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Abstract: Network neuroscience provides tools that can easily be used to verify main assumptions of
the global workspace theory (GWT), such as the existence of highly segregated information processing
during effortless tasks performance, engagement of multiple distributed networks during effortful
tasks and the critical role of long-range connections in workspace formation. A number of studies sup-
port the assumptions of GWT by showing the reorganization of the whole-brain functional network
during cognitive task performance; however, the involvement of specific large scale networks in the
formation of workspace is still not well-understood. The aims of our study were: (1) to examine
changes in the whole-brain functional network under increased cognitive demands of working mem-
ory during an n-back task, and their relationship with behavioral outcomes; and (2) to provide a com-
prehensive description of local changes that may be involved in the formation of the global workspace,
using hub detection and network-based statistic. Our results show that network modularity decreased
with increasing cognitive demands, and this change allowed us to predict behavioral performance. The
number of connector hubs increased, whereas the number of provincial hubs decreased when the task
became more demanding. We also found that the default mode network (DMN) increased its connec-
tivity to other networks while decreasing connectivity between its own regions. These results, apart
from replicating previous findings, provide a valuable insight into the mechanisms of the formation of
the global workspace, highlighting the role of the DMN in the processes of network integration. Hum
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INTRODUCTION

Researchers have long been intrigued by the organiza-
tion and dynamical reorganization of the human brain net-
works during performance of cognitive tasks requiring
conscious processing. From the perspective of cognitive
neuroscience, the question that is particularly interesting is
whether the functional network architecture may adapt to
the increasing demands of a cognitive task. According to
global workspace theory (GWT), conscious perception
requires coherent activity of multiple distributed brain
regions [Baars, 1997; Dehaene et al., 1998]. Tasks that can
be performed automatically and effortlessly mobilize proc-
essing within a limited number of functionally specialized
modular subsystems. Conversely, effortful cognitive tasks,
which require focused attention and conscious control,
engage a set of long-distance connections coordinating the
activity of multiple distributed cortical areas [Dehaene
et al., 1998].

In the context of functional brain network organization,
activity within the global workspace can be illustrated
using graph theory and verified by studying global and
local topological properties of networks for different cogni-
tive demands. These networks are typically modeled as a
set of nodes (corresponding to pre-defined brain struc-
tures) and edges (representing functional connectivity; e.g.,
temporal correlations of blood oxygen level-dependent
[BOLD] signal fluctuations between brain areas) [Bullmore
and Bassett, 2011; Bullmore and Sporns, 2009]. Researchers
have shown that the network of the brain is complex but
organized in a way that minimizes wiring cost while pre-
serving high efficiency and adaptability of its topological
features [Achard et al., 2006; Achard and Bullmore, 2007;
Bullmore and Sporns, 2009; Latora and Marchiori, 2001;
Simon, 1962]. Several network characteristics, such as
small-worldness (high clustering and short path length),
modularity and the existence of connector hubs, allow a
network to dynamically switch from states of segregated
(specialized) information processing to states of integrated
(distributed) processing [Bullmore and Sporns, 2012; Hag-
mann et al., 2008; Meunier et al., 2010; Sporns et al., 2004;
Watts and Strogatz, 1998]. The key question is how the
trade-off between segregated and integrated information
processing is re-negotiated to adapt to changing cognitive
demands in a way that supports behavioral outcomes.

The vast majority of fMRI studies have investigated the
relationship between human cognitive performance and
overall network organization at rest—in the absence of
any externally directed tasks [Arnemann et al., 2015; Gam-
boa et al., 2014; Stevens et al., 2012; van den Heuvel et al.,

2009]. For example, van den Heuvel et al. [2009] found
that global efficiency correlates positively with intelligence,
while other studies showed a relationship of resting-state
network modularity with working memory scores [Gam-
boa et al., 2014], working memory capacity [Stevens et al.,
2012], or improvement in behavioral performance in
response to cognitive training [Arnemann et al., 2015].

Recent studies on the task-based network reorganization
support GWT by showing that automatic, unconscious,
and low-demand cognitive processes are related to high
levels of network segregation, whereas tasks engaging
higher cognitive functions are related to high levels of net-
work integration. For example, in an MEG study, Kitzbich-
ler et al. [2011] found that greater effort during a working
memory n-back task caused network reconfiguration into a
more globally efficient, less clustered and less modular
architecture. In an fMRI study, Vatansever et al. [2015a]
found a decrease of modularity during an n-back task and
its association to behavioral performance when comparing
the low-demand (0-back) to the high demand (3-back) con-
dition. Another study by Godwin et al. [2015] showed that
conscious perception is associated with increased global
integration and decreased modularity of the network.

According to the global neuronal workspace theory,
neurons with long-range connections in prefrontal, parietal
and cingulate areas may participate in the process of
global integration [Dehaene and Changeux, 2011; Dehaene
and Naccache, 2001]. These assumptions are based on
multiple neuroimaging studies showing consistent activa-
tion of the fronto-parietal network (FPN) during effortful
task execution [Duncan, 2010; Dux et al., 2006; Klein et al.,
2007; Landmann et al., 2007]. However, regional brain acti-
vation during tasks does not provide exact information
whether activated areas actually integrate distinct brain
modules [Gratton et al., 2016]. In terms of the network sci-
ence, entire network integration can be potentially
achieved through connector hubs—highly central nodes
that are connected to multiple modules [Guimera and
Amaral, 2005]. Indeed, some recent network neuroscience
studies showed that FPN nodes may facilitate network
integration during effortful tasks [Braun et al., 2015; Cole
et al., 2013], while other studies assign this role to highly
inter-connected default mode network (DMN) nodes [For-
nito et al., 2012; Vatansever et al., 2015a]. Although DMN
regions routinely deactivate during cognitive task perfor-
mance [Mazoyer et al., 2001; Raichle et al, 2001; Shulman
et al., 1997], they show a high flexibility to switch their
modular membership [Vatansever et al., 2015a], to inte-
grate with other brain regions [Fornito et al., 2012] and to
increase their number of connector hubs [Stanley et al.,
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2014] when cognitive demands increase. Based on this evi-
dence, more studies are needed to resolve the problem of
the involvement of specific subnetworks in the integrated
workspace formation, focusing on a potential role of FPN,
DMN and FPN-DMN interactions.

In the present fMRI study, we sought to provide both a
replication and an extension of the previous findings by a
comprehensive description of network transitions during
effortful cognitive task performance. We asked healthy
young adult participants to perform a working memory n-
back task with two levels of difficulty—1-back (low
demand) and 2-back (high demand). First, we investigated
whether the expectations of GWT are confirmed by effort-
dependent changes in the modularity of whole-brain net-
work. If they are, then performing the more demanding
task (2-back) should be associated with an increased inte-
gration of information processing reflected by a decreased
level of network modularity, and a greater network inte-
gration should be beneficial for behavioral outcomes.

