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This paper deals with the stability and transition to turbulence of wall-bounded
unsteady velocity profiles with reverse flow. Such flows occur, for example, during
unsteady boundary layer separation and in oscillating pipe flow. The main focus
is on results from experiments in time-developing flow in a long pipe, which is
decelerated rapidly. The flow is generated by the controlled motion of a piston. We
obtain analytical solutions for laminar flow in the pipe and in a two-dimensional
channel for arbitrary piston motions. By changing the piston speed and the length
of piston travel we cover a range of values of Reynolds number and boundary layer
thickness. The velocity profiles during the decay of the flow are unsteady with reverse
flow near the wall, and are highly unstable due to their inflectional nature. In the
pipe, we observe from flow visualization that the flow becomes unstable with the
formation of what appears to be a helical vortex. The wavelength of the instability
≃ 3δ where δ is the average boundary layer thickness, the average being taken over
the time the flow is unstable. The time of formation of the vortices scales with the
average convective time scale and is ≃ 33/(∆u/δ), where ∆u = (umax − umin) and
umax, umin and δ are the maximum velocity, minimum velocity and boundary layer
thickness respectively at each instant of time. The time to transition to turbulence is

≃ 39/(∆u/δ). Quasi-steady linear stability analysis of the velocity profiles brings out
two important results. First that the stability characteristics of velocity profiles with
reverse flow near the wall collapse when scaled with the above variables. Second that
the wavenumber corresponding to maximum growth does not change much during
the instability even though the velocity profile does change substantially. Using the
results from the experiments and the stability analysis, we are able to explain many
aspects of transition in oscillating pipe flow. We postulate that unsteady boundary
layer separation at high Reynolds numbers is probably related to instability of the
reverse flow region.

1. Introduction

Two types of unsteady viscous flow have received considerable attention in the
literature. The first one is oscillatory flow (with zero mean) and pulsatile flow (with
non-zero mean) over flat plates and in pipes. The second one is unsteady flow past a
body, for example an impulsively started cylinder or oscillating airfoil. Pulsatile flow
is important in the design of pumps and other process equipment with transient flow
patterns during startup, shutdown and change of operating conditions. Blood flow in
arteries and respiratory flow in trachea are unsteady and it is important to understand
the process of transition in such flows. Dynamic stall, related to unsteady boundary
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layer separation, is of importance in various aerodynamic applications including
aircraft with high manoeuvrability, helicopter rotors, wind turbines, and jet engine
compressor blades. A common feature in both these types of flows is the existence of
inflection-point velocity profiles (often with reverse flow) that are unsteady. It is well
known that velocity profiles with inflection points are highly unstable. Our purpose
in this paper is to understand the stability and transition to turbulence of such flows.

Unsteady boundary layer separation is not yet fully understood and there is no
specific criterion for its occurrence, in contrast to steady separation. Under steady
conditions, the boundary layer separation point is defined as the point at which
the wall shear stress becomes zero. It is observed in practice that just downstream
of this point streamlines diverge away from the body. In unsteady flows there
is no such universally accepted criterion. Vanishing of wall shear stress does not
have any special significance in unsteady flows. A thin region of reverse flow often
exists just downstream of the zero wall shear stress point and the boundary layer
approximation is valid until the flow eventually breaks away with sudden thickening
of this region (Sears & Tellinois 1975). The breakaway is termed unsteady separation
and is invariably accompanied by formation of vortices. The unsteady separation
process seems to be quite complex and the details depend on geometry (airfoil,
cylinder, etc.), type of motion (impulsive, oscillatory) and Reynolds number. For
example the structure of unsteady separation for an impulsively started cylinder
clearly shows a Reynolds number dependence (Bouard & Coutanceau 1980): at
Reynolds numbers less than about 5000 the wake vortices grow by accumulation
of the upstream boundary layer vorticity, whereas at a Reynolds number of 9500
a number of vortices develop in the thin reverse flow region before full separation
occurs. One view of unsteady separation is that it can be considered to occur when
a singularity in the boundary layer solution is observed (Van Dommelen & Shen
1982). We, however, believe the initial formation of the vortices at least in some
types of unsteady separation, as in the Re = 9500 case, is a result of instability of
the reverse flow region. The recent study of Cassel, Smith & Walker (1996) shows
that in the vicinity of the separation point (in unsteady boundary layer separation
at high Reynolds number) the velocity profiles become unstable at the very onset of
viscous–inviscid interaction, prior to the appearance of the singularity. Reviews and
references for the extensive work done in unsteady separation may be found in Sears
& Tellinois (1975), Cowley, Van Dommelen & Lam (1990), Puhak, Degani & Walker
(1995) and Cassel et al. (1996).

The other class of unsteady flows is oscillating flow with or without a superimposed
mean velocity. The oscillating flow may be caused by an oscillating piston in a pipe
(Hino, Sawamoto & Takasu 1976; Akhavan, Kamm & Shapiro 1991a; Ohmi et al.
1982; Merkli & Thomann 1975), by a sinusoidally varying free-stream velocity over
a flat plate (Collins 1963; Jensen, Sumer & Fredsøe 1989), or by a longitudinal
oscillation of a flat plate in still or moving fluid (Li 1954; Sarpkaya 1993). In all
cases the velocity profile is unsteady, often with reverse flow. In spite of the vast
amount of work done there are many unanswered questions regarding the stability
and transition of such flows. Depending on the Reynolds number and frequency of
oscillation a number of features, not fully explained, like disturbed laminar flow and
intermittently turbulent flow have been observed (see e.g. Akhavan et al. 1991a). It
is known that transition is due to instability of the inflection point profiles, but the
exact nature of the transition process is not understood.

A related type of unsteady flow which has been studied is when the free stream
over a flat surface has a constant acceleration or deceleration. Fales (1955) ob-
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served experimentally the formation of two-dimensional vortices and subsequent
three-dimensionality when a flat plate moving in its plane in still fluid is abruptly
stopped. Gad-el-Hak et al. (1984) in a similar experiment linearly decelerated a plate
from some constant speed to a lower constant speed. The Reynolds numbers were low
enough that during the constant speed phases of plate motion the flow was laminar.
However, during the deceleration phase formation of inflection point profiles led to
instability and transition to turbulence. Yang, Spalart & Ferziger (1992) were able to
reproduce these results using direct numerical simulation (DNS). Lefebvre & White
(1989) found abrupt transition to turbulence in an accelerating flow in a long pipe.
The critical Reynolds number based on boundary layer thickness was about 25 000.

There is no satisfactory linear stability analysis for velocity profiles whose mean
value is changing with time. Shen (1961) has carried out stability analysis for velocity
profiles which are unsteady, but similar. Two common methods for stability analysis
of unsteady flows have been the quasi-steady approximation and Floquet theory,
which is only appropriate for periodic flows. Seminara & Hall (1975) and Hall &
Parker (1976) have shown that the quasi-steady approximation is fairly accurate as
long as disturbances grow at a rate fast compared to the rate of change of the mean
flow. The quasi-steady approximation has been satisfactorily used to explain observed
instability in many unsteady situations (Thorpe 1971; Obremski & Fejer 1967). Direct
numerical simulation (Akhavan, Kamm & Shapiro 1991b) of oscillating pipe flow
shows that infinitesimal disturbances evolve as would be predicted by quasi-steady
stability analysis. Nonlinearity and secondary instability come into the picture only at
later times and are essential to describe the final stages of transition. A straightforward
application of stability theory, however, still does not answer many questions. For
example in oscillating pipe flow stability theory predicts a critical Reynolds number
(based on Stokes layer thickness) of 82 whereas the experimentally observed value is
in the range of 300 to 500; and turbulent bursts are observed during the deceleration
phase whereas stability theory predicts the most unstable velocity profile to occur
during the start of the acceleration phase. Oscillating pipe flow is discussed in more
detail in § 5.5.

