
Computational Linguistics D.G. BOBROW, Editor 

Transition Network Grammars for 

Natural Language Analysis 

W. A. WOODS 

Harvard University, Cambridge, Massachusetts 

The use of augmented transition network grammars for the 

analysis of natural language sentences is described. Struc- 

ture-building actions associated with the arcs of the gram- 

mar network allow for the reordering, restructuring, and copy- 

ing of constituents necessary to produce deep-structure repre- 

sentations of the type normally obtained from a transforma- 

tional analysis, and conditions on the arcs allow for a powerful 

selectivity which can rule out meaningless analyses and take 

advantage of semantic information to guide the parsing. The 

advantages of this model for natural language analysis are 

discussed in detail and illustrated by examples. An imple- 

mentation of an experimental parsing system for transition 

network grammars is briefly described. 
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1. M o t i v a t i o n  

One of the early models for natural language grammars  

was the finite state transition graph. This model consists of 

a network of nodes and directed arcs connecting them, 

where the nodes correspond to states in a finite state 

machine and the arcs represent transitions from state to 

state. Each arc is labeled with a symbol whose input can 

cause a transition from the state at the tail of the arc to 

the state at its head. This model has the at t ract ive feature 

that  the sequences of words which make up a sentence can 

be read off directly by following the paths through the 

grammar  from the initial state to some final state. Un- 

fortunately, the model is grossly inadequate for the repre- 

sentation of natural  language grammars  due to its failure 

to capture many  of their regularities. A most notable 

inadequacy is the absence of a pushdown mechanism that  

permits one to suspend the processing of a constituent at a 

given level while using the same grammar  to process an 

embedded constituent. 

Suppose, however, that  one added the mechanism of re- 

cursion directly to the transition graph model by  fiat. 

The research reported here was supported in part by NSF grant 
GS -2301. 

Tha t  is, suppose one took a collection of transition graphs 

each with a name, and permit ted as labels on the arcs not 

only terminal symbols but also nonterminal symbols nam- 

ing complex constructions which must be present in order 

for the transition to be followed. The determination of 

whether such a construction was in fact present in a sen- 

tence would be done by a "subroutine call" to another 

transition graph (or the same one). The resulting model of 

grammar,  which we will call a recursive transition network, 

is equivalent in generative power to that  of a context-free 

g rammar  or pushdown store automaton,  but  as we will 

show, allows for greater efficiency of expression, more ef- 

ficient parsing algorithms, and natural  extension by "aug- 

menta t ion"  to more powerful models which allow various 

degrees of context dependence and more flexible structure- 

building during parsing. We argue in fact that  an "aug- 

mented"  recursive transition network is capable of per- 

forming the equivalent of transformational recognition 

(cf. Chomsky [6, 7]) without the necessity of a separate in- 

verse transformational component,  and that  this parsing 

can be done in an amount of t ime which is comparable to 

that  of predictive context-free recognition. 

2. R e c u r s i v e  T r a n s i t i o n  N e t w o r k s  

A recursive transition network is a directed graph with 

labeled states and arcs, a distinguished state called the 

s tar t  state, and a distinguished set of states called final 

states. I t  looks essentially like a nondeterministic finite 

state transition diagram except tha t  the labels on the arcs 

may  be state names as well as terminal symbols. The 

interpretation of an arc with a state Dame as its label is 

tha t  the state at the end of the arc will be saved on a push- 

down store and the control will jump (without advancing 

the input tape) to the state tha t  is the arc label. When a 

final state is encountered, then the pushdown store may  

be "popped"  by  transferring control to the state which is 

named on the top of the stack and removing that  entry 

from the stack. An a t tempt  to pop an empty  stack when 

the last input character has just been processed is the cri- 

terion for acceptance of an input string. The state names 

tha t  can appear  on arcs in this model are essentially the 

names of constructions that  may  be found as "phrases"  of 

the input tape. The effect of a state-labeled arc is that  the 

transition that  it represents may take place if a construc- 

tion of the indicated type is found as a "phrase"  at the 

appropriate  point in the input string. 

Figure 1 gives an example of a recursive transition net- 

work for a small subset of English. I t  accepts such sentences 

as "John washed the car"  and "Did  the red barn collapse?" 

I t  is easy to visualize the range of acceptable sentences 

from inspection of the transition network. To recognize 

the sentence "Did  the red barn collapse?" the network is 

started in state S. The first transition is the aux transition 
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FIG. 1. A sample  t r ans i t i on  ne twork .  S is the s t a r t  s t a te .  

q4, q5, q7 , q s ,  and q~o are the final s t a t e s .  

to state q2 permitted by the auxilliary "did".  From state 

q2 we see that  we can get to state q3 if the next " thing" in 

the input string is an NP. To ascertain if this is the case, 

we call the state NP. From state N P  we can follow the arc 

labeled det to state q6 because of the determiner " the" .  

From here, the adjective "red"  causes a loop which re- 

turns to state qG, and the subsequent noun "barn"  causes 

a transition to state q7 • Since state q7 is a final state, it is 

possible to "pop up"  from the N P  computation and con- 

tinue the computation of the top level S beginning in state 

q8 which is at the end of the NP  arc. From q3 the verb 

"collapse" permits a transition to the state q4 , and since 

this state is final and "collapse" is the last word in the 

string, the string is accepted as a sentence. 

In the above example, there is only one accepting path 

through the network--i .e,  the sentence is unambiguous 

with respect to the grammar. I t  is an inherent feature of 

natural language, however, that  except for contrived sub- 

sets of the language there will be ambiguous sentences 

which have several distinct analysis paths through the 

transition network. The transition network model there- 

fore is fundamentally a nondeterministic mechanism, and 

any parsing algorithm for transition network grammars 

must be capable of following any and all analysis paths for 

any given sentence. 

The fact that  the recursive transition network is equiva- 

lent to a pushdown store automaton is not difficult to es- 

tablish. Every  recursive transition network is essentially a 

pushdown store automaton whose stack vocabulary is a 

subset of its state set. The converse fact that  every push- 

down store automaton has an equivalent transition net 

could be established directly, but  can be more simply 

established by noting that  every pushdown store auto- 

maton has an equivalent context-free grammar which has 

an equivalent recursive transition net. 

3. Augmented Transition Networks 

I t  is well known (cf. Chomsky [6]) tha t  the strict context- 

free grammar model is not an adequate mechanism for 

characterizing the subtleties of natural languages. Many  of 

the conditions which must be satisfied by well-formed 

English sentences require some degree of agreement be- 

tween different parts of the sentence which may or may not 

be adjacent (indeed which may be separated by a the- 

oretically unbounded number of intervening words). 

Context-sensitive grammars could take care of the weak 

generation of many of these constructions, but  only at the 

cost of losing the linguistic significance of the "phrase 

s t ructure"  assigned by the grammar (cf. Postal [27]). More- 

over, the unaided context-free grammar model is unable to 

show the systematic relationship that  exists between a 

declarative sentence and its corresponding question form, 

between an active sentence and its passive, etc. Chomsky's 

theory of transformational grammar [7], with its distinc- 

tion between the surface structure of a sentence and its 

deep structure, answers these objections but  falls victim 

to inadequacies of its own (cf. Schwarcz [28] or McCawley 

[21]). In this section we describe a model of grammar based 

on the notion of a recursive transition network which is 

capable of performing the equivalent of transformational 

recognition without the need for a separate transforma- 

tional component and which meets some of the objections 

that  have been raised against the traditional model of 

transformational grammar. 

The basic recursive transition network model as we have 

described it is weakly equivalent to the context-free gram- 

mar model and differs in strong equivalence only in its 

ability to characterize unbounded branching, as in struc- 

tures of the form: 

S 

S and S and .,, and S 

The major features which a transformational grammar adds 

to those of the context-free grammar are the abilities to 

move fragments of the sentence structure around (so that  

their positions in the deep structure are different from 

those in the surface structure), to copy and delete frag- 

ments of sentence structure, and to make its actions on 

constituents generally dependent on the contexts in which 

those constituents occur. We can add equivalent facilities 

to the transition network model by adding to each arc of 

the transition network an arbitrary condition which must 

be satisfied in order for the arc to be followed, and a set of 

structure building actions to be executed if the arc is fol- 

lowed. We call this version of the model an augmented 
transition network. 
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The augmented transition network builds up a partial 

structural description of the sentence as it proceeds from 

state to state through the network. The pieces of this par- 

tial description are held in registers which can contain any 

rooted tree or list of rooted trees and which are auto- 

matically pushed down when a recursive application of the 

transition network is called for and restored when the 

lower level (reeursive) computation is completed. The 

structure-building actions on the arcs specify changes in 

the contents of these registers in terms of their previous 

contents, the contents of other registers, the current input 

symbol, and/or  the result of lower level computations. In 

addition to holding pieces of substructure tha t  will even- 

tually be incorporated into a larger structure, the registers 

may also be used to hold flags or other indicators to be 

interrogated by conditions on the arcs. 