Going beyond the network description on the global level,
we sought to identify large scale networks and specific brain
regions that may play a critical role in forming the global
workspace. We hypothesized that network integration may
be achieved by an increased coupling between distinct brain
subnetworks through long-distance connections. Therefore,
we examined changes in the number of provincial (intra-
modular) and connector (inter-modular) hubs. According to
GWT, higher cognitive demands should lead to an increase
in the number of connector hubs supporting global integra-
tion. Finally, we examined potential clusters of connections
that change their strength with increasing cognitive demands
using network-based statistic (NBS)—a nonparametric statis-
tical method introduced by Zalesky et al. [2010].

METHOD

Subjects

Thirty-five healthy volunteers (17 females; mean age
22.6 6 3.1; range 19–31 years) with normal or corrected-to-
normal vision participated in this study. All were right-
handed as defined by the Edinburgh Handedness Inven-
tory [Oldfield, 1971], and without a history of neurological
or psychiatric disorders. Participants were recruited from
the local community through word-of-mouth and social
networks. Written informed consent was collected from
each participant, and ethical approval for the study was
obtained from the Ethics Committee of the Nicolaus
Copernicus University Ludwik Rydygier Collegium Medi-
cum in Bydgoszcz, Poland, in accordance with the Decla-
ration of Helsinki.

fMRI Paradigm

To assess working memory, we used a visual n-back
task based on letters [Gevins and Cutillo, 1993], which

requires participants to constantly monitor, update and
manipulate memorized information [Owen et al., 2005].
The effort required for the performance of the task
increases with n number of elements that have to be traced
during different working memory load task conditions
(e.g., 1-, 2-, or 3-back). In this study, stimulus consisted of
the first five letters of the Roman alphabet (A–E) [Kear-
ney-Ramos et al., 2014], presented in a pseudorandom
order in two working memory load conditions, 1- and 2-
back. The presentation of each letter (500 ms) was pre-
ceded by a fixation cross (1,500 ms) presented in the centre
of the screen. Each session of the task consisted of 10
blocks (30 s per block; 12 trials with 25% of targets) of
alternating 1- and 2-back conditions. A short instruction
screen (2,000 ms) was displayed before each block, inform-
ing the participant of the condition. The whole task con-
sisted of three sessions and the total length of 16 min
resulting in 480 functional scans. During the 1-back condi-
tion, the participants were asked to indicate if the cur-
rently presented letter was the same or different from the
letter immediately preceding it. During the 2-back condi-
tion, the participants had to indicate if the currently pre-
sented letter was the same as or different from the letter
presented two trials before. The participants had 2,000 ms
for each response. The experimental protocol execution
and control (stimulus delivery and response registration)
were controlled by the PresentationVR software (Neurobe-
havioral Systems, Albany, NY), version 17.2. Visual stimuli
were displayed using MRI compatible NNL goggles (Nor-
dicNeuroLab, Bergen, Norway). Behavioral responses were
collected using MRI compatible NNL response grips (Nor-
dicNeuroLab, Bergen, Norway), which were connected
together and held in the right hand by each participant.
The participants were instructed to respond as quickly
and accurately as possible by pressing one of the two but-
tons using the thumb of the right hand (target letter—right
button; non-target—left button).

Data Acquisition

Neuroimaging data were collected using a GE Discovery
MR750 3 Tesla MRI scanner (General Electric Healthcare)
with a standard 8-channel head coil. Functional scans
were obtained using a T2*-weighted gradient-echo, echo-
planar imaging (EPI) sequence sensitive to BOLD contrast
(TR 5 2,000 ms, TE 5 30 ms, FOV 5 192 mm, flip angle 5 90
degrees, matrix size 5 64 3 64, voxel size 5 3 3 3 3 3 mm,
no gap). For each of the three sessions, 5 dummy scans
(10 s) and 160 volumes (5 min 20 s) of 42 axial oblique sli-
ces were acquired in an interleaved acquisition scheme.
Structural images were collected using three-dimensional
high resolution T1-weighted gradient-echo (FSPGR 3D)
sequence (TR 5 8.2 s, TE 5 3.2 ms, FOV 5 256 mm, flip
angle 5 12 degrees, matrix size 5 256 3 256, voxel size 5 1
3 1 3 1 mm, 206 axial oblique slices).
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Node Definition

To define nodes we used a functional brain parcellation
consisting of 264 functionally relevant ROIs defined on the
basis of a meta-analysis [Power et al., 2011]. The functional
ROIs were modeled using the MarsBaR toolbox (http://
marsbar.sourceforget.net) as 10 mm diameter spheres with
centers around the coordinates provided by Power et al.
[2011]. Brain coverage of all 264 ROIs was evaluated and
confirmed as complete for the brain mask of each subject.
Given that the use of different parcellation schemes for
node definition may significantly affect the graph theory
measures [Fornito et al., 2013; Wang et al., 2009], we cross-
validated our findings using Automated Anatomical Label-
ling atlas (AAL)—an anatomical parcellation scheme that
divides the brain into 90 regions [Tzourio-Mazoyer et al.,
2002]. The AAL has been used in many previous studies
linking network modularity and behavioral performance
[Arnemann et al., 2015; Gamboa et al., 2014; Ginestet and
Simmons, 2011]. Detailed results for the AAL parcellation
scheme are presented in Supporting Information.

Data Processing

The data pre-processing pipeline can be divided into two
major steps: (1) standard pre-processing of the functional
time series; and (2) denoising of the data to perform func-
tional connectivity analysis. We used the SPM12 toolbox to
perform functional data pre-processing (Wellcome Depart-
ment of Imaging Neuroscience, Institute of Neurology, Lon-
don, UK) running on MATLAB 8.3 (R2014a) (Mathworks,
Natick, MA). Functional images were corrected for acquisi-
tion time and spatially realigned to the mean image to cor-
rect for interscan head motions. The structural T1-weighted
image was co-registered to the mean functional image.
Functional, gray matter, white matter and cerebrospinal
fluid (CSF) images were spatially normalized to the MNI
template using new unified normalization-segmentation
[Ashburner and Friston, 2005]. Additionally, we identified
outlier scans with a frame-wise displacement above 0.5 mm
using Artifact Detection Toolbox (ART; http://www.nitrc.
org/projects/artifact_detect/). Two participants were
excluded from further analysis due to excessive head
motion (more than 10 outlier scans); thus, the final sample
consisted of 33 subjects (17 females; mean age 22.7 6 3.2;
range 19–31 years). There was no significant difference
between the 1-back and 2-back conditions in the number of
outlier scans (t(32) 5 1.61, P 5 0.1166).