2. Present work

In the situations discussed above, analysis or explanation of the physical process
is difficult. Dynamic stall depends on too many parameters: the pressure gradient
changes both in space and time. In the case of oscillatory pipe flow the effect of the
acceleration or deceleration phases cannot be studied separately. The turbulence or
perturbations generated during one phase can change the flow in the rest of the cycle.

Therefore in the present work we have developed a novel experimental technique to
study unsteady velocity profiles with reverse flow. The principle of these experiments
is illustrated below. We generate motion in a long pipe with a piston. The piston
accelerates from zero velocity to Up for time 0 < t < t0, maintains constant velocity
for t0 < t < t1, decelerates to zero velocity for t1 < t < t2, and is stationary for t > t2.
A typical variation of piston velocity with time is shown in figure 1(a). The velocity
profiles during the phases are shown in figure 1(b). A velocity profile with reverse flow
close to the wall develops for t > t1. These velocity profiles are unsteady and have
inflection points, and hence become unstable at relatively low Reynolds numbers. The
instability and evolution of such flows is the main focus of this study.

Weinbaum & Parker (1975) have done related work. They have investigated the-
oretically the laminar decay of a fully developed channel or pipe flow following a
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Figure 1. (a) Typical variation of piston velocity with time; t0 is the time of acceleration, t1 is
the time when stepper motor is switched off and t2 is the time when piston motion stops. Circles
represent the actual piston velocity and the dashed–dotted line is the assumed trapezoidal motion.
(b) Velocity profiles for different times, (i) during the acceleration of the piston; curve 1, t = t0/4; 2,
t = 2t0/4; 3, t = 3t0/4; 4, t = t0; (ii) when piston velocity is constant; curve 5, t = t0 +(t1 − t0)/3; 6,
t = t0 + 2(t1 − t0)/3; 7, t = t1 (iii) during the deceleration of the piston; curve 8, t = t1 + (t2 − t1)/4;
9, t = t1 + 2(t2 − t1)/4; 10, t = t1 + 3(t2 − t1)/4; 11, t = t2; and (iv) after the piston motion stops;
curve 12, t = t2 +(tp − t2)/6; 13, t = t2 +2(tp − t2)/6; 14, t = t2 +3(tp − t2)/6; 15, t = t2 +4(tp − t2)/6;
16, t = t2 + 5(tp − t2)/6; 17, t = tp; and 18, t = tv = 23.6 s. Up refers to constant piston velocity.
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Figure 2. Schematic representation of experimental setup.

sudden blockage. The pressure wave passes at the speed of sound, resulting in reverse
flow near the wall immediately after the blockage of the channel or pipe, to satisfy
the zero mass flow condition. Weinbaum & Parker (1975) obtain the velocity profiles
approximately by solving the one-dimensional unsteady governing equation using
the Pohlhausen type technique. We, however, obtain exact solutions for the velocity
profiles with time for any given piston motion.

The paper is organized as follows. The experimental work is described in § 3. The
analytical solution is discussed in section 4 with details given in the Appendix. In
§ 5 we present the main results of this study. Transition of oscillatory pipe flow and
unsteady separation of the boundary layer are discussed in relation to these results
in the same section. Section 6 concludes the paper.

3. Experiments

3.1. Experimental setup

The experimental setup is shown in figure 2. The arrangement is a closed loop,
clamped to a wooden board. Glass pipes of 2.56 cm diameter and 145 cm long form
two legs of the loop, connected with PVC pipes at either end. Pipe 1 contains a
piston while pipe 2 contains the test section. One end of the piston is connected
through an inextensible string to a stepper motor; the other end of the piston is
simultaneously connected to a ten turn potentiometer. The output signal from the
potentiometer is stored in an oscilloscope and is subsequently used to get piston
velocity as a function of time. The light from a light emitting diode, connected with
the stepper motor controller and kept below the test section, is recorded by a video
camera simultaneously with the flow structure. This signal gives time of starting of
the motor and the time when the motor is switched off. In all cases, the length of the
piston motion was such that disturbances from the bends did not convect to the test
section during the time of the experiment. The deceleration times are of the order of
0.01 s to 0.5 s, usually much smaller than the transition time which is of the order of
1 s to 10 s. The acceleration and deceleration phases are well approximated by linear
changes of velocity with time.

We have also done a few experiments in a channel with rectangular cross-section
(15 × 5.4 cm) and 212 cm long. The rest of the arrangement is similar to the pipe-flow
setup.

3.2. Flow visualization

In all the experiments water was the working fluid. We injected fluorescent dye at
the top or bottom wall along the pipe in bands of approximately 5 mm width before
the start of each experiment; in some of the experiments we had dye on both the
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top and bottom walls of the pipe. Similiarly dye was injected on the top and bottom
walls in the channel experiments. The top dye density was 0.5 kg m−3 less than
the density of the working fluid; similiarly the bottom dye density was 0.5 kg m−3

more than the working fluid density. The density differences were created by adding
appropriate amounts of common salt. This density difference ensured that the two
dye lines remain at the top and bottom of the pipe/channel before the start of the
motor. The effect of this density difference is negligible as the Richardson number
(Ri = g(∆ρ/ρ)(R/U2

p )) is less than 0.02 for all the experiments. Dye was injected by
inserting two flexible tubes containing the dyes. These tubes were inserted to the end
C of pipe 2 and dye was injected slowly and the flexible tubes pulled out of pipe 2
simultaneously. The motion produced due to the dye injection was allowed to settle
down to rest for about five minutes before the experiment was started. A 3 mm thick
vertical sheet of light aligned with the flow from a 1000 W halogen lamp was passed
through the test section. Motion of the dye was recorded on a video camera placed
perpendicular to the plane of the light sheet. The starting and switching off of the
motor was recorded by the light emitting diode connected to the motor switch and
kept in the field of view of the camera.

In some of the experiments we used polystyrene particles (specific gravity = 1.05)
of size less than 100 microns to visualize the flow. Fluid and particle densities were
matched by adding salt to the water. Flow was recorded on video tape and long
exposure photographs with a still camera were taken from the video recording to get
the structure of the flow. From particle visualization it was confirmed that the flow is
unidirectional during the acceleration phase and during the deceleration phase until
the instability sets in.

From dye visualization pictures we observe how the flow becomes unstable. The
dye line takes the form of a wave (see figures 3–8) some time after the piston motion
stops and at a later time a series of vortices appears. We measure the time when
a perceptible wave appears (tp). This indicates the time when the instability sets in
and the flow ceases to be unidirectional. The waves can be detected only when the
amplitude of the waves is approximately 1 mm. The dye line subsequently rolls up
into spirals. The beginning of the rollup process is taken as the time of appearance
of the vortex (tv) and the distance between adjacent vortices or wavelength of the
instability, λ, is also measured. Estimated errors in the measurement of tp and tv and
λ is 5%.

3.3. Hot-wire measurements

Hot-wire measurements obtained using a constant temperature anemometer (DAN-
TEC 56C01 CTA with 56C17 CTA bridge) were mainly used to get the transition to
turbulence times. The probe mounted on a long stem and inserted from one end of
the pipe was nearly parallel to the pipe axis. The wire was placed such that it never
encountered reverse flow so as to ensure there was no contamination of the signal due
to the probe stem. We also used a wedge-shaped hot-film probe (DANTEC 55R32)
which however did not have sufficient frequency response to indicate transition.

3.4. Range of parameters

Two parameters that can be varied in our experiment are the piston speed and the
piston travel distance. We varied maximum piston speeds from 5.35 cm s−1 to 47.3 cm
s−1 and the piston travel distance was between 8R and 56R in the pipe. The thickness
of the boundary layer (δ1) when the motor is switched off depends on the distance
travelled by the piston for a particular speed. The Reynolds number (Reδ1

) based
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on the boundary layer thickness δ1 and the centreline velocity at t1 (umax1) ranges
from 250 to 3000 and the range of δ1/R is between 0.1 and 0.91. The boundary layer
thickness was calculated using the analytical solution described in the next section.
The assumption in the calculation is that the flow is unidirectional and laminar which
was confirmed by particle flow visualization; instability, for the Reynolds numbers
achieved in our experiments, always occurs after the piston deceleration has started.

