
For Peer Review

Transition Overhead Aware Voltage Scheduling for

Fixed-Priority Real-Time Systems

BREN MOCHOCKI and XIAOBO SHARON HU

University of Notre Dame

and

GANG QUAN

University of South Carolina

Time transition overhead is a critical problem for hard real-time systems that employ dynamic
voltage scaling (DVS) for power and energy management. While it is a common practice of much
previous work to ignore transition overhead, these algorithms cannot guarantee deadlines and/or
are less effective in saving energy when transition overhead is significant and not appropriately
dealt with. In this paper we introduce two techniques, one off-line and one on-line, to correctly
account for transition overhead in preemptive fixed-priority real-time systems. We present several
DVS scheduling algorithms that implement these methods that can guarantee task deadlines
under arbitrarily large transition time overheads and reduce energy consumption by as much as
40% when compared to previous methods.

Categories and Subject Descriptors: C.3 [Special Purpose and Application Based Systems]:
Real-Time and Embedded Systems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Dynamic Voltage Scaling, Fixed Priority, Low-Power, Schedul-
ing, Transition Overhead

1. INTRODUCTION

Real-time scheduling plays a key role in the low-power design of real-time em-
bedded systems, not only because timing issues are critical, but also because low
power design is essentially a resource-usage optimization problem. How to employ
scheduling techniques to manage energy sources (such as batteries) to extend the
system lifetime and simultaneously meet timing requirements has become a wide
spread research area. Many scheduling methods have been published (e.g., [Yao

A preliminary version of this paper appears in [Mochocki et al. 2005]
Author’s address: B. Mochocki and X. Hu, Department of CSE, University of Notre Dame, Notre
Dame, IN 46556, {bmochock, shu}@cse.nd.edu
G. Quan, Department of CSE, University of South Carolina, Columbia, SC 29208,

gquan@cse.sc.edu

This work is supported in part by NSF under grant numbers MIP-9701416, CCR-9988468, CCR02-
08992, CNS-0410771 and the CAREER Award CNS-0545913 and by the University of South
Carolina Research Program under the Research Productive Scholarship Award.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1084-4309/2006/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006, Pages 1–26.

Page 1 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2 · Bren Mochocki et al.

et al. 1995; Pillai and Shin 2001; Gruian and Kuchcinski 2003; Kim et al. 2004; Seo
et al. 2006]). These methods differ in many ways, such as scheduling being done off-
line/on-line, handling hard/soft deadline requirements, or assuming fixed/dynamic
priority assignments. The core idea of these approaches is to employ scheduling
techniques that can exploit modern dynamic configuration capabilities of embed-
ded processors, according to the current or expected workload, to achieve energy
efficiency. One such capability is Dynamic Voltage Scaling (DVS).

The performance of a DVS processor can be dynamically adjusted by changing its
operational voltage and frequency. A significant limitation of DVS processors, how-
ever, is its inability to change the operation voltage and frequency instantaneously.
This limitation, known as transition time overhead can be on the order of tens of
microseconds ([AMD 2001; Burd 2001]) to tens of milliseconds ([Compaq 2000]).
For systems where execution is blocked during a transition (which is common in
many existing commercial processors [AMD 2001; Compaq 2000]), this translates
to anywhere from 104 to 108 lost execution cycles. Ignoring time overhead in this
case will likely cause deadline misses, which in turn can result in degraded system
performance or even system failure. Another related problem is transition energy
overhead, which can actually cause the system’s energy consumption to increase
if DVS is not used judiciously. Despite these limiting factors, a common practice
in the real-time system community is to focus on the “ideal case” in which all
overheads are considered negligible.

In this paper, we study the problem of reducing the energy consumption of fixed-
priority periodic real-time systems consisting of a single DVS processor with non-
negligible transition time and energy overhead. Many real-time embedded applica-
tions adopt a fixed-priority scheme, such as Rate Monotonic (RM), due to its high
predictability, low overhead, and ease of implementation [Liu 2000].

We present two approaches, one off-line and an one on-line, to handle the transi-
tion time and energy overhead of DVS processors. The off-line approach generates
the schedule during design time and is based on the a prior known system spec-
ifications. This approach has a very small run-time overhead because it does not
compete with running applications for system resources. However, as with other
off-line techniques, this approach tends to be pessimistic because it must consider
the worst case. Still, off-line methods can be effectively used for practical systems
with limited run-time variation or to study the energy-saving potential of design
alternatives during design space exploration. For systems with high run-time vari-
ability, we present a novel on-line approach, called low-power Limited Demand
Analysis with Transition overhead (lpLDAT), which can effectively accommodate
run-time variations and save energy. Through experimentation, we demonstrate
that lpLDAT can result in significant energy savings when compared to enhancing
previous methods to be overhead aware.

The remainder of this paper is organized as follows. Section 2 summarizes the
background material, Section 3 presents a motivational example, Section 4 develops
the off-line method, Section 5 describes the on-line approach and Section 6 presents
the experimental results. Finally, Section 7 concludes the paper. Note that all
proofs may be found in the appendix.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 2 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 3

2. BACKGROUND AND RELATED WORK

First, the type of systems under consideration and the necessary notation is speci-
fied. Next, the pertinent related work is presented.

2.1 System Model

We consider real-time applications consisting of a set of n periodic tasks, T =
{T1, T2, · · · , Tn}. Task Ti is said to have a higher priority than task Tj if i < j.
Each task, Ti, is described by its worst case execution cycles, wci, average case
execution cycles, aci, and best case execution cycles, bci, with wci ≥ aci ≥ bci. In
addition, each task has a period, pi, and relative deadline, di, with di ≤ pi. The
utilization of a task set is the sum of each task’s worst case cycles over its period.
That is, the worst-case utilization can be computed as

Uwc =
n

∑

i=1

wci

pi

. (1)

The average-case utilization, Uac, and the best-case utilization, Ubc, can be com-
puted by substituting aci and bci for wci, respectively.

We refer to the k-th invocation of task Ti as job Jk
i . Each job is described by

a release time, rk
i , deadline, dk

i , finish time, fk
i , the number of cycles that have

been executed, exk
i , and actual total execution cycles, ck

i , with 0 ≤ exk
i ≤ ck

i and
bci ≤ ck

i ≤ wci. During run-time, we refer to the earliest job of each task that has
not completed execution as the current job for that task, and we index that job
with cur, e.g., Jcur

i is the current job for task Ti. The estimated work remaining
for job Jcur

i , denoted by wcur
i , is equal to wci − excur

i . If a set of jobs is not
associated with a set of periodic tasks, then the superscript is dropped and the
subscript indicates the priority of the job (e.g., J1 = (r1, d1, f1, wc1, ex1, c1) has a
higher priority than J2 = (r2, d2, f2, wc2, ex2, c2)). A ready job is any job Ji at
time t that satisfies ri ≤ t, di > t and fi > t, while the active job is the ready job
at time t with the highest priority. As in most DVS work, we assume that each job
consumes an equal amount of energy per cycle at a given speed.

A scheduling point is any time point t that satisfies either t = rk
i , t = dk

i or
t = fk

i |i = 1..n, k = 1..∞. We use T S to represent all scheduling points sorted in
ascending order. An individual scheduling point is indexed by i and denoted by
tsi. Note that finish times are estimated based on the worst-case execution cycles
for off-line scheduling. For on-line algorithms, they are inserted into T S as they
occur. Once a finish time is inserted, the corresponding deadline is removed from
T S . The subset of T S that includes all points greater than rk

i and less than or
equal to dk

i is called the set of Jk
i -scheduling points and is denoted by T Sk

i .
The DVS processor used in our system can operate at a finite set of voltage levels

V = {V1, ..., Vmax}, each with an associated speed. To simplify the discussion, we
normalize the processor speeds by Smax, the speed corresponding to Vmax, resulting
in the set S = {S1, ..., 1}. Changing from one voltage level to another takes a fixed
amount of time, 1 referred to as the transition interval (denoted ∆t) within which

1A variable length transition interval (e.g. the one described in [Burd and Brodersen 2000]) can
be approximated by a fixed length interval equal to the maximum switching time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 3 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4 · Bren Mochocki et al.

no tasks can be executed. 2 The transition interval length for a DVS processor alone
is usually on the order of 10 to 120 µs ([Intel 2000; AMD 2001; Burd and Brodersen
2000; Pouwelse et al. 2001]). This results from the DC-DC converter changing VDD

and the phase-locked loop (or similar technology) changing fclk. However, when
considering synchronization with other components in a system, such as off chip
memory, the length can be on the order of milliseconds ([Saewong and Rajkumar
2003; Compaq 2000]).

A voltage transition also consumes a variable amount of transition energy, de-
noted as ∆E. Transition energy includes three major parts: (1) the energy con-
sumed by the DC/DC converter, (2) the energy consumed by the CPU during the
transition and (3) the energy increase due to executing cycles displaced by the tran-
sition interval at higher speeds. This is similar to the model used in [Mochocki
et al. 2002].