The non-smoothed functional volumes were further
investigated to avoid spuriously high correlations between
time-series from the neighboring ROIs [Alavash et al.,
2015; Cole et al., 2013; Fornito et al., 2010]. We used
CONN Functional Connectivity Toolbox v. 15.f (www.
nitrc.org/projects/conn/, [Whitfield-Gabrieli and Nieto-
Castanon, 2012]) to perform the denoising of the functional
time series and to create pairwise correlation matrices.
This toolbox implements the anatomical component

correction (aCompCor) strategy to estimate and remove
physiological noise [Behzadi et al., 2007]. First, we divided
functional time-series into 1-back and 2-back conditions
according to the onset and duration times of each block.
Then, principal components of subject-specific white mat-
ter, CSF, six rigid-body movement parameters and outlier
scans were removed by means of covariate regression
analysis. To take into account the hemodynamic delay and
avoid possible between-condition crosstalk, separate block
regressors for each task condition convolved with canoni-
cal hemodynamic response function and their first-
derivative terms were included in covariate regression
analysis [Whitfield-Gabrieli and Nieto-Castanon, 2012].
The procedure of regressing out task effects separately for
each task condition has been shown to yield the highest
test-retest reliability of graph theoretical properties during
task-based and resting-state paradigms [Cao et al., 2014].

The resulting time series were filtered using 0.008 Hz
high-pass filter to remove low-frequency drift. To preserve
potentially valuable task-relevant information from higher
frequency bands, we did not apply low-pass filter, which
is commonly used in resting-state analyses [Cao et al.,
2014; Cole et al., 2013; Shirer et al., 2012].

For each condition, 225 volumes (7 min 30 s) of the task-
induced time series were used for signal extraction. Correla-
tion matrices were created by first extracting the time
course from each region of Power ROIs; then, Pearson’s cor-
relation coefficients were computed for each pair of ROIs.
Fisher’s transformation was then used to convert correlation
coefficient to normally distributed z-scores. This resulted in
one correlation matrix (264 3 264 size) for each condition
and each subject (see Fig. S1 in Supporting Information for
data processing and network construction flowchart).

Functional Brain Networks

Functional connectivity networks represent nonzero val-
ues of time-series correlations between brain regions. To
focus only on the strongest connections, several threshold-
ing approaches and further matrix binarization have been
introduced and used in previous studies [Fornito et al.,
2016]. However, these procedures are arbitrary and their
use may not lead to meaningful representation of real net-
works [Ginestet et al., 2011]. Moreover, many network
measures applicable to weighted networks have not been
adapted to networks with negative weights, which in the
case of functional brain networks often requires transform-
ing them to positive values. Therefore, in this study, we
focused both on fully connected, weighted graphs with
positive and negative weights to calculate global network
properties, and on thresholded and binarized versions for
hub detection analysis.

Every weighted graph G can be represented by a real
square matrix W, where element wij represents the
strength of the association between nodes i and j. Here,
we used functional connectivity matrices described earlier
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as representations of fully connected weighted graphs
with NV 5 264 nodes and NE 5 (1=2)NV(NV– 1) connec-
tions. In our case, associations were measured as correla-
tion coefficients, thus wij � [–1,1] and wij 5 wji. Signed
networks can also be described as a difference of positive
and negative weights W 5 W1 – W–, where W1 5 [w1

ij ]
and W– 5 [w2

ij ]. Note that for positive associations between
nodes i and j we had w1

ij 5 wij and w2
ij 5 0, while for neg-

ative w1
ij 5 0 and w2

ij 5 –wij. We can also assign each
node with a positive/negative strength defined as the sum of
its positive or negative connection weights s6

i 5
P

j w6
ij

and total strength si 5
P

j wij. The positive/negative weight of
a network is the sum of its node strengths v6 5

P
i s6

i .
Binary networks in hub detection analysis were con-

structed by first applying threshold to weighted correlation
networks and then setting all remaining non-zero connec-
tion weights to one. Here, we used proportional threshold
approach, which leads to fixed connection density across
networks, thus allowing for direct comparison of cost-
dependent network measures. We performed our analysis
using thresholds that produced networks with connection
densities ranging from 5 to 15% (with a step of 1%) by inte-
grating hub scores over that range. We chose a proportional
threshold, retaining 5% of the strongest connections as a
lower bound for connection density after examining the
fracturing of sparse networks. For that density value, the
mean size of the gigantic component (largest connected
subgraph) across all functional networks exceeded 95% of
the total number of network nodes (meanGCsize 5 253.5).

Graph Measures

In weighted networks analysis, cost constitutes the most
fundamental and meaningful graph metric. The cost of
weighted graph G is simply a mean value of the connec-
tion strength between every possible pair of nodes K(G) 5

(1/NE)
P

i

P
j>iwij. As graph metrics are usually highly cost-

dependent, we included cost parameter in our analysis to
ensure that network topology changes and their possible
associations with behavioral outcomes are driven solely by
network reorganization, rather than being a simple conse-
quence of overall changes in the connectivity level.

To quantify the extent of the divisibility of the network
into non-overlapping communities, defined as subsets of
densely interconnected nodes with sparse connections
with the rest of the network [Newman and Girvan, 2004],
we implemented an approach introduced by Newman
[2006] and further extended by G�omez et al. [2009] for net-
works of correlated data. This method introduces the so-
called modularity quality function defined independently
for positive and negative connection weights as:

Q656ð1=v6Þ
X

ij
wij

62 si
6sj

6
� �

=v6
� �

dCiCj;

where dCiCj 5 1 when nodes i and j belong to the same
community, and 0 otherwise. There are several ways to

combine Q1 and Q- into a single measure of modularity
for signed networks [Rubinov and Sporns, 2011]. Here, we
used asymmetric treatment of positive and negative
weights, as we assume that despite the fact that the role of
the negative correlations can be biologically relevant, they
are not as important as the stronger positive associations.
In line with that assumption, we used a single measure of
network modularity Q defined as:

Q5Q11Q2v2= v21v1
� �

:

Finding a network community structure belongs to the NP-
hard (non-deterministic polynomial-time hard) class of prob-
lems [Brandes et al., 2006]. There are several algorithms
developed to divide networks into communities in a man-
ageable computational time. For large networks, it is recom-
mended to use greedy optimization methods. Here, the
Louvain algorithm was used for both weighted and binary
networks, incorporating the heuristics that reduce running
time to O(Nlog(N)) [Blondel et al., 2008]. Due to the stochas-
tic nature of the algorithm, its outputs typically vary from
run to run. To address this problem, for each weighted and
binary network, we used the Louvain algorithm 1,000 times
and chose the run that produced a network partition with
the highest Q value. We considered that partition to be the
network-optimal community structure and the correspond-
ing Q value—as the network modularity.