4. Analytical solution

We consider axisymmetric, unsteady, incompressible flow in an infinitely long pipe.
Let r be the radial distance from the centre of the pipe, θ the azimuthal angle and
x, the axial distance. From the experiments it is observed that the flow remains
unidirectional (unidirectional is taken to mean existence of velocity in the x-direction
only and includes reverse flow) for a considerable time and hence we look for the
solution which is parallel to the x-direction. The absence of radial and azimuthal
velocities implies that the velocity in the x-direction u is function of radial coordinate
r and time t only. With these approximations the governing equation of motion in
the x-direction becomes

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

(

∂2u

∂r2
+

1

r

∂u

∂r

)

(4.1)

and the radial momentum equation becomes

∂p

∂r
= 0. (4.2)

Thus the axial pressure gradient, ∂p/∂x is a function just of time.
Boundary conditions are

u(R, t) = 0,
∂u(0, t)

∂r
= 0 (4.3)

and initial condition is

u(r, 0) = 0. (4.4)

Solution of these equations is possible if pressure as a function of time is known.
In our case, however, pressure is unknown and determined indirectly by the piston
motion. Assuming incompressible flow, the piston motion is felt immediately at each
cross-section of the pipe and the volume flux at any cross-section corresponds to the
volume flux due to piston motion,

∫ R

0

2πru dr = up(t)πR
2 (4.5)

where up is the piston velocity.
With this additional condition, analytical solution of equation (4.1) is possible. We

solve it using the Laplace transform technique. The details of the solution for the
axisymmetric case are given in Appendix A. Solution for the channel flow is given in
Appendix B. The solution depends on t0, t1 and t2. Velocity profiles calculated using
the procedure are shown in figure 1(b) for different times for a maximum piston speed
(Up) of 5.35 cm s−1 and t0, t1, t2 and tp = 0.13, 10.26, 10.27 and 19.2 s respectively. The
centreline velocity changes with the piston velocity during the acceleration phase and
the boundary layer near the wall starts growing. When the piston moves at constant
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Case t0 (s) t1 (s) t2 (s) tp (s) tv (s) Up cm s−1 Re =
UpR

ν

δ1

R
Reδ1

I 0.13 10.26 10.27 19.2 23.6 5.35 684.0 0.85 1023.5
II 0.42 3.68 4.04 6.24 6.92 15.91 2036.5 0.55 1558.6
III 0.14 1.86 2.46 2.76 3.20 33.21 4251.0 0.39 2104.3
IV 0.13 0.44 1.10 1.80 2.56 33.21 4251.0 0.18 852.9

Table 1. Parameters of the experiments.

velocity, due to diffusion of vorticity, the boundary layer grows with time and the
centreline velocity increases to meet the mass flow condition. When the motor is
switched off the piston decelerates and stops at time t2. During piston deceleration
the velocity profile shifts to satisfy the flux condition with a thin layer growing near
the wall to satisfy the no-slip condition. During this phase the pressure gradient
is large and adverse. After the piston motion ceases the velocity profiles continue
to show reverse flow near the wall to satisfy zero mass flow condition; with time
the velocity decays to zero everywhere. There is generally a slight adverse pressure
gradient but most of the changes in the velocity profiles are due to diffusion. Velocity
profiles beyond t1 contain an inflection point and have reverse flow. The solution is
clearly valid only as long as the fluid velocity is parallel to the pipe axis, i.e. till before
the flow becomes unstable and three-dimensional.

To our knowledge an analytical solution for arbitrary piston motion has not been
reported in the literature. Weinbaum & Parker (1975) have solved similar equations to
obtain the solution for unidirectional flow when a fully developed flow in a channel or
a pipe is blocked impulsively. Their solution, however, is approximate and is obtained
using a Pohlhausen type technique used in boundary layer calculations.

5. Results and discussion

5.1. Flow visualization results

A common feature we observe in our experiments is that the flow becomes unstable
sometime after the motor is switched off. The instability is accompanied by the
formation of a periodic array of vortices. The time of formation of the vortices and
the spacing between them depends on the experimental conditions. We choose four
representative cases from our experiments in the pipe to describe the main features.
The parameters are given in table 1. The flow visualization results for these cases are
shown in figures 3 to 8. In the cases where flow is visualized on only one of the walls,
the centreline is marked by a white line. The time when the motor was switched on
is taken as zero time.

Figure 3 shows the flow evolving with time for case I (Reδ1
= 1023.5 and

δ1/R = 0.85). (Recall subscript 1 refers to the time when the motor is switched
off.) The dye line takes the form of a wave at t ≈ 19.2 s. (The non-dimensional
time t∗ = (t − t1)/(tp − t1), is also given for each photograph in the caption.) Flow
visualization with particles shows that the flow is wavy even away from the wall. At
t ≈ 23.6 s discrete vortices are formed. These vortices grow with time and move in
the direction of the initial flow. The picture at t ≈ 42 s (figure 3d) corresponds to a
situation when all motion has stopped; the dye pattern seen is an integrated effect of
previous motions. At these low Reynolds numbers the flow never becomes turbulent.
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(a)

(b)

(c)

(d)

Figure 3. Flow visualization pictures of case I showing the development of the dye line initially
present at the bottom of the pipe. Initial direction of fluid motion is from left to right. (a) t = 21.64
s which corresponds to t∗ = (t − t1)/(tp − t1) = 1.27, (b) t = 27.64 s, t∗ = 1.94, (c) t = 36.64 s,
t∗ = 2.95 and (d) t = 41.64 s, t∗ = 3.51.

Case II corresponds to Reδ1
= 1558.6 and δ1/R = 0.55 with the instability waves

formed at t ≈ 6.24 s and the vortices at t ≈ 6.92 s. Figure 4 shows the dye structure
at several times after the vortices have formed. Flow is visualized on both the top
and bottom of the pipe. It is important to note the difference in phase of the periodic
vortices at the top and bottom. The phase difference is approximately 180◦. This is
only possible if the vortices at the top and bottom of the pipe are part of a single
helical vortex. We observe this 180◦ phase difference between the bottom and top
vortices in experiments where the initial boundary layer thickness (δ1) is not small
compared to the radius of the pipe. It is a key finding of the present study. This
suggests that a helical mode of disturbance is the most unstable. In the channel the
antisymmetric mode of disturbance was found to be the most unstable one.

At later times there appears to be a strong interaction between the vortices, which
distorts them (figure 4c). Dye from both walls moves across the pipe centreline
towards the opposite wall (figure 4d). At 12.64 s, the vortices break down and then
rapid mixing of the dye occurs suggesting transition to turbulence. Note that the
centres of the vortices do not move in the axial direction, unlike in case I.

Figure 5 (case III) shows the flow structure for Reδ1
= 2104.3 and δ1/R = 0.39.

