
Computational Linguistics D.G. BOBROW, Editor

Transition Network Grammars for

Natural Language Analysis

W. A. WOODS

Harvard University, Cambridge, Massachusetts

The use of augmented transition network grammars for the

analysis of natural language sentences is described. Struc-

ture-building actions associated with the arcs of the gram-

mar network allow for the reordering, restructuring, and copy-

ing of constituents necessary to produce deep-structure repre-

sentations of the type normally obtained from a transforma-

tional analysis, and conditions on the arcs allow for a powerful

selectivity which can rule out meaningless analyses and take

advantage of semantic information to guide the parsing. The

advantages of this model for natural language analysis are

discussed in detail and illustrated by examples. An imple-

mentation of an experimental parsing system for transition

network grammars is briefly described.

KEY WORDS AND PHRASES: computational linguistics, grammars, grammar

models, linguistics, natural language analysis, parsing, semantic interpreta-

tion, transition network grammars, transformational grammars

CR CATEGORIES: 3.42, 4.12

1. M o t i v a t i o n

One of the early models for natural language grammars

was the finite state transition graph. This model consists of

a network of nodes and directed arcs connecting them,

where the nodes correspond to states in a finite state

machine and the arcs represent transitions from state to

state. Each arc is labeled with a symbol whose input can

cause a transition from the state at the tail of the arc to

the state at its head. This model has the at t ract ive feature

that the sequences of words which make up a sentence can

be read off directly by following the paths through the

grammar from the initial state to some final state. Un-

fortunately, the model is grossly inadequate for the repre-

sentation of natural language grammars due to its failure

to capture many of their regularities. A most notable

inadequacy is the absence of a pushdown mechanism that

permits one to suspend the processing of a constituent at a

given level while using the same grammar to process an

embedded constituent.

Suppose, however, that one added the mechanism of re-

cursion directly to the transition graph model by fiat.

The research reported here was supported in part by NSF grant
GS -2301.

Tha t is, suppose one took a collection of transition graphs

each with a name, and permit ted as labels on the arcs not

only terminal symbols but also nonterminal symbols nam-

ing complex constructions which must be present in order

for the transition to be followed. The determination of

whether such a construction was in fact present in a sen-

tence would be done by a "subroutine call" to another

transition graph (or the same one). The resulting model of

grammar, which we will call a recursive transition network,

is equivalent in generative power to that of a context-free

g rammar or pushdown store automaton, but as we will

show, allows for greater efficiency of expression, more ef-

ficient parsing algorithms, and natural extension by "aug-

menta t ion" to more powerful models which allow various

degrees of context dependence and more flexible structure-

building during parsing. We argue in fact that an "aug-

mented" recursive transition network is capable of per-

forming the equivalent of transformational recognition

(cf. Chomsky [6, 7]) without the necessity of a separate in-

verse transformational component, and that this parsing

can be done in an amount of t ime which is comparable to

that of predictive context-free recognition.

2. R e c u r s i v e T r a n s i t i o n N e t w o r k s

A recursive transition network is a directed graph with

labeled states and arcs, a distinguished state called the

s tar t state, and a distinguished set of states called final

states. I t looks essentially like a nondeterministic finite

state transition diagram except tha t the labels on the arcs

may be state names as well as terminal symbols. The

interpretation of an arc with a state Dame as its label is

tha t the state at the end of the arc will be saved on a push-

down store and the control will jump (without advancing

the input tape) to the state tha t is the arc label. When a

final state is encountered, then the pushdown store may

be "popped" by transferring control to the state which is

named on the top of the stack and removing that entry

from the stack. An a t tempt to pop an empty stack when

the last input character has just been processed is the cri-

terion for acceptance of an input string. The state names

tha t can appear on arcs in this model are essentially the

names of constructions that may be found as "phrases" of

the input tape. The effect of a state-labeled arc is that the

transition that it represents may take place if a construc-

tion of the indicated type is found as a "phrase" at the

appropriate point in the input string.

Figure 1 gives an example of a recursive transition net-

work for a small subset of English. I t accepts such sentences

as "John washed the car" and "Did the red barn collapse?"

I t is easy to visualize the range of acceptable sentences

from inspection of the transition network. To recognize

the sentence "Did the red barn collapse?" the network is

started in state S. The first transition is the aux transition

Volume 13 / Number 10 / October, 1970 Communicat ions of the ACM 591

et :. ~odj n . ~ P P

(~) prep .@ NP . ~

FIG. 1. A sample t r ans i t i on ne twork . S is the s t a r t s t a te .

q4, q5, q7 , q s , and q~o are the final s t a t e s .

to state q2 permitted by the auxilliary "did". From state

q2 we see that we can get to state q3 if the next " thing" in

the input string is an NP. To ascertain if this is the case,

we call the state NP. From state N P we can follow the arc

labeled det to state q6 because of the determiner " the" .

From here, the adjective "red" causes a loop which re-

turns to state qG, and the subsequent noun "barn" causes

a transition to state q7 • Since state q7 is a final state, it is

possible to "pop up" from the N P computation and con-

tinue the computation of the top level S beginning in state

q8 which is at the end of the NP arc. From q3 the verb

"collapse" permits a transition to the state q4 , and since

this state is final and "collapse" is the last word in the

string, the string is accepted as a sentence.

In the above example, there is only one accepting path

through the network--i .e, the sentence is unambiguous

with respect to the grammar. I t is an inherent feature of

natural language, however, that except for contrived sub-

sets of the language there will be ambiguous sentences

which have several distinct analysis paths through the

transition network. The transition network model there-

fore is fundamentally a nondeterministic mechanism, and

any parsing algorithm for transition network grammars

must be capable of following any and all analysis paths for

any given sentence.

The fact that the recursive transition network is equiva-

lent to a pushdown store automaton is not difficult to es-

tablish. Every recursive transition network is essentially a

pushdown store automaton whose stack vocabulary is a

subset of its state set. The converse fact that every push-

down store automaton has an equivalent transition net

could be established directly, but can be more simply

established by noting that every pushdown store auto-

maton has an equivalent context-free grammar which has

an equivalent recursive transition net.

3. Augmented Transition Networks

I t is well known (cf. Chomsky [6]) tha t the strict context-

free grammar model is not an adequate mechanism for

characterizing the subtleties of natural languages. Many of

the conditions which must be satisfied by well-formed

English sentences require some degree of agreement be-

tween different parts of the sentence which may or may not

be adjacent (indeed which may be separated by a the-

oretically unbounded number of intervening words).

Context-sensitive grammars could take care of the weak

generation of many of these constructions, but only at the

cost of losing the linguistic significance of the "phrase

s t ructure" assigned by the grammar (cf. Postal [27]). More-

over, the unaided context-free grammar model is unable to

show the systematic relationship that exists between a

declarative sentence and its corresponding question form,

between an active sentence and its passive, etc. Chomsky's

theory of transformational grammar [7], with its distinc-

tion between the surface structure of a sentence and its

deep structure, answers these objections but falls victim

to inadequacies of its own (cf. Schwarcz [28] or McCawley

[21]). In this section we describe a model of grammar based

on the notion of a recursive transition network which is

capable of performing the equivalent of transformational

recognition without the need for a separate transforma-

tional component and which meets some of the objections

that have been raised against the traditional model of

transformational grammar.

The basic recursive transition network model as we have

described it is weakly equivalent to the context-free gram-

mar model and differs in strong equivalence only in its

ability to characterize unbounded branching, as in struc-

tures of the form:

S

S and S and .,, and S

The major features which a transformational grammar adds

to those of the context-free grammar are the abilities to

move fragments of the sentence structure around (so that

their positions in the deep structure are different from

those in the surface structure), to copy and delete frag-

ments of sentence structure, and to make its actions on

constituents generally dependent on the contexts in which

those constituents occur. We can add equivalent facilities

to the transition network model by adding to each arc of

the transition network an arbitrary condition which must

be satisfied in order for the arc to be followed, and a set of

structure building actions to be executed if the arc is fol-

lowed. We call this version of the model an augmented
transition network.

592 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 13 / N u m b e r 10 / O c t o b e r , 1970

The augmented transition network builds up a partial

structural description of the sentence as it proceeds from

state to state through the network. The pieces of this par-

tial description are held in registers which can contain any

rooted tree or list of rooted trees and which are auto-

matically pushed down when a recursive application of the

transition network is called for and restored when the

lower level (reeursive) computation is completed. The

structure-building actions on the arcs specify changes in

the contents of these registers in terms of their previous

contents, the contents of other registers, the current input

symbol, and/or the result of lower level computations. In

addition to holding pieces of substructure tha t will even-

tually be incorporated into a larger structure, the registers

may also be used to hold flags or other indicators to be

interrogated by conditions on the arcs.