2.2 Related Work

2.2.1 DVS scheduling with transition overhead. A number of researchers have
studied voltage scheduling when transition overhead is not negligible. Hong et
al. [Hong et al. 1998] present two algorithms that solve the off-line voltage scheduling
problem. These algorithms take the voltage transitions into consideration, but
assume that computation can be performed during a transition, which is often
not the case ([AMD 2001; Compaq 2000]). In addition, these algorithms assume
no upper limit for the supply voltage, which is not practical. In [Saewong and
Rajkumar 2003], Saewong and Rajkumar present an off-line algorithm to schedule
FP job sets with a very large transition interval. They essentially select the smallest
speed that meets all task deadlines, thus avoiding transitions altogether. Zhang and
Chakrabarty consider both overheads when scheduling voltage levels and checkpoint
times for fault-tolerant, hard, real-time systems with periodic tasks ([Zhang and
Chakrabarty 2004]). They assume that each task can meet all deadlines when
running at the smallest processor speed if no faults are present. This assumption
eliminates the benefit of DVS in a fault-free environment. Mochochi et al. presented
an algorithm called Unified Algorithm for Earliest Deadline First (UAEDF), to
guarantee task deadlines and minimize the energy consumption while managing
transition overhead for EDF-based systems [Mochocki et al. 2002]. A drawback of
this algorithm is that it cannot be directly applied to FP systems, as will be shown
in Section 3.

There are also a number of DVS scheduling approaches for distributed systems
or systems with dependent sub-tasks that consider transition overhead. In a recent
work, first presented in [Seo et al. 2004] and extended in [Seo et al. 2006], Seo et al.
propose an optimal intra-task voltage scheduling method that handles transition
overhead during compile time. Though effective, this method cannot be directly
applied to the inter-task FP preemptive system we consider. In [Seo et al. 2005],
they combine the intra-task method from [Seo et al. 2004] with the EDF-based

2Most commercial processors (e.g. [AMD 2001; Compaq 2000]) block executions during the tran-
sition process. For processors that do not block instructions during a transition (e.g., [Burd and
Brodersen 2000]), a schedule that assumes blocking could be pessimistic, but will guarantee that
a valid voltage schedule is reached.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 4 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 5

inter-task method from [Yao et al. 1995]. They do not, however, consider inter-
task transition overhead in that algorithm. Zhang et al. in [Zhang et al. 2003]
present an ILP formulation that optimally solves the voltage scheduling problem for
multiple processors while considering transition energy overhead. They also present
an approximation formulated as an LP. Both methods are too complex to be used
on-line and fail to account for transition time overhead. Andrei et al. in [Andrei
et al. 2004] also solve the voltage scheduling problem for multiple processors using
an ILP that considers both time and energy transition overhead. Because an ILP
is used, the run time is exponential with respect to the input size, making this
method impractical for many systems. They later proposed a combined off-line
on-line technique [Andrei et al. 2005], which has a very small run-time overhead.
Even though this algorithm is very efficient, it is only applicable to a statically
ordered, non-preemptive systems, which is different from the FP preemptive system
we address here.

2.2.2 On-line DVS scheduling for FP systems. Some previous research has been
conducted regarding on-line DVS for FP real-time tasks, e.g., [Gruian and Kuchcin-
ski 2003; Kim et al. 2003; Pillai and Shin 2001], none of which accounts for transition
overhead. Pillai and Shin proposed an algorithm called ccRM, which first computes
off-line the maximum speed necessary to meet all task deadlines based on worst-
case response time analysis. On-line, the processor speed is scaled down when task
instances complete early [Pillai and Shin 2001].

In [Gruian and Kuchcinski 2003], Gurian describes a method to order tasks based
on their best to worst case execution cycle ratio, i.e., tasks that are more likely to
finish early should be executed first so the resulting slack can be used to save energy.
His method is complementary to the approach we present here, as the priority of
tasks can be set to match the order prescribed in [Gruian and Kuchcinski 2003].

Kim et al. in [Kim et al. 2003] developed a method called lpWDA that uses a
greedy, on-line algorithm to estimate the amount of slack available and then apply
it all to the current job. This algorithm is unique in that it takes slack from both
lower and higher priority tasks, as opposed to the method presented [Pillai and
Shin 2001] that waits for slack to filter down from higher priority tasks. A serious
drawback, in addition to discounting transition time overhead, is that lpWDA is
often too aggressive, resulting in wasted energy. We show in Section 3 that the
modifications to lpWDA that are required to correctly account for time overhead
are not trivial. A later work in [Kim et al. 2004] seeks to minimize the impact of
preemptions on the overall system energy consumption. This technique can easily
be incorporated into the method we present here for further energy reduction when
the preemption overhead is not negligible.

3. MOTIVATIONAL EXAMPLE

In this section we first show that the algorithm, UAEDF [Mochocki et al. 2002],
cannot guarantee deadlines when jobs are scheduled according to a FP scheme, such
as RM. Next, we show that lpWDA cannot guarantee deadlines when the transition
time overhead is not negligible.

Observe the two-task system in Figure 1(a), with p1 = d1 = 3, wc1 = bc1 = 1,
p2 = d2 = 4, and wc2 = bc2 = 1. Figure 1(b) shows the results when the task set is

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 5 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6 · Bren Mochocki et al.

Fig. 1. (a) An example task set consisting of two tasks; (b) Jobs miss deadlines when scheduled ac-
cording to UAEDF; (c) Jobs miss deadlines when scheduled by lpWDA with a simple modification
to account for transition time overhead.

scheduled off-line using UAEDF. Two deadlines of task T2 are missed at time 4 and
time 8. This is due to the fundamental difference in preemption patterns between
fixed-priority and dynamic-priority systems. In Section 4, UAEDF is modified to
work for FP systems.

Figure 1(c) shows the task execution pattern when tasks always take the worst-
case execution cycles and lpWDA is used, assuming a transition interval of ∆t = 1.
Note that lpWDA does not explicitly account for time overhead. We could try to
solve this problem by reducing the slack identified by ∆t time units during every
slack calculation. Notice that according to this schedule, jobs J 2

2 and J3
2 miss their

deadlines. Clearly, when transition time overhead is significant, one cannot be too
aggressive when employing DVS, otherwise deadlines will be missed. A method to
account for time overhead on-line is presented in Section 5.

4. OFF-LINE APPROACH

In this section, an off-line algorithm is developed to handle an arbitrarily large tran-
sition time overhead for FP systems. We begin by introducing a class of algorithms
that have been shown to effectively manage transition overhead in EDF systems.
We then develop a corresponding algorithm for FP systems.

4.1 Critical-interval based scheduling algorithms

A class of voltage scheduling algorithms called critical-interval scheduling algo-
rithms (e.g., [Yao et al. 1995; Quan and Hu 2001; 2002]) are particularly suited
to statically handling transition overhead. A critical interval is the maximum
length interval such that the minimum constant speed must be continuously ap-
plied to avoid a deadline miss, while a critical-interval scheduling algorithm is
any algorithm that iteratively identifies, schedules and removes the critical interval.
The interval is scheduled by deleting jobs that execute in the interval from the list

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 6 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 7

of unscheduled jobs, while it is removed by adjusting release times and deadlines of
unscheduled jobs (based on equation (2) and (3), for example) so that time reserved
for the critical interval is not reused.

r′i = ri − max {min {ri, ej} − sj , 0}, (2)

d′i = di − max {min {di, ej} − sj , 0}, (3)

i = 1..|J |

UAEDF builds on the critical-interval scheduling algorithm called Low Power
Earliest Deadline First (LPEDF) [Yao et al. 1995], to deal with the transition time
overhead. LPEDF is an optimal critical-interval scheduling algorithm for EDF
systems, when time overhead is negligible. UAEDF modifies equations 2 and 3 by
extending the new critical interval to include two voltage/speed transitions, i.e.,
[sj − ∆t, ej + ∆t]. Note that transitions are not inserted twice between adjacent
intervals. In the absence of transition overhead and given a continuous voltage
range, UAEDF will produce the same schedule as LPEDF.

4.2 Adaptation to FP Systems

Although UAEDF is effective in managing transition overhead in EDF systems, we
have shown in section 3 that UAEDF cannot be directly applied to FP systems.
Thus, a corresponding FP critical-interval scheduling algorithm is a reasonable
starting point for the off-line approach. We utilize an efficient polynomial-time
heuristic3 called fixed-priority Voltage Scheduling for Low Power (VSLP) [Quan and
Hu 2001]. The critical interval identified by VSLP is associated with a particular
job, the intensity of which can be computed using the following definition [Quan
and Hu 2001].

Definition 1. Jn-intensity– Let ta and tb the release or deadline of jobs with
priority j where j ≤ n. The Jn-intensity in the interval [ta,tb], denoted by In(ta,tb),
is defined to be:

In(ta, tb) =

∑n

i−1 δ(Ji) ∗ wci

tb − ta

δ(Ji) =

{

1 ta ≤ ri < tb
0 otherwise

One desirable feature of critical interval scheduling algorithms such as VSLP is that
intervals are identified in a monotonically non-increasing order of speed when the
transition time overhead is negligible, as shown in Lemma 1 [Quan and Hu 2001].

Lemma 1. let A be an arbitrary critical-interval scheduling algorithm. Further,
let ∆t = 0. Critical intervals identified by A are identified in a monotonically
non-increasing order by speed.

3Although an optimal voltage scheduling algorithm has also been devised for FP, the FP case is
known to be NP-complete [Quan and Hu 2002].

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 7 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

8 · Bren Mochocki et al.

Transition overhead is accounted for by extending the critical interval by ∆t in
each direction, i.e., [sj − ∆t, ej + ∆t], where the critical interval for iteration j is
[sj , ej]. However, this additional time may cause consecutive intervals to require a
higher speed, which we refer to as a monotonicity violation, given in Definition 2.

Definition 2. Monotonicity Violation– The situation that occurs when the
speeds Si−1 and Si of two consecutively identified critical intervals satisfy Si−1 < Si.

Two key observations regarding monotonicity violations are presented in Lemmas 2
and 3.

