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Abstract

Because the backbone of most organic molecules is composed primarily of carbon–carbon bonds, 

the development of efficient methods for their construction is one of the central challenges of 

organic synthesis. Transition-metal-catalyzed cross-coupling reactions between organic 

electrophiles and nucleophiles serve as particularly powerful tools for achieving carbon–carbon 

bond formation. Until recently, the vast majority of cross-coupling processes had employed either 

aryl or alkenyl electrophiles as one of the coupling partners. In the past 15 years, versatile new 

methods have been developed that effect cross-couplings of an array of alkyl electrophiles, thereby 

greatly expanding the diversity of target molecules that are readily accessible. The ability to 

couple alkyl electrophiles opens the door to a stereochemical dimension that significantly 

enhances the already remarkable utility of cross-coupling processes, specifically, 

enantioconvergent couplings of racemic electrophiles.

Introduction

The construction of carbon–carbon bonds is central to organic chemistry, which is the 

chemistry of molecules that contain carbon. During the past several decades, a wide array of 

powerful new methods for carbon–carbon bond formation have been developed, including 

two transition-metal-catalyzed processes that have recently been recognized with Nobel 

Prizes in Chemistry (olefin metathesis in 2005 (1) and cross-coupling in 2010 (2)). The 

discovery of efficient approaches to the creation of carbon–carbon bonds has an impact not 

only on synthetic organic chemistry, but also on the many other disciplines that employ 

organic compounds, including biology and materials science.

Metal-catalyzed cross-coupling can provide a particularly straightforward, modular 

approach to carbon–carbon bond formation through the union of two coupling partners, an 

organic electrophile and an organometallic nucleophile, which may be either commercially 

available or readily synthesized (Fig. 1A) (2). Early studies of such processes were 

dominated by the use of palladium catalysts to accomplish couplings that generate a bond 
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between two sp2-hybridized carbons, and these methods have found application in industry 

(Fig. 1; R and R1 = aryl or alkenyl).

Although methods to construct carbon–carbon bonds between sp2-hybridized carbons (e.g., 

“aryl–aryl” bonds) are exceptionally powerful tools in organic synthesis, bonds between sp3-

hybridized carbons (“alkyl–alkyl” bonds) are much more common than are aryl–aryl bonds. 

Fig. 2 provides illustrative examples of bioactive compounds that include a variety of alkyl–

alkyl bonds. The development of effective cross-coupling catalysts that could generate such 

bonds at will would dramatically impact the retrosynthetic analysis (3) and, in turn, the 

synthesis of a broad array of organic molecules. As described herein, until recent years, 

progress in addressing this challenge had been limited; thus, it was observed in 2004 that, 

despite the pervasiveness of alkyl–alkyl bonds, “Alkyl–alkyl cross-coupling reactions have 

historically been the most difficult to realize” (4).

Examination of the bioactive molecules depicted in Fig. 2 serves as a reminder that, in 

addition to constructing the carbon–carbon bond itself, another challenge can arise when an 

alkyl, rather than an aryl, electrophile is employed as the cross-coupling partner, specifically, 

controlling the stereochemistry at the carbon derived from the electrophile (Fig. 3A) (5). 

Stereochemistry can of course play a key role in determining properties such as structure and 

biological activity (6).

Thus, for many cross-coupling reactions of alkyl electrophiles, the challenge may in fact be 

two-fold: forming the carbon–carbon bond as well as controlling the stereochemistry of the 

product, independent of the stereochemistry of the starting material (Fig. 3B). In this review, 

we describe recent progress in addressing these objectives, with a particular focus on initial 

breakthroughs (new families of coupling partners and new transition-metal catalysts) in 

alkyl–alkyl cross-couplings of unactivated alkyl electrophiles (7,8,9,10).

An Impediment to Alkyl–Alkyl Cross-Coupling: β-Hydride Elimination

As mentioned above, most early studies of cross-couplings employed palladium catalysts 

and focused on reactions of aryl electrophiles (2). An outline of a mechanism for such 

processes (Fig. 5A) involves a sequence of oxidative addition of the organic electrophile (R–

X) to a Pd(0) complex (1) to generate an organopalladium(II) complex (2), transmetalation 

by the nucleophilic coupling partner (M–R1) to furnish a diorganopalladium(II) complex (3), 

and reductive elimination to form the carbon–carbon bond (R–R1) and regenerate a Pd(0) 

complex (1) (2).

Organopalladium(II) complex 2 is a key intermediate in this catalytic cycle (Fig. 5A). 