Each final state of the augmented network has associ-

ated with it one or more conditions which must be satis-

fied in order for that state to cause a "pop". l=aired with

each of these conditions is a function which computes the

value to be returned by the computation. A distinguished

r eg i s t e r , . , (which usually contains the current input word

when a word is being scanned) is set to the result of the

lower level computation when the network returns to an

are which has called for a reeursive computation. Thus the

register • in every case contains a representation of the

" thing" (word or phrase) which caused a transition,

3.1. REPRESENTATION OF AUGMENTED NETWORKS. To

make the discussion of augmented transition networks

more concrete, we give in Figure 2 a specification of a

language in which an augmented transition network can

be represented. The specification is given in the form of an

extended context-free grammar in which a vertical bar

separates alternative ways of forming a construction and

the Kleene star operator (*) is used as a superscript to

indicate arbitrarily repeatable constituents. The non-

terminal symbols of the grammar consist of English

(transition network) ~ ((arc set)(arc set)*)
(arc set) -~ ((state)(arc)*)
(arc) --~ (CAT (category name)(test)(action)* (term act))[

(PUSH (state)(test)(action)* (term act))l
(TST (arbitrary label)(test)(action)* (term act))[
(POP (form)(test))

(action) --~ (SETR (register)(form))[
(SENDR (register)(form)) [
(LIFTR (register)(form))

(term act) --~ (TO (state))[
(JUMP (state))

(form) ~ (GETR (register))l
*l
(GETF (feature))l
(BUILDQ (fragment) (register)*) I
(LIST (form)*)]
(APPEND (form)(form))l
(QUOTE (arbitrary structure))

FiG. 2. Specification of a language for representing augmented
transition networks

descriptions enclosed in angle brackets, and all other

symbols except the vertical bar and the superscript * are

terminal symbols (including the parentheses, which indi-

cate list structure). The • which occurs as an alternative

right-hand side for the rule for the construction (form),

however, is a terminal symbol and is not to be confused

with the superscript *'s which indicate repeatable con-

stituents. The first line of the figure says that a transition

network is represented by a left parenthesis, followed by

an arc set, followed by any number of arc sets (zero or

more), followed by a right parenthesis. An arc set, in

turn, consists of a left parenthesis, followed by a state

name, followed by any number of arcs, followed by a right

parenthesis, and an arc can be any one of the four forms

indicated in the third rule of the grammar. The remaining

rules are interpreted in a similar fashion. Nonterminals

whose expansions are not given in Figure 2 have names

which should be self-explanatory.

The expressions generated as transition networks by the

grammar of Figure 2 are in the form of parenthesized list

structures, where a list of the elements A, B, C, and D is

represented by the expression (A B C D). The transition

network is represented as a list of arc sets, each of which is

itself a list whose first element is a state name and whose

remaining elements are arcs leaving that state. The arcs

also are represented as lists, possible forms of which are

indicated in the figure. (The conditions and functions as-

sociated with final states are represented as (pseudo)

"arcs" with no actions and no destination.) The first ele-

ment of each arc is a word which names the type of the arc,

and the third element is an arbitrary test which must be

satisfied in order for the arc to be followed. The CAT arc

is an arc which can be followed if the current input symbol

is a member of the lexical category named on the arc (and

if the test is satisfied), while the PUSH arc is an arc which

causes a pushdown to the state indicated. The TST arc is

an arc which permits an arbitrary test to determine whether

an arc is to be followed. In all three of these arcs, the ac-

tions on the arc are the structure-building actions, and the

terminal action specifies the state to which control is

passed as a result of the transition. The two possible ter-

minal actions, TO and JUMP, indicate whether the input

pointer is to be advanced or not advanced, respectively--

that is, whether the next state is to scan the next input

word or whether it is to continue to scan the same word.

The POP arc is a dummy arc which indicates under

what conditions the state is to be considered a final state,

and the form to be returned as the value of the computa-

tion if the POP alternative is chosen. (One advantage of

representing this information as a dummy arc is the ability

to order the choice of popping with respect to the other

arcs which leave the state.)

The actions and the forms which occur in the network

are represented in "Cambridge Polish" notation, a nota-

tion in which a function call is represented as a parenthe-

sized list whose first element is the name of the function

and whose remaining elements are its arguments. The three

Volume 13 / Number 10 / October, 1970 Communicat ions of the ACM 593

actions indicated in Figure 2 cause the contents of the in-

dicated register to be set equal to the value of the indicated

form. S E T R causes this to be done at the current level of

computat ion in the network, while S E N D R causes it to be

done at the next lower level of embedding (used to send

information down to a lower level computation) and

L I F T R causes it to be done a t the next higher level com-

putat ion (used to return additional information to higher

level computations).

The forms as well as the conditions (tests) of the transi-

tion network may be arbi t rary functions of the register

contents, represented in some functional specification

language such as LISP (McCar thy et al. [20]), a list pro-

cessing programming language based on Church 's lambda

cMculus and wri t ten in Cambridge Polish notation. The

seven types of forms listed in Figure 2 are a basic set which

is sufficient to illustrate the major features of the aug-

mented transition network model. G E T R is a function

whose value is the contents of the indicated register,

• is a form whose value is usually the current input word,

and G E T F is a function which determines the value of a

specified feature for the current input word. (In the actions

which occur on a PUSH arc, • has the value of the lower

level computat ion which permit ted the PUSH transition.)

B U I L D Q is a useful structure-building form which takes

a list structure representing a fragment of a parse tree with

specially marked nodes and returns as its value the result

of replacing those specially marked nodes with the contents

of indicated registers. 1 Specifically, for each occurrence of

the symbol + in the list structure given as its first argu-

ment, B U I L D Q substitutes the contents of one of the listed

registers (the first register replacing the first + sign, the

second register the second -{-, etc.). In addition, B U I L D Q

replaces occurrences of the symbol • in the fragment with

the w l u e of the form . .

The remaining three forms are basic structure-building

forms (out of which any B U I L D Q can be duplicated)

which respectively make a list of the values of the listed

arguments, append two lists together to make a single list,

and produce as value the (unevaluated) argument form.

An illustrative fragment of an augmented transition net-

work is given in Figure 3. In Section 3.2 the operation of

1The BUILDQ function which is implemented in the experi-
mental parsing system (See Section 10) is considerably more ver-
satile than the version described here. Likewise, the implemented
parser contains additional formats for arcs as well as other ex-
tensions to the language specified here. There has been no at-
tempt to define a basic irredundant set of primitive conditions,
actions, and forms, but rather an effort has been made to allow
flexibility for adding "natural" primitives which facilitate the
writing of compact grammars. For this reason, the set of possible
conditions, actions, and forms has been left open-ended to allow
for experimental determination of useful primitives. However,
the arc formats and actions described here, together with ar-
bitrary LISP expressions for conditions and forms, provides a
model which is equivalent in power to a Turing machine and
therefore complete in a theoretical sense.

this network is described and some of the features of the

augmented transition network model are discussed.

3.2. AN ILLUSTRATIVE EXAMPLE. Figure 3 gives a

f ragment of an augmented transition network represented

in the language of Figure 2. This f ragment is an augmenta-

tion of the portion of the transition network of Figure 1

which consists of the states S/, Q1, Q2, Q3, Q4, and Q5.

The augmented network builds a structural representation

in which the first constituent of a sentence is a type (either

D C L or Q) which indicates whether the sentence is de-

(S/ (PUSH N P / T
(SETR SUBJ *)
(SETR TYPE (QUOTE DCL))
(TO Q1))

(CAT AUX T
(SETR AUX *)
(SETR TYPE (QUOTE Q))
(TO Q2)))

(QI (CAT V T
(SETR AUX NIL)
(SETR V .)
(TO Q4))

(CAT AUX T
(SETR AUX .)
(TO Q3)))

(Q2 (PUSH N P / T
(SETI:t SUBJ .)
(TO Q3)))

(Q3 (CAT V W
(SETR V .)
(TO Q4)))

(Q4 (POP (BUILDQ (SW+-t-(VP-{-)) TYPE SUBJ AUX V) T)
(PUSH N P / T

(SETR VP (BUILDQ (VP (V+) .) V))
(TO Qs)))

(Q5 (POP (BUILDQ (S++-{--{-) TYPE SUBJ AUX VP) T)
(PUSH P P / T

(SETR VP (APPEND (GETR VP) (LIST .)))
(TO Qs)))

FIo. 3. An illustrative fragment of an augmented transition
network

clarative or interrogative, the second consti tuent is the

subject noun phrase, the third is an auxilliary (or N I L if

there is no auxilliary), and the fourth is the verb phrase

constituent. This representation is produced regardless of

the order in which the subject noun phrase and the auxil-

liary occur in the sentence. The network also produces a

representation of a verb phrase consti tuent even though

there is no pushdown in the network corresponding to a

verb phrase. I t will be helpful, both for the understanding

of the notation and for the understanding of the operation

of the augmented network, to follow through an example at

this point using the network fragment of Figure 3.

Before proceeding to work an example, however, it is

necessary to explain the representation of the parse trees

which is used by the network fragment. The parse trees

594 Communieat ions of the ACM Volume 13 / Number 10 / October, 1970

are represented in a parenthesized notation in which the

representation of a node consists of a list whose first ele-

ment is the name of the node and whose remaining ele-

ments are the representations of the constituents of that
node.

For example, the parse tree

NP NP
I

John V NP
I I

likes Mary

would be represented in this notation by the expression:

(S (NP John) (VP (V likes) (NP Mary))

This representation can also be viewed as a labeled bracket-

ing of the sentence in which a left bracket for a phrase of

type X is represented by a left parenthesis followed by an

X, and the matching right bracket is simply a right paren-

thesis.

Let us now consider the operation of the augmented net-

work fragment of Figure 3 for the input sentence "Does

John like Mary?"

1. We begin the process in state S/scanning the first

word of the sentence, "does". Since this word is an anxil-

liary, its dictionary entry would mark it as a member of

the category AUX and therefore (since its arbitrary condi-

tion T is the universally true condition) the arc (CAT

AUX T • • .) can be followed. (The other arc which pushes

down to look for a noun phrase will not be successful.) In

following this arc, we execute the actions: (SETR AUX ,),

which puts the current word "does" into a register named

AUX, (SETR TYPE (QUOTE Q)), which puts the symbol

"Q" into a register named TYPE, and (TO Q2), which

causes the network to enter state Q2 scanning the next

word of the sentence "John".