Only the top half of the pipe is shown. The spacing between the vortices has decreased
compared to the previous two cases. Unlike in case II the vortices are closer to the wall
and there seems to be less interaction – there is no distortion of the vortices. We also
observe a feature not present in the previous cases, a secondary vortex close to the wall
induced by the primary vortex. The secondary vortex cannot be seen in the pictures
shown in figure 5 because of the present technique of flow visualization. The secondary
vortices are more clear in particle visualization pictures. The primary vortices move
away from the wall as the secondary vortices grow. The breakdown to turbulence
is very rapid (it occurs between t ≈ 3.88 and 4.00 s). While viewing the video we
can readily appreciate the rapidity of the breakdown process. The transition process
could be similar to the mixing transition in shear layers. Mixing transition occurs with
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(a)

(b)

(c)

(d)

Figure 4. Flow visualization pictures of case II showing the development of the dye line initially
present at both the top and bottom of the pipe. Initial direction of fluid motion is same as in figure
3. (a) t = 9.88 s, t∗ = 2.42, (b) t = 11.80 s, t∗ = 3.17, (c) t = 12.64 s, t∗ = 3.5 and (d) t = 13.64 s,
t∗ = 3.89.

the appearance of three-dimensionality in the primary Kelvin–Helmoltz vortices and
is accompanied by rapid mixing of the two streams. Recently Schoppa, Hussain &
Metcalfe (1995) have sought to explain the phenomenon on the basis of vortex core dy-
namics. Akhavan et al. (1991b) also show, by numerical simulation, that the transition
to turbulence in oscillating pipe flow can be explained by secondary instability of two-
dimensional finite-amplitude waves. Sarpkaya (1993) has detected a variety of coherent
structures like low-speed streaks and hairpin eddies near the wall during transition in
oscillating Stokes flow. Presumably similar structures occur in our experiments as well.

We generally observe the secondary vortices at the higher Reynolds numbers. An
example of the formation and growth of the secondary vortices is shown in figure 6
for Reδ1

= 1521.4 and δ1/R = 0.39. Gradual growth of this secondary vortex and
its movement towards the centre is clear from the subsequent pictures. Secondary
vortices are common in many situations, for example during impact of a vortex ring
against a wall (Walker 1978), and the interaction of a line vortex with a wall (Pullin
& Perry 1980).

In figure 7 (case IV) the piston speed is same as the case III, but the piston
travels a lesser distance. Reδ1

and δ1/R are 852.9 and 0.18 respectively. In this case
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(d)

(e)

( f )

(a)

(b)

(c)

Figure 5. Same as figure 3 for case III except that the initial dye line is present at the top of the
pipe. (a) t = 3.20 s, t∗ = 1.49, (b) t = 3.40 s, t∗ = 1.71, (c) t = 3.72 s, t∗ = 2.07, (d) t = 3.88 s,
t∗ = 2.24, (e) t = 3.96 s, t∗ = 2.33 and (f) t = 4.28 s, t∗ = 2.69.

vortices do not break down to make the flow turbulent and the vortical disturbances
remain confined near the wall. Movement of the vortices in the horizontal direction
is observed. Note that the Reδ1

values of case I and case IV are comparable and in
both these cases we do not observe breakdown to turbulence.

In many of the experiments, especially when δ1/R < 0.4, the waves/vortices do
not form simultaneously on the top and bottom walls (figure 8). We do not have
an explanation for this observation. In these cases it is also not possible to ascertain
whether the phase difference between top and bottom wall vortices is 180◦, i.e. whether
the mode is helical.

We observe similar features in preliminary experiments in a channel with rectangular
cross-section. Phase differences of 180◦ between top and bottom vortices are observed
when δ1/H is greater than about 0.4, i.e. the antisymmetric mode is most unstable.
Here H is the half-height of the channel. For δ1/H lesser than about 0.4 the growth
of the vortices at the top and bottom seems to be independent of each other.

5.2. Hot-wire measurements

The hot-wire and the hot-film measurements are mainly used to get the time, tph,
at which flow ceases to be unidirectional and the time ttr when the transition to
turbulence occurs. Figure 9 shows two traces on an oscilloscope from a hot-wire
signal. One trace shows the total voltage (d.c. coupled) and the other the fluctuating
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(b)

t = 9.4 s t =10.20 s

t =11.44 s t =12.20 s

S
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P

S

Figure 6. (a) Flow visualization and (b) schematic, showing formation of a secondary vortex at
Reδ1

= 1521.4 and δ1/R = 0.39 for t = 9.4 s, 10.2 s, 11.44 s and 12.2 s (t∗ = 4.32, 4.77, 5.48 and
5.91 respectively), The primary vortex (marked P) is anticlockwise and the secondary vortex (S) is
clockwise. t0, t1 and t2 for this experiment are 0.12 s, 1.8 s and 2.42 s respectively.

part only (a.c. coupled). In the d.c. coupled trace we can identify three regimes after
the motor is switched off: a sharp reduction in the voltage due to the adverse pressure
gradient, a slower reduction in velocity due to diffusion and finally again a larger
reduction in voltage due to the formation of the instability vortices. We take the time
at which the second change in curvature occurs as tph. We observed that, as expected,
within the experimental scatter tph ≃ tp. Transition is clearly indicated in the a.c.
coupled signal by a high-frequency fluctuation, characteristic of turbulence. Repeated
experiments with the same piston-velocity time histories show some scatter in the
observed transition times. The change in position of the vortices relative to the hot
wire with each experiment seems to cause this scatter. (This type of difference is also
seen in the hot-wire traces of Hino et al. (1976) in oscillating pipe flow: the phase
at which breakdown occurs changes from cycle to cycle for the same experimental
conditions.) In the results presented in figure 15(c) we have taken ttr to be the
minimum value from at least five experiments. Note that the turbulence is dissipated
quite rapidly. At the lower Reynolds numbers only a single spike is observed.
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(a)

(b)

(c)

(d)

Figure 7. Same as figure 3 for case IV. (a) t = 2.08 s, t∗ = 1.21, (b) t = 2.72 s, t∗ = 1.68,
(c) t = 3.84 s, t∗ = 2.5 and (d) t = 5.44 s, t∗ = 3.68.

(a)

(b)

Figure 8. Flow visualization pictures for Reδ1
= 2146.1, δ1/R = 0.35, t0 = 0.16 s, t1 = 1.52 s and

t2 = 2.53 s Note that waves/vortices do not appear simultaneously on the top and bottom of the
pipe walls at t = 2.92 s (t∗ = 1.17) (a). It can be observed that at t = 3.12 s (t∗ = 1.33) (b) the
vortices only at the bottom wall have broken down. Initial direction of fluid motion is same as in
figure 3.

We remark that ttr > tv and vortex formation does not always lead to turbulence;
transition occurs only if the Reynolds number is high enough. Cases I and IV are
examples where dye visualization shows vortex formation but does not show transition
to turbulence. We found no transition to turbulence for Reδ1

6 1200.
In summary we note the following main observations :-
(i) Instability of the inflectional point profiles, as in the case of Kelvin–Helmoltz

instability, results in the formation of a series of vortices. In the cases we have studied,
the critical Reδ1

below which the flow does not become unstable is about 500.
(ii) Nearly periodic arrays of vortices appear in both the top and bottom half of the

pipe (and channel) as the instability develops. When the boundary layer thickness is
> 0.4 there is a phase difference between the position of the top and bottom vortices.
Therefore, in the pipe, what appears as discrete vortices in the flow visualization
pictures is possibly a single helical vortex.
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50 mV 0.2 V 1 s

d.c. coupled

a.c. coupled

ttr

tp

t1

t = 0

Figure 9. Traces of velocity variation for Reδ1
= 2065, δ1/R = 0.34, t0 = 0.4 s t1 = 1.86 s and

t2 = 1.98 s, illustrating the time of development of the two/three-dimensional flow (at tph) and the
transitional flow regime (at ttr).

(iii) For Reδ1
smaller than a critical value (≃ 1200) as in cases I and IV, the vortices

do not break down to turbulence. When they do break down (case II and case III)
the transition is very rapid.

(iv) When vortices are formed away from the wall they grow with time and move
towards the centre of the pipe. There is strong interaction between the vortices which
results in distortion and the final breakdown to turbulence.

(v) Secondary vortices are observed at the higher Reδ1
.