Organometallic compounds that bear a hydrogen in the β position have the potential to 

undergo β-hydride elimination, an intramolecular process that generates a metal–hydride 

(Fig. 5B). In the case of arylpalladium(II) complexes, there is no precedent for β-hydride 

elimination to form a palladium–aryne, and, correspondingly, cross-couplings of aryl 

electrophiles are not diverted by this undesired side reaction. In contrast, β-hydride 

elimination of an alkylpalladium(II) complex to generate a palladium–alkene is a common 

pathway, the efficiency of which is critical for important palladium-catalyzed processes such 
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as the Wacker (11) and Heck reactions (12). The unwanted, but often facile, β-hydride 

elimination of alkylmetal complexes presents a key impediment to efficient cross-coupling 

of alkyl electrophiles.

Primary Alkyl Electrophiles

In early studies, primary alkyl electrophiles were coupled with alkylmagnesium reagents 

(Grignard reagents) in the presence of transition-metal catalysts such as copper (Fig. 6A) 

(13,14). While such methods have found application in the total synthesis of natural 

products (Fig. 6B) (15), Grignard reagents can be incompatible with many functional 

groups, such as carbonyl compounds, that are commonly encountered in organic chemistry 

(16). More recently, it has been shown that palladium and nickel catalysts can achieve cross-

couplings of primary alkyl halides with alkylboron and alkylzinc reagents (Fig. 6C) (17), 

both of which have good functional-group compatibility (2).

Since 2000, the scope of methods for the cross-coupling of primary alkyl electrophiles with 

mild organometallic nucleophiles has increased considerably. For example, palladium 

complexes that bear a bulky, electron-rich phosphine have proved to be versatile catalysts 

(Fig. 7A) (18), enabling the coupling of an array of alkyl electrophiles with alkylboron 

reagents; in contrast to the earlier palladium/PPh3-based method (Fig. 6C), which was only 

applied to primary alkyl iodides, palladium/trialkylphosphine catalysts are effective for 

cross-couplings of alkyl bromides, chlorides, and tosylates. More recently, copper and iron 

catalysts have also been shown to be useful for cross-couplings of primary alkyl 

electrophiles with alkylboron reagents (Fig. 7A). The palladium-based method has been 

applied to late-stage fragment couplings in the total synthesis of natural products such as 

(+)-spirolaxine methyl ether and (+)-pyranicin (Fig. 7B) (19,20).

The use of a bulky, electron-rich ligand has enabled palladium-catalyzed cross-couplings not 

only of alkylboron reagents, but also of alkylzinc reagents, opening the door to carbon–

carbon bond formation with a wide range of primary alkyl electrophiles, including iodides, 

bromides, chlorides, and tosylates (Fig. 8A) (21). Subsequently, a copper catalyst has also 

been shown to achieve alkyl–alkyl cross-couplings of primary alkyl bromides with alkylzinc 

reagents (Fig. 8A). These new methods have found application in the synthesis of bioactive 

compounds such as MaR1n–3 DPA (Fig. 8B) (22).

Stereochemical studies of a palladium/trialkylphosphine-catalyzed alkyl–alkyl coupling 

were consistent with an SN2 pathway for oxidative addition under these conditions (23). 

This mechanism can account for the inability of this catalyst to accomplish alkyl–alkyl 

cross-couplings of secondary alkyl electrophiles.

Secondary Alkyl Electrophiles

As in the case of metal-catalyzed alkyl–alkyl cross-coupling reactions of primary alkyl 

electrophiles, early studies provided proof-of-principle that couplings of secondary alkyl 

electrophiles are indeed possible (Fig. 9A) (24). As with primary electrophiles (Fig. 6A), 

these early methods employed reactive Grignard reagents as the nucleophilic coupling 
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partner. Despite this limitation, such cross-couplings have found application in the total 

synthesis of natural products (Fig. 9B) (25).

More recently, the first methods for coupling secondary alkyl electrophiles with mild 

organometallic nucleophiles (alkylboron and alkylzinc reagents) have been described (Fig. 

10A and 10B) (26,27). To date, nickel-based complexes have proved to be the most versatile, 

enabling alkyl–alkyl couplings of a range of secondary alkyl electrophiles (iodides, 

bromides, and chlorides), although copper- (limited to allylboron reagents) and iron-

catalyzed methods have also been reported. Nickel-catalyzed cross-couplings have been 

applied, for example, to the diastereoselective synthesis of C-alkyl glycosides, an important 

family of bioactive molecules (28).