2. State Q2 has only one arc leaving it, which is a push

to state NP/. The push will be successful and will return a

representation of the structure of the noun phrase which

will then become the value of the special register .. We will

assume that the representation returned is the expression

"(N'P John)". ~ow, having recognized a construction of

type NP, we proceed to perform the actions on the arc.

The action (SETR SUBJ *) causes the value "(~'P John)"

to be placed in the register SUB J, and the action (TO Q3)

causes us to enter the state Q3 scanning the next word

"like". The register contents at this point are:

TYPE: Q
AUX: does
SUBJ: (NP John)

3. From state Q3, the verb "like" allows a transition

to state Qd, setting the contents of a register V to the value

"like" in the process, and the input pointer is advanced to
scan the word "Mary".

4. Qd, being a final state could choose to "POP", indi-

cating that the string that has been processed so far is a
complete sentence (according to the grammar of Figure 1) ;

however, since this is not the end of the sentence, this

alternative is not successful. However, the state also has

an arc which pushes down to state NP/, and this alterna-
tive will succeed, returning the value "(N'P Mary)". T h e

action (SETR VP (BUILDQ (VP (V 4-) *) V)) will now

take the structure fragment "(VP (V ~) .) " and substitute

the current value of • for the occurrence of • in the frag-

ment and replace the occurrence of W with the contents

of the indicated register V. The resulting structure,

"(VP (V like) (NP Mary))" will be placed in the register

VP, and the action (TO Q5) causes a transition to state

Q5 scanning beyond the end of the input string. The regis-
ter contents at this point are:

TYPE: Q
AUX: does
SUB J: (NP John)
V: like
VP: (VP (V like) (NP Mary)).

5. We are now scanning the end of the sentence, and

since Q5 is a final state (i.e. it has a "POP" arc) and the

condition T is satisfied, the sentence is accepted. The form

"(BUILDQ (S --F + + +) TYPE SUBJ AUX VP)"

specifies the value to be returned as the analysis of the

sentence. The value is obtained by substituting the con-

tents of the registers TYPE, SUB J, AUX, and VP for

the successive instances of the symbol "-t-" in the frag-

ment "(S -Jr ~ "-~ ~)" to give the final sentence analysis

(S Q (NP John) does (VP (V like) (NP Mary))),

which represents the parse tree:

S

John V NP
I I

like Mory

In ordinary context-free recognition, the structural

descriptions of sentences are more or less direct representa-

tions of the flow of control of the parser as it analyzes the

sentence. The structural descriptions assigned by the struc-

ture building rules of an augmented transition network, as

we can see from the example, are comparatively inde-

pendent of the flow of control of the algorithm. This is not

to say that they are not determined by the flow of control
of the parser, for this they surely are; rather we mean to

point out that they are not isomorphic to the flow of con-

trol as in the usual context-free recognition algorithms. It
is possible for a constituent that is found in the course of

Volume 13 / Number 10 / October, 1970 Communications of t h e ACM 595

analysis to appear in the final structural description several

times or not at all, and its location may be entirely different

from that in which it was found in the surface structure.

In addition, the structural description assigned to a con-

stituent at one point during the analysis may be changed

or transformed before that structure is incorporated into

the final structural description of the sentence as a whole.

These facilities, plus the ability to test arbitrary condi-

tions, allow the equivalent of a transformational deep

structure to be constructed while the parser is performing

transitions that are isomorphic to the surface structure of a

sentence.

4. T r a n s f o r m a t i o n a l R e c o g n i t i o n

The usual model of transformational grammar is a gen-

erative model consisting of a context-free (base) grammar

and a set of transformational rules which map syntax trees

into new (derived) syntax trees. The generation of a

sentence with such a grammar consists of first constructing

a deep structure using the base component grammar and

then transforming this deep structure into a surface struc-

ture by successive applications of transformations. The

terminal nodes (or leaves) of the surface structure tree give

the final form of the sentence. This model of transforma-

tional grammar is totally oriented toward the generation

of sentences rather than their analysis, and although there

is clearly an algorithm for the use of such a grammar to

analyze a sentence--namely the procedure of "analysis by

synthesis" (Matthews [23])--this algorithm is so inefficient

as to be out of the question for any practical application.

(The analysis by synthesis method consists of applying the

rules in the "forward" (generative) direction in all possible

ways to generate all of the possible sentences of the lan-

gnage while looking to see if the sentence which you are

trying to analyze turns up in the list.)

Two attempts to formulate more practical algorithms

for transformational recognition (Petriek [26] and Mitre

[24]) resulted in algorithms which were either too time con-

suming for the analysis of large numbers of sentences or

else lacking in formal completeness. Both of these algo-

rithms attempt to analyze sentences by applying the

transformations in reverse, a procedure which is far less

straightforward than it sounds. The difficulty with simply

performing the transformations in reverse is twofold.

First, the transformations operate on tree structures and

produce tree structures as their values. In the forward

direction, they begin with the deep structure tree and end

with the surface structure tree. To reverse this process, it

is first necessary to obtain a surface structure tree for the

input sentence. However, there is no component in the

transformational model which characterizes the possible

surface structures (their only characterization is implicit in

the changes which can be made in the deep structures by

means of the transformations). Both the Mitre and the

Petrick analysis procedures solve this problem by con-

596 Communications of the ACM

structing an "augmented grammar" which consists of the

rules of the original base component grammar plus addi-

tional rules which characterize the structures that can be

added by transformations. In the Mitre procedure, this

"surface grammar" is constructed by hand and no formal

procedure is available for constructing it from the original

transformational grammar. In the Petriek procedure, there

is a formal procedure for obtaining an augmented grammar

but it will not necessarily terminate unless the length of

the possible input sentences is first circumscribed. When

sentences longer than the chosen length are encountered,

more augmented grammar rules must be generated.

In the Mitre procedure, the augmented grammar is

used to assign a complete "tentative" surface structure

which is then subjected to inverse transformations. In the

Petrick procedure, inverse transformations are applied to

partially built up surface structures and the processes of

applying transformations and building structure are inter-

woven. In both systems, the inverse transformations may

or may not produce a legitimate deep structure. If they do,

the sentence is accepted, but if they do not, the tentative

surface structure was spurious and is rejected. There is no

way to construct a context-free surface grammar which will

assign all and only legitimate surface structures. One must

settle for one which will assign all legitimate surface struc-

tures plus additional spurious ones. Moreover, the only

way to tell the two apart is to perform the inverse trans-

formations and check the resulting "tentative" deep struc-

tures.

A second difficulty with the Petriek algorithm is the

combinatorial explosion of the number of possible inverse

transformation sequences that can be applied to a given

surface structure tree. Although many of the transforma-

tions when applied in the forward direction are obligatory

so that only one possible action can be taken, almost all of

the inverse transformations are optional. The reason for

this is that even though a given structure looks like it

could have been produced by a given forward transforma-

tion so that the inverse transformation can be performed,

there is no guarantee that the same structure could not

have arisen in a transformational derivation in some other

way. Therefore both the alternative of applying the in-

verse transformation and that of not applying it must be

tried whenever an inverse transformation can apply. The

number of active paths can grow exponentially with the

number of transformations applied. Moreover, the forward

transformations usually do not specify much information

about the structure which results from applying the trans-

formation (even though the linguist may know a good deal

about what the resulting structure must be like). For this

reason, the inverse transformations are not as selective

as their forward counterparts and many more spurious

applications of transformations are allowed. That is,

whereas most forward sequences of transformations will

lead to successful surface structures, most inverse sequences

will not lead to legitimate deep structures, and a large

Volume 13 / Number 10 / October, 1970

amount of wasted effort is therefore expended on dead-end

paths. The Mitre parser avoids the nondeterminism of the

inverse transformational process by constructing a de-

terministic set of inverse transformational rules ad hoc to

a particular grammar. This method, however, is not

guaranteed to produce all legitimate deep structures of a

sentence, and there is no formal procedure for constructing

the necessary set of inverse transformations.

5. A u g m e n t e d Transit ion Networks for

Transformational Recognit ion

In 1965 Kuno [18] suggested that it should be possible

to augment the surface structure grammar of a trans-

formational grammar in such a way that it "remembered"

the equivalent deep structure constructions and could

build the deep structure of the sentence while doing the

surface structure parsing--without the necessity of a

separate inverse transformational component. The model

which he proposed at that time, however, was not ade-

quate to deal with some of the more powerful transfor-

mational mechanisms such as the extraposition of a con-

stituent from an arbitrarily deep embedding. The aug-

mented transition network, on the other hand, provides a

model which is capable of doing everything that a trans-

formational grammar can do and is therefore a realization

of part of the Kuno prediction. I t remains to be seen

whether a completely mechanical procedure can be devel-

oped to take a transformational grammar in the usual

formalism and translate it into an equivalent augmented

transition network. I conjecture, however, that such is the

case.

Even if such a mechanical procedure is available, it may

still be more appropriate to use the transition network

model directly for the original linguistic research and

grammar development. The reasons for this are several.