5.3. Analyses

To get an understanding of the instability process we next look at how some quantities
of interest, like the velocity profiles, Reynolds number, and linear stability character-
istics, vary with time. Figure 10 shows the calculated velocity profiles from the time
the piston starts decelerating till the time the vortices are first seen for the four cases.
(Any calculation beyond this time will be meaningless as the flow will no longer be
unidirectional.) As discussed in § 4, the changes in velocity during the piston deceler-
ation (t1 < t < t2) are mostly due to the pressure gradient and the changes after the
piston has stopped (t > t2) are mostly due to diffusion. The rapid changes in maxi-
mum velocity (umax) and minimum velocity (umin) due to the pressure gradient and the
slower changes due to diffusion are clearly seen in figure 11, which shows the variation
of umax/Up and umin/Up, Reδ (local Reynolds number = (umax − umin)δ/ν = ∆uδ/ν),
δi (location of the inflection point) and Reδcr (critical Reynolds number). It is clear
in all cases that the velocity profiles change substantially during the development of
the instability. It may be noted that even though the Reynolds numbers are high,
diffusion is not negligible during the time the instability develops. Figure 11 also
shows that Reδ continuously decreases during the development of the instability.

The critical Reynolds number (Reδcr) depends largely on the position of the point
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Figure 10. Velocity profiles at different times after the motor is switched off for the four cases;
curve 1, t = t2; 2, t = t1 + (t2 − t1)/4; 3, t = t1 + 2(t2 − t1)/4; 4, t = t1 + 3(t2 − t1)/4; 5, t = t2;
6, t = t2 + (tp − t2)/6; 7, t = t2 + 2(tp − t2)/6; 8, t = t2 + 3(tp − t2)/6; 9, t = t2 + 4(tp − t2)/6; 10,
t = t2 + 5(tp − t2)/6; 11, t = tp; and 12, t = tv .

of inflection (δi) (Das, Arakari & Vashist 1995). After the motor is switched off the
point of inflection forms and moves away from the wall (figure 11) and the profiles
tends to become more unstable. However, the reduction of the Reynolds number
with time makes the profiles more stable. Whether the instability continues to grow
depends on the balance between these two competing influences. Also the reduction
of ∆u with time implies decreasing of growth rates of the disturbances.

5.3.1. Linear stability

The critical Reynolds numbers are from a linear stability analysis of the velocity
profiles shown in figure 10. We have assumed plane flow with antisymmetric perturba-
tions across the centreline. (Of course it would have been more appropriate to assume
an axisymmetric geometry with helical perturbations. We believe, however, the results
would not be very different.) We consider the disturbance stream function of the
form of a Tollmien–Schlichting wave, φ = φ(y)eiα(x−ct) where α is the wavenumber
and c = cr + ici, cr is the phase speed and ci is the growth rate. The Orr–Sommerfeld
equation is solved for the velocity profile at each time during the decaying stage of the
flow. The equation is discretized using the central difference technique and is solved
from the centreline to the wall. The eigenvalues are obtained using the QZ algorithm
available in MATLAB. The code was validated by reproducing the eigen spectrum of
Mack (1976) for plane Poiseuille flow, and the results of Hall & Parker (1976).

The growth rates at different times after the motor is switched off corresponding
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Figure 11. Calculated normalized maximum velocity, minimum velocity, local Reynolds number,
point of inflection and critical Reynolds number as a function of time after the motor is switched
off for the four cases.

to the four cases are shown in figure 12(a). The striking feature of this figure is that
the wavenumbers corresponding to maximum growth rate do not change appreciably
with time for each of the four cases. A similiar observation was made by Gad-el-Hak
et al. (1984) in their linearly decelerated plate experiment. Note, however, that the α
corresponding to maximum growth rate normalized by δ1 are different for the four
cases. The growth rates initially increase as the velocity profiles become more unstable
and then decrease as the velocity difference (∆u) reduces. Reδcr rapidly decreases and
does not change appreciably during the development of the instability. The values
of Reynolds numbers are high enough that the instability is essentially inviscid. The
effect of viscosity is mainly to reduce ∆u and thus the growth rate. This reduction of
growth rate is the main reason for the non-breakdown of the vortices in case I and
IV even though the Reynolds numbers in both cases were well above the critical.

We next look at the stability characteristics non-dimensionalized by the conditions
at each instant of time. This is motivated by the analysis by Das et al. (1995) who
concluded that for stability of inflectional velocity profiles with reverse flow near a
wall

(a) the proper velocity scale is ∆u = umax − umin and the proper length scale is the
boundary layer thickness, and

(b) the critical Reynolds number increases as the inflection point moves closer to
the wall.
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Figure 12. (a) Growth rate as function of wavenumber at different times for the four cases;
growth rate (ci) is non-dimensionalized by centreline velocity at t1 (umax1) and wavenumber α is
non-dimensionalized with boundary layer thickness at t1 (δ1). solid line, t = t1 + 3(t2 − t1)/4; o,
t = t2 + (tp − t2)/6; +, t = t2; o, t = t2 + 2(tp − t2)/6; ·, t = t2 + 3(tp − t2)/6; *, t = t2 + 4(tp − t2)/6;
×, t = t2 + 5(tp − t2)/6; dashed line, t = tp. (b) As (a) but growth rate (ci) is non-dimensionalized by
local velocity difference (∆u) and wavenumber α is non-dimensionalized with local boundary layer
thickness (δ).
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It was shown that the neutral stability curves collapse when non-dimensionalized
as above for a range of reverse flow velocities but fixed inflection point position.
Growth rates normalized by the instantaneous ∆u versus wavenumber normalized by
the instantaneous boundary layer thickness are shown in figure 12(b). There is some
dependence of growth rate on inflection point position, but most of the curves show
a maximum growth rates of about 0.15∆u, a value typical for shear layer instability,
at αδ ≃ 1.5. This conclusion – collapse of stability characteristics when scaled with
the instantaneous variables ∆u and δ – helps us to scale the experimentally obtained
values of wavelength of the instability and time to instability.

5.4. Wavelength and time of formation of the instability

We have experimentally observed that instability results in vortex formation and its
breakdown makes the flow turbulent. Keeping in mind that our aim is to understand
the evolution of the reverse flow type velocity profiles, we measure the times when the
wave appears, when the vortex forms, and when transition occurs and the wavelength
of the wave appears.

Dimensional analysis can reveal the length and time scales to non-dimensionalize
the above measures of instability. In all the experiments we observe instability after
the piston has stopped. Thus we assume the parameters which govern the instability
are umax1

, δ1, ν, R and the deceleration time (t2 − t1). From these we get the following
non–dimensional parameters:

umax1
δ1

ν
,

δ1

R
,

(t2 − t1)umax1

δ1

.

The first two are respectively equivalent to the Reynolds number, Reδst , and the Stokes
parameter Λ in the oscillating pipe flow. The last parameter is a non-dimensional
deceleration time; for an impulsively stopped piston case this parameter drops out.
From dimensional analysis thus we can write the following relations for the times to
instability, vortex formation and transition and the wavelength of the instability:

(tp − t1)umax1

δ1

,
(tv − t1)umax1

δ1

,
(ttr − t1)umax1

δ1

,
λ

δ1

∼ f

(

umax1
δ1

ν
,
δ1

R
,
(t2 − t1)umax1

δ1

)

.

Note that umax1
and δ1 will depend on the piston velocity history prior to the start

of the deceleration phase, i.e. on Up, t0, (t1 − t0). In our experiments there was not
much control over the time (t2 − t1). Hence a systematic study of the effect of the
deceleration parameter cannot be made. However, we are able to get a few experiments
where δ1/R and (t2 − t1)umax1

/δ1 are nearly constant. For these cases, the variation of
(tp − t1)umax1

/δ1 with Reδ1
= umax1

δ1/ν are shown in figure 13. It may be observed that
more rapid the deceleration shorter is the (non-dimensional) time to instability. As
expected, one can observe in this figure that the non-dimensional time for instability
is independent of Reδ1

when both the parameters δ1/R and (t2 − t1)umax1
/δ1 are kept

constant.
There is another way, which we follow, to non-dimensionalize the results. This

allows us to collapse the data from all the experiments. Linear stability analysis of the
previous section suggests δ and δ/∆u as appropriate scales. These quantities, however,
vary with time in each of the experiments; thus, we take time-averaged values. Another
relevant conclusion from the stability analysis is that the wavenumber corresponding
to maximum growth rate does not change much with time. Since the instability is
essentially inviscid the disturbance will grow on the convective time scale δ/∆u. Then
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Figure 14. Variation of experimentally measured value of distance between adjacent vortices (λ)
non-dimensionalized by average (average taken over t1 and tp) boundary layer thickness (δ) with
different Reδ1

.

we may expect the time to wave formation to scale like 1/(∆u/δ), the average taken
between t1 and tp, tv and ttr .