Lemma 2. Let Ii−1 = [si−1, ei−1] and Ii = [si, ei] be two consecutively identified
critical intervals identified by VSLP with speeds Si−1 = Ini−1

(si−1, ei−1) and Si =
Ini

(si, ei). Additionally, let the scheduled interval for iteration i − 1 be [si−1 −
∆t, ei−1 + ∆t]. If Si > Si−1 then Ii−1 and Ii are adjacent.

Lemma 3. Let Ii−1 = [si−1, ei−1] and Ii = [si, ei] be two consecutively identi-
fied critical intervals identified by VSLP with speeds Si−1 = Ini−1

(si−1, ei−1) and
Si = Ini

(si, ei) such that Si > Si−1 (i.e., a monotonicity violation has occurred).
Additionally, let the scheduled interval for iteration i− 1 be [si−1 −∆t, ei−1 + ∆t].
The minimum speed at which every job in Ji−1 ∪Ji can execute without a deadline
miss is Si−1.

UAEDF removes monotonicity violations by merging the monotonicity-violation
interval with the previously identified critical interval and also adopting its proces-
sor speed. Clearly the processor speed is “higher than necessary” for the jobs in
the monotonicity-violation interval. To be energy efficient, it is desirable that the
merged critical interval be kept as short as possible. This will free the maximal
amount of time for scheduling any remaining jobs and also minimize the chance
of future monotonicity violations. UAEDF delays the execution of the jobs in the
merged interval without violating their deadlines and therefore reduces the interval
length. In [Quan et al. 2004], an efficient algorithm is presented to find the latest
start time and the minimum length critical interval for a given set of FP jobs at
a specific speed. We refer to this algorithm as LSTFP.4 It is tempting to believe
that LSTFP can be used directly for handling monotonicity violations, similar to
UAEDF. However, the naive usage of this algorithm may lead to deadline misses
as explained in Figure 2.

Observe the set of jobs in Figure 2(a). Figure 2(b) shows that the critical interval
of J2 is higher than that of J1, which is a monotonicity violation that must be dealt
with. One method to find the minimum-length interval is to merge the two jobs into
one by finding the latest start time of both jobs. However, a FP system scheduled
in this way results in the execution pattern displayed in Figure 2(c). Notice that
the interval [10, 11] allocated to J3 is actually used by J2. Because the deadline of
J3 is earlier than that of J2, J3 cannot finish the remaining work and its deadline
at time 16 is missed. This situation is referred to as execution inversion.

Definition 3. Execution Inversion– The situation that occurs when a job Ji

is scheduled to be executed during an interval [t1, t2] but is instead preempted by a
job Jj during that interval, where j < i.

4Note that LSTFP was used in [Quan et al. 2004] to reduce leakage energy.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 8 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 9

Execution inversion can occur because once a job is scheduled, it is removed from
further consideration, provided that a second monotonicity violation does not occur.
As shown in Figure 2(c), this is fine for EDF systems, but not suitable for FP
systems. To prevent execution inversion, we propose bounding the latest start
time to ∆t plus the earliest release time of all jobs in current and previous critical
intervals. This ensures that J3 from Figure 2(a) will be completed by time 10
at a speed of 3/7. Lemma 4 formally demonstrates that this method eliminates
execution inversion.

Lemma 4. Bounding the latest start time of a job set Ji to rmin
i +∆t will prevent

execution inversion. The value rmin
i is the earliest release time of all jobs in Ji.

Bounding the latest start time according to 4 results in a latest start time of 12 for
the critical interval containing J1 and J2 in Figure 2. The new algorithm, called
UAFP, is presented in Algorithm 1. Lines 3–7 deal with monotonicity violations
due to time transition overhead as described throughout this section. Before a
final schedule is produced in line 13, transitions to critical intervals insufficient in
length to justify the incurred transition energy overhead are removed (Lines 9–12).
Theorem 1 gives the correctness and complexity of Algorithm 1.

Algorithm 1 UAFP

1: INPUT: The job set to be scheduled, J , and the transition interval size, ∆t.
2: OUTPUT: A valid voltage schedule.
3: while ∃ an unscheduled job in J do
4: Identify the next critical interval Ii according to VSLP;
5: if a monotonicity violation is encountered then
6: I ′i−1 = the minimum interval that completes all jobs in Ii and Ii−1 such

that the interval start time is equal to min{min{rmin
i−1 , rmin

i } + ∆t, (latest
start time by LSTFP)};

7: Replace Ii and Ii−1 with I ′i−1;
8: // Handle energy overhead
9: for each critical interval Ii in order of increasing speed do

10: Identify the adjacent interval with minimum speed, Ij , such that the speed
of Ij is greater than that of Ii

11: if If energy(Ii) + energy(Ij) + ∆E(Ii, Ij) > energy(Ii merged with Ij) then
12: merge Ii with Ij

13: Construct the voltage schedule from the resulting set of critical intervals

Theorem 1. Algorithm 1 always produces a valid voltage schedule in O(N 3)
time, given an initially schedulable job set, where N is the number of jobs.

5. ON-LINE APPROACH

In the previous section, we present a method that can statically account for tran-
sition overhead. This technique is advantageous for two reasons. First, the voltage
schedule is stored in a table and can be accessed quickly, thus it will not com-
pete with the other tasks for cpu resources. Second, it can effectively exploit the

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 9 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

10 · Bren Mochocki et al.

Fig. 2. (a) An example job set. (b) An example monotonicity violation. (c) LSTFP is used to
remove the monotonicity violation. The deadline of J3 is missed at time 16.

known specifications of a particular system to enhance the energy savings and is
also able to quantify the energy-saving potential of design alternatives, which can
be extremely important during the design space exploration process. The main
disadvantage of the off-line scheme is that it is less flexible and adaptive for the
dynamic run-time environment, especially when tasks complete much earlier than
the worst case. This is the situation where an on-line algorithm becomes more
effective.

As mentioned in Section 2.2, the most recent on-line algorithm for preemptive FP
systems is called lpWDA [Kim et al. 2003]. Unfortunately, this algorithm suffers
from two major drawbacks: (i) It is too greedy when selecting a speed for the active
job, and (ii) it does not account for voltage transition time and energy overhead.
We address each of these concerns in Sections 5.1 through 5.3.

5.1 Limited Demand Analysis

The on-line scheduling algorithm can significantly outperform an offline scheduling
algorithm if it can effectively exploit slack produced when real-time jobs complete
much earlier than the worst case. However, in order to do so, one must be careful
when consuming the slack time. Algorithm lpWDA always selects the smallest fea-
sible speed when slack time is available, resulting in an algorithm that aggressively
steals slack from future jobs. This may not be the most energy-efficient technique
in all situations. For example, observe the schedule in Figure 3, which is the task
set from Figure 1 scheduled according to lpWDA. Notice that the speed alternates
between a very low speed (1/2 or smaller) and Smax. This is because all of the
slack is being used by the active job. A more efficient schedule would be aware of
the average case cycles (which in this example is equal to the worst case) and be
less aggressive when using slack.

Limiting the slack used by the active job in lpWDA requires a careful trade-off

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 10 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 11

Fig. 3. The schedule produced by lpWDA when executing the task set from Figure 1, without
transition overhead. The energy consumed equals 4.25 assuming power = speed3

between being aggressive and being conservative. If one could compute an efficient
speed based on the average-case workload, this speed could be used as a limiter. If
the limiter is higher than the speed predicted by lpWDA, we know that lpWDA is
being too aggressive and the limiter speed should be used. An often used concept
in DVS research is the minimum constant speed that can meet all job deadlines.
Due to the convexity of the power function, it is generally not energy efficient for
the processor to go below this speed and then switch to a higher speed later, unless
there is reason to expect newly available slack ([Pillai and Shin 2001]). Thus the
minimum constant speed can serve as a proper limiter.

To find the minimum constant speed for a periodic task system, one can simply
examine the case when all tasks are released simultaneously, i.e.,

SMC =
n

max
i=1

min
ts∈T S1

i

Speed(i, ts) (4)

and

Speed(i, ts) =

∑i

j=1d
ts
pj
e × wcj

ts
(5)

where T S1
i is the set of J1

i -scheduling points. Our idea is to perform a similar oper-
ation as above on-line. Directly applying the formulas in (4) and (5) is not desirable
due to its pessimism and time complexity. To overcome unnecessary pessimism, we
recompute the minimum constant speed for each job whenever it starts/resumes
execution. This allows the actual execution cycles of jobs executed earlier to be
considered when appropriate. This also removes the pessimistic assumption of the
worst-case phasing. Furthermore, instead of using the worst-case execution cycles,
we use the average-case execution cycles. Finally, we opt to use the deadline dcur

i

of job Jcur
i rather than checking every scheduling point in T Scur

i for the minimum
speed. This reduces the time needed to calculate the limiter.

The proposed on-line algorithm, called low-power Limited Demand Analysis
(lpLDA), is given in Algorithms 2 and 3. Lines 4 and 5 of Algorithm 2 initial-
ize the estimated worst and average case higher priority cycles that must complete
before the next deadline of each task. These values are maintained every time a
preemption/completion occurs in line 6 of Algorithms 2 and lines 6 – 16 of Algo-
rithm 3. The slack of lower priority jobs is determined in line 9 of Algorithm 2
(for more details on this operation, see [Kim et al. 2003]). Line 10 finds the lowest
effective feasible speed for the active task, while Line 11 calculates the speed of the
limiter. Finally, Line 12 selects the maximum of the two speeds, essentially restrict-

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 11 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

12 · Bren Mochocki et al.