First, the transition network that could be developed by a

mechanical procedure from a traditional transformational

grammar could not be expected to be as efficient as that

which could be designed by hand. Moreover, the transition

network model provides a mechanism which satisfies some

of the objections which have been raised by linguists

against the transformational grammar as a linguistic

model (such as its incompatibility with many psycho-

linguistic facts which we know to characterize human

language performance).
A third reason for preferring the transition network

model to the usual formulation of transformational gram-

mar is the power which it contains in its arbitrary condi-

tions and its structure building actions. The model is

equivalent to a Turing machine in power, and yet the ac-

tions which it performs are "natural" ones for the analysis
of language. Most linguistic research in the structure of

language and mechanisms of grammar has attempted

deliberately to build models which do not have the power of

a Turing machine but which make the strongest possible

V o l u m e 13 / N u m b e r 10 / Oc tober , 1970

hypotheses about language mechanisms by proposing the

least powerful mechanism that can do the job. As a result

of this approach, many variations of the transformational

grammar model have been proposed with different basic

repertories of transformational mechanisms. Some have

cyclic transformation rules, others do not; some have a

distinct "post cycle" that operates after all of the cyclic

rules have been applied. There are various types of condi-

tions that may be asked: some models have double struc-

tural descriptions, some have ordered rules, some have

obligatory rules, some have blocking rules, etc. In short,

there is not a single transformational grammar model,

there are many models which are more or less incom-

parable. If one such model can handle some features of

language and another can handle different features, there is

no systematic procedure for incorporating them both into

a single model. In the augmented transition network

model, the possibility exists of adding to the model what-

ever facility is needed and seems natural to do the job. One

can add a new mechanism by simply inventing a new basic

predicate to use in conditions or a new function to use in

the structure-building rules. I t is still possible to make

strong hypotheses about the types of conditions and ac-

tions that are required, but when one finds that he needs

to accomplish a given task for which his basic model has

no "natural" mechanism, there is no problem extending

the augmented transition network model to include it.

This requires only the relaxation of the restrictions on the

types of conditions and actions, and no reformulation of

the basic model.

6. Previous Transit ion Network Models

The basic idea of the recursive transition network--

that of merging the right-hand sides of context-free gram-

mar rules which have the same left-hand side into a single

transition diagram that merges the common parts of the

different rules--has been known to the designers of syntax-

directed compilers and artificial programming languages at

least since 1963 when it was described in a paper by Melvin

Conway [8]. The concern of that time, however, was not

with the full generality of the nondeterministic mechanism,

but rather with a set of sufficient conditions that would

guarantee the diagram to be deterministic. Conway de-

scribes a rudimentary form of action associated with the

arcs of his transition diagram, but these actions are limited

to output commands which write information into a sepa-

rate output stream that serves as input to the code-genera-

tion component. (The model is very close to the usual model

of a finite state transducer with the exception of the addi-

tional recursion capability.) There is no analog to the hold-

ing of temporary pieces of information in registers, or the

subsequent use of such information in conditions on the

arcs.

More recently, two natural language parsing systems

C o m m u n i c a t i o n s o f t h e ACM 597

based on a form of recursive transition network have been

described in the literature. Thorne, Bratley, and Dewar

[29] describe a procedure for natural language analysis

based on a "finite state transition network" (which is ap-

plied recursively), and Bobrow and Fraser [1] describe a

system which is "an elaboration of the procedure described

by Thorne, Bratley, and Dewar." Although these systems

bear considerable similarity to the one we have described,

they differ from it in a number of important respects which

we will describe shortly. Let us first, however, briefly

describe the two systems.

6.1. THE THORNE SYSTEM. The Thorne system [29]

assigns a representation of syntactic structure which at-

tempts to represent simultaneously the deep structure and

the surface structure of a sentence. Constructions are listed

in the order in which they are found in the surface struc-

ture, with their deep structure functions indicated by label-

ing. Inversions in word order are indicated by marking the

structures which are found "out of place" (i.e. in positions

other than their deep structure positions) without moving

them from their surface structure positions, and later in the

string the position where they would have occurred in the

deep structure is indicated by the appropriate deep struc-

ture function label followed by an asterisk. (They do not

describe a procedure for constituents which are found in the

surface structure to the right of their deep structure posi-

tions. Apparently their grammar does not deal with such

constructions.)

Thorne views his grammar as a form of transformational

grammar whose base component is a finite state grammar

and permits recursion to take place only via transforma-

tions. According to Thorne, the majority of transforma-

tion rules can be viewed as "meta rules" in the sense that

"they operate on other rules to produce derived rules rather

than operating on structural descriptions to produce new

structural descriptions." He uses an augmented transition

network containing both the original deep structure rules

plus these derived rules as the grammar table to drive his

parsing algorithm, but is not able to handle the word order

inversion transformations and the conjunction transforma-

tions in this way. Instead, he implements these features as

exceptions embedded in his parsing program.

6.2. THE SYSTEM OF BOBROW AND FRASER. Bobrow

and Fraser [1] describe a parsing system which is an elabo-

ration of the Thorne parser. Like the Thorne parsings, the

general form of their analysis "resembles the surface struc-

ture analysis of the sentence, with added indications of

moved constituents and where they are located in deep

structure." This grammar model is also a form of aug-

mented transition network, whose actions include setting

flags and function labels and whose conditions include

testing previously set flags. Unlike the Thorne system,

however, Bobrow's system provides a facility for transfer-

ring information back to some previously analyzed con-

stituent. In general, the conditions on an arc can be ar-
bitrary LISP functions (the system is programmed in

LISP), and the actions for transferring information can be

arbitrary LISP functions. The conditions and actions ac-

tually implemented in the system, however, are limited to

flag testing and to transferring new deep structure function

labels back into previously recognized structures.

According to Bobrow 2 the major differences between his

system and that of Thorne are the use of symbolic flag

names (instead of bit positions), a facility for mnemonic

state names, the ability to transfer information back to

previously analyzed constituents, and a facility for active

feature values in the dictionary (these are actually routines

which are stored in the dictionary entry for the word

rather than merely activated by features stored in the dic-
tionary).

6.3. COMPARISON WITH THE PRESENT MODEL. In

comparing the augmented transition network model de-

scribed in this paper with the systems of Bobrow and

Fraser [1] and of Thorne et al. [29], there are two domains

of comparison which must be distinguished: the formal

description of the model and the implementation of the

parsing system. One of the major differences between this

parsing system and those of Bobrow and Thorne is the de-

gree to which such a distinction is made. In [29] Thorne

does not describe the augmented transition network model

which is used except to point out that the grammar table

used by the parsing program "has the form of a finite state

network or directed graph--a form appropriate for the

representation of a regular grammar." The transition net-

work model is apparently formalized only in the form in

which it actually occurs in the parsing program (which is

not described). The conditions on the arcs seem to be lim-
ited to tests of agreement of features associated with lexical

items and constituents, and the actions are limited to re-

cording the current constituent in the output representa-

tion, labeling constituents, or inserting dummy nodes and

markers. The mechanisms for word order inversion and

conjunction are not represented in the network but are

"incorporated into the program."

The Bobrow and Fraser paper [1] improves considerably

on the power of the basic transition network model used

by Thorne et al. I t adds the facility for arbitrary conditions

and actions on the arcs, thus increasing the power of the

model to that of a Turing machine. In this system as in

Thorne's, however, there is no distinction between the

model and the implementation. Although the conditions

and actions are arbitrary as far as the implementation is

concerned, there is no separate formal model which charac-

terizes the data structures on which they operate. That is,

in order to add such an arbitrary condition, one would have

to know how the LISP implementation of the parsing

algorithm works and where and how its intermediate re-

sults are stored. The range of conditions and actions avail-

able without such information--i.e, the condition and ac-

tion subroutines actually provided in the implementation--

consists of setting and testing flags and transmitting func-

2 Personal communication.

598 C o m m u n i c a t i o n s o f the ACM Volume 13 / Number 10 / October, 1970

tion labels back into previously analyzed constituents. In

both Bobrow's and Thorne's systems the actual representa-

tion of constituent structure is isomorphic to the recursive

structure of the analysis as determined by the history of

recursive applications of the transition network, and it is

produced automatically by the parsing algorithm.

The augmented transition network, as we have defined

it, provides a formalized transition network model with the

power of a Turing machine independent of the implementa-

tion. The model explicitly provides for the isolation of

various partial results in named registers and allows arbi-

t ra ry conditions and actions which apply to the contents of

these registers. Thus it is not necessary for a grammar

writer to know details of the actual implementation of the

parsing algorithm in order to take advantage of the facility

for arbitrary conditions and actions. 3 The building of the

constituent structure is not performed automatically by

the parsing algorithm in this model, but must instead be

specified by explicit structure-building rules. The result of

this feature is that the structures assigned to the sentence

no longer need to be isomorphic to the recursion history of

the analysis, but are free to move constituents around in

the representation. Thus the representation produced by

the parser may be a true deep structure representation of

the type assigned by the more customary transformational

grammar models (or it could also be a surface structure

representation, a dual-purpose representation as in the

Thorne and Bobrow systems, or any of a number of other

representations such as dependency representations). The

explicit structure-building actions on the arcs together

with the use of registers to hold pieces of sentence structure

(whose function and location may not yet have been de-

termined) provides an extremely flexible and efficient

facility for moving constituents around in their deep struc-

ture representations and changing the interpretation of

constituents as the course of an analysis proceeds. I t is even

possible to build structures with several levels of nesting

while remaining at a single level of the transition network,

and conversely to go through several levels of recursion of

the network while building a structure which has only one

level. No facility like this is present in either the Thorne

or the Bobrow systems.

