7.4).

THEOREM A . 6 iVariation of Constants) Let to El and yito) = yo^^"- Then the
regressive IVP (7.4) has a unique solution y : T —• IR" given by

iyit) = ^Ait, to)yO + ^Ait, (TiT))fiT)AT. (7.6)

A.4 Linear systems and regressive matrices

The following theorem states generalized delta differentiation for matrix-valued functions on
arbitrary time scales. Detailed proofs of the following can be found in [4, Thm. 5.2, 5.3].

THEOREM A.7 Suppose that A and B are delta differentiable nX n matrix-valued functions.
Then

(i) A'^(r)

(ii) iA + B)^ =A^-\-B^;
(iii) (QA) = OLA if a is a constant;
(iv) iAB)^ =A^B-\-A''B^ = A^B"
(v) (A"')^ = - ( A ' " ) " ' A ^ A " ' = -A"'A^(A°')"' if AA" is invertible.
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We define the matrix-valued function A(/) is regressive (with respect to T) provided
/ -I- /i,(OA(O is invertible for all t E J". Equivalently, the matrix A is regressive (with respect
to T) if and only if each of its eigenvalues are regressive (with respect to T).

A.5 A new Laplace transformation

We start with the definition of the generalized polynomial, which is given by

hoit,T)=\ and hkit,T)= hic-iis,T)As,
JT

for all ?, T G T" and k = 1,2,... The generalized polynomial has delta derivative

hoit, T) = 0 and h^it., T) = h^-xit, T),

for all f, TG T" and Jfc = 1,2,...
It can be verified that when T = IR, the k\h generalized polynomial

becomes hkit,T) = it - T)'^/k\.^h.en T = Z, the Jtth generalized polynomial becomes

hkit,r)=y ^ J.

We define the generalized A-polynomial by

r) = 1 and p^it, r) =
T1 +

for all r, T G T" and ;k = 1,2,...
The generalized polynomial has delta derivative

= O and

for all f,TG T" and yt = 1,2,...
It can be verified that when T = R, the kth generalized A-polynomial becomes.

When T = Z, the Ath generalized A-polynomial becomes.

r - T ^

We say a function/ : T —• IR is regulated provided its right- and left-sided limits exist at all
right- and left-dense points in T, respectively.

The Laplace transformation is given next. Assume that the function x : T —• IR is regulated.
The Laplace transformation of x is defined by

:= f xit)e^,it,
Jo

C{x}is)~ xit)e?,(t,O)At (7.7)
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for s E V{x}, where V{x] consists of all complex numbers s for which the improper integral
exists.

THEOREM A.8 Assume that p^it,O), k E f̂ o, ^''^ defined as above. Then

C{piit,O)e,it,O)}is)= _\
(s A)

for those regressive s EC satisfying

l im {pfit, O)eA(?, O ) e e . ( ^ 0 ) } = 0, for all 0 < / < < : .