Each final state of the augmented network has associ- 

ated with it one or more conditions which must be satis- 

fied in order for that  state to cause a "pop".  l=aired with 

each of these conditions is a function which computes the 

value to be returned by the computation. A distinguished 

r eg i s t e r , . ,  (which usually contains the current input word 

when a word is being scanned) is set to the result of the 

lower level computation when the network returns to an 

are which has called for a reeursive computation. Thus the 

register • in every case contains a representation of the 

" thing" (word or phrase) which caused a transition, 

3.1. REPRESENTATION OF AUGMENTED NETWORKS. To 

make the discussion of augmented transition networks 

more concrete, we give in Figure 2 a specification of a 

language in which an augmented transition network can 

be represented. The specification is given in the form of an 

extended context-free grammar in which a vertical bar 

separates alternative ways of forming a construction and 

the Kleene star operator (*) is used as a superscript to 

indicate arbitrarily repeatable constituents. The non- 

terminal symbols of the grammar consist of English 

(transition network) ~ ((arc set)(arc set)*) 
(arc set) -~ ((state)(arc)*) 
(arc) --~ (CAT (category name)(test)(action)* (term act))[ 

(PUSH (state)(test)(action)* (term act))l 
(TST (arbitrary label)(test)(action)* (term act))[ 
(POP (form)(test)) 

(action) --~ (SETR (register)(form))[ 
(SENDR (register)(form)) [ 
(LIFTR (register)(form)) 

(term act) --~ (TO (state))[ 
(JUMP (state)) 

(form) ~ (GETR (register))l 
*l 
(GETF (feature))l 
(BUILDQ (fragment) (register)*) I 
(LIST (form)*)] 
(APPEND (form)(form))l 
(QUOTE (arbitrary structure)) 

FiG. 2. Specification of a language for representing augmented 
transition networks 

descriptions enclosed in angle brackets, and all other 

symbols except the vertical bar and the superscript * are 

terminal symbols (including the parentheses, which indi- 

cate list structure). The • which occurs as an alternative 

right-hand side for the rule for the construction (form), 

however, is a terminal symbol and is not to be confused 

with the superscript *'s which indicate repeatable con- 

stituents. The first line of the figure says that  a transition 

network is represented by  a left parenthesis, followed by 

an arc set, followed by  any number of arc sets (zero or 

more), followed by  a right parenthesis. An arc set, in 

turn, consists of a left parenthesis, followed by  a state 

name, followed by  any number of arcs, followed by  a right 

parenthesis, and an arc can be any one of the four forms 

indicated in the third rule of the grammar. The remaining 

rules are interpreted in a similar fashion. Nonterminals 

whose expansions are not given in Figure 2 have names 

which should be self-explanatory. 

The expressions generated as transition networks by the 

grammar of Figure 2 are in the form of parenthesized list 

structures, where a list of the elements A, B, C, and D is 

represented by the expression (A B C D). The transition 

network is represented as a list of arc sets, each of which is 

itself a list whose first element is a state name and whose 

remaining elements are arcs leaving that  state. The arcs 

also are represented as lists, possible forms of which are 

indicated in the figure. (The conditions and functions as- 

sociated with final states are represented as (pseudo) 

"arcs"  with no actions and no destination.) The first ele- 

ment of each arc is a word which names the type of the arc, 

and the third element is an arbitrary test which must be 

satisfied in order for the arc to be followed. The CAT arc 

is an arc which can be followed if the current input symbol 

is a member of the lexical category named on the arc (and 

if the test is satisfied), while the PUSH arc is an arc which 

causes a pushdown to the state indicated. The TST arc is 

an arc which permits an arbitrary test to determine whether 

an arc is to be followed. In all three of these arcs, the ac- 

tions on the arc are the structure-building actions, and the 

terminal action specifies the state to which control is 

passed as a result of the transition. The two possible ter- 

minal actions, TO and JUMP,  indicate whether the input 

pointer is to be advanced or not advanced, respectively--  

that  is, whether the next state is to scan the next input 

word or whether it is to continue to scan the same word. 

The POP arc is a dummy arc which indicates under 

what conditions the state is to be considered a final state, 

and the form to be returned as the value of the computa- 

tion if the POP alternative is chosen. (One advantage of 

representing this information as a dummy arc is the ability 

to order the choice of popping with respect to the other 

arcs which leave the state.) 

The actions and the forms which occur in the network 

are represented in "Cambridge Polish" notation, a nota- 

tion in which a function call is represented as a parenthe- 

sized list whose first element is the name of the function 

and whose remaining elements are its arguments. The three 
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actions indicated in Figure 2 cause the contents of the in- 

dicated register to be set equal to the value of the indicated 

form. S E T R  causes this to be done at  the current level of 

computat ion in the network, while S E N D R  causes it to be 

done at  the next lower level of embedding (used to send 

information down to a lower level computation) and 

L I F T R  causes it to be done a t  the next higher level com- 

putat ion (used to return additional information to higher 

level computations).  

The forms as well  as the conditions (tests) of the transi- 

tion network may  be arbi t rary  functions of the register 

contents, represented in some functional specification 

language such as LISP  (McCar thy  et al. [20]), a list pro- 

cessing programming language based on Church 's  lambda 

cMculus and wri t ten in Cambridge Polish notation. The  

seven types of forms listed in Figure 2 are a basic set which 

is sufficient to illustrate the major  features of the aug- 

mented transition network model. G E T R  is a function 

whose value is the contents of the indicated register, 

• is a form whose value is usually the current input word, 

and G E T F  is a function which determines the value of a 

specified feature for the current input word. ( In  the actions 

which occur on a PUSH arc, • has the value of the lower 

level computat ion which permit ted the PUSH transition.) 

B U I L D Q  is a useful structure-building form which takes 

a list structure representing a fragment  of a parse tree with 

specially marked nodes and returns as its value the result 

of replacing those specially marked nodes with the contents 

of indicated registers. 1 Specifically, for each occurrence of 

the symbol + in the list structure given as its first argu- 

ment,  B U I L D Q  substitutes the contents of one of the listed 

registers ( the first register replacing the first + sign, the 

second register the second -{-, etc.). In  addition, B U I L D Q  

replaces occurrences of the symbol • in the fragment  with 

the w l u e  of the form . .  

The remaining three forms are basic structure-building 

forms (out of which any B U I L D Q  can be duplicated) 

which respectively make a list of the values of the listed 

arguments,  append two lists together to make a single list, 

and produce as value the (unevaluated) argument  form. 

An illustrative fragment  of an augmented transition net- 

work is given in Figure 3. In  Section 3.2 the operation of 

1The BUILDQ function which is implemented in the experi- 
mental parsing system (See Section 10) is considerably more ver- 
satile than the version described here. Likewise, the implemented 
parser contains additional formats for arcs as well as other ex- 
tensions to the language specified here. There has been no at- 
tempt to define a basic irredundant set of primitive conditions, 
actions, and forms, but rather an effort has been made to allow 
flexibility for adding "natural" primitives which facilitate the 
writing of compact grammars. For this reason, the set of possible 
conditions, actions, and forms has been left open-ended to allow 
for experimental determination of useful primitives. However, 
the arc formats and actions described here, together with ar- 
bitrary LISP expressions for conditions and forms, provides a 
model which is equivalent in power to a Turing machine and 
therefore complete in a theoretical sense. 

this network is described and some of the features of the 

augmented transition network model are discussed. 

3.2. AN ILLUSTRATIVE EXAMPLE. Figure 3 gives a 

f ragment  of an augmented transition network represented 

in the language of Figure 2. This f ragment  is an augmenta-  

tion of the portion of the transition network of Figure 1 

which consists of the states S/,  Q1, Q2, Q3, Q4, and Q5. 

The augmented network builds a structural  representation 

in which the first constituent of a sentence is a type (either 

D C L  or Q) which indicates whether the sentence is de- 

(S/ (PUSH N P / T  
(SETR SUBJ *) 
(SETR TYPE (QUOTE DCL)) 
(TO Q1)) 

(CAT AUX T 
(SETR AUX *) 
(SETR TYPE (QUOTE Q)) 
(TO Q2))) 

(QI (CAT V T 
(SETR AUX NIL) 
(SETR V .) 
(TO Q4)) 

(CAT AUX T 
(SETR AUX .) 
(TO Q3))) 

(Q2 (PUSH N P / T  
(SETI:t SUBJ .) 
(TO Q3))) 

(Q3 (CAT V W 
(SETR V .) 
(TO Q4))) 

(Q4 (POP (BUILDQ (SW+-t-(VP-{-)) TYPE SUBJ AUX V) T) 
(PUSH N P / T  

(SETR VP (BUILDQ (VP (V+) .) V)) 
(TO Qs))) 

(Q5 (POP (BUILDQ (S++-{--{-) TYPE SUBJ AUX VP) T) 
(PUSH P P / T  

(SETR VP (APPEND (GETR VP) (LIST .))) 
(TO Qs))) 

FIo. 3. An illustrative fragment of an augmented transition 
network 

clarative or interrogative, the second consti tuent is the 

subject noun phrase, the third is an auxilliary (or N I L  if 

there is no auxilliary), and the fourth is the verb phrase 

constituent. This representation is produced regardless of 

the order in which the subject noun phrase and the auxil- 

liary occur in the sentence. The network also produces a 

representation of a verb phrase consti tuent even though 

there is no pushdown in the network corresponding to a 

verb phrase. I t  will be helpful, both for the understanding 

of the notation and for the understanding of the operation 

of the augmented network, to follow through an example at  

this point using the network fragment  of Figure 3. 