Another feature of the augmented transition network

model presented here which distinguishes it from the

Thorne and Bobrow systems is the language for the speci-

fication of the transition network grammar. This language

is designed to be convenient and natural for the grammar

designer rather than for the machine or for a computer

programmer. I t is possible in a few pages to completely

specify the possible syntactic forms for the representation

3 In the experimental parsing system which has been imple-
mented, there is sometimes an advantage to using conditions or
actions which apply to features of the implementation that are
not in the formal model. Actions of this sort are considered to be
extensions to the basic model, and the features of the implementa-
tion which allow them to be added easily are largely features of
the BBN LISP system [2] in which the system is written.

of an augmented transition network. Each arc is repre-

sented by a mnemonic name of the type of arc, the are

label, an arbitrary condition, and a list of actions to be

executed if the arc is followed. The condition and actions

are represented as expressions in Cambridge Polish nota-

tion with mnemonic function names, and care has been

exercised to provide a basic repertoire of such functions

which is "natura l" to the task of natural language analysis.

One of the goals of the experimental transition network

parsing system which I have implemented is to evolve such

a set of natural operations through experience writing

grammars for it, and many of the basic operations de-

scribed in this paper are the result of such evolution. One

of the unique characteristics of the augmented transition

network model is the facility to allow for evolution of this

type.

7. A d v a n t a g e s o f t h e A u g m e n t e d T r a n s i t i o n

N e t w o r k M o d e l

The augmented transition network model of grammar

has many advantages as a model for natural language,

some of which carry over to models of programming

languages as well. In this section we review and summarize

some of the major features of the transition network model

which make it an attractive model for natural language.

7.1. PERSPICUITY. Context-free grammars have been

immensely successful (or at least popular) as models for

natural language in spite of formal inadequacies of the

model for handling some of the features that occur in exist-

ing natural languages. They maintain a degree of "per-

spicuousness" since the constituents which make up a con-

struction of a given type can be read off directly from the

context-free rule. Tha t is, by looking at a rule of a context-

free grammar, the consequences of that rule for the types

of constructions that are permitted are immediately ap-

parent. The pushdown store automaton, on t~he other hand,

although equivalent to the context-free grammar in gen-

erative power does not maintain this perspicuousness. I t is

not surprising, therefore, tha t linguists in the process of

constructing grammars for natural language have worked

with the context-free grammar formalism and not directly

with pushdown store automata even though the pushdown

store automaton, through its finite state control mechanism,

allows for some economies of representation and for

greater efficiency in resulting parsing algorithms.

The theory of transformational grammar proposed by

Chomsky [6] is one of the most powerful tools for describ-

ing the sentences that are possible in a natural language

and the relationships that hold among them, but this

theory as it is currently formalized (to the limited extent to

which it is formalized) loses the perspicuousness of the

context-free grammar. I t is not possible in this model to

look at a single rule and be immediately aware of its con-

sequences for the types of construction that are possible.

The effect of a given rule is intimately bound up with its

Volume 13 / Number 10 / October, 1970 Communications of the ACM 599

interrelation to other rules, and in fragments of transforma-

tional grammars for real languages it may require an ex-

tremely complex analysis to determine the effect and pur.

pose of any given rule. The augmented transition network

provides the power of a transformational grammar but

maintains much of the perspicuousness of the context-free

grammar model. If the transition network model were im-

plemented on a computer with a graphics facility for dis-

playing the network, it would be one of the most perspicu-

ous (as well as powerful) grammar models available.

7.2. GENERATIVE POWER. Even without the conditions

and actions on the arcs, the reeursive transition network

model has greater strong generative power than the ordi-

nary context-free grammar. This is due to its ability to

characterize constructions which have an unbounded

number of immediate constituents. Ordinary context-free

grammars cannot characterize trees with unbounded

branching without assuming an infinite set of rules.

Another way of looking at the recursive transition network

model is that it is a finite representation of a context-free

grammar with a possibly infinite (but regular) set of rules.

When conditions and actions are added to the arcs, the

model attains the power of a Turing machine, although the

basic operations which it performs are "natural" ones for

language analysis. Using these conditions and actions, the

model is capable of performing the equivalent of trans-

formational analysis without the need for a separate trans-

formational component.

Another attractive feature of the augmented transition

network model is the fact that one does not seem to have

to sacrifice efficiency to obtain power. In the progression

from context-free grammars to context-sensitive grammars

to transformational grammars, the time required for the
corresponding recognition algorithms increases enormously.

The transition network model, however, while achieving

all the power of a transformational grammar, does so with-

out apparently requiring much more time than is required

for predictive context-free recognition. (This is illustrated

to some extent by the example in Section 8.)

An additional advantage of the augmented transition

network model over the transformational grammar model

is that it is much closer to a dual model than the trans-

formational grammar. That is, although we have described

it as a recognition or analysis model which analyzes
sentences, there is no real restriction against running the

model in a generative mode to produce or generate sentences.

The only change in operation that would be required is

that conditions which look ahead in the sentence would

have to be interpreted in the generation algorithm as

decisions to be made which, if chosen, will impose corn

straints on the generation of subsequent portions of the

sentence. The transformational grammar model, on the

other hand, is almost exclusively a generative model. The

analysis problem for the transformational grammar is so

extremely complicated that no reasonably efficient recog-

nition algorithm for transformational grammar has yet

been found.

7.3. EFFICIENCY OF REPRESENTATION. A major ad-

vantage of the transition network model over the usual

context-free grammar model is the ability to merge the

common parts of many context-free rules, thus allowing

greater efficiency of representation. For example, the single

regular-expression rule S --~ (Q) (NEG) NP VP replaces

the four rules:

S --~ NP VP
S --~ Q NP VP
S --~ NEG NP VP

S ~ Q NEG NP VP

in the usual context-free notation. The transition network

model can frequently achieve even greater efficiency

through merging because of the absence of the linearity

constraints that are present in the regular expression nota-

tion.

The merging of redundant parts of rules not only permits

a more compact representation but also eliminates the

necessity of redundant processing when doing the parsing.

That is, by reducing the size of the grammar representation,

one also reduces the number of tests which need to be per-

formed during the parsing. In effect, one is taking ad-

vantage of the fact that whether or not a rule is successful

in the ordinary context-free grammar model, information is

frequently gained in the process of matching it (or attempt-

ing to match it) which has implications for the success or

failure of later rules. Thus, when two rules have common
parts, the matching of the first has already performed some

of the tests required for the matching of the second. By

merging the common parts, one is able to take advantage of

this information to eliminate the redundant processing in

the matching of the second rule.

In addition to the direct merging of common parts of

different rules when constructing a transition network

model, the augmented transition network, through its use

of flags, allows for the merging of similar parts of the net-

work by recording information in registers and interrogat-

ing it with conditions on the arcs. Thus it is possible to store

in registers some of the information that would otherwisebe

implicitly remembered by the state of the network and to

merge states whose transitions are similar except for condi-

tions on the contents of registers. For example, consider

two states whose transitions are alike except that one is

"remembering" that a negative particle has already been

found in the sentence, while the other permits a transition

which will accept a negative particle. These two states can

be merged by setting a flag to indicate the presence of a

prior negative particle and placing a condition on the arc

which accepts the negative particle to block it if the neg-

ative flag is set.
The process of merging similar parts of the network

through the use of flags, while producing a more compact

representation, does not result in an improvement in

processing time and usually requires slightly more time.

The reason for this is the increased time required to test

the conditions and the presence of additional arcs which

must be processed even though the conditions will prevent

600 C o m m u n i c a t i o n s o f the ACM Volume 13 / Number 10 / October, 1970

them from being followed. In the absurd extreme, it is

possible to reduce any transition network to a one-state

network by using a flag for each are and placing conditions

on the arcs which forbid them to be followed unless one of

the flags for a possible immediately preceding arc has been

set. The obvious inefficiency here is that at every step it

would be necessary to consider each arc of the network and

apply a complicated test to determine whether the arc

can be followed. There is thus a trade-off between the

compactness of the representation which can be gained by

the use of flags and the increase in processing time which

may result. This seems to be just one more example of the

ubiquitous space-time trade-off that occurs for almost any

computer programming problem.

In many cases, the use of registers to hold pieces of an

analysis provides automatic flags, so that it is not necessary

to set up special registers to remember such information.

For example, the presence of a previous negative particle

in a sentence can be indicated by the nonemptiness of a
NEG register which contains the particle. Similarly, the

presence of an auxilliary verb is indicated by the non-

emptiness of an AUX register which contains the auxilliary

verb.

7.4. CAPTURING REGULARITIES. One of the linguistic

goals of a grammar for a natural language is that the gram-

mar capture the regularities of the language. That is, if

there is a regular process that operates in a number of

environments, the grammar should embody that process

in a single mechanism or rule and not in a number of inde-

pendent copies of the same process for each of the different

contexts in which it occurs. A simple example of this

principle is the representation of the prepositional phrase

as a constituent of a sentence because the construction

consisting of a preposition followed by a noun phrase oc-

curs often in English sentences in many different environ-

ments. Thus the model which did not treat prepositional

phrases as constituents would be failing to capture a
generality. This principle is a variation of the economy
principle, which says that the best grammar is that which

can characterize the language in the fewest number of

symbols. A grammar which made essentially independent

copies of the same information would be wasting symbols

in its description of the language, and that model which

merged these multiple copies into a single one would be a

better grammar because it used fewer symbols. Thus the

economy principle tends to favor grammars which capture

regularities.
The transition network model, with the augmentation of

arbitrary conditions on the arcs and the use of registers to

contain flags and partial constructions, provides a mech-

anism for recognizing and capturing regularities. Whenever

the grammar contains two or more subgraphs of any size

which are essentially copies of each other, it is a symptom

of a regularity that is being missed. That is, there are two

essentially identical parts of the grammar which differ

only in that the finite state control part of the machine is

remembering some piece of information, but otherwise the

operation of the two parts of the graph are identical. To

capture this generality, it is sufficient to explicitly store the

distinguishing piece of information in a register (e.g. by a

flag) and use only a single copy of the subgraph.