Algorithm 2 lpLDA

1: if on system start then
2: for Each Task Ti ∈ T do
3: dcur

i :=di; wcur
i :=wci;

4: Hi:=
∑i−1

j=0(d
dcur

i

pj
e × wcj);

5: Ai:=
∑i−1

j=0(d
dcur

i

pj
e × acj);

6: if finish/preempt the active job Jcur
α then updateLoadInfo(T ,α);

7: if on execute the active job Jα then
8: Identify Tβ |β ≥ α AND dcur

β is minimized;
9: Compute slackα based on workload with respect to Tβ;

10: fclk :=
wcur

α

slackα+wcur
α

× fmax;

11: flimit := max{
Ai+acα−excur

α

dcur
i

−t
| i = 1..n};

12: fclk := max{fclk, flimit};
13: Set the voltage according to fclk;

Algorithm 3 updateLoadInfo(T ,α)

1: input: Tasks T and the preempted/completed task index α.
2: output: Workloads are updated to reflect current execution information.
3: if Tα is completed then
4: for each task Ti ∈ T with i < α do
5: dcur

α := dcur
α + pα;

6: Hα := Hα +
∑α−1

j=0 (d
dcur

i

pj
e − d

dcur
i −pα

pj
e) × wcj ;

7: Aα := Aα +
∑α−1

j=0 (d
dcur

i

pj
e − d

dcur
i −pα

pj
e) × acj ;

8: for each task Ti ∈ T with i > α do
9: Hi := Hi − (wcα − exk

α);
10: Ai := Ai − max{0, acα − exk

α};
11: wcur

α := wcα; // reset for next job of Tα

12: else
13: temp := wcα − excur

i ;
14: for each task Ti ∈ T with i > α do
15: Hi := Hi − wcur

α + temp;
16: Ai := Ai − wcur

α + temp;
17: wcur

α := temp;

ing the amount of slack that would be used by lpWDA alone. Applying lpLDA to
the example task set in Figure 1 produces the results in Figure 4 when all jobs
require their worst case cycles. Notice that the energy is reduced by about 42%
when compared to lpWDA. Theorem 2 states the correctness of lpLDA in terms of
satisfying real-time requirements.

Theorem 2. The schedule produced by lpLDA guarantees all system deadlines,
and has a computational complexity of O(n) per scheduling point, where n is the
number of tasks in the system.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 12 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 13

Fig. 4. The schedule produced by lpLDA when executing the task set from Figure 1, without
transition overhead. The energy consumed equals 2.47 assuming power = speed3

5.2 Transition Time Overhead

Figure 4 shows that lpLDA can significantly outperform lpWDA in term of energy
savings. However, it still suffers from the same drawback as lpWDA with regard to
transition time overhead: When transition time overhead is not negligible, real-time
jobs can miss their deadlines. In this sub section, we develop a technique based on
lpLDA that can deal with the transition time overhead.

Transition time overhead can complicate on-line voltage scheduling in several
ways. The most straightforward effect is that time overhead reduces the available
slack. Since the job set is schedulable with Smax, the processor speed can only be
reduced to a lower speed if there is enough slack for at least two transition intervals,
one to the lower speed and another to return to Smax if necessary. Furthermore, if
the available slack can only tolerate less than two transitions but more than one,
we can still run the job with the current speed and later return later to Smax to
guarantee the deadlines if necessary. Otherwise, we need to run the jobs with Smax.

It seems that, once we determine the processor speed on-line similar to that in
Algorithm lpLDA, the above strategy could resolve the transition time overhead
problem. However, there are two complications need to be dealt with. First, a
higher priority job may be released during a transition. In this case, the target
speed of the current transition may be insufficient to meet the deadline of the new
job. We refer to this problem as a transition error. Second, the slack consumed
by a transition interval that starts at the release of a higher priority task (i.e., the
preemption of the current task) may cause the minimum feasible speed of the new
task to be greater than the maximum processor speed. We refer to this problem as
a preemption error. These scenarios are illustrated graphically in Figure 5.

In Figure 5, notice that job Jcur
2 is released within one transition interval of the

scheduling point t. Thus, scheduling will not take place at rcur
2 if there is a transition

starting at time t. This will cause a transition error if the speed requirement of
Jcur

2 is greater than the new speed. Next, J cur
1 is within two transition intervals

of t. If the speed selection for Jcur
1 is delayed until rcur

1 , then there may not be
sufficient time to change to the speed required to meet the deadline of J cur

1 , thus
causing a preemption error.

In order to account for time overhead when estimating the available slack, one
must predict potential future necessary transitions. To further our discussion, we
first present the following definitions.

Definition 4. Pre-release Scheduling Point– The time point t that satisfies
t = rk

i −∆t|i = 1..n, k = 1..∞. Pre-release scheduling points replace the correspond-

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 13 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

14 · Bren Mochocki et al.

Fig. 5. An example of pre-release points, the lookahead interval at time t, the system lookahead
(tL) and possible transition and preemption errors. The critical job at time t is Jcur

1 .

ing scheduling points that satisfy t = rk
i |i = 1..n, k = 1..∞ in T S whenever time

transition overhead is not negligible.

The pre-release scheduling points of J cur
1 , Jcur

2 and Jcur
3 are illustrated in Figure 5.

Pre-release scheduling points warn the system that a preemption may occur in
the near future and are essential if a speed is to remain feasible after a voltage
transition. However, the pre-release points alone will do no good if the associated
job is not included in the scheduling process. To this end, we introduce the concept
of lookahead interval to limit the number of observed pre-release scheduling points.

Definition 5. Lookahead Interval– An interval that begins at a specific schedul-
ing point, tsi, and ends at time tsi + tL. The value tL is referred to as the system
lookahead. The lookahead interval at time tsi is denoted by Li.

The lookahead interval is given by the arrow extending to the right from time t in
Figure 5.

Examining jobs in the lookahead interval helps to identify if the processor speed
can be updated and at the same time avoid transition and preemption errors.
However, how much lookahead is needed deserves careful examination since too
much will increase scheduling complexity and too little may not be sufficient for
meeting deadlines. Theorem 3 shows that tL = 2∆t is the sufficient and necessary
lookahead to prevent transition and preemption errors for an arbitrary real-time
job set.

Theorem 3. Let job set T be schedulable under Smax and the transition time
overhead be ∆t. Assume that the processor is set to a new processor speed other
than Smax only when the available slack is large enough to contain at least two
transition overheads. Then the system lookahead 2∆t is sufficient and necessary to
obtain a transition/preemption-error-free on-line schedule for an arbitrary real-time
job set.

Further, note that the ready job with the highest priority during the lookahead
interval Li will eventually possess the processor after the transition. We there-
fore name this job the critical job. The critical job of a look-ahead interval Li

is denoted JC(Li). For example, Jcur
1 is the critical job at time t in Figure 5.

When determining the speed for the critical job, we adopt a heuristic rather than
determine the exact execution pattern for the sake of computation efficiency. Our
heuristic assumes that no jobs may be executed from the time the transition begins

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 14 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 15

to the release of the critical job. In Figure 5, this heuristic pessimistically assumes
that neither Jcur

2 or Jcur
3 can execute between t + ∆t and rcur

1 . The advantage
of this heuristic is that the slack estimation is as fast as that of lpLDA and the
estimated speed requirement of the critical job will always be greater than or equal
to the largest actual speed requirement of all ready jobs in the look-ahead interval.
5

Based on Theorem 3 and above observations, we develop a new algorithm that
extends Algorithm lpLDA to deal with transition overhead. The implementation
of this algorithm, known as lpLDAt, is given in Algorithm 4. For now ignore lines
marked with ***. First, pre-release scheduling points are inserted to ensure that
scheduling occurs with enough time to include a speed/voltage transition. When
a scheduling point tsi is encountered (line 8), the critical job Jα is selected by
scanning each task and finding the highest priority task that has a ready job in the
interval [t, t + 2∆t] (line 11). Next, the same method used by lpWDA is used to
estimate the slack available to Jα (line 14). Then, the speed for the processor is
calculated by determining if the slack is sufficient for one or two transition intervals
(lines 15–17). If a speed different from the current speed and lower than Smax is
selected, then the processor is set either to that speed or the limiter, whichever
speed is higher (lines 18).

Theorem 4. The schedule produced by lpLDAt guarantees all system deadlines
and has a computational complexity of O(n) per scheduling point, where n is the
number of tasks in the system.

5.3 Energy Overhead

Extra energy will be consumed during a voltage transition because (1) a voltage
transition itself consumes energy and (2) voltage transitions take a fixed amount of
time within which no jobs can be executed. Therefore, the processor needs to adopt
a higher speed elsewhere to accommodate the transition interval. To illustrate effect
(2), examine the data in Figure 6. The data is obtained for the task set in Figure 1
as the best case vs. worst case execution cycle ration (BC/WC) is varied. All
energy numbers are normalized against the energy consumed when executing at
the maximum processor speed, Smax, without DVS. The solid line represents the
energy consumed when executing at the minimum constant speed without DVS,
i.e., SMC .

Figure 6 shows the energy consumed by executing the task set from Figure 1 at
the speeds selected by lpLDAt for various sizes of ∆t, and various values for the
BC/WC of each task. The reader will immediately notice that as ∆t becomes large,
the benefit gained from DVS quickly vanishes. This result is due to the fact that
lpLDAt frequently varies the processor speed to exploit slack, which can introduce
more transitions than necessary when transition overhead is not negligible.