Hub Detection

To detect hub regions in functional brain networks, we
adopted methods of functional cartography [Guimera and
Amaral, 2005]. In this approach, the role of a node is
determined by its position in two-dimensional parameter
space, which is particularly useful in analyzing modular
networks. Both parameters depend on the community
structure of a given network, therefore we used the opti-
mal community structure for each binary network
described in the previous paragraph.

The first parameter is a degree-based centrality measure
called within-module degree z-score zi. It reflects the strength of
within-module connectivity of a node in comparison to other
nodes from the same module. Therefore, it allows to detect
highly central nodes called hubs. If ki is the number of connec-
tions of node i to other nodes in its own module C, <kC> is the
average of k over all the nodes in module C, and rkC is the stan-
dard deviation of k in C, then we can define zi of node i as:

zi5 ðki 2 < kC >Þ=rkC:

Note that zi is close to zero for nodes with an intra-modular
degree close to modular average. Here, we considered
nodes with zi> 1 as hubs and nodes with zi< 1 as non-hubs.

The second parameter of a node, called participation
coefficient pci, captures its inter-module connectivity. Par-
ticipation coefficient is specified by the formula:
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pci512
XNm

s51

kis

ki

� �2

;

where Nm is the number of modules, ki is the degree of
node i, and kis is the number of connections between node
i and module s. Participation coefficient quantifies how a
given node shares its connections with nodes in other
modules. It ranges from 0 to 1, where the pci values close
to 1 indicates nodes that share their connections evenly
across modules, whereas nodes with pci values close to 0
share their connections exclusively within their own mod-
ule. Participation coefficient can be used to determine the
function of hub and non-hub nodes. Originally hub nodes
were divided into three different classes [Guimera et al.,
2005], but here we considered only two of them: (1) provin-
cial hubs defined as nodes with zi> 1 and pci< 0.3; and (2)
connector hubs defined as nodes with zi> 1 and pci> 0.3.
The third type of hubs, called kinless hubs (nodes with
zi> 1 and pci> 0.75), was not included in our analysis due
to their absence in large-scale brain networks (we only
identified five nodes satisfying the criteria for a kinless
hub among all the analyzed networks). Provincial hubs
share connections mostly within their own module, and
thus support local processing, whereas connector hubs
link different communities, enhancing integration between
modules.

In our analysis, we calculated both parameters for all
nodes in each network thresholded at different levels
described earlier. Then, we integrated these values over
analyzed connection density range and assumed these
scores as the representative values of the nodes’ z-score
and participation coefficient in a given network.

Network-Based Statistic

Performing statistical testing on connectivity values for
large networks suffers from multiple comparisons prob-
lem. To overcome this issue, the NBS approach has been
developed [Zalesky et al., 2010]. NBS makes it possible to
find a set of connections forming a subnetwork associated
with an experimental effect or an inter-group difference.
In contrast to the false discovery rate (FDR) or Bonferroni
techniques, NBS has greater power to detect a whole clus-
ter of regions spanning multiple connections associated
with a hypothesis of interest [for detailed information see
Zalesky et al., 2010].

In this study, we used NBS to find differences in con-
nectivity resulting from changing cognitive demands. To
this purpose, we used full, weighted connectivity matrices
described earlier. The first step was computation of paired
t-test statistic (T; N 5 33; df 5 32), individually, for every
connection. In this study, we focused on two possibilities:
connection enhancement and connection weakening result-
ing from increased cognitive demands. We referred to a
subnetwork consisting of enhanced connections as a
strengthened network and to a subnetwork consisting of

weakened connections as a weakened network. In the next
step, a threshold (s) selected by the user was applied to T

values, and only connections exceeding this threshold
(T> s) were retained in the network. In the main text, we
show the results for s 5 2.5; however, the structure of our
findings is robust and extends to different s values (see
Supporting Information). Next, the algorithm searched for
connected subsets of nodes among the suprathreshold con-
nections and assigned to them a cluster size, that is, the
number of their connections. The last step consisted in
assigning P-value to each cluster found. This was done by
randomly permuting data labels over 10,000 iterations and
creating null distribution of the largest cluster size. This
null distribution was then used to assign family-wise cor-
rected P-value to each previously found cluster.

To characterize strengthened and weakened networks in
terms of commonly known functional brain systems, we
used the network division introduced by Power et al.
[2011], based on a meta-analysis of resting state data,
which has been shown to overlap with community struc-
ture revealed in task-based networks [Cole et al., 2014].
That division consists of 11 well-established large-scale
brain functional systems: default mode, frontoparietal,
cingulo-opercular, dorsal attention, ventral attention, mem-
ory, auditory, visual, salience, somatomotor, and subcorti-
cal. The partition also includes nodes unrelated to any
known brain system. We divided the connections of each
subnetwork detected by NBS into groups according to the
systems that they link to. This gave us 11 types of intra-
module connections corresponding to all the systems, as
well as 55 types of intra-module connections reflecting all
possible system pairs. That division can concisely be repre-
sented by 11 3 11 matrix M, in which entry mij is the total
number of links connecting i-th and j-th module. Note that
the diagonal entries of M reflect intra-module connections,
while the off-diagonal entries represent the subnetworks’
links connecting different systems.

Measure of n-Back Performance

There are several measures of performance in n-back
task paradigms. One of them, called d-prime (d0) is based
on signal detection theory [Swets et al., 1961] and requires
calculating hit rate and false-alarm rate of a subject’s
responses. In this study, we used a measure of perfor-
mance introduced by Ginestet and Simmons [2011] called
penalized reaction time (pRT). In contrast to d0, pRT com-
bines measures of speed and accuracy [Ginestet and Sim-
mons, 2011]. For every subject and task condition, pRT
was defined as:

pRT : 5
X

i51
xi;

where the index i denotes all possible responses, and xi is
obtained from the following formula:
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xi5
RTi if subject answered correctly;

2000 otherwise;

(

where RTi is the reaction time of i-th possible response. In
the formula above, the penalty for an incorrect answer or
no answer is equal to a maximum possible time to
respond. In contrast to d0, higher scores of pRT indicate
worse performance on the n-back task, as they are related
to longer RT and more incorrect answers.

Statistical Testing

To determine if topological properties of functional
brain networks change with increasing cognitive load, we
performed a paired-sample Student’s t-test for both cost
and modularity metric. Subsequently, we used multiple
linear regression (MLR) to test for possible correlations
between the change in behavioral performance measured
as DpRT and the change in network modularity. Formally,
the MLR model takes a standard form:

y 5 b1x11 b2x21 e:

Here, y is a vector of estimated DpRT values, x1 is the vari-
able of interest—the change in modularity (DQ) between
task conditions, x2 is a nuisance variable—mean cost
<K>5 1=2(K1-back 1 K2-back), b’s represents associated
parameters, and e is an error term. To verify whether the
model exhibited a statistically significant effect on the
change of modularity, we applied a one-sample t-test to
estimated b values.