7.5. EFFICIENCY OF OPERATION. In addition to the

efficiency of operation which results from the merging of

common parts of different rules, the transition network

model provides a number of other advantages for efficient

operation. One of these is the ability to postpone decisions

by reworking the network. A great inefficiency of many

grammars for natural language is the procedure whereby

the grammar "guesses" some basic feature of a construc-

tion too early in the process of recognizing it--for example,

guessing whether a sentence is active or passive before the

processing of the sentence has begun. This results in the

parser having to follow several alternatives until that point

in the sentence where enough information is present to rule

out the erroneous guesses. A much more desirable approach

is to leave the decision unmade until a point in the con-

struction is reached where the necessary information is

present to make the decision. The transition network model

allows one to take this approach.

By using standard finite state machine optimization

techniques (see Woods [32]) it is possible to "optimize"

the transition network by making it deterministic except

for the pushdown operations (where nondeterminism can

be reduced but not necessarily eliminated). That is, if

several arcs with the same label leave some state, a modified

network can be constructed which has at most one are with

a given label leaving any given state. This results in an

improvement in operation efficiency because of the reduced

number of active configurations which need to be followed

during the parsing. The deterministic network keeps

identical looking analyses merged until that point at which

they are no longer identical, thus postponing the decision

as to which path it is on until the first point where the two

paths differ, at which point the input symbol usually de-

termines the correct path. The augmented transition net-

work may not permit the completely automatic optimiza-

tion which the unaugmented model permits, but it is still

possible to adopt the general approach of reducing the

number of active configurations by reducing the nondeter-

minism of the network, thus postponing decisions until

the point in the input string where they make a difference.

The holding of pieces of the analysis in registers until their

appropriate function is determined allows one to wait until

such decisions have been made before building the syn-

tactic representation, which may depend on the decision.

This facility allows one to postpone decisions even when

building deep structure representations of the type as-

signed by a transformational grammar.

The necessity of following several active configurations

during parsing is a result of the potential ambiguity of

natural language. The source of this ambiguity lies in the

recursion operation of the network, since without recursion

the network would be a finite state machine and could be

made completely deterministic. We show elsewhere [32]

V o l u m e 13 / Number 10 / October , 1970 Communica t ions of t he ACM 601

that it is possible to eliminate much of the recursion from a

transition network (in fact we can eliminate all of the re-

cursion except for that induced by self-embedding symbols),

thus reducing still further the number of active configura-

tions which need to be followed. In the augmented net-

work model, one seems in practice to be able to use condi-

tions on the arcs to determine uniquely when to push

down for a recursion, leaving only the action of popping

up as the source of ambiguity and the cause for multiple

active configurations. The use of appropriate conditions

(including semantic ones) on the POP arcs of the network

allows one to reduce this ambiguity still further.

One of the most interesting features of the use of registers

in the augmented transition network is the ability to make

tentat ive decisions about the sentence structure and then

change one's mind later in the sentence without backtrack-

ing. For example, when one is at the point in parsing a

sentence where he is expecting a verb and he encounters

the verb "be," he can tentatively assign it as the main verb

by putt ing it in the main verb register. If he then en-

counters a second verb indicating that the "be" was not

the main verb but an auxilliary helping verb, then the

verb "be" can be moved from the main verb register into

an auxilliary verb register and the new main verb put in its

place. This technique, like the others, tends to reduce the

number of active configurations which need to be followed

during the parsing. In Section 8 we give an example which

provides a number of illustrations of this technique of

making tentat ive decisions and then changing them.

7.6. FLEXIBILITY FOR EXPERIMENTATION. Perhaps one

of the most important advantages of the augmented transi-

tion network model is the flexibility tha t the model pro-

vides for experimental linguistic research. The open-ended

set of basic operations which can be used on the arcs allows

for the development of a fundamental set of "na tura l"

operations for natural language analysis through experi-

ence obtained while writing grammars. A powerful

BUILDQ function was developed in this way and has

proven extremely useful in practice. The use of the hold

list and the virtual transitions in Section 8 is another ex-

ample of the evolution of a special "natura l" operation to

meet a need.

A second area of experimentation that is facilitated by

the transition network model is the investigation of dif-

ferent types of structural representations. The explicit

structure-building actions on the arcs of the network allow

one to experiment with different syntactic representations

such as dependency grammars, tagmemic formulas, or

Fillmore's case grammar [11]. I t should even be possible

to produce some types of semantic representation by

means of the structure-building actions on the arcs.

Finally, it is possible to use the conditions on the arcs to

experiment with various types of semantic conditions for

guiding the parsing and reducing the number of "meaning-

less" syntactic analyses that are produced. Within the

framework of the augmented transition network one can

begin to take advantage of much of the extra-syntactic

information which human beings seems to have available

during parsing. Many good ideas in this area have gone

untried for want of a formalism which could accommodate

them.

8. A Second Example

In this section we give an example that illustrates some

of the advantages of the augmented transition network

which we have been discussing--especially the facilities

for making tentat ive decisions that are changed as the

•
5~6

14 VP I1

FFzG. 4(a). A partial transition network--pictorial
representation with numbered arcs

"BY'
12

Q3:
Condition: (INTRANS (GETR V))
Form: (BUILDQ (S+-t-(TNS+) (VP (V+))) TYPE SUBJ

TNS V)
Q4 and Q6:

Condition: T
Form: (BUILDQ (S + + (T N S +) (VP (V +)+)) TYPE SUBJ

TNS V OBJ)

FIG. 4(b). A partial transition network--conditions and
forms for final states

Conditions

1. T

2. T

3. T
4. T

5. (AND (GETF PPRT)
(EQ (GETR V)
(QUOTE BE)))

6. (AND (GETF PPRT)
(EQ (GETR V)
(QUOTE HAVE)))

7. (TRANS (GETR V))
8. (TRANS (GETR V))
9. (GETR AGFLAG)

10. (S-TRANS (GETR V))

11. T
12. (GETR AGFLAG)
13. T
14. (GETF UNTENSED)

Actions

(SETR V *)
(SETR TNS (GETF TENSE))
(SETR TYPE (QUOTE Q))
(SETR SUBJ *)
(SETR TYPE (QUOTE DCL))
(SETK SUBJ *)
(SETR V *)
(SETR TNS (GETF TENSE))
(HOLD (GETR SUB J))
(SETR SUBJ (BUILDQ

(NP (PRO SOMEONE))))
(SETR AGFLAG T)
(SETR V *)
(SETR TNS (APPEND

(GETR TNS)
(QUOTE PERFECT)))

(SETR V ,)
(SETR OBJ ,)
(SETR OBJ ,)
(SETR AGFLAG NIL)
(SENDR SUBJ (GETR OBJ))
(SENDR TNS (GETR TNS))
(SENDR TYPE (QUOTE DCL))
(SETR OBJ ,)
(SETR AGFLAG NIL)
(SETR SUBJ ,)
(SETR V ,)

FIG. 4(c). A partial transition network--conditions and
actions on arcs

602 Communica t i ons of t h e ACM Volume 13 / Number 10 / Qctober , 1970

parsing proceeds. Figure 4 gives a fragment of a transition

network which characterizes the behavior of the auxiliary

verbs "be" and "have" in indicating the passive construc-

tion and the perfect tense. We will consider the analysis

provided by this sample network for the sentence "John

was believed to have been sho t " - - a sentence with a fairly

complex syntactic structure. In doing so, we will see that

the augmented transition network clearly characterizes the

changing expectations as it proceeds through the analysis,

and that it does this without the necessity of backtracking

or pursuing different alternatives.

Figure 4 is divided into three parts: (a) a pictorial

representation of the network with numbered arcs, (b) a

description of the conditions and forms associated with the

final states, and (c) a list of the conditions and actions as-

sociated with the arcs of the network. In Figure 4(a), the

pictorial representation, S, NP, and VP are nonterminal

symbols; AUX and V are lexical category names; and the

arcs labeled "TO" and " B Y " are to be followed only if the

input word is "to" or " b y " respectively. The dotted a r c

with label N P is a special kind of "vir tual" arc which can

be followed if a noun phrase has been placed on a special

"hold list" by a previous HOLD command. I t removes the

item from the hold list when it uses it. The hold list is a

feature of the experimental parsing system which provides

a natural facility for dealing with constituents that are

found out of place and must be inserted in their proper

location before the analysis can be complete. The items

placed on the hold list are marked with the level at which

they were placed on the list, and the algorithm is prevented

from popping up from that level until the item has been

"used" by a virtual transition at that level or some deeper

level.

Final states are represented in Figure 4(a) by the diag-

onal slash and the subscript 1, a notation which is com-

mon in the representation of finite state automata. The

conditions necessary for popping up from a final state and

the expression which determines the value to be returned

are indicated Figure 4(b). The parenthesized representa-

tion of tree structure is the same as that used in Section 3.2.

Conditions TRANS and INTRANS test whether a verb is

transitive or intransitive, respectively, and the condition

S-TRANS tests for verbs like "believe" and "want" ,

which can each take an embedded nominalized sentence as

its "object". Features P P R T and U N T E N S E D , respec-

tively, mark the past participle form and the standard

untensed form of a verb.