Catalytic Asymmetric Carbon–Carbon Bond Formation

The ability to employ secondary electrophiles as partners opened the door to an additional 

dimension in cross-coupling chemistry, catalytic enantioselective carbon–carbon bond 

formation starting with racemic alkyl electrophiles (Fig. 3B) (29). Preliminary mechanistic 

data indicated that the nickel-catalyzed cross-coupling methods described in the previous 

section proceed via the formation of a radical intermediate from the electrophile, which is 

ideal for an enantioconvergent process (Fig. 11A). Thus, both enantiomers of the 

electrophile could generate the same secondary radical upon homolytic cleavage of the C–X 

bond, thereby ablating the original stereochemistry and enabling a chiral catalyst to react 

with the alkyl radical and transform both enantiomers of the electrophile into a single 

enantiomer of the product. Because catalytic asymmetric alkyl–alkyl cross-couplings are 

still in a relatively early stage of development, in this section we describe couplings not only 

of unactivated alkyl electrophiles, but also of several activated alkyl electrophiles (30).

Activated racemic alkyl halides, specifically, α-bromoamides and benzylic halides, served as 

the electrophilic partner in early examples of catalytic asymmetric alkyl–alkyl cross-

coupling (Fig. 11B) (31). In the presence of a chiral nickel catalyst, an array of alkylzinc 

reagents can be employed as the nucleophilic partner. These methods have found application 

in the total synthesis of natural products such as (−)-daphenylline (Fig. 11C) (32).

Unactivated electrophiles can also serve as useful partners in enantioconvergent alkyl–alkyl 

cross-couplings. In this case, alkylboron reagents have proved to be the nucleophiles of 

choice, coupling with an array of racemic alkyl halides in good ee and yield with the aid of 

chiral nickel/diamine catalysts (Fig. 12) (33). For these methods, the presence of a directing 

group, which likely interacts with the chiral catalyst in the stereochemistry-determining step 

of the cross-coupling, is essential for high enantioselectivity.

Enantioconvergent reactions of racemic electrophiles are not the only opportunity in the field 

of catalytic asymmetric alkyl–alkyl cross-coupling. The umpolung (polarity inverted) (34) 

process, i.e., enantioconvergent couplings of racemic nucleophiles, can also be envisioned 

(Fig. 13A) (35). An example of such a process has recently been described, wherein a 

racemic alkylzinc reagent is coupled with an array of alkyl halides (Fig. 13B) (36). This 

report sets the stage for addressing an interesting new challenge, the doubly 

Choi and Fu Page 4

Science. Author manuscript; available in PMC 2018 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stereoconvergent cross-coupling of two racemic partners (electrophile and nucleophile) to 

generate each of the four possible stereoisomeric products simply through the appropriate 

choice of catalyst (Fig. 13C).

Tertiary Alkyl Electrophiles

Although quaternary carbons are less common than tertiary carbons, the development of 

alkyl–alkyl cross-couplings to generate such fully substituted centers is nevertheless an 

important objective in organic synthesis. As in the case of primary and secondary alkyl 

electrophiles, the initial advances in employing tertiary electrophiles as coupling partners 

involved the use of Grignard reagents as nucleophiles. For example, cobalt, silver, and 

copper complexes serve as effective catalysts for such cross-couplings, but only in the case 

of allylmagnesium and benzylmagnesium reagents (Fig. 14A) (37). More recently, silver-

catalyzed couplings of tertiary alkyl bromides with organozinc reagents have been described 

(Fig. 14B) (38), although these methods are also limited to allyl and benzyl nucleophiles, 

and the mechanism of these processes has not been elucidated. In contrast to alkyl–alkyl 

cross-couplings of secondary electrophiles, general methods that employ organozinc or 

organoboron nucleophiles have not yet been developed for couplings of tertiary 

electrophiles, nor have highly enantioselective variants.

Prospective and Conclusions

Because alkyl–alkyl bonds are commonplace in organic molecules, the development of 

increasingly powerful methods for their construction (and for the control of any associated 

stereochemistry) from readily available coupling partners will have a significant impact on 

the many disciplines that employ organic compounds. In the case of a synthesis of a 

particular target compound, the availability of tools to reliably achieve alkyl–alkyl bond 

formation will provide new options for retrosynthetic analysis and, in turn, the synthesis of 

the desired molecule.