To ascertain if the number of functional hubs is regu-
lated by the cognitive demand, we calculated the number
of provincial and connector hubs in the 1-back and 2-back
conditions for each participant. Next, we used a one-
sample Student’s t-test with a null hypothesis that the
number of provincial and connector hubs does not change
between the task conditions. We calculated the number of
both types of hubs in all large-scale brain systems
described earlier. For each system, we used one-sample
Student’s t-test to determine which specific systems dis-
played increased or decreased number of provincial and
connector hubs when subjects switched from 1-back to 2-
back. As we tested 11 hypotheses for each brain system,
we corrected the obtained P-values for multiple compari-
sons using the FDR approach [Benjamini and Hochberg,
1995]. In all the t-tests, we rejected the null hypothesis; we
considered the test significant when the associated P-value
was smaller than Pcrit 5 0.05.

RESULTS

Behavioral Performance

We observed a significant decrease in working memory
performance measured as a pRT from 1-back to 2-back,

t(32) 5 8.62, P< 0.0001 (Fig. 1A). Participants showed a
higher pRT in the 2-back (pRT2-back 5 833.2 ms, SD 5 202.9
ms) than in the 1-back condition (pRT1-back 5 681.7 ms,
SD 5 157.5 ms). As expected, these results showed that the
2-back task condition was more cognitively demanding
than the 1-back condition.

Network Modularity and Increasing Cognitive

Demands

The cost of functional networks varied from 0.012 to 0.1
(mean 5 0.03, SD 5 0.016). We found no significant differ-
ence in network cost between the 1-back and 2-back condi-
tions, thus the overall level of connectivity was preserved
across both task conditions (Fig. 1B).

Network modularity varied from 0.14 to 0.405 (mean-
5 0.289, SD 5 0.058). Individual values of modularity in 1-
back and 2-back were positively correlated (r 5 0.79,
P< 0.0001), indicating that a high value of modularity in
one condition was associated with a high value of modu-
larity in another. We observed a significant difference in
modularity between the two conditions (t(32) 5 4.8,
P< 0.0001; Fig. 1C). Functional networks in 2-back were
less modular (Q2-back 5 0.274, SD 5 0.055) than in 1-back
(Q1-back 5 0.304, SD 5 0.056).

Network Modularity and Behavioral Outcomes

MLR model fitted to the change in pRT between the
task conditions proved to be statistically significant
(P< 0.05) and revealed that greater deterioration in behav-
ioral performance was associated with a smaller decrease
in functional network modularity (Fig. 1D). In other
words, we observed a strong decrease of functional net-
work modularity in participants with high behavioral
scores in 2-back compared to 1-back. For the modularity
effect, the estimated beta value was equal to b1 5 21,075.1,
SEM 5 478.3, P< 0.05, while the effect of the nuisance vari-
able <K> was statistically insignificant.

Number of Provincial and Connector Hubs

Our analysis revealed an average number of 43.06 hubs
per functional network. We observed that there was no
significant difference in the overall number of hubs
between the task conditions (P 5 0.94). However, after
specifying the roles of hubs, we found differences between
the working memory conditions. There was a significant
decrease in the number of provincial hubs (t(32) 5 24.54,
P< 0.0001) accompanied by a significant increase in the
number of connector hubs (t(32) 5 3.67, P< 0.0001) when
subjects switched from the 1-back to the 2-back condition.
Increasing working memory load resulted in a decrease in
the number of provincial hubs from 15.79 to 10.70 and an
increase in the number of connector hubs from 27.30 to
32.33. The change in the number of provincial and
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connector hubs, with the overall number of hubs pre-
served across the task conditions, suggests a functional
role shift of the most central brain regions, caused by a
higher cognitive demand. A greater number of connector
hubs in the 2-back condition (Fig. 2A) may indicate an
increased inter-module communication traded off for a
decreased intra-module communication, which is reflected
by a smaller number of provincial hubs in the 2-back con-
dition (Fig. 2B).

Considering the membership of hubs in large-scale brain
systems revealed that with increased working memory
load the number of provincial hubs decreased significantly
only within the DMN (t(32) 5 25.15; P 5 0.001; FDR cor-
rected), while the number of connector hubs increased

within the DMN (t(32) 5 5.41; P 5 0.001; FDR corrected)
and the ventral attention network (t(32) 5 3.24; P 5 0.015;
FDR corrected). These results suggest that the change in
the function of hubs occurs primarily within the DMN,
which is reflected by an increased number of connector
hubs supporting integration of the functional network in
the cognitively demanding 2-back condition. The numbers
of both types of hubs within each large-scale system are
given in Table I.

We also tested for a possible relationship between a
change in the participation coefficient of the DMN nodes
and changes in the modularity and behavioral perfor-
mance (pRT) from the 1-back to the 2-back condition. We
found that an increase in the mean of the participation

Figure 1.

Differences in network measures and behavioral outcomes

between task conditions. A presents levels of performance mea-

sured as pRT. In B and C, mean cost and mean modularity (Q)

of functional networks are shown for both task conditions. Sym-

bol *** indicates a significant difference in the corresponding

measure between the task conditions (P< 0.05). In D, individual

differences in modularity (DQ) are plotted against individual dif-

ferences in pRT between 1-back and 2-back. Positive correlation

between these measures is reflected by a solid line of best fit.
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coefficient of the DMN nodes was associated with a
decrease in the modularity (rho 5 20.59; P< 0.0001) (Fig.
3A) and decrease in behavioral performance (rho 5 20.39;

P< 0.05). This finding may suggest that an increase in
inter-module connectivity between highly centralized
DMN regions may facilitate a modularity breakdown of

Figure 2.

(See legend on the following page.)
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the functional brain network and support behavioral
performance.

NBS Results

When considering the 1-back> 2-back contrast, a total of
1,364 connections forming a weakened network were iden-
tified (P< 0.0001; FWE corrected). In terms of the previ-
ously defined functional systems, the largest group among
these connections consisted of 360 edges between the
DMN regions (Fig. 2C). We found that 39% of connections
in the weakened network were intra-modular, while the
remaining 61% connected different brain systems. The
strongest disconnections were mainly located in the left
hemisphere and involved functional links between the
posterior cingulate cortex, medial prefrontal cortex, and
left temporal lobe (Fig. 2D). These results suggest that
with increasing working memory load, many brain sys-
tems reduced their internal connectivity.