We begin the analysis of the sentence "John was believed

to have been shot" in state S, scanning the first word of the

sentence "John". Since "John" is a proper noun, the push-

down for a noun phrase on arc 2 will be successful, and the

actions for that arc will be executed placing the noun

phrase (NP (NPR JOHN)) in the subject register SUBJ

and recording the fact that the sentence is declarative by

placing DCL in the T Y P E register. The second word of

the sentence "was" allows the transition of arc 4 to be fol-

lowed, setting the verb register V to the standard form of

the verb " B E " and recording the tense of the sentence in

the register TNS. The register contents at this point

correspond to the tentat ive decision that "be" is the main

verb of the sentence, and a subsequent noun phrase or

adjective (not shown in the sample network) would con-

tinue this decision unchanged.

In state Q3, the input of the past participle "believed"

tells us that the sentence is in the passive and that the verb

"be" is merely an auxilliary verb indicating the passive.

Specifically, arc 5 is followed because the input word is a

past participle form of a verb and the current content of

the verb register is the verb "be". This arc revises the

tentat ive decisions by holding the old tentat ive subject on

the special hold list, setting up a new tentat ive subject

(the indefinite someone), and setting the flag AGFLAG

which indicates that a subsequent agent introduced by the

preposition "by" may specify the subject. The main verb

is now changed from "be" to "believe" and the network

returns to s ta te Q3 scanning the word " to" . The register

contents at this point are:

SUBJ: (NP (PRO SOMEONE))
TYPE: DCL
V: BELIEVE
TNS: PAST
AGFLAG: T

and the noun phrase (NP (N P R JOHN)) is being held on

the hold list.

None of the arcs leaving state Q3 is satisfied by the in-

put word " to" . However, the presence of the noun phrase

" John" on the hold list allows the virtual transition of arc 8

to take place just as if this noun phrase had been found at

this point in the sentence. (The transition is permitted be-

cause the verb "believe" is marked as being transitive.)

The effect is to tentat ively assign the noun phrase (NP

(N P R JOHN)) as the object of the verb "believe". I f this

were the end of the sentence and we chose to pop up from

the resulting state Q4, then we would have the correct

analysis "someone believed John".

The input of the word "to" to state Q4 tells us that the

"object" of the verb "believe" is not merely the noun

phrase " John" but is a nominalized sentence with " John"

as its tentat ive subject. The effect of arcs 10 and 11 is to

send down the necessary information to an embedded cal-

culation which will complete the embedded clause and

return the result as the object of the verb "believe".

Arc 10 prepares to send down the noun phrase (NP (N P R

JOHN)) as the embedded subject, the tense PAST, and

the type DCL. Arc 11 then pushes down to state VP

scanning the word "have" .

At this point, we find ourselves in an embedded compu-

tation with the register contents:

SUBJ: (NP (NPR JOHN))
TYPE: DCL
TNS: PAST

Arc 14 permits a transition if the current input is a verb

Volume 13 / Number 10 / October, 1970 C o m m u n i c a t i o n s o f the ACM 603

in its standard untensed, undeelined form, i.e. one can-

not say "John was believed to has been shot." Since "have"

is such a form, the transition is permitted and the main

verb of the embedded sentence is tentatively set to "have"

as would befit the sentence "John was believed to have

money."

The subsequent past participle "been" following the

verb "have" causes transition 6, which detects the fact

that the embedded sentence is in the perfect tense (the

effect of the auxilliary "have") and adopts the new tenta-

tive verb "be" as would befit the sentence "John was

believed to have been a druggist." The register contents

for the embedded computation at this point are:

SUBJ: (NP (NPR JOHN))
TYPE: DCL
TNS : PAST PERFECT
V: BE

Once again in state Q3, the input of the past participle

"shot" with a tentative verb "be" in the verb register

indicates that the sentence is in the passive, and transi-

tion 5 puts the noun phrase (NP (NPR JOHN)) on the

hold list and sets up the indefinite subject (NP (PRO

SOMEONE)). Although we are now at the end of the

sentence, both the presence of the noun phrase on the hold

list and the fact that the verb "shoot" is transitive prevent

the algorithm from popping up. Instead, the virtual transi-

tion of arc 8 is followed, assigning the noun phrase "John"

as the object of the verb "shoot". The register contents for

the embedded computation at this point are:

SUBJ: (NP (PRO SOMEONE))
TYPE: D CL
TNS: PAST PERFECT
V: SHOOT
AGFLAG: T
OB$: (NP (NPR JOHN))

At this point, we are at the end of the sentence in the

final state Q4, with an empty hold list so that the embedded

computation can return control to the higher level com-

putation which called it. The value returned, as specified

by the form associated with the state Q4, is

(s DCL (NP (PRO SOMEONE)) (TNS PAST PERFECT)
(VP (V SHOOT) (NP (NPR JOHN))))

corresponding to the tree:

S

D C L ~ V P ~

PRO P,sT PE,FECT V NP
I I I

SOMEONE SHOOT NPR
I

JOHN

The higher level computation continues with the actions

on arc 11, setting the OBJ register to the result of the

embedded computation. Since the higher level computa-

tion is also in a final state, Q6, the sentence is accepted,

and the structure assigned to it (as specified by the form

associated with state Q6) is:

(s DCL (NP (PRO SOMEONE)) (TNS PAST) (VP (V BELIEVE)
(~ DCL (NP (PRO SOMEONE)) (TNS PAST PERFECT)

(VP (V SHOOT) (NP (NPR JOHN))))))

which in tree form is represented as:

S

DCL NP INS VP

PRO PAST V S

I P"--. / \
PRO PAST PERFECT V NP

I I I
SOMEONE SHOOT NPR

I
JOHN

This structure can be paraphrased "Someone believed

that someone had shot John." If the sentence had been

followed by the phrase "by Harry" there would have been

two possible interpretations depending on whether the

additional phrase were accepted by the embedded com-

putation or the top level computation. Either case would

have resulted in replacing one of the indefinite subjects

SOMEONE with the definite subject "Harry". The struc-

ture produced in one case would be paraphrased "Some-

one believed that Harry had shot John", while the other

would be "Harry believed that someone had shot John."

9. Parsing with Transition Network Grammars

Since the unaugmented transition network grammar

model is actually a mere permutation of the elements of a

pushdown store automaton, a number of existing parsing

algorithms for context-free grammars apply more or less

directly to the transition network model. The basic top-

down and bottom-up parsing strategies have their analog

for recursive transition networks, and the opposing strat-

egies for dealing with ambiguous sentences--following all

of the analyses "in parallel" or following one analysis at a

time (saving information at the choice points)--are both

applicable to this type of model. In particular, one of the

most powerful and efficient parsers for context-free gram-

mars that has yet been discovered, the Earley recognition

algorithm [9, 10], can be adapted with minor modification

to use transition network grammars, and indeed an im-
provement in operating efficiency can accrue from doing so.

The Earley Algorithm, by following all analyses in

parallel in a particularly careful way, obtains a representa-

tion of all the parses of a string with respect to a context-

free grammar in an amount of time which can be bounded

by Kn ~, where n is the length of the string and K is a

constant depending only on the grammar and not on the

input string. Moreover, for certain subclasses of context-

604 Communications of the ACM Volume 13 / Number 10 / October, 1970

free grammars, the time required can be shown to lie

within smaller bounds--n 2 for linear grammars and others,

and n for LR(k) (Knuth [17]) grammars with lookahead

k (and others). Many of these results have been obtained

by other algorithms which capitalize on special features

of different classes of grammars [15, 16, 33], but the Earley

algorithm is the only such algorithm which works for

any given context-free grammar (with no restriction to

special forms, absence of left-recursion, etc.) within the n a

bound, and furthermore, it automatically achieves the

smaller bounds for the special case grammars without

having to be told that the grammar falls within a special

category (i.e. it does not invoke special techniques for

these cases).

We give elsewhere (Woods [32]) a modified version of

the Earley algorithm which can be used to parse sentences

with respect to an (unaugmented) transition network

grammar within the same time bounds, and we show there

that a number of mechanical "optimization" techniques

can be applied to a transition network grammar to reduce

the constant of proportionality in the time bound.

The parsing problem for augmented transition networks

using the Earley algorithm is somewhat more complicated

due to the carrying of information in registers and the

use of explicit structure-building actions. The potential

for transitions which are conditional on the contents of

registers makes it difficult to determine when configura-

tions are "equivalent" and can be merged for further

processing, and the use of registers and explicit structure-

building actions complicates the task of choosing a suitable

representation for the merged configurations. I t is rela-

tively straightforward to extend the Earley algorithm to

overcome these difficulties, but since the n 3 time bound

depends critically on the merging of equivalent configura-

tions and a fixed bound on the amount of time to process

each transition from a (merged) state, it is not clear what

the bounds on the resulting algorithm will be.

I f we distinguish between "flag" registers which can

contain only "flags" chosen from a finite vocabulary and

"content" registers which can hold arbitrary structure,

and if we restrict the conditions and actions on the arcs

so that: (1) the conditions can refer only to flag registers

and symbols in the input string (e.g. for lookahead); (2)

the conditions and actions themselves require a bounded

amount of time; and (3) there is only one content register,

which can be added to at the ends or built upon by means

of the BUILDQ function but which cannot be "looked

into", then we can build a version of the Earley recognition

algorithm which will operate within the general n 3 time

bound (and smaller n 2 or n bounds in special cases). How-

ever, if we relax these conditions appreciably, an increase

in the time bound is inevitable--e.g, a condition or an

action can itself require more than n s steps.