To ensure that time overhead does not cause an energy increase over using just
SMC , we propose exploiting slack less aggressively, thus avoiding transitions that

5This statement is intuitively correct because lpLDA will attempt to guarantee the deadline of
all lower priority jobs as well as the critical job, so removing some slack from the calculation will
inflate the required speed. If the pessimistically estimated speed is greater than Smax, then Smax

is selected, which must be correct if the task set is schedulable.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 15 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

16 · Bren Mochocki et al.

Algorithm 4 lpLDAt (lpLDAT with ***)

1: if system start then
2: Initialize each task as is done in Algorithm 2;
3: *** energySmax := estimate(T ,Smax);
4: *** energySMC := estimate(T ,SMC);
5: S′

max := Smax;
6: *** if energySmax ≥ energySMC then S′

max := SMC ;
7: fclk := S′

max;
8: if current time ts ∈ T S and ts is a job completion/pre-release then
9: Find Jα, the active job;

10: updateLoadInfo(T ,α);
11: Jα := JC([ts,ts + 2∆t]);
12: t := max{ts + ∆t, rcur

α };
13: Set flimit as is done in Algorithm 2;
14: Compute slackα based on workload starting at t;
15: if slackα is large enough for 2 transitions at the speed S2∆t where S2∆t ≤

S′
max then fclk := S2∆t;

16: else if slackα is large enough for 1 transition at the speed S∆t where S∆t ≤
fprev and fprev is the previous speed then fclk := fprev;

17: else fclk := S′
max;

18: if fclk < flimit AND fclk 6= fprev then fclk := flimit;
19: *** if fclk < fprev then check energy overhead();
20: Set the voltage according to fclk;

0.3

0.4

0.5

0.6

0.7

0.8

0.0 30.0 60.0 90.0 0.0 30.0 60.0 90.0 0.0 30.0 60.0 90.0

0.1 0.5 0.9
BC/WC

No
rm

al
iz

ed
 E

ne
rg

y

S'_MAX = S_MAX S'_MAX = S_MC S_MC

∆∆∆∆t (µµµµs)

Fig. 6. The energy consumed by to the task set from Figure 1 when applying lpLDAt with two

different values for S′

max.

would increase energy instead of reducing it. The maximum speed, Smax (which
is assumed to equal 1 when normalized) is used implicitly in Lines 9 and 10 of
Algorithm 2 when determining fclk. This leads to an “overestimation” of slack
time when transition overhead is not negligible. If we choose a lower speed for
Smax, it can be readily used to scale these workload values and will result in a
more conservative slack exploitation. We refer to the adjusted maximum speed as
S′

max.
Our strategy is to compute a good value for S ′

max off-line and use it on-line. One
may be tempted to select SMC as the speed for S′

max. Though this ensures that
no curve will appear above the SMC line in Figure 6 and also guarantees all task
deadlines, doing so drastically reduces the amount of slack available when ∆t is

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 16 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 17

small and jobs finish much earlier than the worst case. This situation is illustrated
in Figure 6. Notice that when BC/WC = 0.1 and the time overhead is zero, Smax

is a better choice than SMC .
We choose a good S ′

max as follows. We estimate the energy that lpLDAt will
consume at speed SMC and Smax, which is done by simulating the execution of
tasks up to the system hyper-period a fixed number of times. The process is re-
peated twice, once with S ′

max = Smax and once with S′
max = SMC . The level that

consumes less energy during this estimation step is selected6.
Algorithm 4 with the lines marked by *** represents the complete on-line al-

gorithm, called lpLDAT. Here we will focus on the parts that are different from
lpLDAt. Lines 3–6 determine the adjusted maximum speed S ′

max as described
above. This step occurs off-line. On-line, after a new speed is selected, if the se-
lection results in a voltage transition from Si to Sj , then there is one final check
(Line 19), which ensures that ∆E does not locally dominate the energy saved by
changing the lower voltage level. If executing the workload of J cur

α at Si consumes
less energy than executing at Sj + 2∆E and Si > Sj , then the voltage transition is
rejected. Otherwise, Sj is adopted as the new processor speed. Theorem 5 states
the correctness of Algorithm 4.

Theorem 5. The policy followed by lpLDAT will guarantee all system dead-
lines, and has a computational complexity of O(n) per scheduling point, where n is
the number of tasks in the system.

6. EXPERIMENTAL RESULTS

In this section we quantify the effectiveness of the off-line and on-line algorithms
on both randomly generated task sets as well as several real-world task sets. First,
the system power model used in the experiments is presented. Next, the algorithms
evaluated in this section are described, along with the run-time complexity of the
each algorithm. Finally, the performance of the proposed algorithms are evaluated
in detail.

6.1 System Power Model

The processor model used is from the work in [Martin et al. 2002], while the DC/DC
converter model can be found in [Burd 2001], which includes the following four
equations:

PAC = Ceff V 2
ddfclk (6)

PDC = VddK3e
K4Vdd+K5Vbs + |Vbs|Ij (7)

fclk =
((1 + K1)Vdd + K2Vbs − Vth1)

α

LdK6

(8)

∆E(V1, V2) = Cr|V
2
1 − V 2

2 | (9)

6Although our experiments show that selecting a speed between Smax and SMC may be beneficial,
identifying the ideal S′

max is not a trivial problem. This is because it may change during run-time
and depends on the actual execution cycles of each job. Because the focus of this paper is handling
time overhead while meeting deadlines, we leave this problem for future work.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 17 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

18 · Bren Mochocki et al.

��������� ��	��
�������
�����

��������������
��

������ ��������
��������

�������
����������

��������� �������������������
��

���������������������������������������

Table I. Power and delay parameters for the 180-nm process.

where Vdd is the supply voltage, PAC is the dynamic power, PDC is the leakage
power, fclk is the clock frequency, and ∆E(V1, V2) is the energy consumed by the
DC/DC converter when switching between voltage levels V1 and V2. The remaining
symbols are device-dependent constants, the values of which are given in Table I.
For all experiments we assume there are 32 frequency levels available in the range
of [60, 600] MHz, with corresponding voltage levels distributed evenly in the range
[0.6, 1.4] V, unless noted otherwise.

6.2 Algorithms and On-line Complexity

We examined three off-line and three on-line algorithms, including:

—UAFP The proposed off-line algorithm from Section 4.

—O UAFP The proposed off-line algorithm from Section 4, with knowledge of
actual execution cycles (i.e., Oracle UAFP). This algorithm is used as a reference
to see how much improvement to the other algorithms is possible.

—S MC The off-line algorithm that selects the minimum constant speed for each
task instance (i.e., DVS is not applied).

—lpLDAT The proposed on-line algorithm from Section 5.

—ccRM Dt The on-line algorithm ccRM from [Pillai and Shin 2001], modified
with the results from Section 5 to account for transition overhead7.

—lpWDA Dt The on-line algorithm lpWDA from [Kim et al. 2003], modified with
the results from Section 5 to account for transition overhead7.

Because the bulk of the work of UAFP is done off-line, its run-time complexity
only consists of maintaining (1) a table index that increases sequentially and (2)
a timer interrupt that is reset at each scheduling point. The run-time of UAFP is
clearly constant with respect to the number of tasks in the system. However, the
on-line algorithms each have a linear run-time, so a more in-depth look is necessary.

Figure 7 illustrates the maximum execution time of each algorithm on the target
CPU vs. the number of tasks in the system. The graph was generated by executing

7Neither ccRM nor lpWDA consider time transition overhead, which is required to guarantee
deadlines when the overhead is not negligible. The time overhead modifications to lpWDA are
identical to lpLDAT, while those for ccRM are very similar. The energy-overhead modifications
for both algorithms are identical to lpLDAT Line 19

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 18 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 19

�

�

�

�

�

��

��

� � � � �� �� �� �� �� ��
���	
����

��
��

��
��

���
�
�

��
�

�������� 		
���� �����

Fig. 7. Maximum execution time for the on-line scheduling algorithms vs. the number of tasks on
a 600-MHz processor.

each algorithm on a cycle-accurate instruction-set simulator of the ARM instruction
set, called SimIT-ARM [Qin 2004]. Clearly, ccRM Dt has a large advantage with
respect to time complexity when compared to other on-line algorithms. However,
because the worst-case execution times of the benchmark applications are on the
order of milliseconds, the execution times of even the more complex algorithms
are less than 1% of the task execution times until there are 20 or more tasks in
the system. This is true even at lower operating frequencies, because the task and
scheduler execution times scale simultaneously. Because the scheduler is invoked
upon each release and completion, it is sufficient to increase the worst-case execution
time of each task by 2 times the worst-case scheduler execution time to account for
the scheduler overhead.

6.3 Results

In this section we examine the performance of each algorithm on real-world and
randomly-generated task sets. For all experiments, the values illustrated with lines
represent off-line algorithms (UAFP and O UAFP) and those with columns illus-
trate on-line algorithms (ccRM Dt, lpWDA Dt and lpLDAT).

6.3.1 Computerized Numeric Controller. The first benchmark is a Computer-
ized Numeric Controller (CNC) task set based on the work by Kim et al. in [Kim
et al. 1996]. The results are displayed in Figure 8.

Figure 8(a) displays the energy consumed by each algorithm as the length of the
transition interval, ∆t is increased from 0 to 1800 µs. As expected, the oracle off-
line algorithm O UAFP has the best performance in all cases. At a high BC/WC
execution cycle ratio (around 0.9), the practical off-line algorithm, UAFP performs
as good or better than the on-line algorithms, and achieves up to 12% energy
reduction when the time overhead is 1800 µs. UAFP retains these savings at
smaller BC/WC ratios with ∆t values of 900 or 1800µs, but the on-line algorithms
become superior when the overhead is less than 300 µs and the BC/WC ratio is
0.5 or less. Clearly, the most effective on-line algorithm is lpLDAT, which saves
as much as 20% of the energy of the next best on-line algorithm. With a large

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 19 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

20 · Bren Mochocki et al.