When we studied connections with increased strength of
connectivity in the 1-back< 2-back contrast, we found a
cluster of 1,206 edges (P< 0.0001; FWE corrected) forming
a strengthened network. The vast majority of that network
consisted of connections between the DMN and other
brain systems—we found the total of 915 connections
between the DMN regions and the rest of the brain for
which connectivity increased in the 2-back condition (Fig.
2E). Moreover, only 1.6% of strengthened network connec-
tions were intra-modular, which indicates that increased
memory load leads almost exclusively to intra-modular
connectivity enhancement. The most strongly enhanced
connections were often long-range and inter-hemispheric
(Fig. 2F). These results suggest that the strengthened con-
nectivity between the DMN and the rest of the brain pro-
vides additional functional integration between distinct
functional systems. Although here we present, the results
for t-test threshold s 5 2.5, weakened and strengthened
networks with similar properties were also present for
s 5 {3, 3.5, 4, 4,5}.

To examine a possible relationship between the shift of the
DMN connectivity detected by NBS and graph theoretical

results, we used a MLR model with decrease in modularity
as the response variable and changes in inter and intra-
DMN connectivity between the task conditions as explana-
tory variables. Intra-DMN connectivity (Sintra-DMN) was sim-
ply a sum of the weights of connections linking any two
DMN regions, while inter-DMN connectivity (Sinter-DMN) was
a sum of the weights of connections linking the DMN with
any other region. As expected, intra-DMN connectivity
decreased (t(32) 5 7.25; P< 0.0001), while inter-DMN connec-
tivity increased (t(32) 5 26.49; P< 0.0001) from 1-back to
2-back. MLR model DQ 5 b1DSintra-DMN 1 b2DSinter-DMN was
statistically significant (F 5 3.71; P< 0.05) with a statistically
significant increase in the inter-DMN connectivity effect
(b2 5 20.0001484; P 5 0.021). This result indicates that
changes in modularity may emerge as a result of increased
connectivity strength between the DMN and other brain
systems.

DISCUSSION

The aim of this study was to verify the previous find-
ings showing an increased whole-brain network integra-
tion under increased cognitive demands at the n-back task
[Kitzbichler et al, 2011; Stanley et al., 2014; Vatansever
et al., 2015a] and to provide a comprehensive description
of subnetwork changes that may be involved in the forma-
tion of the global workspace, using hub detection methods
and NBS. We found that global network modularity
decreased when cognitive demands increased. Moreover,
we found that a load-dependent change of modularity was
associated with a change of behavioral performance mea-
sured as pRT. We also showed that the number of connec-
tor hubs within the DMN and the ventral attention
network increased from the 1-back condition to the 2-back
condition, whereas the number of provincial hubs
decreased only within the DMN. Moreover, change in par-
ticipation coefficient of the DMN nodes was correlated
with changes in the whole-brain modularity and changes
in behavioral outcomes. The NBS analysis revealed a
cluster of connections whose connectivity increased with
increasing cognitive demands (mainly comprised of

Figure 2.

Top panel: connector hubs (A) and provincial hubs (B) drawn in

the brain space. The size of the hub region reflects the fre-

quency of occurrence of this region as a hub in a population of

functional networks; thus, the largest spheres indicate regions

identified as hubs for most participants. The colors of hubs

reflect the regions’ assignment to well-established functional

brain systems described by Power et al. [2011]. Bottom panel:

weakened and strengthened networks in terms of predefined

brain systems. The left panels show matrices reflecting the total

number of edges linking different communities. Note that the

largest group of weakened network (C) edges consists of edges

within the DMN, while the vast majority of the strengthened

network (E) edges link the DMN to other brain systems. The

right panels show weakened (D) and strengthened networks (F)

in the brain space for an NBS threshold s 5 4.0. The size of the

edge reflects the value of the statistical test on that edge; thus,

the thickest lines represent the edges with the largest differ-

ences in the connectivity strength between the task conditions.

The edges are color-coded in the following way: blue 5 within-

DMN edges, light blue 5 within-community edges (not including

the DMN), red 5 edges linking the DMN to other systems, yel-

low 5 edges linking different communities (not including the

DMN).
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connections between the DMN and other networks), as
well as a cluster of weakened connections comprised of
many intra-DMN connections.

These results provide a valuable replication of the previ-
ous findings on load-dependent network reorganization
during the n-back task and give strong support to GWT
by showing that higher cognitive demands break network
modularity in a way beneficial for behavioral performance.
Moreover, our findings fill in the existing gap in the

knowledge of mechanisms responsible for the emergence
of the global workspace, by showing a critical role of the
DMN in the processes of integration of distinct modules.

Network Modularity Decreases With Increasing

Cognitive Demands

Modularity, as a feature of complex networks, facilitates
a high level of network adaptation to changing environ-
ments [Kashtan and Alon, 2005; Meunier et al., 2010]. In
terms of cognitive psychology, “modules” are defined as
encapsulated, domain-specific processors dedicated to
automatic, unconscious cognitive processes [Baars, 1988;
Fodor, 1983], which have to share the information during
effortful, conscious cognition by forming an integrated
“global workspace” [Baars, 1988; Dehaene et al, 1998].

By combining the concepts of modularity from cognitive
psychology and network science, we showed that the
whole-brain network modularity decreased when the
demands of a working memory n-back task increased. In
the 1-back condition, network nodes were highly function-
ally connected within modules; in the 2-back condition,
more network nodes were involved in information transfer
between modules, which resulted in a decrease of the
whole-brain modularity. A decrease of modularity implies
a less segregated and more integrated network connectiv-
ity pattern.

An n-back task requires that participants engage multi-
ple cognitive processes such as: encoding (interpreting
each letter), storage (retaining the letter in memory),
rehearsal (keeping the content of storage active), match-
ing (comparing the presented letter with the letter

Figure 3.

Individual differences in the change in participation coefficient (PC) of the DMN nodes and the

change in modularity (DQ) and behavioral performance (DpRT) between the task conditions (1-

back minus 2-back). Individuals who exhibited substantial increases in participation coefficient of

the DMN nodes from 1-back to 2-back tended to have larger decline in modularity (A) and

smaller decline in behavioral performance (B).