Before proceeding to work an example, however, it is 

necessary to explain the representation of the parse trees 

which is used by  the network fragment.  The  parse trees 
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are represented in a parenthesized notation in which the 

representation of a node consists of a list whose first ele- 

ment is the name of the node and whose remaining ele- 

ments are the representations of the constituents of that 
node. 

For example, the parse tree 

NP NP 
I 

John V NP 
I I 

likes Mary 

would be represented in this notation by the expression: 

(S (NP John) (VP (V likes) (NP Mary)) 

This representation can also be viewed as a labeled bracket- 

ing of the sentence in which a left bracket for a phrase of 

type X is represented by a left parenthesis followed by an 

X, and the matching right bracket is simply a right paren- 

thesis. 

Let us now consider the operation of the augmented net- 

work fragment of Figure 3 for the input sentence "Does 

John like Mary?" 

1. We begin the process in state S/scanning the first 

word of the sentence, "does". Since this word is an anxil- 

liary, its dictionary entry would mark it as a member of 

the category AUX and therefore (since its arbitrary condi- 

tion T is the universally true condition) the arc (CAT 

AUX T • • .) can be followed. (The other arc which pushes 

down to look for a noun phrase will not be successful.) In 

following this arc, we execute the actions: (SETR AUX ,), 

which puts the current word "does" into a register named 

AUX, (SETR TYPE (QUOTE Q)), which puts the symbol 

"Q" into a register named TYPE, and (TO Q2), which 

causes the network to enter state Q2 scanning the next 

word of the sentence "John". 

2. State Q2 has only one arc leaving it, which is a push 

to state NP/.  The push will be successful and will return a 

representation of the structure of the noun phrase which 

will then become the value of the special register .. We will 

assume that the representation returned is the expression 

"(N'P John)". ~ow, having recognized a construction of 

type NP, we proceed to perform the actions on the arc. 

The action (SETR SUBJ *) causes the value "(~'P John)" 

to be placed in the register SUB J, and the action (TO Q3) 

causes us to enter the state Q3 scanning the next word 

"like". The register contents at this point are: 

TYPE: Q 
AUX: does 
SUBJ: (NP John) 

3. From state Q3, the verb "like" allows a transition 

to state Qd, setting the contents of a register V to the value 

"like" in the process, and the input pointer is advanced to 
scan the word "Mary". 

4. Qd, being a final state could choose to "POP", indi- 

cating that the string that has been processed so far is a 
complete sentence (according to the grammar of Figure 1) ; 

however, since this is not the end of the sentence, this 

alternative is not successful. However, the state also has 

an arc which pushes down to state NP/,  and this alterna- 
tive will succeed, returning the value "(N'P Mary)". T h e  

action (SETR VP (BUILDQ (VP (V 4-) *) V)) will now 

take the structure fragment "(VP (V ~ )  . ) "  and substitute 

the current value of • for the occurrence of • in the frag- 

ment and replace the occurrence of W with the contents 

of the indicated register V. The resulting structure, 

"(VP (V like) (NP Mary))" will be placed in the register 

VP, and the action (TO Q5) causes a transition to state 

Q5 scanning beyond the end of the input string. The regis- 
ter contents at this point are: 

TYPE: Q 
AUX: does 
SUB J: (NP John) 
V: like 
VP: (VP (V like) (NP Mary)). 

5. We are now scanning the end of the sentence, and 

since Q5 is a final state (i.e. it has a "POP" arc) and the 

condition T is satisfied, the sentence is accepted. The form 

"(BUILDQ (S --F + + + )  TYPE SUBJ AUX VP)" 

specifies the value to be returned as the analysis of the 

sentence. The value is obtained by substituting the con- 

tents of the registers TYPE, SUB J, AUX, and VP for 

the successive instances of the symbol "-t-" in the frag- 

ment "(S -Jr ~ "-~ ~)"  to give the final sentence analysis 

(S Q (NP John) does (VP (V like) (NP Mary))), 

which represents the parse tree: 

S 

John V NP 
I I 

like Mory 

In ordinary context-free recognition, the structural 

descriptions of sentences are more or less direct representa- 

tions of the flow of control of the parser as it analyzes the 

sentence. The structural descriptions assigned by the struc- 

ture building rules of an augmented transition network, as 

we can see from the example, are comparatively inde- 

pendent of the flow of control of the algorithm. This is not 

to say that they are not determined by the flow of control 
of the parser, for this they surely are; rather we mean to 

point out that they are not isomorphic to the flow of con- 

trol as in the usual context-free recognition algorithms. It  
is possible for a constituent that is found in the course of 
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analysis to appear in the final structural description several 

times or not at all, and its location may be entirely different 

from that in which it was found in the surface structure. 

In addition, the structural description assigned to a con- 

stituent at one point during the analysis may be changed 

or transformed before that structure is incorporated into 

the final structural description of the sentence as a whole. 

These facilities, plus the ability to test arbitrary condi- 

tions, allow the equivalent of a transformational deep 

structure to be constructed while the parser is performing 

transitions that are isomorphic to the surface structure of a 

sentence. 

4. T r a n s f o r m a t i o n a l  R e c o g n i t i o n  

The usual model of transformational grammar is a gen- 

erative model consisting of a context-free (base) grammar 

and a set of transformational rules which map syntax trees 

into new (derived) syntax trees. The generation of a 

sentence with such a grammar consists of first constructing 

a deep structure using the base component grammar and 

then transforming this deep structure into a surface struc- 

ture by successive applications of transformations. The 

terminal nodes (or leaves) of the surface structure tree give 

the final form of the sentence. This model of transforma- 

tional grammar is totally oriented toward the generation 

of sentences rather than their analysis, and although there 

is clearly an algorithm for the use of such a grammar to 

analyze a sentence--namely the procedure of "analysis by 

synthesis" (Matthews [23])--this algorithm is so inefficient 

as to be out of the question for any practical application. 

(The analysis by synthesis method consists of applying the 

rules in the "forward" (generative) direction in all possible 

ways to generate all of the possible sentences of the lan- 

gnage while looking to see if the sentence which you are 

trying to analyze turns up in the list.) 

Two attempts to formulate more practical algorithms 

for transformational recognition (Petriek [26] and Mitre 

[24]) resulted in algorithms which were either too time con- 

suming for the analysis of large numbers of sentences or 

else lacking in formal completeness. Both of these algo- 

rithms attempt to analyze sentences by applying the 

transformations in reverse, a procedure which is far less 

straightforward than it sounds. The difficulty with simply 

performing the transformations in reverse is twofold. 

First, the transformations operate on tree structures and 

produce tree structures as their values. In the forward 

direction, they begin with the deep structure tree and end 

with the surface structure tree. To reverse this process, it 

is first necessary to obtain a surface structure tree for the 

input sentence. However, there is no component in the 

transformational model which characterizes the possible 

surface structures (their only characterization is implicit in 

the changes which can be made in the deep structures by 

means of the transformations). Both the Mitre and the 

Petrick analysis procedures solve this problem by con- 

596 Communications of the ACM 

structing an "augmented grammar" which consists of the 

rules of the original base component grammar plus addi- 

tional rules which characterize the structures that can be 

added by transformations. In the Mitre procedure, this 

"surface grammar" is constructed by hand and no formal 

procedure is available for constructing it from the original 

transformational grammar. In the Petriek procedure, there 

is a formal procedure for obtaining an augmented grammar 

but it will not necessarily terminate unless the length of 

the possible input sentences is first circumscribed. When 

sentences longer than the chosen length are encountered, 

more augmented grammar rules must be generated. 

In the Mitre procedure, the augmented grammar is 

used to assign a complete "tentative" surface structure 

which is then subjected to inverse transformations. In the 

Petrick procedure, inverse transformations are applied to 

partially built up surface structures and the processes of 

applying transformations and building structure are inter- 

woven. In both systems, the inverse transformations may 

or may not produce a legitimate deep structure. If they do, 

the sentence is accepted, but if they do not, the tentative 

surface structure was spurious and is rejected. There is no 

way to construct a context-free surface grammar which will 

assign all and only legitimate surface structures. One must 

settle for one which will assign all legitimate surface struc- 

tures plus additional spurious ones. Moreover, the only 

way to tell the two apart is to perform the inverse trans- 

formations and check the resulting "tentative" deep struc- 

tures. 

A second difficulty with the Petriek algorithm is the 

combinatorial explosion of the number of possible inverse 

transformation sequences that can be applied to a given 

surface structure tree. Although many of the transforma- 

tions when applied in the forward direction are obligatory 

so that only one possible action can be taken, almost all of 

the inverse transformations are optional. The reason for 

this is that even though a given structure looks like it 

could have been produced by a given forward transforma- 

tion so that the inverse transformation can be performed, 

there is no guarantee that the same structure could not 

have arisen in a transformational derivation in some other 

way. Therefore both the alternative of applying the in- 

verse transformation and that of not applying it must be 

tried whenever an inverse transformation can apply. The 

number of active paths can grow exponentially with the 

number of transformations applied. Moreover, the forward 

transformations usually do not specify much information 

about the structure which results from applying the trans- 

formation (even though the linguist may know a good deal 

about what the resulting structure must be like). For this 

reason, the inverse transformations are not as selective 

as their forward counterparts and many more spurious 

applications of transformations are allowed. That is, 

whereas most forward sequences of transformations will 

lead to successful surface structures, most inverse sequences 

will not lead to legitimate deep structures, and a large 
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amount of wasted effort is therefore expended on dead-end 

paths. The Mitre parser avoids the nondeterminism of the 

inverse transformational process by constructing a de- 

terministic set of inverse transformational rules ad hoc to 

a particular grammar. This method, however, is not 

guaranteed to produce all legitimate deep structures of a 

sentence, and there is no formal procedure for constructing 

the necessary set of inverse transformations. 