���
���
���
���
���
���
���
	��

�
	�
�

��
�

��
�

	�
�� �
	�
�

��
�

��
�

	�
�� �
	�
�

��
�

��
�

	�
��

��	 ��� ���

���� ������� ������ ��� ���� �����

�������

 !
"#
$�%
&'
(�)

*'
"+
, � ��-�)*'"+,�.����%#'��.'"/'$(

0�1��

(a)

�

���

���

���

���

����

����

�
��

�
��

�
��

�
��

�� �
��

�
��

�
��

�
��

�� �
��

�
��

�
��

�
��

��

��� ��	 ���

���� ������� ������ ���� �����

�������

��
���

�
!"

�#�
#$"

��%
�&'

$
"(

)*)�+�� !"�#�#$"�� ',-'"
.������#/'���' 0'!(

1)%�)

(b)

���
���
���
���
���
���
���
	��

��� ��
 ��� ��� ��� ��� ��
 ��� ��� ��� ��� ��
 ��� ��� ���
��	 ��� ���

������ �������� ������ ��� ���� ������

�������

��
��

���
�	

��
	

��
� �������	���������	������	��	�

�����

(c)

�

���

���

���

���

����

����

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��� ��� ��	

���� ������� ������ ���� �����

�������

��
���

��
�	

��
�	

��
���

�
	�

���������	
���	�������	����
���	�������������

�����

(d)

Fig. 8. CNC task set. (a) The normalized energy and (b) average transition frequency vs. an
increasing time overhead. (c) The normalized energy and (d) average transition frequency vs.
an increasing energy overhead. All graphs also vary the BC/WC ratio.

transition interval, the on-line algorithms saturate to the two non-DVS methods,
S MC in the case of lpLDAT and ccRM Dt, and 1 in the case of lpWDA Dt. The
off-line algorithms, however, can still maintain some savings when the overhead
extends past 1800µs.

Figure 8(b) illustrates how the impact of transition overhead is minimized. The
x-axis shows the BC/WC ratio and the size of ∆t, while the y-axis shows the
average number of transitions per second. One observation is that as the overhead
increases, the transition frequency decreases. This is clearly necessary, as longer
transition intervals make meeting deadlines more difficult if there is an excessive
number of transitions. Another key observation is that the off-line algorithms tend
to have fewer transitions. This is because there is more time available off-line to
explore the range of possible voltage and frequency schedules.

Figures 8(c) and 8(d) show the energy performance of each algorithm when the
maximum energy overhead is increased. At lower BC/WC ratios, lpLDAT is supe-
rior when the energy overhead is small, but quickly saturates to S MC when the
energy overhead becomes large. This is because even though there are more oppor-
tunities to reduce the voltage level as jobs finish early, the relative impact of energy
overhead is larger because (1) there are fewer cycles to execute at the lower speeds

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 20 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 21

and (2) the voltage transitions tend to be between levels that are farther apart.
Once again, at larger BC/WC ratios, UAFP has the best energy performance of the
practical algorithms. Figure 8(d) again illustrates that time overhead is managed
by reducing the number of voltage/frequency transitions.

���
���
���
���
���
���
���
��	

�

�
�

��
�

	�
�

�
�� �

�
�

��
�

	�
�

�
�� �

�
�

��
�

	�
�

�
��

��
 ��� ��	
������ �������� ������ ��� ���� ������

������

!"
#$

%�&
'(

)�*
+(

#,
- �!��.�*+(#,-�/����&$(��/(#0(%)

1�2��

(a)

���
���
���
���
���
���
���
��	

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��
 ��� ��	

������ �������� ������ ��� ���� ������

�������

��
��

���
�	

��
	

��
� �������	���������	������	��	�

�����

(b)

Fig. 9. CNC task set with a maximum frequency of 2.5 GHz and voltage of 3.0 V. In (a) the time
overhead is varied while in (b) the energy overhead is varied.

One additional experiment was run to evaluate the effect of higher voltage and
frequency levels. For this experiment, the maximum frequency was set to 2.5 GHz
with a corresponding voltage of 3.0 V. Figure 9(a) displayes the energy vs. time
overhead. Notice that the trend is similar to Figure 8(a), but the potential energy
reduction is larger. This is due to the squared increase in energy resulting from
the larger maximum voltage. Figure 9(b), on the other hand, looks considerably
different from Figure 8(c). This is because the energy consumed by the energy
transitions is less significant when compared to the increased dynamic energy from
the higher maximum voltage and frequency.

6.3.2 Inertial Navigation System. Figure 10 illustrates the performance of each
algorithm on an Inertial Navigation System (INS), also examined in [Burns et al.
1995].

The results for the on-line algorithms are similar to the CNC task set, but the
results for UAFP are not as significant as before. Due to the nature of the task set,
there are very few opportunities for transitions off-line if the worst-case execution
cycles must be assumed, resulting in a very modest 3% decrease in energy below
S MC when using UAFP. However, the on-line algorithms can take advantage of
tasks that complete early, resulting in savings of as much as 40% below S MC when
using lpLDAT. Again, lpLDAT achieves superior energy savings, equaling those of
the oracle algorithm when the BC/WC ratio is high and ∆t is less than 300µs.

The performance of lpLDAT is surprisingly good as energy overhead increases,
as it again achieves energy savings close to the oracle algorithm. As shown in
Figure 10(d), this occurs because lpLDAT makes better use of fewer voltage tran-
sitions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 21 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

22 · Bren Mochocki et al.

���
���
���
���
���
���
���
	��

�
	�
�

��
�

��
�

	�
�� �
	�
�

��
�

��
�

	�
�� �
	�
�

��
�

��
�

	�
��

��	 ��� ���

���� ������� ������ ��� ���� �����

�������

 !
"#
$�%
&'
(�)

*'
"+
, - ��.�)*'"+,�/����%#'��/'"0'$(

1�2��

(a)

�
���
���
���
���
���
���
���
���

�
��
�

��
�

	�
�

��
�� �
��
�

��
�

	�
�

��
�� �
��
�

��
�

	�
�

��
��

�
� �
� �
	
������ �������� ������ ���� ������

�������

��

�
�!
"#
�$�
$%#

��&
�'(

�%
#)

*+'�,��!"#�$�$%#��!(-.(#�/���
��$0(���(!1(")

23&�3

(b)

���
���
���
���
���
���
���
	��

��� ��� ��� ��� 	�� ��� ��� ��� ��� 	�� ��� ��� ��� ��� 	��
��	 ��� ���

���� ������� ������ ��� ���� �����

�������

��
��

���
�	

��
	

��
� �������	���������	������	��	�

�����

(c)

�
���
���
���
���
���
���
���
���

�	� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	� �	�
�	� �	� �	

������ �������� ������ ���� ������

�������

��
���

��
�	

��
�	

��
���

�
	�

���������	
���	�������	����
���	�������������

�����

(d)

Fig. 10. INS task set. (a) The normalized energy and (b) average transition frequency vs. an
increasing time overhead. (c) The normalized energy and (d) average transition frequency vs.
an increasing energy overhead. All graphs also vary the BC/WC ratio.

6.3.3 Randomly Generated Tasks. In this section, we examine the energy per-
formance of each algorithm on randomly generated task sets of 4 and 8 tasks with a
utilization of 0.4 and 0.8. Each task has its period and deadline randomly selected
from a uniform distribution in the range [1, 10] ms. The results are illustrated in
Figures 11 and 12.

In the first set of experiments, ∆t was varied from 0 to 1800 µs and the BC/WC
ratio was varied from 0.1 to 0.9. In Figure 11(a), there are 4 tasks per set, each
with a utilization of 0.4. Again, with a low time overhead and BC/WC ratio,
lpLDAT is the best choice, consuming about 20% less energy than lpWDA Dt with
∆t=0 and a BC/WC ratio of 0.1. Unlike CNC and INS, when ∆t is greater than
900µs, even UAFP saturates at S MC. Increasing the worst-case utilization to 0.8
in Figure 11(b) increases the potential savings for the on-line algorithms when the
BC/WC ratio is 0.5 or less. This is likely due both to the larger range of possible
execution times and the better lineup of the scheduled speeds and the voltage range
of the CPU. The gains from UAFP are modest, with around a 2% savings compared
to the on-line algorithms when BC/WC is 0.9 and ∆t is 100 or 300 µs.