TABLE I. The number of connector and provincial hubs

for large-scale brain systems [Power et al., 2011]

Large-scale
networks

Connector hubs Provincial hubs

1-back 2-back
P

(FDR) 1-back 2-back
P

(FDR)

Defaut mode 4.82 8.33 0.0001 6.45 3.03 0.0001

Fronto-parietal 3.45 3.39 0.9803 2.42 3.03 0.3148
Cingulo-opercular 1.52 1.61 0.9803 0.48 0.24 0.2165
Dorsal attention 1.64 1.64 1.0000 0.42 0.48 0.7116
Ventral attention 0.55 0.97 0.0152 0.30 0.15 0.3148
Memory 0.64 0.67 0.9803 0.24 0.06 0.2165
Auditory 1.64 1.76 0.9803 0.36 0.15 0.2165
Visual 6.52 6.97 0.9803 2.36 1.18 0.0590
Salience 2.21 1.91 0.9803 0.42 0.52 0.5731
Somato-motor 3.06 3.39 0.9803 2.06 1.52 0.2165
Subcortical 0.21 0.27 0.9803 0.06 0.00 0.2522

Bold P-values reflect significant changes (P< 0.05) in the number
of a certain type of hubs between task conditions. All P-values
were corrected for multiple comparisons using false discovery
rate (FDR) method.
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presented n trials previously), temporal ordering (keep-
ing the order of the letters), inhibition (suppressing the
trace of the oldest letter in memory), and executing an
accurate response [Jonides et al., 1997]. Increasing the
number of n (as here, from 1-back to 2-back) results in a
greater demand on storage, rehearsal, temporal ordering
and inhibition. The low demand 1-back task, predomi-
nantly requires recognition of previously shown stimuli,
and to a large extent can be done automatically and
effortlessly. Therefore, this task can be easily performed
within functionally dedicated brain subsystems, with no
need for information transfer between them. This is
highly beneficial from the economical perspective; in seg-
regated processing, the use of mainly short-distance
intra-modular connections reduces the wiring cost of a
network [Bullmore and Sporns, 2012; Meunier et al.,
2010]. The segregated information processing pattern is
no longer sufficient when cognitive demands increase—
as in the 2-back task. To perform this more effortful task,
it is necessary to expend the cost of integrating multiple
modules through long-distance connections. By providing
compelling evidence of brain network adaptation into a
more efficient—albeit more costly—workspace configura-
tion in response to increasing cognitive demands, our
results add to existing support for GWT.

This effort-dependent modularity shift, which is in line
with GWT, was found in the previous studies using an n-
back task. In an MEG study, Kitzbichler et al. [2011] found
that whole-brain network modularity decreased when the
load on working memory increased. Consistently with this
result, a recent fMRI study by Vatansever et al. [2015a]
showed a decrease in modularity from 0-back to 3-back
(also using 264 Power ROIs for node definition). Con-
versely, Stanley et al. [2014] found that only regional mod-
ularity decreased for the DMN and working memory
network as opposed to the whole-brain modularity, which
remained unchanged between 1-back to 2-back. However,
this study examined functional networks on the voxel
level, which was possibly limited to the detection of mod-
ular reorganization only at the local level of network
description.

It is worth noting that an effort-dependent modularity
breakdown was also reported for tasks other than n-back,
which suggests that this phenomenon is not specific to the
working memory domain. For example, by comparing net-
work reorganization during processing of forward and
backward masked visual stimuli, Godwin et al. [2015]
showed that awareness of the visual target caused a
decrease of the network modularity. Modularity decreases
were also found in an EEG study by Bola and Sabel [2015]
during the performance of a visual discrimination (odd-
ball) task and in an fMRI study by Elton and Gao [2015]
during a selective attention task. Moreover, Shine et al.
[2015] by comparing different tasks (motor, emotion, rela-
tional, gambling, language, social and n-back) found that,
whereas integration and segregation states were common

for all the tasks, the effect of global integration was depen-
dent on task demands—the highest level of integration
was found in an n-back task: the lowest level of integra-
tion, in a motor task. These results suggest that network
integration is not specific to the n-back task but—in agree-
ment with GWT—arises in highly demanding tasks. We
may hypothesize that when the task is too demanding,
interference effects in the highly integrated networks will
lead to many errors.

Network Modularity Change Predicts Behavioral

Outcomes

Although the transition of functional network organiza-
tion during increasing demands of cognitive tasks sup-
ports efficient integration of information, it is more
expensive. Is such a costly network reorganization benefi-
cial to behavioral outcomes? Here, we found that effort-
dependent decrease in modularity was associated with
smaller decreases in behavioral performance (pRT). The
participants whose modularity of functional brain net-
works strongly decreased tended to retain high perfor-
mance scores when switching from 1-back to 2-back.
These results provide evidence that greater network inte-
gration extends access to cognitive resources encapsulated
within distinct brain modules that are necessary to main-
tain high levels of behavioral performance when the task
difficulty increases. This finding is in line with the afore-
mentioned work by Stanley et al. [2014], who also found
that a greater decrease in global modularity was associated
with a smaller decline in behavioral performance from 1-
back to 2-back. Vatansever et al. [2015a] also found a posi-
tive correlation between the change in reaction times for
correct responses and change of modularity from 0-back to
3-back, which is consistent with our finding. These find-
ings taken together present strong evidence for the rele-
vance of effort-dependent network reorganization to
human behavior.

The DMN Plays a Crucial Role in the Global

Workspace Formation

The term DMN originally stood for a set of brain
regions (including medial prefrontal, posterior cingulate
and lateral parietal cortices), the activity of which
decreases during certain goal-oriented tasks [Mazoyer
et al., 2001; Raichle et al, 2001; Shulman et al., 1997] and
increases during spontaneous, internally directed cognitive
processes [Buckner et al., 2008]. In previous literature, the
DMN was referred to as a task-negative network, because
of its strong negative correlation with the dorsal attention
regions (task-positive network), routinely active during
goal-directed cognition [Fox et al., 2005; Fransson, 2005].
Some studies suggest that this anticorrelation may reflect
competition for limited processing resources between these
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subnetworks [Fox et al., 2005; Kelly et al., 2008; Weissman
et al., 2006].

Our results provide evidence that weakened connectiv-
ity strength between the DMN components in performing
tasks which require effort may not necessarily mean that
the network disengages during the task or competes with
a task-positive network, but actually rearranges its connec-
tions to support communication between regions from
other subnetworks during goal-directed behavior. We
found that only the DMN and the ventral attention net-
work displayed an increased number of connector hubs,
while the number of provincial hubs decreased only
within the DMN. These results are complementary to our
findings of modularity decrease with increasing cognitive
demands; to obtain a high level of integration between
modular subsystems during the performance of effortful
cognitive tasks, connector hubs—regions with the ability
to interconnect distant modules—have to be engaged in
forming the global workspace. Connector hubs reduce the
shortest path length between remote brain regions, thus
increasing the network’s efficient communication through
long-distance network connections [Bullmore and Sporns,
2012]. Moreover, by utilizing the NBS approach [Zalesky
et al., 2010], we found significant shifts in connectivity
strength forming spatial patterns closely related to the
division into well-known large brain systems, including
the DMN. The weakened network consisted of many
intra-DMN connections, which decreased their strengths
with increasing working memory load. We also found a
strengthened network of connections between the DMN
and other systems, whose coupling increased with
increased cognitive demands. This suggests the DMN
plays an essential role in the integration of information
between remote brain systems in performing demanding
tasks.