5. A u g m e n t e d  Transit ion Networks for 

Transformational  Recognit ion 

In 1965 Kuno [18] suggested that it should be possible 

to augment the surface structure grammar of a trans- 

formational grammar in such a way that it "remembered" 

the equivalent deep structure constructions and could 

build the deep structure of the sentence while doing the 

surface structure parsing--without the necessity of a 

separate inverse transformational component. The model 

which he proposed at that time, however, was not ade- 

quate to deal with some of the more powerful transfor- 

mational mechanisms such as the extraposition of a con- 

stituent from an arbitrarily deep embedding. The aug- 

mented transition network, on the other hand, provides a 

model which is capable of doing everything that a trans- 

formational grammar can do and is therefore a realization 

of part of the Kuno prediction. I t  remains to be seen 

whether a completely mechanical procedure can be devel- 

oped to take a transformational grammar in the usual 

formalism and translate it into an equivalent augmented 

transition network. I conjecture, however, that such is the 

case. 

Even if such a mechanical procedure is available, it may 

still be more appropriate to use the transition network 

model directly for the original linguistic research and 

grammar development. The reasons for this are several. 

First, the transition network that could be developed by a 

mechanical procedure from a traditional transformational 

grammar could not be expected to be as efficient as that 

which could be designed by hand. Moreover, the transition 

network model provides a mechanism which satisfies some 

of the objections which have been raised by linguists 

against the transformational grammar as a linguistic 

model (such as its incompatibility with many psycho- 

linguistic facts which we know to characterize human 

language performance). 
A third reason for preferring the transition network 

model to the usual formulation of transformational gram- 

mar is the power which it contains in its arbitrary condi- 

tions and its structure building actions. The model is 

equivalent to a Turing machine in power, and yet the ac- 

tions which it performs are "natural" ones for the analysis 
of language. Most linguistic research in the structure of 

language and mechanisms of grammar has attempted 

deliberately to build models which do not have the power of 

a Turing machine but which make the strongest possible 
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hypotheses about language mechanisms by proposing the 

least powerful mechanism that can do the job. As a result 

of this approach, many variations of the transformational 

grammar model have been proposed with different basic 

repertories of transformational mechanisms. Some have 

cyclic transformation rules, others do not; some have a 

distinct "post cycle" that operates after all of the cyclic 

rules have been applied. There are various types of condi- 

tions that may be asked: some models have double struc- 

tural descriptions, some have ordered rules, some have 

obligatory rules, some have blocking rules, etc. In short, 

there is not a single transformational grammar model, 

there are many models which are more or less incom- 

parable. If one such model can handle some features of 

language and another can handle different features, there is 

no systematic procedure for incorporating them both into 

a single model. In the augmented transition network 

model, the possibility exists of adding to the model what- 

ever facility is needed and seems natural to do the job. One 

can add a new mechanism by simply inventing a new basic 

predicate to use in conditions or a new function to use in 

the structure-building rules. I t  is still possible to make 

strong hypotheses about the types of conditions and ac- 

tions that are required, but when one finds that he needs 

to accomplish a given task for which his basic model has 

no "natural" mechanism, there is no problem extending 

the augmented transition network model to include it. 

This requires only the relaxation of the restrictions on the 

types of conditions and actions, and no reformulation of 

the basic model. 

6. Previous Transit ion Network Models 

The basic idea of the recursive transition network-- 

that of merging the right-hand sides of context-free gram- 

mar rules which have the same left-hand side into a single 

transition diagram that merges the common parts of the 

different rules--has been known to the designers of syntax- 

directed compilers and artificial programming languages at 

least since 1963 when it was described in a paper by Melvin 

Conway [8]. The concern of that time, however, was not 

with the full generality of the nondeterministic mechanism, 

but rather with a set of sufficient conditions that would 

guarantee the diagram to be deterministic. Conway de- 

scribes a rudimentary form of action associated with the 

arcs of his transition diagram, but these actions are limited 

to output commands which write information into a sepa- 

rate output stream that serves as input to the code-genera- 

tion component. (The model is very close to the usual model 

of a finite state transducer with the exception of the addi- 

tional recursion capability.) There is no analog to the hold- 

ing of temporary pieces of information in registers, or the 

subsequent use of such information in conditions on the 

arcs. 

More recently, two natural language parsing systems 
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based on a form of recursive transition network have been 

described in the literature. Thorne, Bratley, and Dewar 

[29] describe a procedure for natural language analysis 

based on a "finite state transition network" (which is ap- 

plied recursively), and Bobrow and Fraser [1] describe a 

system which is "an elaboration of the procedure described 

by Thorne, Bratley, and Dewar." Although these systems 

bear considerable similarity to the one we have described, 

they differ from it in a number of important respects which 

we will describe shortly. Let us first, however, briefly 

describe the two systems. 

6.1. THE THORNE SYSTEM. The Thorne system [29] 

assigns a representation of syntactic structure which at- 

tempts to represent simultaneously the deep structure and 

the surface structure of a sentence. Constructions are listed 

in the order in which they are found in the surface struc- 

ture, with their deep structure functions indicated by label- 

ing. Inversions in word order are indicated by marking the 

structures which are found "out of place" (i.e. in positions 

other than their deep structure positions) without moving 

them from their surface structure positions, and later in the 

string the position where they would have occurred in the 

deep structure is indicated by the appropriate deep struc- 

ture function label followed by an asterisk. (They do not 

describe a procedure for constituents which are found in the 

surface structure to the right of their deep structure posi- 

tions. Apparently their grammar does not deal with such 

constructions.) 

Thorne views his grammar as a form of transformational 

grammar whose base component is a finite state grammar 

and permits recursion to take place only via transforma- 

tions. According to Thorne, the majority of transforma- 

tion rules can be viewed as "meta rules" in the sense that 

"they operate on other rules to produce derived rules rather 

than operating on structural descriptions to produce new 

structural descriptions." He uses an augmented transition 

network containing both the original deep structure rules 

plus these derived rules as the grammar table to drive his 

parsing algorithm, but is not able to handle the word order 

inversion transformations and the conjunction transforma- 

tions in this way. Instead, he implements these features as 

exceptions embedded in his parsing program. 

6.2. THE SYSTEM OF BOBROW AND FRASER. Bobrow 

and Fraser [1] describe a parsing system which is an elabo- 

ration of the Thorne parser. Like the Thorne parsings, the 

general form of their analysis "resembles the surface struc- 

ture analysis of the sentence, with added indications of 

moved constituents and where they are located in deep 

structure." This grammar model is also a form of aug- 

mented transition network, whose actions include setting 

flags and function labels and whose conditions include 

testing previously set flags. Unlike the Thorne system, 

however, Bobrow's system provides a facility for transfer- 

ring information back to some previously analyzed con- 

stituent. In general, the conditions on an arc can be ar- 
bitrary LISP functions (the system is programmed in 

LISP), and the actions for transferring information can be 

arbitrary LISP functions. The conditions and actions ac- 

tually implemented in the system, however, are limited to 

flag testing and to transferring new deep structure function 

labels back into previously recognized structures. 

According to Bobrow 2 the major differences between his 

system and that of Thorne are the use of symbolic flag 

names (instead of bit positions), a facility for mnemonic 

state names, the ability to transfer information back to 

previously analyzed constituents, and a facility for active 

feature values in the dictionary (these are actually routines 

which are stored in the dictionary entry for the word 

rather than merely activated by features stored in the dic- 
tionary). 

6.3. COMPARISON WITH THE PRESENT MODEL. In 

comparing the augmented transition network model de- 

scribed in this paper with the systems of Bobrow and 

Fraser [1] and of Thorne et al. [29], there are two domains 

of comparison which must be distinguished: the formal 

description of the model and the implementation of the 

parsing system. One of the major differences between this 

parsing system and those of Bobrow and Thorne is the de- 

gree to which such a distinction is made. In [29] Thorne 

does not describe the augmented transition network model 

which is used except to point out that the grammar table 

used by the parsing program "has the form of a finite state 

network or directed graph--a form appropriate for the 

representation of a regular grammar." The transition net- 

work model is apparently formalized only in the form in 

which it actually occurs in the parsing program (which is 

not described). The conditions on the arcs seem to be lim- 
ited to tests of agreement of features associated with lexical 

items and constituents, and the actions are limited to re- 

cording the current constituent in the output representa- 

tion, labeling constituents, or inserting dummy nodes and 

markers. The mechanisms for word order inversion and 

conjunction are not represented in the network but are 

"incorporated into the program." 