Next, the number of tasks is increased to 8 in Figure 11(c). In this case, the results
are very similar to the 4 task case, other than lpWDA Dt, which experiences a 20%

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 22 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 23

���
���
���
���
���
���
���
��	

��

�

�

�
��

�
	�

�

�

�� �

�

�
��

�
	�

�

�

�� �

�

�
��

�
	�

�

�

��

��
 ��� ��	
������ �������� ������ ��� ���� ������

������

!"
#$

%�&
'(

)�*
+(

#,
- ���%�.�/�����0�&�&'%�&"+�1�*+(#,-�2����&$(�

�2(#3(%)

4�5��

(a)

���

���

���

���

���

���

���

�
��
�

	�
�

��
�

��
�� �
��
�

	�
�

��
�

��
�� �
��
�

	�
�

��
�

��
��

��� ��� ���

���� ������� ������ ��� ���� �����

�������

 !
"#
$�%
&'
(�)

*'
"+
, ���$�-�.�����/�%�%&$�%!*�0�)*'"+,�1����%#'�

�1'"2'$(

3�4��

(b)

���
���
���
���
���
���
���
��	

��

�

�

�
��

�
	�

�

�

�� �

�

�
��

�
	�

�

�

�� �

�

�
��

�
	�

�

�

��

��
 ��� ��	
������ �������� ������ ��� ���� ������

������

!"
#$

%�&
'(

)�*
+(

#,
- ���%�.�/�����0�&�&'%�&"+�1�*+(#,-�2����&$(�

�2(#3(%)

4�5��

(c)

���

���

���

���

���

���

���

�
��
�

	�
�

��
�

��
�� �
��
�

	�
�

��
�

��
�� �
��
�

	�
�

��
�

��
��

��� ��� ���

���� ������� ������ ��� ���� �����

�������

 !
"#
$�%
&'
(�)

*'
"+
, ���$�-�.�����/�%�%&$�%!*�0�)*'"+,�1����%#'�

�1'"2'$(

3�4��

(d)

Fig. 11. Randomly-generated tasks. In each graph, the normalized energy consumption vs. time
overhead and best-case/worst-case ratio is displayed. The parameters for each graph are (a) 4
tasks with a worst-case utilization of 0.4, (b) 4 tasks with a worst-case utilization of 0.8, (c) 8
tasks with a worst-case utilization of 0.4 and (d) 8 tasks with a worst-case utilization of 0.8.

increase in energy. There is also around a 9% increase in energy for lpLDAT with a
small ∆t, but the energy remains the same as the 4 task case when ∆t increases. For
the 0.8-utilization 8-task experiment in Figure 11(d), both the increase in potential
savings of the on-line algorithms from the higher utilization and the jump in energy
consumed for lpWDA Dt and lpLDAT are apparent.

In the final set of experiments, the energy overhead is increased from 0 to 0.5 mJ.
In all cases, a time overhead of 100µs was used. In Figure 12(a) with 4 tasks and a
utilization of 0.4, lpLDAT outperforms UAFP only when the energy overhead is very
small. As the energy overhead increases, the on-line algorithms quickly approach
either S MC or 1.0. Additionally, UAFP only reduces the energy consumption by
around 5% for all domain values. Interestingly, O UAFP still reports a potential
energy savings of up to 42% with a BC/WC ratio of 0.1. However, the potential
savings quickly decrease as the BC/WC ratio increases. This implies that better
estimations of the actual execution cycles are required to optimally reduce the
impact of an increasing energy overhead.

Increasing the utilization to 0.8 in Figure 12(b) increases the savings for all
algorithms in a similar way to the ∆t experiment. With a non-zero energy overhead,

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 23 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

24 · Bren Mochocki et al.

���
���
���
���
���
���
���
��	

� ��� ��� ��� ��� � ��� ��� ��� ��� � ��� ��� ��� ���
��
 ��� ��	

������ �������� ������ ��� ���� ������

�������

��
��
���
�	

��
	
��
� ����������������������	���������	������	��	�

��� �

�

(a)

���

���

���

���

���

���

���

� ��	 ��
 ��� ��� � ��	 ��
 ��� ��� � ��	 ��
 ��� ���
��� ��� ���

������ �������� ������ ��� ���� ������

�������

��
��

���
�	

��
	

��
� ����������������������	���������	������	��	�

�� !�

�

(b)

���
���
���
���
���
���
���
��	

� ��� ��� ��� ��� � ��� ��� ��� ��� � ��� ��� ��� ���
��
 ��� ��	

������ �������� ������ ��� ���� ������

�������

��
��

���
�	

��
	

��
� ����������������������	���������	������	��	�

�� !�

�

(c)

���

���

���

���

���

���

�

� ��	 ��
 ��� ��� � ��	 ��
 ��� ��� � ��	 ��
 ��� ���
��� ��� ���

������ �������� ������ ��� ���� ������

�������

��
��
���
�	

��
	
��
� ����������������������	���������	������	��	�

��� �

�

(d)

Fig. 12. Randomly-generated tasks. In each graph, the normalized energy consumption vs. energy
overhead and best-case/worst-case ratio is displayed. The parameters for each graph are (a) 4
tasks with a worst-case utilization of 0.4, (b) 4 tasks with a worst-case utilization of 0.8, (c) 8
tasks with a worst-case utilization of 0.4 and (d) 8 tasks with a worst-case utilization of 0.8.

lpLDAT is about 5% better than UAFP with a BC/WC of 0.5 and a maximum
∆E of 0.2 mJ, but for larger energy overhead values, UAFP is the clear winner,
beating S MC by about 6%.

As was seen in the ∆t experiment, increasing the number of jobs causes the
energy consumed by the lpWDA Dt schedule to increase. Otherwise, the results
for Figures 12(c) and 12(d) are similar to the 4-task case.

7. SUMMARY

Time transition overhead is a critical problem for hard real-time systems that em-
ploy dynamic voltage scaling for power and energy management. In this paper we
presented both off-line and on-line techniques to correctly account for arbitrarily
large transition intervals and developed several DVS scheduling algorithms that
implement these methods. This includes an off-line algorithm called UAFP and
an on-line algorithm called lpLDAT. Additionally, two previous algorithms, ccRM
and lpWDA were updated to include our on-line time overhead technique. We have
shown on both randomly generated and real-world task sets that lpLDAT outper-
forms the other algorithms in most scenarios. In cases where the BC/WC ratio is

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 24 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · 25

near 1 or the transition interval is large, UAFP could be a better choice. With a
high worst-case utilization and time/energy overhead but a small BC/WC ratio, the
oracle off-line reports a significant potential for energy reduction compared to both
the on-line and off-line practical algorithms. This shows that better estimates of the
actual execution cycles can in turn lead to better transition overhead management.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/todaes/2006-1-1/p1-mochocki.

REFERENCES

AMD. 2001. Mobile amd athlon 4 processor model 6 cpga data sheet rev:e. Tech. Rep. 24319,
Advanced Micro Devices. Nov.

Andrei, A., Schmitz, M., Eles, P., Peng, Z., and Al-Hashimi, B. M. 2004. Overhead-conscious
voltage selection for dynamic and leakage energy reduction of time-constrained systems. In
Proceedings of the conference on Design, Automation and Test in Europe (DATE). IEEE
Computer Society, Washington, DC, USA, 10518.

Andrei, A., Schmitz, M. T., Eles, P., Peng, Z., and Hashimi, B. M. A. 2005. Quasi-static
voltage scaling for energy minimization with time constraints. In Proceedings of the conference
on Design, Automation and Test in Europe (DATE). IEEE Computer Society, Washington,
DC, USA, 514–519.

Burd, T. D. 2001. Energy-efficient processor system design. Ph.D. thesis, University of California,
Berkeley, Berkeley, CA.

Burd, T. D. and Brodersen, R. W. 2000. Design issues for dynamic voltage scaling. In Proceed-
ings of the 2000 International Symposium on Low Power Electronics and Design (ISPLED).

9–14.

Burns, A., Tindell, K., and Wellings, A. 1995. Effective analysis for engineering real-time
fixed priority schedulers. IEEE Transactions on Software Engineering 21, 5 (May), 475–480.

Compaq 2000. Compaq ipaq h3600 hardware design specification - version 0.2f. online- http:
//www.handhelds.org/ Compaq/ iPAQH3600/ iPAQ H3600.html.

Gruian, F. and Kuchcinski, K. 2003. Uncertainty-based scheduling: energy-efficient ordering

for tasks with variable execution time. In Proceedings of the 2003 International Symposium on
Low Power Electronics and Design (ISLPED). ACM Press, New York, NY, USA, 465–468.

Hong, I., Qu, G., Potkonjak, M., and Srivastava, M. B. 1998. Synthesis techniques for
low-power hard real-time systems on variable voltage processors. In Proceedings of the 19th
Real-Time Systems Symposium (RTSS). 178–187.

Intel. 2000. The intel xscale microarchitecture. Tech. rep., Intel Corporation.

Kim, N., Ryu, M., Hong, S., Saksena, M., ho Choi, C., and Shin, H. 1996. Visual assessment
of a real-time system design: a case study on a cnc controller. In Proceedings of the 17th
Real-Time Systems Symposium (RTSS). 300–310.

Kim, W., Kim, J., and Min, S. L. 2003. Dynamic voltage scaling algorithm for dynamic-priority
hard real-time systems using work-demand analysis. In Proceedings of the 2003 International
Symposium on Low Power Electronics and Design (ISPLED). 396–401.

Kim, W., Kim, J., and Min, S. L. 2004. Preemption-aware dynamic voltage scaling in hard real-
time systems. In Proceedings of the 2004 international symposium on Low power electronics
and design (ISLPED). ACM Press, New York, NY, USA, 393–398.

Liu, J. W. S. 2000. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ.

Martin, S. M., Flautner, K., Mudge, T., and Blaauw, D. 2002. Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under dynamic workloads.
In Proceedings of the 2002 IEEE/ACM international conference on Computer-Aided design
(ICCAD). 721–725.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 25 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

26 · Bren Mochocki et al.

Mochocki, B., Hu, X. S., and Quan, G. 2002. A realistic variable voltage scheduling model

for real-time applications. In Proceedings of the 2002 IEEE/ACM international conference on
Computer-Aided design (ICCAD). 726–731.

Mochocki, B. C., Hu, X. S., and Quan, G. 2005. Practical on-line dvs scheduling for fixed-
priority real-time systems. In 11th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 224–233.