The wavelengths non-dimensionalized by the average boundary layer thickness δ,
average taken over the time t1 to tp, are shown in figure 14. The average value of all
the points of figure 14 is 3.0 with standard deviation of 0.4, i.e.

λ

δ
= 3. (5.1)

There is some scatter which is to be expected considering that the different experiments
have widely different velocity histories. We might get a better collapse if averaging is
done by weighting with the growth rate at each time.

In table 2 we compare the experimentally obtained wavelength, λ, with λcrit (λ
corresponding to Reδcr) and λci max (λ corresponding to maximum growth rate). (Both
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Case λ/δ λcrit/δ λci max/δ
∫ tp αcidt

∫ tv αcidt

I 3.2 3.3 4.0 5.8 6.5
II 2.7 3.4 4.2 6.6 7.6
III 3.1 3.4 5.0 4.5 6.3
IV 3.0 2.8 3.3 5.1 5.8

Table 2. Comparison of wavelengths.
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Figure 15. (a) Variation of experimentally measured time when the dye line becomes wavy and the
time when the flow ceases to be unidirectional obtained from the hot-wire traces after the motor is
switched off. Time is non-dimensionalized by average convective time scale 1/(∆u/δ) (average taken
over t1 and tp or tph). (b) Variation of experimentally measured time when vortices are formed after

the motor is switched off. Time is non-dimensionalized by average convective time scale 1/(∆u/δ)
(average taken over t1 and tv). (c) Variation of experimentally measured transition time after the

motor is switched off. Time is non-dimensionalized by average convective time scale 1/(∆u/δ)
(average taken over t1 and ttr).

λcrit and λci max change with time but not by much. Table 2 gives the average values.)
Except for case IV, λci max > λ. We do not know the reason for the small discrepancy.
One possibility is that the stability analysis is for plane flow whereas the experiments
are in a circular cross-section geometry. Note in case IV (for which λ ≃ λci max) the
boundary layer thickness is small compared to the pipe radius and thus curvature
effects are expected to be negligible. However, the experimentally observed wavelength
is close to λcrit in all the four cases. The values of λci max/δ for the four cases lie between
3.3 and 5.0 (table 2), and indicates that the scatter in figure 14 is due more to real
differences than to experimental uncertainties.
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The time (tp) when the wave appears obtained from flow visualization and the time
(tph) when the flow ceases to be unidirectional obtained from the hot-wire traces are
shown in figure 15(a). Note that there is no systematic difference between tp and tph.
There is some Reδ1

dependence. For Reδ1
> 1000

(tp − t1)

(

∆u

δ

)

≃ 29. (5.2)

For Reδ1
< 500 we have not observed any wave formation. Figure 15(a) may be

compared with figure 13 where the other normalization is used.
The non-dimensional vortex formation time shown in figure 15(b) shows more

scatter with

(tv − t1)

(

∆u

δ

)

≃ 33. (5.3)

The non-dimensional transition time (figure 15c) shows slight increase with Reynolds
number. Its average value is given by

(tb − t1)

(

∆u

δ

)

≃ 39. (5.4)

Note that transition to turbulence is observed only for Reδ1
> 1200.

The scatter in the data can be partly attributed again to trying to find a single
time scale for the experiments which have such widely different velocity histories and
partly to the difficulty in precisely defining a time for the formation of the wave
and the vortex. Such scatter in flow visualization data and transition data is not
uncommon (Thorpe 1971). The non-dimensional transition time, which is determined
from hot-wire traces and thus more precisely defined, shows less scatter. In any case,
these results are useful to estimate the time of the formation of the vortices in general
unsteady flows having velocity profiles with inflection points.

The accumulated amplification of a disturbance with wavenumber α till time t is
given by exp

∫ t

0
αcidt. Table 2 shows the calculated

∫

αcidt values for wave formation
and for vortex formation in each of the four cases. The average (for the four cases)
amplification for the wave formation is e5.5 and for vortex formation is e6.5. These
values may be compared to the amplification of e9 used to predict-transition point in
steady wall bounded flows (see White 1991).

5.5. Oscillatory pipe flow

Many of the results pertaining to oscillating pipe flow are summarized in Akhavan
et al. (1991a, b). Reynolds number, Reδst (based on amplitude of velocity, U0 and
Stokes layer thickness δst = ((2ν)/ω)1/2, where ω is the frequency of oscillation) and
Λ (ratio of radius of the pipe and δst) are two parameters which describe these flows.
In this two-parameter space oscillatory pipe flow can be divided as first shown by
Hino et al. (1976) into four regimes: (I) laminar flow, (II) disturbed laminar flow, (III)
intermittently turbulent flow and (IV) fully turbulent flow. In the flows of type (II)
deviation from the laminar flow by a small amplitude occurs during the acceleration
phase of the cycle. In type (III), flow remains laminar in the acceleration phase
but turbulent bursts are detected during the deceleration phase of the cycle. For
high enough Reδst flow may become turbulent during the acceleration phase itself;
see below. The transitional Reynolds number, Reδstcr , for type III flow reported by
different investigators (Sergeev 1966; Hino et al. 1976; Ohmi et al. 1982; Spalart &
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Baldwin 1987; Jensen et al. 1989; Akhavan et al. 1991a, b; Eckmann & Grotberg
1991) is between 500 to 550 and is independent of Λ for Λ > 2. In the case of flow
over an oscillating plate transitional Reδstcr is reported as 565 (Li 1954). Merkli &
Thomann (1975) have observed Reδstcr ≈ 280 probably for flows of type II. Hino et
al. (1976) and Ohmi et al. (1982) have observed similar Reδstcr value for type II flow.

5.5.1. Explanation of the four regimes

It is possible to explain some observations of stability and transition in the zero
mean oscillatory pipe flow using the results of our experiments. The two key results
from our experiments are that for the vortices to appear the Reynolds number should
be above the critical value and there should be enough time for the instability to grow.
If either of these conditions is not satisfied laminar flow (type I flow) will be observed.
If there is enough time for the vortices to form then the disturbed laminar flow (type
II flow) will be observed, and if the vortices break down intermittent turbulent flow
(type III) will be observed.

Consider type II (disturbed laminar) flow first. We expect the instability (of the
inflectional velocity profiles) to be initiated during the deceleration phase. It is crucial
to realize this fact. In figure 16 the calculated velocity profiles for Λ = 10 and for
piston velocity up(t) = U0 sin(ωt) are shown at eight phases for half a cycle starting
from the start of the deceleration phase. The inflection points together with the
expected instability vortex direction are also shown. We are looking at the same
‘mode’ (clockwise) which develops during the deceleration phase and continues into
the acceleration phase. Note that at the start of the deceleration phase this is not the
most unstable mode; the most unstable mode (anticlockwise), which however would
rapidly decay, is that associated with the inflection point further away from the wall.
For ωt > 6π/8 (phase 2) inflectional velocity profiles with reverse flow appear. The
neutral stability curves corresponding to the different phases are shown in figure 17.
The most unstable profile appears at ωt = π with a critical Reδst = 82. Flow with
Reδst > 82 may be expected to be unstable. But experimental instability in the form
of disturbed laminar flow is obtained at Reδst ≃ 280.