The Bobrow and Fraser paper [1] improves considerably 

on the power of the basic transition network model used 

by Thorne et al. I t  adds the facility for arbitrary conditions 

and actions on the arcs, thus increasing the power of the 

model to that of a Turing machine. In this system as in 

Thorne's, however, there is no distinction between the 

model and the implementation. Although the conditions 

and actions are arbitrary as far as the implementation is 

concerned, there is no separate formal model which charac- 

terizes the data structures on which they operate. That is, 

in order to add such an arbitrary condition, one would have 

to know how the LISP implementation of the parsing 

algorithm works and where and how its intermediate re- 

sults are stored. The range of conditions and actions avail- 

able without such information--i.e, the condition and ac- 

tion subroutines actually provided in the implementation-- 

consists of setting and testing flags and transmitting func- 

2 Personal communication. 
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tion labels back into previously analyzed constituents. In  

both Bobrow's and Thorne's systems the actual representa- 

tion of constituent structure is isomorphic to the recursive 

structure of the analysis as determined by the history of 

recursive applications of the transition network, and it is 

produced automatically by the parsing algorithm. 

The augmented transition network, as we have defined 

it, provides a formalized transition network model with the 

power of a Turing machine independent of the implementa- 

tion. The model explicitly provides for the isolation of 

various partial results in named registers and allows arbi- 

t ra ry  conditions and actions which apply to the contents of 

these registers. Thus it is not necessary for a grammar 

writer to know details of the actual implementation of the 

parsing algorithm in order to take advantage of the facility 

for arbitrary conditions and actions. 3 The building of the 

constituent structure is not performed automatically by 

the parsing algorithm in this model, but  must instead be 

specified by explicit structure-building rules. The result of 

this feature is that  the structures assigned to the sentence 

no longer need to be isomorphic to the recursion history of 

the analysis, but  are free to move constituents around in 

the representation. Thus the representation produced by 

the parser may be a true deep structure representation of 

the type assigned by  the more customary transformational 

grammar models (or it could also be a surface structure 

representation, a dual-purpose representation as in the 

Thorne and Bobrow systems, or any of a number of other 

representations such as dependency representations). The 

explicit structure-building actions on the arcs together 

with the use of registers to hold pieces of sentence structure 

(whose function and location may not yet  have been de- 

termined) provides an extremely flexible and efficient 

facility for moving constituents around in their deep struc- 

ture representations and changing the interpretation of 

constituents as the course of an analysis proceeds. I t  is even 

possible to build structures with several levels of nesting 

while remaining at a single level of the transition network, 

and conversely to go through several levels of recursion of 

the network while building a structure which has only one 

level. No facility like this is present in either the Thorne 

or the Bobrow systems. 

Another feature of the augmented transition network 

model presented here which distinguishes it from the 

Thorne and Bobrow systems is the language for the speci- 

fication of the transition network grammar. This language 

is designed to be convenient and natural for the grammar 

designer rather than for the machine or for a computer 

programmer. I t  is possible in a few pages to completely 

specify the possible syntactic forms for the representation 

3 In the experimental parsing system which has been imple- 
mented, there is sometimes an advantage to using conditions or 
actions which apply to features of the implementation that are 
not in the formal model. Actions of this sort are considered to be 
extensions to the basic model, and the features of the implementa- 
tion which allow them to be added easily are largely features of 
the BBN LISP system [2] in which the system is written. 

of an augmented transition network. Each arc is repre- 

sented by a mnemonic name of the type of arc, the are 

label, an arbitrary condition, and a list of actions to be 

executed if the arc is followed. The condition and actions 

are represented as expressions in Cambridge Polish nota- 

tion with mnemonic function names, and care has been 

exercised to provide a basic repertoire of such functions 

which is "natura l"  to the task of natural language analysis. 

One of the goals of the experimental transition network 

parsing system which I have implemented is to evolve such 

a set of natural operations through experience writing 

grammars for it, and many of the basic operations de- 

scribed in this paper are the result of such evolution. One 

of the unique characteristics of the augmented transition 

network model is the facility to allow for evolution of this 

type. 

7. A d v a n t a g e s  o f  t h e  A u g m e n t e d  T r a n s i t i o n  

N e t w o r k  M o d e l  

The augmented transition network model of grammar 

has many advantages as a model for natural language, 

some of which carry over to models of programming 

languages as well. In  this section we review and summarize 

some of the major features of the transition network model 

which make it an attractive model for natural language. 

7.1. PERSPICUITY. Context-free grammars have been 

immensely successful (or at least popular) as models for 

natural language in spite of formal inadequacies of the 

model for handling some of the features that  occur in exist- 

ing natural languages. They  maintain a degree of "per- 

spicuousness" since the constituents which make up a con- 

struction of a given type can be read off directly from the 

context-free rule. Tha t  is, by looking at a rule of a context- 

free grammar, the consequences of that  rule for the types 

of constructions that  are permitted are immediately ap- 

parent. The pushdown store automaton, on t~he other hand, 

although equivalent to the context-free grammar in gen- 

erative power does not maintain this perspicuousness. I t  is 

not surprising, therefore, tha t  linguists in the process of 

constructing grammars for natural language have worked 

with the context-free grammar formalism and not directly 

with pushdown store automata even though the pushdown 

store automaton, through its finite state control mechanism, 

allows for some economies of representation and for 

greater efficiency in resulting parsing algorithms. 

The theory of transformational grammar proposed by 

Chomsky [6] is one of the most powerful tools for describ- 

ing the sentences that  are possible in a natural language 

and the relationships that  hold among them, but  this 

theory as it is currently formalized (to the limited extent to 

which it is formalized) loses the perspicuousness of the 

context-free grammar. I t  is not possible in this model to 

look at a single rule and be immediately aware of its con- 

sequences for the types of construction that  are possible. 

The effect of a given rule is intimately bound up with its 
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interrelation to other rules, and in fragments of transforma- 

tional grammars for real languages it may require an ex- 

tremely complex analysis to determine the effect and pur. 

pose of any given rule. The augmented transition network 

provides the power of a transformational grammar but 

maintains much of the perspicuousness of the context-free 

grammar model. If the transition network model were im- 

plemented on a computer with a graphics facility for dis- 

playing the network, it would be one of the most perspicu- 

ous (as well as powerful) grammar models available. 

7.2. GENERATIVE POWER. Even without the conditions 

and actions on the arcs, the reeursive transition network 

model has greater strong generative power than the ordi- 

nary context-free grammar. This is due to its ability to 

characterize constructions which have an unbounded 

number of immediate constituents. Ordinary context-free 

grammars cannot characterize trees with unbounded 

branching without assuming an infinite set of rules. 

Another way of looking at the recursive transition network 

model is that it is a finite representation of a context-free 

grammar with a possibly infinite (but regular) set of rules. 

When conditions and actions are added to the arcs, the 

model attains the power of a Turing machine, although the 

basic operations which it performs are "natural" ones for 

language analysis. Using these conditions and actions, the 

model is capable of performing the equivalent of trans- 

formational analysis without the need for a separate trans- 

formational component. 

Another attractive feature of the augmented transition 

network model is the fact that one does not seem to have 

to sacrifice efficiency to obtain power. In the progression 

from context-free grammars to context-sensitive grammars 

to transformational grammars, the time required for the 
corresponding recognition algorithms increases enormously. 

The transition network model, however, while achieving 

all the power of a transformational grammar, does so with- 

out apparently requiring much more time than is required 

for predictive context-free recognition. (This is illustrated 

to some extent by the example in Section 8.) 

An additional advantage of the augmented transition 

network model over the transformational grammar model 

is that it is much closer to a dual model than the trans- 

formational grammar. That is, although we have described 

it as a recognition or analysis model which analyzes 
sentences, there is no real restriction against running the 

model in a generative mode to produce or generate sentences. 

The only change in operation that would be required is 

that conditions which look ahead in the sentence would 

have to be interpreted in the generation algorithm as 

decisions to be made which, if chosen, will impose corn 

straints on the generation of subsequent portions of the 

sentence. The transformational grammar model, on the 

other hand, is almost exclusively a generative model. The 

analysis problem for the transformational grammar is so 

extremely complicated that no reasonably efficient recog- 

nition algorithm for transformational grammar has yet 

been found. 

7.3. EFFICIENCY OF REPRESENTATION. A major ad- 

vantage of the transition network model over the usual 

context-free grammar model is the ability to merge the 

common parts of many context-free rules, thus allowing 

greater efficiency of representation. For example, the single 

regular-expression rule S --~ (Q) (NEG) NP VP replaces 

the four rules: 

S --~ NP VP 
S --~ Q NP VP 
S --~ NEG NP VP 

S ~ Q NEG NP VP 

in the usual context-free notation. The transition network 

model can frequently achieve even greater efficiency 

through merging because of the absence of the linearity 

constraints that are present in the regular expression nota- 

tion. 

The merging of redundant parts of rules not only permits 

a more compact representation but also eliminates the 

necessity of redundant processing when doing the parsing. 