The development of versatile new methods for alkyl–alkyl cross-coupling, which represents 

a powerful fragment-coupling process, can be expected to have an impact beyond the target-

oriented synthesis of a particular compound. In recent years, diversity-oriented library 

synthesis, which is focused on the efficient generation of families of molecules rather than a 

particular molecule, has become an increasingly important tool in science, especially in drug 

discovery (39,40). This strategy depends upon reliable reactions that provide ready access to 

diverse collections of molecules for compound libraries and for lead optimization. Recently, 

medicinal chemists have observed that many current efforts in drug development may be 

biased toward compounds that have aromatic subunits, as a consequence of the 

dependability of (and therefore the reliance upon) cross-coupling reactions of readily 

available aryl electrophiles and nucleophiles (41). On the other hand, an analysis has 

suggested that a higher percentage of sp3-hybridized (rather than sp2-hybridized) carbons, as 

well as a larger number of stereogenic centers, can increase the probability of clinical 

success for a compound (41,42). Thus, the development of increasingly versatile tools for 

alkyl–alkyl bond formation, including stereoselective processes, may facilitate an “escape 

from flatland” (41,42).
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In closing, substantial progress has been described in recent years in the development of new 

methods for the construction of alkyl–alkyl bonds through the metal-catalyzed cross-

coupling of readily available electrophiles and nucleophiles (Fig. 15) (43,44). In particular, 

through the use of nickel catalysts, carbon–carbon bond formation can be achieved under 

mild conditions with an array of coupling partners, and, in certain instances, a chiral catalyst 

can accomplish stereoconvergent reactions of racemic starting materials with high 

enantioselectivity. A number of challenges remain, including further expanding the scope of 

coupling partners and of enantioselective processes.
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Fig. 1. 
Transition-metal-catalyzed cross-coupling to form carbon–carbon bonds. A: General 

scheme. B: Application of a Suzuki cross-coupling to form a Csp2–Csp2 bond in an industrial 

synthesis of Boscalid.
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Fig. 2. 
Bioactive compounds that include an array of alkyl–alkyl bonds.
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Fig. 3. 
Stereochemistry as an added dimension in cross-coupling reactions of alkyl electrophiles. A: 

Aryl electrophiles versus alkyl electrophiles. B: Use of a chiral catalyst to control 

stereochemistry: enantioconvergent cross-couplings of racemic alkyl electrophiles.
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Fig. 4. 
Recent progress in transition-metal-catalyzed alkyl–alkyl coupling.
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Fig. 5. 
Mechanistic aspects of metal-catalyzed cross-couplings, illustrated for palladium. A: An 

outline of a catalytic cycle. B: β-Hydride elimination as a side reaction.
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Fig. 6. 
Cross-couplings of primary alkyl electrophiles: Early (pre-2000) methods. A: Examples. B: 
An application in the total synthesis of a natural product. C: Use of nucleophiles that have 

improved functional-group compatibility.
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Fig. 7. 
Cross-couplings of primary alkyl electrophiles: Recent (post-2000) methods that use 

alkylboron reagents as nucleophiles. A: Examples. B: Applications in the total synthesis of 

natural products.
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Fig. 8. 
Cross-couplings of primary alkyl electrophiles: Recent (post-2000) methods that use 

alkylzinc reagents as nucleophiles. A: Examples. B: An application in the total synthesis of 

a natural product.
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Fig. 9. 
Cross-couplings of secondary alkyl electrophiles: Early (pre-2000) methods. A: Examples. 

B: An application in the total synthesis of a natural product.
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Fig. 10. 
Cross-couplings of secondary alkyl electrophiles: Recent (post-2000) methods that use 

nucleophiles that have improved functional-group compatibility. A: Alkylboron reagents. B: 
Alkylzinc reagents. C: An application in synthesis.
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Fig. 11. 
Catalytic asymmetric carbon–carbon bond formation. A: Enantioconvergent cross-coupling 

via a radical intermediate. B: Methods for activated electrophiles. C: An application in the 

total synthesis of a natural product.
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Fig. 12. 
Enantioconvergent cross-couplings of unactivated alkyl electrophiles, directed by the 

indicated functional groups.
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Fig. 13. 
Enantioconvergent alkyl–alkyl cross-couplings. A: Use of a racemic electrophile or a 

racemic nucleophile. B: Enantioconvergent nickel-catalyzed coupling of a racemic alkylzinc 

reagent. C: Doubly stereoconvergent coupling of a racemic electrophile and a racemic 

nucleophile.

Choi and Fu Page 21

Science. Author manuscript; available in PMC 2018 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Cross-couplings of tertiary alkyl electrophiles. A: Early methods. B: Recent method that 

uses a nucleophile that has improved functional-group compatibility.
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Fig. 15. 
Alkyl–alkyl cross-coupling.
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