V o l u m e 13 / Number 10 / October, 1970

9.1. THE CASE FOR SERIES PARSING. For many ap-

plications of natural language analysis it is not necessary

(or even desirable) to obtain a representation of all of the

possible parsings of the input sentence. In applications

where natural language is to be used as a medium of com-

munication between a man and a machine, it is more

important to select the "most likely" parsing in a given con-

text and to do this as soon as possible. There will un-

doubtedly be cases where there are several "equally likely"

parsings or where the "most likely" parsing turns out not

to be the "correct" one (i.e. the one intended by the

speaker); hence a nondeterministic algorithm is still re-

quired and a facility for eventually discovering any par.

ticular parsing is necessary. What is not necessary is a

parallel approach which spends time discovering all of the

analyses at once. In such an application a series approach

(with an appropriate mechanism for selecting which

analysis to follow first) has more to offer than a parallel

approach since in most cases it will simply avoid follow-

ing up the other alternatives. An appropriate record can

be kept (if desired) of the analyses of well-formed sub-

strings discovered by previous alternatives (in order to

eliminate repetitive analysis of the same substring), but

the savings in parse time for such an approach does not

always justify the storage required to store all of the
partial substring analyses.

The success of the series approach described above

depends, of course, on the existence of a mechanism for

selection of the semantically "most likely" parsing to be

followed first. The augmented transition network gram-

mar provides several such mechanisms. First, by ordering

the arcs which leave the states of the network, it is pos-

sible to impose a corresponding ordering on the analyses

which result. The grammar designer can thus adjust this

ordering in an at tempt to maximize the "a priori likeli-

hood" (dependent only on the structure of the sentence as

seen by the grammar, but not on other factors) that the

first analysis chosen will be the correct one. Furthermore,

by replicating some arcs with different conditions, it is

possible to make this ordering dependent on particular

features of the sentence being processed--in particular it

can be made dependent on semantic features of the words

involved in the sentence. Two additional features for

selecting "most likely" analyses have been added to the

model in the implemented experimental parsing system--

a special "weight" register which contains an estimate of
the "likelihood" of the current analysis (which can be used

to suspend unlikely looking paths in favor of more likely

ones) and a selective modifier-placement facility which

uses semantic information to determine the "most likely"

governing construction for modifiers in the sentence.

I0. Implementation

An experimental parsing system based on the ideas
presented here has been implemented in BBN LISP

on the SDS 940 time-sharing systems at Harvard Uni-

versity and at Bolt, Beranek & Newman, Inc., and is

C o m m u n i c a t i o n s o f t h e ACM 605

being used for a number of experiments in grammar de-

velopment and parsing strategies for natural language

analysis. The objectives of this implementation have been

the provision of a flexible tool for experimentation and

evolution, and for this reason the system has been con-

structed in a modular fashion which lends itself to evolu-

tion and extension without major changes to the overall

system structure. The system has already undergone

several cycles of evolution with a number of new features

being developed in this way, and more are expected as the

research continues.

The implemented system contains a general facility for

semantic interpretation (described in Woods [30, 31]),

and a major motivation for the implementation is to

explore the interaction between the syntactic and semantic

aspects of the process of sentence "understanding". Special

emphasis has been placed on the use of semantic informa-

tion to guide the parsing, the minimization of the number

of blind-alley analysis paths which need to be followed,

and the ordering of analyses of sentences in terms of some

measure of "likelihood". Experiments to date include a

selective modifier placement facility using semantic in-

formation, several approaches to the problems of con-

junction (including conjoined sentence fragments), and a

facility for lexical and morphological analysis. Several dif-

ferent grammars have been developed and tested on the

system, and a variety of English constructions and parsing

strategies have been and are being explored. A report of

the details of this implementation and of the experiments

which are being performed with it is in preparation.

RECEIVED MAY 1970

REFERENCES

1. BOBI~OW, D. G., AND FRASER, J .B . An augmented state tran-
sition network analysis procedure. Proc. Internat. Joint
Conf. on Artificial Intelligence, Washington, D.C., 1969,
pp. 557-567.

2. BOBROW, D. G., MURPHY, D., ANn TEITELMAN, W. BBN

LISP System. Bolt, Beranek and Newman Inc., Cambridge,
Mass., 1968.

3. BOOK, R., EVEN, S., GREIBACH, S., AND OTT, G. Ambiguity
in graphs and expressions. Mimeo. rep., Aiken Computat.
Lab., Harvard U., Cambridge, Mass., 1969. IEEE Trans
Comp (to appear).

4. CHEATHAM, T. E., AND SATTLEY, K. Syntax-directed com-
piling. Proc. AFIPS 1964 Spring Joint Comput. Conf.,
Vol. 25, Spartan Books, New York, pp. 31-57.

5. CHOMSKY, N. Formal properties of grammars. In Handbook

of Mathematical Psychology, Vol. 2, P~. D. Lace, R. R. Bush,
and E. Galanter (Eds.). Wiley, New York, 1963.

6. - - . A transformational approach to syntax. In The Struc-

ture of Language, J. A. Fodor, and J. J. Katz (Eds.), Pren-
tice-Hall, Englewood Cliffs, N. J., 1964.

7. - - . Aspects of the Theory of Syntaz. MIT Press, Cambridge,
Mass., 1965.

8. CONWAY, M. E. Design of a separable transition-diagram
compiler. Comm. ACM 6, 7 (July 1963), 396--408.

9. EARLEY, J. An efficient context-free parsing algorithm.
Ph.D.th. Dep. Computer Sci., Carnegie-Mellon U.,
Pittsburgh, Pa., 1968.

10. EARLEY, J. An efficient context-free parsing algorithm. Comm.

ACM 13, 2, (Feb. 1970), 94-102.
11. FILLMORE, C.J. The case for case. In Universals in Linguis-

tic Theory, E. Bach, and R. Harms (Eds.), Holt, Rinehart
and Winston, New York, 1968.

12. GINSBURG, S. The Mathematical Theory of Context-Free

Languages. McGraw-Hill, New York, 1966.
13. GREInACn, SHEILA A. A simple proof of the standard-form

theorem for context-free grammars. In Mathematical lin-
guistics and automatic translation, Rep. NSE-18, CompEl.
Lab., Harvard U., Cambridge, Mass., 1967.

14. HERRINGER, J., WEILER, M., AND HURD, E. The immediate
constituent analyzer. In Rep. NSF-17, Aiken Comput.
Lab., Harvard U., Cambridge, Mass., 1966.

15. KASA~I, T. An efficient recognition and syntax-analysis
algorithm for context-free languages. Sci. Rep. AFCRL-
65-558, Air Force Cambridge Res. Lab., Bedford, Mass.,
1965.

16. KASAMI, T. A note on computing time for recognition of
languages generated by linear grammars. Inform. Contr.,
10 (1964), 209-214.

17. KNUTH, D.E. On the translation of languages from left to
right. Inf. Contr. 8 (1965), 607--639.

18. KUNO, S. "A system for transformational analysis. In Rep.
NSF-15, Comput. Lab. Harvard U., Cambridge, Mass,
1965.

19. AND OETTINGER, A.G. Multiple path syntactic analyzer.
In Information Processing 1062, North-Holland Publishing
Co., Amsterdam, 1963.

20. MCCARTHY, J., ET AL. LISP 1.5 programmer's manual. MIT
CompEl. Center, Cambridge, Mass., 1962.

21. McCAWLEY, Z.D. Meaning and the description of languages.
In Kotoba No Ucho, TEC Co. Ltd., Tokyo, 1968.

22. McNAUGHTON, R. F., AND YAMADA, H. Regular expressions
and state graphs for automata. IRE Trans. EC-9 (Mar.
1960), 39--47.

23. MATTHEWS, G. H. Analysis by synthesis of natural lan-
guages. Proc. 1961 Internal. Conf. on Machine Translation

and Applied Language Analysis. Her Majesty's Stationery
Office, London, 1962.

24. MITRE. English preprocessor manual, Rep. SR-132, The
Mitre Corp., Bedford, Mass., 1964.

25. OTT, G., AND FEINSTEIN, N. H. Design of sequential ma-
chines from their regular expressions," J. ACM 8, 4 (Oct.
1961), 585-600.

26. PETRICK, S.R. A recognition procedure for transformational
grammars. Ph.D. th., Dep. Modern Languages, MIT,
Cambridge, Mass., 1965.

27. POSTAL, P. M. Limitations of phrase structure grammars.
In The Structure of Language, J. A. Fodor and J. J. Katz
(Eds.), Prentice-Hall, Englewood Cliffs, N.J., 1964.

28. SCHWARtz, R. M. Steps toward a model of linguistic per-
formance: A preliminary sketch. Mechanical Translation
10 (1967), 39-52.

29. THORNE, J., BRATLEY, P., AND DEWAR, H. The syntactic
analysis of English by machine. In Machine Intelligence 8

D. Michie (Ed.), American Elsevier, New York, 1968.
30. WOODS, W.A. Semantics for a question-answering system.

Ph.D. th., Rep NSF-19, Aiken Comput. Lab., Harvard
U., Cambridge, Mass., 1967.

3 1 . - - . Procedural semantics for a question-answering ma-
chine. Proc. AFIPS 1968 Fall Joint Comput. Conf., Vol.

33, Pt. 1, MDI Publications, Wayne, Pa., pp. 457--471.

32. - - . Augmented transition networks for natural language

analysis. Rep. CS-1, Comput. Lab., Harvard U., Cambridge,
Mass., 1969.

33. YOVNGER, D. H. Context free language processing in time

nL G. E. Res. and Devel. Center, Schenectady, N.Y., 1966.

606 Communications of the ACM Volume 13 / Number 10 / October, 1970