That is, by reducing the size of the grammar representation, 

one also reduces the number of tests which need to be per- 

formed during the parsing. In effect, one is taking ad- 

vantage of the fact that whether or not a rule is successful 

in the ordinary context-free grammar model, information is 

frequently gained in the process of matching it (or attempt- 

ing to match it) which has implications for the success or 

failure of later rules. Thus, when two rules have common 
parts, the matching of the first has already performed some 

of the tests required for the matching of the second. By 

merging the common parts, one is able to take advantage of 

this information to eliminate the redundant processing in 

the matching of the second rule. 

In addition to the direct merging of common parts of 

different rules when constructing a transition network 

model, the augmented transition network, through its use 

of flags, allows for the merging of similar parts of the net- 

work by recording information in registers and interrogat- 

ing it with conditions on the arcs. Thus it is possible to store 

in registers some of the information that would otherwisebe 

implicitly remembered by the state of the network and to 

merge states whose transitions are similar except for condi- 

tions on the contents of registers. For example, consider 

two states whose transitions are alike except that one is 

"remembering" that a negative particle has already been 

found in the sentence, while the other permits a transition 

which will accept a negative particle. These two states can 

be merged by setting a flag to indicate the presence of a 

prior negative particle and placing a condition on the arc 

which accepts the negative particle to block it if the neg- 

ative flag is set. 
The process of merging similar parts of the network 

through the use of flags, while producing a more compact 

representation, does not result in an improvement in 

processing time and usually requires slightly more time. 

The reason for this is the increased time required to test 

the conditions and the presence of additional arcs which 

must be processed even though the conditions will prevent 
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them from being followed. In the absurd extreme, it is 

possible to reduce any transition network to a one-state 

network by using a flag for each are and placing conditions 

on the arcs which forbid them to be followed unless one of 

the flags for a possible immediately preceding arc has been 

set. The obvious inefficiency here is that at every step it 

would be necessary to consider each arc of the network and 

apply a complicated test to determine whether the arc 

can be followed. There is thus a trade-off between the 

compactness of the representation which can be gained by 

the use of flags and the increase in processing time which 

may result. This seems to be just one more example of the 

ubiquitous space-time trade-off that occurs for almost any 

computer programming problem. 

In many cases, the use of registers to hold pieces of an 

analysis provides automatic flags, so that it is not necessary 

to set up special registers to remember such information. 

For example, the presence of a previous negative particle 

in a sentence can be indicated by the nonemptiness of a 
NEG register which contains the particle. Similarly, the 

presence of an auxilliary verb is indicated by the non- 

emptiness of an AUX register which contains the auxilliary 

verb. 

7.4. CAPTURING REGULARITIES. One of the linguistic 

goals of a grammar for a natural language is that the gram- 

mar capture the regularities of the language. That is, if 

there is a regular process that operates in a number of 

environments, the grammar should embody that process 

in a single mechanism or rule and not in a number of inde- 

pendent copies of the same process for each of the different 

contexts in which it occurs. A simple example of this 

principle is the representation of the prepositional phrase 

as a constituent of a sentence because the construction 

consisting of a preposition followed by a noun phrase oc- 

curs often in English sentences in many different environ- 

ments. Thus the model which did not treat prepositional 

phrases as constituents would be failing to capture a 
generality. This principle is a variation of the economy 
principle, which says that the best grammar is that which 

can characterize the language in the fewest number of 

symbols. A grammar which made essentially independent 

copies of the same information would be wasting symbols 

in its description of the language, and that model which 

merged these multiple copies into a single one would be a 

better grammar because it used fewer symbols. Thus the 

economy principle tends to favor grammars which capture 

regularities. 
The transition network model, with the augmentation of 

arbitrary conditions on the arcs and the use of registers to 

contain flags and partial constructions, provides a mech- 

anism for recognizing and capturing regularities. Whenever 

the grammar contains two or more subgraphs of any size 

which are essentially copies of each other, it is a symptom 

of a regularity that is being missed. That is, there are two 

essentially identical parts of the grammar which differ 

only in that the finite state control part of the machine is 

remembering some piece of information, but otherwise the 

operation of the two parts of the graph are identical. To 

capture this generality, it is sufficient to explicitly store the 

distinguishing piece of information in a register (e.g. by a 

flag) and use only a single copy of the subgraph. 

7.5. EFFICIENCY OF OPERATION. In addition to the 

efficiency of operation which results from the merging of 

common parts of different rules, the transition network 

model provides a number of other advantages for efficient 

operation. One of these is the ability to postpone decisions 

by reworking the network. A great inefficiency of many 

grammars for natural language is the procedure whereby 

the grammar "guesses" some basic feature of a construc- 

tion too early in the process of recognizing it--for example, 

guessing whether a sentence is active or passive before the 

processing of the sentence has begun. This results in the 

parser having to follow several alternatives until that point 

in the sentence where enough information is present to rule 

out the erroneous guesses. A much more desirable approach 

is to leave the decision unmade until a point in the con- 

struction is reached where the necessary information is 

present to make the decision. The transition network model 

allows one to take this approach. 

By using standard finite state machine optimization 

techniques (see Woods [32]) it is possible to "optimize" 

the transition network by making it deterministic except 

for the pushdown operations (where nondeterminism can 

be reduced but not necessarily eliminated). That is, if 

several arcs with the same label leave some state, a modified 

network can be constructed which has at most one are with 

a given label leaving any given state. This results in an 

improvement in operation efficiency because of the reduced 

number of active configurations which need to be followed 

during the parsing. The deterministic network keeps 

identical looking analyses merged until that point at which 

they are no longer identical, thus postponing the decision 

as to which path it is on until the first point where the two 

paths differ, at which point the input symbol usually de- 

termines the correct path. The augmented transition net- 

work may not permit the completely automatic optimiza- 

tion which the unaugmented model permits, but it is still 

possible to adopt the general approach of reducing the 

number of active configurations by reducing the nondeter- 

minism of the network, thus postponing decisions until 

the point in the input string where they make a difference. 

The holding of pieces of the analysis in registers until their 

appropriate function is determined allows one to wait until 

such decisions have been made before building the syn- 

tactic representation, which may depend on the decision. 

This facility allows one to postpone decisions even when 

building deep structure representations of the type as- 

signed by a transformational grammar. 

The necessity of following several active configurations 

during parsing is a result of the potential ambiguity of 

natural language. The source of this ambiguity lies in the 

recursion operation of the network, since without recursion 

the network would be a finite state machine and could be 

made completely deterministic. We show elsewhere [32] 
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that  it is possible to eliminate much of the recursion from a 

transition network (in fact we can eliminate all of the re- 

cursion except for that  induced by self-embedding symbols), 

thus reducing still further the number of active configura- 

tions which need to be followed. In  the augmented net- 

work model, one seems in practice to be able to use condi- 

tions on the arcs to determine uniquely when to push 

down for a recursion, leaving only the action of popping 

up as the source of ambiguity and the cause for multiple 

active configurations. The use of appropriate conditions 

(including semantic ones) on the POP arcs of the network 

allows one to reduce this ambiguity still further. 

One of the most interesting features of the use of registers 

in the augmented transition network is the ability to make 

tentat ive decisions about the sentence structure and then 

change one's mind later in the sentence without backtrack- 

ing. For example, when one is at the point in parsing a 

sentence where he is expecting a verb and he encounters 

the verb "be," he can tentatively assign it as the main verb 

by putt ing it in the main verb register. If  he then en- 

counters a second verb indicating that  the "be" was not 

the main verb but  an auxilliary helping verb, then the 

verb "be" can be moved from the main verb register into 

an auxilliary verb register and the new main verb put  in its 

place. This technique, like the others, tends to reduce the 

number of active configurations which need to be followed 

during the parsing. In  Section 8 we give an example which 

provides a number of illustrations of this technique of 

making tentat ive decisions and then changing them. 

7.6. FLEXIBILITY FOR EXPERIMENTATION. Perhaps one 

of the most important  advantages of the augmented transi- 

tion network model is the flexibility tha t  the model pro- 

vides for experimental linguistic research. The open-ended 

set of basic operations which can be used on the arcs allows 

for the development of a fundamental set of "na tura l"  

operations for natural language analysis through experi- 

ence obtained while writing grammars. A powerful 

BUILDQ function was developed in this way and has 

proven extremely useful in practice. The use of the hold 

list and the virtual transitions in Section 8 is another ex- 

ample of the evolution of a special "natura l"  operation to 

meet a need. 

A second area of experimentation that  is facilitated by  

the transition network model is the investigation of dif- 

ferent types of structural representations. The explicit 

structure-building actions on the arcs of the network allow 

one to experiment with different syntactic representations 

such as dependency grammars, tagmemic formulas, or 

Fillmore's case grammar [11]. I t  should even be possible 

to produce some types of semantic representation by 

means of the structure-building actions on the arcs. 

Finally, it is possible to use the conditions on the arcs to 

experiment with various types of semantic conditions for 

guiding the parsing and reducing the number of "meaning- 

less" syntactic analyses that  are produced. Within the 

framework of the augmented transition network one can 

begin to take advantage of much of the extra-syntactic 

information which human beings seems to have available 

during parsing. Many  good ideas in this area have gone 

untried for want of a formalism which could accommodate 

them. 