Given the fact that both the strengthened and weakened
networks are comprised of a similar number of connec-
tions, it is tempting to hypothesize that both effects reflect
trade-offs between intra- and inter-module communica-
tion. These effects may arise as a consequence of competi-
tion for limited brain resources under the requirements of
a cognitively challenging task. Moreover, increased inter-
module connectivity in 2-back, which is supported mainly
by long-distance inter-hemispheric connections of the
strengthened network, is in line with the main idea of
GWT, where communication between brain systems is
enhanced during more controlled, high-demand process-
ing [Baars, 1988]. In addition, as stronger inter-module
coupling proved to be related to decreased modularity, the
DMN involvement in functional network reorganization
provides a potential mechanism underlying the effect of
decreased modularity with increasing working memory
load. Taken together, these results suggest that network
integration is achieved through a change of the connectiv-
ity profile of the DMN regions. These highly connected
regions suppress their intra-modular communication and

form functional connections to regions in other subsys-
tems, thus changing their function and becoming connec-
tor hubs.

Originally, long-range FPN connections were suggested
to play a crucial role in the global workspace formation
[Dehaene and Changeux, 2011; Dehaene and Naccache,
2001]. This assumption was initially based on neuroimag-
ing studies showing activations of prefrontal, parietal and
anterior cingulate regions during effortful task perfor-
mance [Duncan, 2010; Dux et al., 2006; Klein et al., 2007;
Landmann et al., 2007]. However, a recent study by Grat-
ton et al., [2016] showed that activated regions and con-
nector hubs provide distinct contributions to changes in
functional connectivity during task performance, sugges-
ting that they are associated with different network modu-
lation processes. In our study, we exclusively focused on
network reorganization processes, not on regional activa-
tion processes, where we could expect to discover activity
of the FPN. The network perspective fundamentally differs
from the activation-oriented studies in terms of the pro-
cesses they describe, which may explain why we did not
find task-positive network regions exhibiting a crucial role
in the formation of the global workspace. Using dynamic
network analysis, Shine et al. [2015] found that a shift
toward network integration during an n-back task was
largest not only for the frontoparietal but also the default
mode and subcortical regions. Similarly, Stanley et al.
[2014] found that the number of connector hubs within the
frontoparietal network as well as the DMN network
increased from 1-back to 2-back. Moreover, by tracking
dynamic changes of functional connectivity patterns,
Braun et al. [2015] showed that performance in an effortful
working memory n-back task was related to the reconfigu-
ration of highly flexible nodes of the frontal systems, con-
sisting of the nodes commonly associated both with the
DMN and with a task-positive network. These findings
suggest that the network perspective offers a view in
which dynamic processes related to the DMN and a task-
positive network may be essential to understand the whole
network reorganization during the performance of work-
ing memory tasks. However, the aforementioned studies
did not offer a clear explanation of the network integration
processes in terms of the exact dynamics between the
DMN and a task positive network in the light of GWT.
Our results suggest that the brain system responsible for
the global workspace relies on the DMN, which increases
the coupling between other large-scale brain networks
such as cingulo-opercular, fronto-parietal, somatomotor,
salience and visual.

Network integration and formation of the global work-
space may be achieved through a rearrangement of the
DMN functional connections. Active engagement of the
DMN during goal-directed cognitive processes receives
strong support from studies focused on task-related
regional deactivation, which suggests that the magnitude
of the deactivation of the DMN regions may reflect a
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reallocation of processing resources to facilitate task per-
formance [Daselaar et al., 2004; Mayer et al., 2010; Persson
et al., 2007]. The engagement of the DMN in network inte-
gration processes was also suggested by the recent func-
tional connectivity studies [Fornito et al., 2012; Vatansever
et al., 2015a]. For example, Fornito et al. [2012] found that
some DMN regions formed a transitional module which
enhanced integration with the frontoparietal system dur-
ing a memory recollection task. Vatansever et al. [2015a]
showed that flexible DMN regions actively contribute to
working memory by dynamically reorganizing their inter-
actions with other functional subnetworks and claimed
that the DMN may be engaged in the global workspace
formation. A central location of the DMN regions in the
brain and their good communication with other networks
make this assumption very plausible [Hagmann et al.,
2008; van den Heuvel and Sporns, 2011]. Our NBS results
may explain the mechanism of the workspace formation
and the DMN engagement in the integration process by
showing a rearrangement of connections from the DMN
network to other subnetworks. Moreover, the relationship
between the DMN changes and global modularity
decrease shows that these subnetwork changes may signif-
icantly affect integration of the whole-brain network.

Is the DMN engagement in integration processes specific
to working memory tasks? Working memory requires an
interplay of multiple cognitive components such as percep-
tion, rehearsal, recall, and selecting an appropriate motor
response; therefore, it requires an integration of many brain
subnetworks [Baars and Franklin, 2003; Dehaene and Nacc-
ache, 2001]. Some previous studies linked the DMN to
working memory [Anticevic et al., 2010; Hampson et al.,
2006; Stanley et al., 2014; Vatansever et al., 2015a]. For
example, Hampson et al. [2006] found a positive correlation
between the strength of the DMN connectivity and working
memory performance and suggested that the DMN may
play a role in the facilitation and monitoring of cognitive
performance. Anticevic et al. [2010] showed that the tem-
poroparietal junction and the DMN deactivations during
encoding predicted working memory performance, which
suggests the DMN’s role in working memory trace forma-
tion. However, several studies report the DMN participa-
tion in network integration during tasks engaging other
cognitive functions, such as recollection tasks [Fornito et al.,
2012], auditory oddball [Arbabshirani et al., 2013], and fin-
ger opposition task [Vatansever et al., 2015b]. We hypothe-
size that the DMN integration may be characteristic of
effortful tasks and is not specific to working memory.
Future studies should investigate to what extent the DMN
is engaged in other tasks and how this engagement is
changed by increasing cognitive demands.

Limitations

The present study has several limitations. First, we
examined static task-based connectivity by averaging

multiple 1-back and 2-back blocks. To examine transitional
patterns of network reorganization, future studies should
use approaches of dynamic functional connectivity by
dividing the task data into short time windows. Moreover,
we used a network partitioning into main large-scale net-
works provided by previous studies [Cole et al., 2014;
Power et al., 2011]. This provided consistency with previ-
ous studies, but future analyses should also use data-
driven network division. Finally, the n-back paradigm
which we used involved only two load conditions (1-back
and 2-back). Therefore, from these findings one cannot
infer whether network organization will change propor-
tionally with increasing working memory load. Hence,
future studies should examine changes of that character,
including conditions such as 0-back and 3-back.

CONCLUSIONS

Our findings demonstrate that during increasing cogni-
tive demands the whole-brain network breaks its highly
modular architecture to promote more integrated informa-
tion processing, which strongly corroborates the main
assumptions of GWT. Moreover, the observed transition in
the whole-brain network organization is beneficial for
behavioral performance. We also suggest that the long-
range and highly flexible connections of DMN may play an
essential role in the formation of an integrated workspace
under increasing demands of a goal-directed n-back task.
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