The growth rates for the different phases for Reδst ≈ 300 are shown in figure 18.
As for the velocity profiles in our experiments we observe that the wavenumber
corresponding to the maximum value of ci does not change significantly with time.
Positive growth rates (ci > 0) are obtained approximately between phases 2 (ωt =
6π/8) and 7 (ωt = 11π/8); the instability is initiated in the deceleration phase and
continues into the acceleration phase. This is why the ‘disturbed laminar flow’ (i.e.
after the perturbations have grown sufficiently) is observed in the acceleration phase
of the cycle. For any Reynolds number less than 300 there is insufficient time for the
disturbance to grow and for the vortices to form. Type II flow possibly is similar to
our case I and case IV flows (figure 3 and figure 7 respectively) where vortices form
but do not break down.

As the Reynolds number is increased the instability starts growing from earlier in
the deceleration phase (Hino et al. 1976; Jensen et al. 1989) and the flow may become
turbulent by breakdown of the vortices and we have type III flow. This appears to
happen at Reδst ≃ 550. For Reδst ≃ 550 from figure 17 we see that the flow becomes
unstable starting from phase 1 (ωt = 5π/8).

Clearly once the flow becomes turbulent the velocity profile at the beginning of the
next deceleration phase at ωt = 3π/2 will be affected. If the flow becomes turbulent in
the deceleration phase (ωt < π) itself then the mean velocity profile at the beginning
of the acceleration phase, because of turbulent mixing, may be expected to be zero. In
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Figure 16. Velocity profiles for Λ = 10 in oscillating pipe flow. The point of inflection, velocity
scale (∆u), boundary layer thickness (δ) and the expected instability vortex direction are shown. (1)
ωt = 5π/8, (2) ωt = 6π/8, (3) ωt = 7π/8, (4) ωt = π, (5) ωt = 9π/8, (6) ωt = 10π/8, (7) ωt = 11π/8,
(8) ωt = 3π/2.

this case the flow and instability will be similar to what is obtained in our experiments,
i.e. flow accelerated starting at ωt = 0 from zero velocity across the pipe cross-section
and deceleration starting from ωt = π/2. In our experiments deceleration is rapid
and transition is observed after the piston has stopped but in the oscillating pipe flow
deceleration is gradual and transition is observed during the deceleration phase itself.
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Figure 18. Growth rates for different phases for Reδst ≃ 300 of oscillating pipe flow:
(1) to (8) correspond to the same ωt as in figure 16.

Another crucial difference is that unlike in our experiments the oscillating pipe flow
contains background residual turbulent fluctuations.

If the Reynolds number is further increased then the flow can be unstable, and
become turbulent, during the acceleration phase itself. This will be instability of the
non-inflectional velocity profiles. For example, experiments of Akhavan et al. (1991a)
at Reδst = 1080, corresponds to this situation. Thus we can really break up the type
III flow into two categories: one where the transition occurs during the deceleration
phase and the second where the transition occurs during the acceleration phase. In
experiments on transition to turbulence in a constant-acceleration pipe flow Lefebvre
& White (1989) observe the transition process of non-inflectional velocity profiles. In
their case also transition time scales with the convective time scale. As the Reynolds
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ωt when ωt when ωt transition from
Reδst Λ

∫

αcidt = 4
∫

αcidt = 5 experiments (Ref.)

180 3.9 1.3π Does not reach 5 1.1π (Hino et al. 1976)
500 3.9 0.84π 0.88π 0.78π (Hino et al. 1976)
543 1.91 0.82π 0.85π 0.7π (Hino et al. 1976)

1000 10 0.77π 0.79π 0.38π (Akhavan et al. (1991a)
1530 1.91 0.66π 0.68π 0.45π (Hino et al. 1976)

Table 3. Comparison of phase values.

number is increased even further the transition point will occur earlier and earlier in
the acceleration phase and eventually at very high Reynolds numbers type IV (fully
turbulent) flow may be observed.

5.5.2. Prediction of transition

If we assume transition occurs when the growth (from the linear stability analysis)
∫

αcidt reaches a certain critical value we can predict the phase at which transition
occurs for a given Reynolds number. In our experiments we observe wave formation
when

∫

αcidt ∼ 5 and vortex formation when
∫

αcidt ∼ 6. Turbulence occurs, in those
cases where it does, shortly after vortex formation.

Figure 19 shows the growths at Λ = 10 for three Reynolds numbers, Reδst = 300,
500 and 1000. (The velocity profiles used for Reδst = 300 and 500 and in table 3 for
Reδst = 180 and 500 are for oscillating laminar flow; for Reδst = 1000 and in table
3 for Reδst = 543, 1000 and 1530 the velocity profiles are calculated assuming the
velocity = 0 across the cross section at ωt = 0.)

From figure 19 and the experimentally observed Reδstcr ≃ 300 for type II flow we

see that for oscillating pipe flow
∫ tp αcidt ≃ 4. Possibly, a higher disturbance level

in the oscillating flow causes the
∫

αcidt value to be lower than in our experiments.
Further, we may assume that transition occurs when

∫

αcidt ≃ 5. Figure 19 predicts
the experimental finding that instability is observed ‘earlier’ as the Reynolds number
is increased.

∫

αcidt ≃ 4 at ωt = 0.96 π, 0.84 π and 0.77 π for Reδst = 300, 500
and 1000 respectively. Table 3 compares the phase values when

∫

αcidt = 4, 5 with
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the phase values at which transition is observed in experiments. The predictions and
experiments reasonably agree at the lower Reynolds numbers.

However, at the higher Reynolds numbers (1000 and 1530) the agreement is poor:
the observed transition is in the acceleration phase while the prediction is in the
deceleration phase. While the mean velocity profile (till transition) is well predicted
by assuming laminar flow (Akhavan et. al. 1991a) the linear stability analysis is unable
to predict the phase at which transition occurs. Clearly the background turbulence
causes transition to occur much earlier; in fact, before the flow becomes linearly
unstable. Lefebvre & White (1989) in their linearly accelerated pipe flow experiments
obtain a transitional Reynolds number based on boundary layer thickness ≃ 25 000.
The effect of background turbulence on the transition in unsteady flows needs more
study. (A vast literature exists on the effect of turbulence on transition in steady flows
(Schlichting 1979)). A simple way would be an oscillating flow experiment at high
enough Reδst , say 1500, to record the phases at which transition occurs starting from
the first cycle. Initially the background turbulence will be very low and then it will
build up to the asymptotic level in a few cycles. The changes in the transition phase
with each cycle will reveal the effect of background turbulence.

5.5.3. Transition time

A general result can be derived for the transition time. We have ti, the time to
instability or transition, scaling with the convective time scale ti ∼ δ/U0. Further δ ∼
δst = (ντ/π)1/2, where τ is the time period of oscillation. Thus using Reδst = U0δst/ν,
we have ti/τ ∼ δν/U0δ

2
st ∼ 1/Reδst. Thus as the Reynolds number is increased the

transition time in relation to the time period will reduce.

5.5.4. Independence of critical Reynolds number of Λ

From the literature it is seen that in oscillating pipe flow the critical Reynolds
numbers (based on δst) for disturbed laminar flow and transition to intermittent
turbulent flow are independent of Λ for Λ > 2, i.e. for δst < R/2. The important
parameters for determining instability and transition are the position of the point
of inflection, δi, and the convective time scale, δ/∆u. The independence of Λ of the
critical Reynolds numbers is understood from figure 20(a, b) which shows that δi/δst
and (δst/U0)/(δ/∆u) plotted versus ωt tend to become independent of Λ for Λ > 2.
Here ∆u is the velocity difference corresponding to the shear layer at each phase (see
figure 16).

5.6. Unsteady boundary layer separation

During unsteady boundary layer separation velocity profiles with reverse flow are
obtained prior to formation of vortices and the eventual breakaway of the layer
close to the wall. In some cases the formation of the vortices appears because of the
instability of the reverse flow profiles. The main difficulty in extending the results
of our experiments to unsteady separation is the spatial variations of the pressure
gradient and of the external velocity usually obtained in the latter. It can be shown
that the effect of the spatial variation is likely to be less at high enough values of
Reynolds number because then the boundary layer thickness will be small compared
to the scale of the spatial variation. Then, the results from § 5.4 (equation (5.3)) can
be used to estimate the time to formation of the vortices.