8. A Second Example 

In  this section we give an example that  illustrates some 

of the advantages of the augmented transition network 

which we have been discussing--especially the facilities 

for making tentat ive decisions that  are changed as the 

• 
5~6 

14 VP I1 

FFzG. 4(a). A partial transition network--pictorial  
representation with numbered arcs 

"BY' 
12 

Q3: 
Condition: (INTRANS (GETR V)) 
Form: (BUILDQ (S+-t-(TNS+) (VP (V+))) TYPE SUBJ 

TNS V) 
Q4 and Q6: 

Condition: T 
Form: (BUILDQ ( S + + ( T N S + )  (VP (V +)+) )  TYPE SUBJ 

TNS V OBJ) 

FIG. 4(b). A partial  transition network--conditions and 
forms for final states 

Conditions 

1. T 

2. T 

3. T 
4. T 

5. (AND (GETF PPRT) 
(EQ (GETR V) 
(QUOTE BE))) 

6. (AND (GETF PPRT) 
(EQ (GETR V) 
(QUOTE HAVE))) 

7. (TRANS (GETR V)) 
8. (TRANS (GETR V)) 
9. (GETR AGFLAG) 

10. (S-TRANS (GETR V)) 

11. T 
12. (GETR AGFLAG) 
13. T 
14. (GETF UNTENSED) 

Actions 

(SETR V *) 
(SETR TNS (GETF TENSE)) 
(SETR TYPE (QUOTE Q)) 
(SETR SUBJ *) 
(SETR TYPE (QUOTE DCL)) 
(SETK SUBJ *) 
(SETR V *) 
(SETR TNS (GETF TENSE)) 
(HOLD (GETR SUB J)) 
(SETR SUBJ (BUILDQ 

(NP (PRO SOMEONE)))) 
(SETR AGFLAG T) 
(SETR V *) 
(SETR TNS (APPEND 

(GETR TNS) 
(QUOTE PERFECT))) 

(SETR V ,) 
(SETR OBJ ,) 
(SETR OBJ ,) 
(SETR AGFLAG NIL) 
(SENDR SUBJ (GETR OBJ)) 
(SENDR TNS (GETR TNS)) 
(SENDR TYPE (QUOTE DCL)) 
(SETR OBJ ,) 
(SETR AGFLAG NIL) 
(SETR SUBJ ,) 
(SETR V ,) 

FIG. 4(c). A partial transition network--conditions and 
actions on arcs 
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parsing proceeds. Figure 4 gives a fragment of a transition 

network which characterizes the behavior of the auxiliary 

verbs "be"  and "have"  in indicating the passive construc- 

tion and the perfect tense. We will consider the analysis 

provided by this sample network for the sentence "John 

was believed to have been sho t " - - a  sentence with a fairly 

complex syntactic structure. In doing so, we will see that  

the augmented transition network clearly characterizes the 

changing expectations as it proceeds through the analysis, 

and that  it does this without the necessity of backtracking 

or pursuing different alternatives. 

Figure 4 is divided into three parts: (a) a pictorial 

representation of the network with numbered arcs, (b) a 

description of the conditions and forms associated with the 

final states, and (c) a list of the conditions and actions as- 

sociated with the arcs of the network. In Figure 4(a), the 

pictorial representation, S, NP, and VP are nonterminal 

symbols; AUX and V are lexical category names; and the 

arcs labeled "TO" and " B Y "  are to be followed only if the 

input word is "to" or " b y "  respectively. The dotted a r c  

with label N P  is a special kind of "vir tual"  arc which can 

be followed if a noun phrase has been placed on a special 

"hold list" by a previous HOLD command. I t  removes the 

item from the hold list when it uses it. The hold list is a 

feature of the experimental parsing system which provides 

a natural facility for dealing with constituents that  are 

found out of place and must be inserted in their proper 

location before the analysis can be complete. The items 

placed on the hold list are marked with the level at which 

they were placed on the list, and the algorithm is prevented 

from popping up from that  level until the item has been 

"used" by a virtual transition at that  level or some deeper 

level. 

Final states are represented in Figure 4(a) by the diag- 

onal slash and the subscript 1, a notation which is com- 

mon in the representation of finite state automata.  The 

conditions necessary for popping up from a final state and 

the expression which determines the value to be returned 

are indicated Figure 4(b). The parenthesized representa- 

tion of tree structure is the same as that  used in Section 3.2. 

Conditions TRANS and INTRANS test whether a verb is 

transitive or intransitive, respectively, and the condition 

S-TRANS tests for verbs like "believe" and "want" ,  

which can each take an embedded nominalized sentence as 

its "object".  Features P P R T  and U N T E N S E D ,  respec- 

tively, mark the past participle form and the standard 

untensed form of a verb. 

We begin the analysis of the sentence "John was believed 

to have been shot" in state S, scanning the first word of the 

sentence "John".  Since "John"  is a proper noun, the push- 

down for a noun phrase on arc 2 will be successful, and the 

actions for that  arc will be executed placing the noun 

phrase (NP (NPR JOHN))  in the subject register SUBJ 

and recording the fact that  the sentence is declarative by 

placing DCL in the T Y P E  register. The second word of 

the sentence "was" allows the transition of arc 4 to be fol- 

lowed, setting the verb register V to the standard form of 

the verb " B E "  and recording the tense of the sentence in 

the register TNS. The register contents at this point 

correspond to the tentat ive decision that  "be"  is the main 

verb of the sentence, and a subsequent noun phrase or 

adjective (not shown in the sample network) would con- 

tinue this decision unchanged. 

In state Q3, the input of the past participle "believed" 

tells us that  the sentence is in the passive and that  the verb 

"be" is merely an auxilliary verb indicating the passive. 

Specifically, arc 5 is followed because the input word is a 

past participle form of a verb and the current content of 

the verb register is the verb "be".  This arc revises the 

tentat ive decisions by holding the old tentat ive subject on 

the special hold list, setting up a new tentat ive subject 

( the indefinite someone), and setting the flag AGFLAG 

which indicates that  a subsequent agent introduced by the 

preposition "by" may specify the subject. The main verb 

is now changed from "be"  to "believe" and the network 

returns to s ta te  Q3 scanning the word " to" .  The register 

contents at this point are: 

SUBJ: (NP (PRO SOMEONE)) 
TYPE: DCL 
V: BELIEVE 
TNS: PAST 
AGFLAG: T 

and the noun phrase (NP ( N P R  JOHN))  is being held on 

the hold list. 

None of the arcs leaving state Q3 is satisfied by  the in- 

put  word " to" .  However, the presence of the noun phrase 

" John"  on the hold list allows the virtual transition of arc 8 

to take place just as if this noun phrase had been found at 

this point in the sentence. (The transition is permitted be- 

cause the verb "believe" is marked as being transitive.) 

The effect is to tentat ively assign the noun phrase (NP  

( N P R  JOHN))  as the object of the verb "believe". I f  this 

were the end of the sentence and we chose to pop up from 

the resulting state Q4, then we would have the correct 

analysis "someone believed John".  

The input of the word "to" to state Q4 tells us that  the 

"object"  of the verb "believe" is not merely the noun 

phrase " John"  but  is a nominalized sentence with " John"  

as its tentat ive subject. The effect of arcs 10 and 11 is to 

send down the necessary information to an embedded cal- 

culation which will complete the embedded clause and 

return the result as the object of the verb "believe". 

Arc 10 prepares to send down the noun phrase (NP ( N P R  

JOHN))  as the embedded subject, the tense PAST, and 

the type DCL. Arc 11 then pushes down to state VP 

scanning the word "have" .  

At this point, we find ourselves in an embedded compu- 

tation with the register contents: 

SUBJ: (NP (NPR JOHN)) 
TYPE: DCL 
TNS: PAST 

Arc 14 permits a transition if the current input is a verb 
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in its standard untensed, undeelined form, i.e. one can- 

not say "John was believed to has been shot." Since "have" 

is such a form, the transition is permitted and the main 

verb of the embedded sentence is tentatively set to "have" 

as would befit the sentence "John was believed to have 

money." 

The subsequent past participle "been" following the 

verb "have" causes transition 6, which detects the fact 

that the embedded sentence is in the perfect tense (the 

effect of the auxilliary "have") and adopts the new tenta- 

tive verb "be" as would befit the sentence "John was 

believed to have been a druggist." The register contents 

for the embedded computation at this point are: 

SUBJ: (NP (NPR JOHN)) 
TYPE: DCL 
TNS : PAST PERFECT 
V: BE 

Once again in state Q3, the input of the past participle 

"shot" with a tentative verb "be" in the verb register 

indicates that the sentence is in the passive, and transi- 

tion 5 puts the noun phrase (NP (NPR JOHN)) on the 

hold list and sets up the indefinite subject (NP (PRO 

SOMEONE)). Although we are now at the end of the 

sentence, both the presence of the noun phrase on the hold 

list and the fact that the verb "shoot" is transitive prevent 

the algorithm from popping up. Instead, the virtual transi- 

tion of arc 8 is followed, assigning the noun phrase "John" 

as the object of the verb "shoot". The register contents for 

the embedded computation at this point are: 

SUBJ: (NP (PRO SOMEONE)) 
TYPE: D CL 
TNS: PAST PERFECT 
V: SHOOT 
AGFLAG: T 
OB$: (NP (NPR JOHN)) 

At this point, we are at the end of the sentence in the 

final state Q4, with an empty hold list so that the embedded 

computation can return control to the higher level com- 

putation which called it. The value returned, as specified 

by the form associated with the state Q4, is 

(s DCL (NP (PRO SOMEONE)) (TNS PAST PERFECT) 
(VP (V SHOOT) (NP (NPR JOHN)))) 

corresponding to the tree: 

S 

D C L ~ V P ~  

PRO P,sT PE,FECT V NP 
I I I 

SOMEONE SHOOT NPR 
I 

JOHN 

The higher level computation continues with the actions 

on arc 11, setting the OBJ register to the result of the 

embedded computation. Since the higher level computa- 

tion is also in a final state, Q6, the sentence is accepted, 

and the structure assigned to it (as specified by the form 

associated with state Q6) is: 

(s DCL (NP (PRO SOMEONE)) (TNS PAST) (VP (V BELIEVE) 
(~ DCL (NP (PRO SOMEONE)) (TNS PAST PERFECT) 

(VP (V SHOOT) (NP (NPR JOHN)))))) 

which in tree form is represented as: 

S 

DCL NP INS VP 

PRO PAST V S 

I P"--. / \  
PRO PAST PERFECT V NP 

I I I 
SOMEONE SHOOT NPR 

I 
JOHN 

This structure can be paraphrased "Someone believed 

that someone had shot John." If the sentence had been 

followed by the phrase "by Harry" there would have been 

two possible interpretations depending on whether the 

additional phrase were accepted by the embedded com- 

putation or the top level computation. Either case would 

have resulted in replacing one of the indefinite subjects 

SOMEONE with the definite subject "Harry".  The struc- 

ture produced in one case would be paraphrased "Some- 

one believed that Harry had shot John", while the other 

would be "Harry believed that someone had shot John." 

9. Parsing with Transition Network Grammars 

Since the unaugmented transition network grammar 

model is actually a mere permutation of the elements of a 

pushdown store automaton, a number of existing parsing 

algorithms for context-free grammars apply more or less 

directly to the transition network model. The basic top- 

down and bottom-up parsing strategies have their analog 

for recursive transition networks, and the opposing strat- 

egies for dealing with ambiguous sentences--following all 

of the analyses "in parallel" or following one analysis at a 

time (saving information at the choice points)--are both 

applicable to this type of model. In particular, one of the 

most powerful and efficient parsers for context-free gram- 

mars that has yet been discovered, the Earley recognition 

algorithm [9, 10], can be adapted with minor modification 

to use transition network grammars, and indeed an im- 
provement in operating efficiency can accrue from doing so. 

The Earley Algorithm, by following all analyses in 

parallel in a particularly careful way, obtains a representa- 

tion of all the parses of a string with respect to a context- 

free grammar in an amount of time which can be bounded 

by Kn ~, where n is the length of the string and K is a 

constant depending only on the grammar and not on the 

input string. Moreover, for certain subclasses of context- 
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free grammars, the time required can be shown to lie 

within smaller bounds--n 2 for linear grammars and others, 

and n for LR(k) (Knuth  [17]) grammars with lookahead 

k (and others). Many  of these results have been obtained 

by other algorithms which capitalize on special features 

of different classes of grammars [15, 16, 33], but the Earley 

algorithm is the only such algorithm which works for 

any given context-free grammar (with no restriction to 

special forms, absence of left-recursion, etc.) within the n a 

bound, and furthermore, it automatically achieves the 

smaller bounds for the special case grammars without 

having to be told that  the grammar falls within a special 

category (i.e. it does not invoke special techniques for 

these cases). 

We give elsewhere (Woods [32]) a modified version of 

the Earley algorithm which can be used to parse sentences 

with respect to an (unaugmented) transition network 

grammar within the same time bounds, and we show there 

that  a number of mechanical "optimization" techniques 

can be applied to a transition network grammar to reduce 

the constant of proportionality in the time bound. 

The parsing problem for augmented transition networks 

using the Earley algorithm is somewhat more complicated 

due to the carrying of information in registers and the 

use of explicit structure-building actions. The potential 

for transitions which are conditional on the contents of 

registers makes it difficult to determine when configura- 

tions are "equivalent" and can be merged for further 

processing, and the use of registers and explicit structure- 

building actions complicates the task of choosing a suitable 

representation for the merged configurations. I t  is rela- 

tively straightforward to extend the Earley algorithm to 

overcome these difficulties, but since the n 3 time bound 

depends critically on the merging of equivalent configura- 

tions and a fixed bound on the amount of time to process 

each transition from a (merged) state, it is not clear what 

the bounds on the resulting algorithm will be. 

I f  we distinguish between "flag" registers which can 

contain only "flags" chosen from a finite vocabulary and 

"content"  registers which can hold arbitrary structure, 

and if we restrict the conditions and actions on the arcs 

so that:  (1) the conditions can refer only to flag registers 

and symbols in the input string (e.g. for lookahead); (2) 

the conditions and actions themselves require a bounded 

amount of time; and (3) there is only one content register, 

which can be added to at the ends or built upon by means 

of the BUILDQ function but which cannot be "looked 

into", then we can build a version of the Earley recognition 

algorithm which will operate within the general n 3 time 

bound (and smaller n 2 or n bounds in special cases). How- 

ever, if we relax these conditions appreciably, an increase 

in the time bound is inevitable--e.g, a condition or an 

action can itself require more than n s steps. 
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9.1. THE CASE FOR SERIES PARSING. For many ap- 

plications of natural language analysis it is not necessary 

(or even desirable) to obtain a representation of all of the 

possible parsings of the input sentence. In applications 

where natural language is to be used as a medium of com- 

munication between a man and a machine, it is more 

important to select the "most likely" parsing in a given con- 

text and to do this as soon as possible. There will un- 

doubtedly be cases where there are several "equally likely" 

parsings or where the "most likely" parsing turns out not 

to be the "correct" one (i.e. the one intended by the 

speaker); hence a nondeterministic algorithm is still re- 

quired and a facility for eventually discovering any par. 

ticular parsing is necessary. What  is not necessary is a 

parallel approach which spends time discovering all of the 

analyses at once. In such an application a series approach 

(with an appropriate mechanism for selecting which 

analysis to follow first) has more to offer than a parallel 

approach since in most cases it will simply avoid follow- 

ing up the other alternatives. An appropriate record can 

be kept (if desired) of the analyses of well-formed sub- 

strings discovered by previous alternatives (in order to 

eliminate repetitive analysis of the same substring), but 

the savings in parse time for such an approach does not 

always justify the storage required to store all of the 
partial substring analyses. 

The success of the series approach described above 

depends, of course, on the existence of a mechanism for 

selection of the semantically "most likely" parsing to be 

followed first. The augmented transition network gram- 

mar provides several such mechanisms. First, by ordering 

the arcs which leave the states of the network, it is pos- 

sible to impose a corresponding ordering on the analyses 

which result. The grammar designer can thus adjust this 

ordering in an at tempt to maximize the "a priori likeli- 

hood" (dependent only on the structure of the sentence as 

seen by the grammar, but not on other factors) that  the 

first analysis chosen will be the correct one. Furthermore, 

by  replicating some arcs with different conditions, it is 

possible to make this ordering dependent on particular 

features of the sentence being processed--in particular it 

can be made dependent on semantic features of the words 

involved in the sentence. Two additional features for 

selecting "most likely" analyses have been added to the 

model in the implemented experimental parsing system--  

a special "weight" register which contains an estimate of 
the "likelihood" of the current analysis (which can be used 

to suspend unlikely looking paths in favor of more likely 

ones) and a selective modifier-placement facility which 

uses semantic information to determine the "most likely" 

governing construction for modifiers in the sentence. 

I0. Implementation 

An experimental parsing system based on the ideas 
presented here has been implemented in BBN LISP 

on the SDS 940 time-sharing systems at Harvard Uni- 

versity and at Bolt, Beranek & Newman, Inc., and is 
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being used for a number of experiments in grammar de- 

velopment and parsing strategies for natural language 

analysis. The objectives of this implementation have been 

the provision of a flexible tool for experimentation and 

evolution, and for this reason the system has been con- 

structed in a modular fashion which lends itself to evolu- 

tion and extension without major changes to the overall 

system structure. The system has already undergone 

several cycles of evolution with a number of new features 

being developed in this way, and more are expected as the 

research continues. 

The implemented system contains a general facility for 

semantic interpretation (described in Woods [30, 31]), 

and a major motivation for the implementation is to 

explore the interaction between the syntactic and semantic 

aspects of the process of sentence "understanding". Special 

emphasis has been placed on the use of semantic informa- 

tion to guide the parsing, the minimization of the number 

of blind-alley analysis paths which need to be followed, 

and the ordering of analyses of sentences in terms of some 

measure of "likelihood". Experiments to date include a 

selective modifier placement facility using semantic in- 

formation, several approaches to the problems of con- 

junction (including conjoined sentence fragments), and a 

facility for lexical and morphological analysis. Several dif- 

ferent grammars have been developed and tested on the 

system, and a variety of English constructions and parsing 

strategies have been and are being explored. A report of 

the details of this implementation and of the experiments 

which are being performed with it is in preparation. 

RECEIVED MAY 1970 
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