There is a strong Reynolds number dependence of the process of formation and
the initial size of the separation region. At low Reynolds numbers separation vortices
form scaling with the diameter. At high Reynolds numbers multiple vortices form
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scaling with the boundary layer thickness. At the highest ReD , 9500, for an impulsively
started cylinder for which experiments have been done (Bouard & Coutanceau 1980)
the first vortex forms at tU/D ≃ 1.0 at an angle of 140◦ from the upstream stagnation
point. Using relation (5.3) we estimate the time to vortex formation to be tU/D ≃ 1.1
(Das 1998). In the dynamic stall experiments at high Re (see McAlister & Carr 1979)
the so-called shear layer vortices are observed. These are believed to be the result of
instability of the reverse flow region. A rough calculation in this case also shows that
the time to vortex formation calculated using equation (5.3) tallies with experimental
observations. The flow subsequent to the initial vortex formation will of course be
governed by vortex dynamics. In any case onset of dynamic stall may be estimated
by using relation (5.3).

The view we are taking of unsteady boundary layer separation – instability of
the boundary layer – is different from that of Van Dommelen & Shen (1982) which
is that separation is related to singularity in the boundary layer solution. For an
impulsively started cylinder they observe singularity after 0.75D movement at θ =
111◦. These values appear to be independent of ReD in contradiction to experimental
observations.

6. Conclusion

The simple trapezoidal piston motion allows us to study the instability and transi-
tion of unsteady inflectional point profiles. Even at large Reynolds numbers viscous
effects are important in that the velocity profiles change significantly during the in-
stability. However, the instability is essentially inviscid and the growth rates scale
with the convective velocities. Whether the flow becomes unstable or not depends on
whether there is enough time for the instability to grow. The time to instability is

approximately 29/∆u/δ, the transition time is ∼ 39/∆u/δ and the wavelength of the

instability is ∼ 3 δ. At low Reynolds numbers (Reδ1
< 500) instability is not observed

and transition to turbulence is observed only for Reδ1
> 1200. We may emphasize

here that these values of the Reynolds numbers will be applicable only to flows which
are rapidly decelerated. For flow in the pipe the helical mode is most unstable at least
for δ/R not small compared to 1. Similarly in channel flow the antisymmetric mode
of disturbances is the more unstable for δ/H not small compared to 1. If the Reδ is
high enough breakdown to turbulence is observed. At high speeds secondary vortices
are induced at the wall.

Linear stability analysis gives an important result that the wavenumber correspond-
ing to maximum growth rate does not change much during the instability. Stability
characteristics of reverse flow profiles for a given inflection point position collapse
when scaled with ∆u (maximum velocity – minimum velocity) and boundary layer
thickness (δ).

Using the results of our experiments and quasi-steady linear stability analysis we
can explain many observations of instability and transition in oscillating pipe flow.
In unsteady boundary layer separation, also, at high Re, formation of the first vortex
may be due to boundary layer instability.
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part of his ME project work. We thank Dr P. N. Shankar of National Aeronautical
Laboratory and Professor V. H. Arakeri for going through the manuscript and
suggesting changes. We thank the reviewers for their comments which greatly helped
in clarifying some issues and improved the quality of the paper.
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Appendix A. Velocity calculation for given piston motion: pipe flow

In the literature no solution exists for unsteady laminar flow in a pipe or channel
caused by any given but arbitrary piston motion. For sinusoidal piston motion, when
the pressure also varies sinusoidally in time, a solution exists. The governing equations
are (4.1), (4.3), (4.4) and (4.5) and are repeated below for convenience. The equation
of motion in the x-direction is

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

(

∂2u

∂r2
+

1

r

∂u

∂r

)

(A 1)

with boundary conditions

u(R, t) = 0,
∂u(0, t)

∂r
= 0 (A 2)

and initial condition

u(r, o) = 0. (A 3)

The volume flux due to piston motion is
∫ R

0

2πrudr = up(t)πR
2. (A 4)

Taking the Laplace transform of equations (A1)–(A4) we obtain the solution in terms
of the transformed variable s as

u(r, s) =
up(s)[I0(Bs

1/2) − I0(As
1/2)]

[

I0(Bs1/2) − 2I1(Bs
1/2)

Bs1/2

] , (A 5)

where, I0 and I1 are modified Bessel’s function of zeroth and first order respectively.
B = R/ν1/2, A = r/ν1/2 and up(s) is the Laplace transform of piston velocity, up. The
details of the derivation can be obtained from Das & Arakeri (1996). The velocity
profiles given in figures 1(b) and 10 were obtained using this method.

The inverse transform of equation (A 5) is calculated using the contour integration
method as it can be shown that the convolution theorem is not applicable. Putting
Bs1/2 = iv the denominator becomes J2(v) where i =

√
−1 and J2(v) is a Bessel

function of the second kind. The poles are the zeros of J2(v) and s = 0. The residues
at all the poles are found to get the solution. The solution in non-dimensional form
at different times for a trapezoidal piston motion shown in figure 1(b) are:
during piston acceleration 0 6 t 6 t0

u

Up

=
1

t0

[

2t
(

1 − c2
)

+
B2

2

(

1
4
(1 − c4) − 1

3
(1 − c2)

)

]

+
2B2

t0

∞
∑

n=1

exp

(

− v2
n

B2

)

t

[

J0(vn) − J0(cvn)

v3
nJ1(vn)

]

; (A 6)

when piston velocity is constant = Up (t0 6 t 6 t1)

u

Up

= 2(1 − c2)

+
2B2

t0

∞
∑

n=1

(

exp

(

− v2
n

B2
t

)

− exp

(

− v2
n

B2
(t − t0)

))[

J0(vn) − J0(cvn)

v3
nJ1(vn)

]

; (A 7)
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during piston deceleration (t1 6 t 6 t2)

u

Up

= 2
(t2 − t)

(t2 − t1)
(1 − c2) − B2

2(t2 − t1)

(

1
4
(1 − c4) − 1

3
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)

t0
−

exp

(

− v2
n

B2
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)

t2 − t1









×
[

J0(vn) − J0(cvn)

v3
nJ1(vn)

]

; (A 8)

after the piston has stopped (t2 6 t 6 ∞)

u

Up

= 2B2

∞
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n=1
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[

J0(vn) − J0(cvn)

v3
nJ1(vn)

]

; (A 9)

where c = r/R, vn are zeros of J2(v), B = R/ν1/2, A = R/ν1/2 and Up = piston velocity
during time t0 to t1. Note in (A7) if the piston is moved with constant velocity for
long time (i.e. t1 → ∞) we get the parabolic velocity profile corresponding to fully
developed pipe flow.

Weinbaum & Parker (1975) gave an approximate solution to a fully developed
flow in a circular pipe and channel which is impulsively blocked. The exact solution
obtained using the above method to this problem is, for pipe flow,

u

U0

= 2

∞
∑

n=1

exp

(

− v2
n

B2
t

)[

J0(vn) − J0(cvn)

vnJ1(vn)

]

, (A 10)

and for channel flow,

u

U0

= 2

∞
∑

nH=1

exp

(

− v2
nH

B2
t

)[

cos(cHvnH) − cos(vnH)

vnH sin(vnH)

]

. (A 11)

Here, U0 is the average velocity of the fully developed flow, subscript H indicates
the quantities for the channel, vnH are zeros of tan(v) and cH = y/H . H is channel
half-width and y is distance from centreline towards the wall of the channel.

Appendix B. Velocity calculation for given piston motion: channel flow

In the case of flow in a channel similar equations are solved and the solution at
different times are:
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