Pillai, P. and Shin, K. G. 2001. Real-time dynamic voltage scaling for low-power embedded
operating systems. In Proceedings of the eighteenth ACM symposium on Operating systems
principles (SOSP). 89–102.

Pouwelse, J., Langendoen, K., and Sips, H. 2001. Dynamic voltage scaling on a low-power
microprocessor. In Proceedings of the 7th annual international conference on Mobile computing
and networking (MOBICOM). 251–259.

Qin, W. 2004. Simit-ARM: Very fast functional and cycle-accurate simulators for ARM. http:

//http://sourceforge.net/projects/simit-arm/.

Quan, G. and Hu, X. S. 2001. Energy efficient fixed-priority scheduling for real-time systems
on variable voltage processors. In Proceedings of the Design Automation Conference (DAC).
828–833.

Quan, G. and Hu, X. S. 2002. Minimum energy fixed-priority scheduling for variable voltage pro-
cessors. In Proceedings of the conference on Design, Automation and Test in Europe (DATE).
782–787.

Quan, G., Niu, L., Hu, X. S., and Mochocki, B. 2004. Fixed priority scheduling for reducing
overall energy on variable voltage processors. In Proceedings of the 25th Real-Time Systems
Symposium (RTSS). 309–318.

Saewong, S. and Rajkumar, R. 2003. Practical voltage-scaling for fixed-priority rt systems. In
Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS). 106–114.

Seo, J., Kim, T., and Chung, K.-S. 2004. Profile-based optimal intra-task voltage scheduling
for hard real-time applications. In Proceedings of the Design Automation Conference (DAC).
IEEE Computer Society, Los Alamitos, CA, USA, 87–92.

Seo, J., Kim, T., and Chung, K.-S. 2006. Poptimal intratask dynamic voltage-scaling technique
and its practical extensions. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25, 1 (Jan.), 47–57.

Seo, J., Kim, T., and Dutt, N. D. 2005. Optimal integration of inter-task and intra-task dynamic
voltage scaling techniques for hard real-time applications. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD). 450–455.

Yao, F., Demers, A., and Shenker, S. 1995. A scheduling model for reduced cpu energy. In
Proceedings of the 36th Annual Symposium on the Foundations of Computer Science (FOCS).
374–382.

Zhang, Y. and Chakrabarty, K. 2004. Task feasibility analysis and dynamic voltage scal-
ing in fault-tolerant real-time embedded systems. Proceedings of the conference on Design,
Automation and Test in Europe (DATE) 2, 21170.

Zhang, Y., Hu, X. S., and Chen, D. Z. 2003. Energy minimization of real-time tasks on viariable
voltage processors with transition energy overhead. In Proceedings of the 2003 Asian and South-
Pacific Design Automation Conference (ASPDAC). 65–70.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 26 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · App–1

This document is the online-only appendix to:

Transition Overhead Aware Voltage Scheduling for Fixed-Priority

Real-Time Systems
BREN MOCHOCKI and XIAOBO SHARON HU

University of Notre Dame

and

GANG QUAN

University of South Carolina

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006, Pages 1–26.

A. SECTION 4 PROOFS

Lemma 1 let A be an arbitrary critical-interval scheduling algorithm.
Further, let ∆t = 0. Critical intervals identified by A are identified in a
monotonically non-increasing order by speed.

Proof. The proof is by contradiction. Let Ii and Ij be two critical intervals
with speeds Si and Sj such that Si < Sj and j = i +1. According to the definition
of a critical interval, Si = SMC(J) at iteration i and must be continuously applied
to avoid a deadline miss (i.e., Ii can contain no idle time, otherwise a speed of zero
could be applied during some portion of Ii). Because Si < Sj , at least one job, J
has a higher speed requirement at iteration j than at i. This is only possible if (a)
idle time that would otherwise be used to execute a portion of J is contained in
Ii, or (b) Si 6= SMC(J). Both of these cases contradict the definition of a critical
interval.

Lemma 2 Let Ii−1 = [si−1, ei−1] and Ii = [si, ei] be two consecu-
tively identified critical intervals identified by VSLP with speeds Si−1 =
Ini−1

(si−1, ei−1) and Si = Ini
(si, ei). Additionally, let the scheduled

interval for iteration i − 1 be [si−1 − ∆t, ei−1 + ∆t]. If Si > Si−1 then
Ii−1 and Ii are adjacent.

Proof. To schedule Ii−1 = [si−1, ei−1], the interval [si−1 − ∆t, ei−1 + ∆t] was
reserved to account for transition time overhead. The additional 2∆t time reserved
for Ii−1 does not reduce the available execution time of jobs that do not intersect
this interval, so the speed for the critical intervals containing unmodified jobs will
not change according to Definition 1. Only intervals containing jobs that intersect
Ii−1 are modified, shortened by up to an additional 2∆t. Thus, only intervals
adjacent to Ii−1 may experience an increase in speed in the next iteration.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1084-4309/2006/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 27 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

App–2 · Bren Mochocki et al.

Lemma 3 Let Ii−1 = [si−1, ei−1] and Ii = [si, ei] be two consecu-
tively identified critical intervals identified by VSLP with speeds Si−1 =
Ini−1

(si−1, ei−1) and Si = Ini
(si, ei) such that Si > Si−1 (i.e., a mono-

tonicity violation has occurred). Additionally, let the scheduled interval
for iteration i−1 be [si−1−∆t, ei−1+∆t]. The minimum speed at which
every job in Ji−1 ∪ Ji can execute without a deadline miss is Si−1.

Proof. According to Lemma 2, Ii−1 and Ii are adjacent. Therefore, if Si−1 is
applied to both of these intervals, no voltage transition occurs. According to the
definition of a critical interval, Si−1 is the minimum speed required to guarantee
the deadlines for jobs in Ji−1 and is greater than or equal to the speed required by
jobs in Ji when no overhead is present. Because attempting to execute at a speed
lower than Si−1 will induce a voltage transition, Si−1 is the minimum speed that
can be used by any job in Ji−1 ∪ Ji to meet its deadline.

Lemma 4 Bounding the latest start time of a job set Ji to rmin
i + ∆t

will prevent execution inversion. The value rmin
i is the earliest release

time of all jobs in Ji.

Proof. The proof is by contradiction. Let job set Ji be contained in an interval
I ′i = [t1, t2] which is the minimum length interval that can complete all jobs in Ji

at the speed Si when t1 is restricted to the range [rmin
i , rmin

i + ∆t]. Further, let
J∗ be a job scheduled to execute in an adjacent critical interval Ij . Finally, assume
that the execution of J∗ is preempted by some job in Ji. Because J∗ /∈ Ji, this can
only occur in intervals before or after I ′

i . The preemption cannot occur before I ′
i

because cycles cannot execute during a transition interval, i.e., [t1−∆t, t1], and any
time before t1 − ∆t is also before the earliest release time, rmin

i . If the execution
inversion occurs after I ′

i , then at least one job in Ji was not completed in I ′
i , a

contradiction.

Theorem 1 Algorithm 1 always produces a valid voltage schedule in
O(N3) time, given an initially schedulable job set, where N is the num-
ber of jobs.

Proof. The correctness of Algorithm 1 follows directly from the correctness
of VSLP (see [Quan and Hu 2001]), the minimum interval algorithm (see [Quan
et al. 2004]), and Lemmas 2 through 4. Lines 4 and 6 each require O(N 2) time
according to [Quan and Hu 2001] and [Quan et al. 2004] respectively. Both lines can
be repeated up to O(N) times by the while loop at Line 3, for a total complexity
of O(N(2N2)), or O(N3).

B. SECTION 5 PROOFS

Theorem 2 The schedule produced by lpLDA guarantees all system
deadlines and has a computational complexity of O(n) per scheduling
point, where n is the number of tasks in the system.

Proof. The speed selected by lpLDA is always greater than or equal to the
speed selected by lpWDA, which always produces a valid voltage schedule when
time overhead is negligible [Kim et al. 2003]. The computational complexity is on

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 28 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Transition-Overhead Aware Voltage Scheduling for Fixed-Priority Real-Time Systems · App–3

the same order of lpWDA (only a constant factor larger), which is O(n) according
to [Kim et al. 2003].

Theorem 3 Let job set T be schedulable under Smax and the transition
time overhead be ∆t. Assume that the processor is set to a new processor
speed other than Smax only when the available slack is large enough to
contain at least two transition overheads. Then the system lookahead
2∆t is sufficient and necessary to obtain a transition/preemption-error-
free on-line schedule for an arbitrary real-time job set.

Proof. Necessity: Figure 5 already illustrates that a lookahead interval less
than 2∆t can lead to a preemption error. Therefore, to ensure transition/preemption-
error-free for an arbitrary real-time job set, the lookahead interval has to be no less
than 2∆t.

Sufficiency: Assume that the current (pre)scheduling point is tsi, and that the
feasible speed selected at the previous scheduling point, tsi−1, is Si−1. We know
that |tsi−1 − tsi| > 2∆t and Si−1 is set under the assumption that there is enough
slack available at tsi to set the processor speed to Si−1, run job JC(Li−1) at this
speed, and return to a higher processor speed if necessary. We want to show that,
with lookahead interval 2∆t, we can always set a feasible processor speed (i.e., not
higher than Smax) at tsi with no transition or preemption error. We consider three
possible outcomes of scheduling at tsi: (i) JC(Li−1) completes its execution by tsi,
(ii) Only lower priority jobs are released in Li, and (iii) One or more higher priority
jobs are released in Li.

(i) While the slack available at tsi−1 is consumed by setting processor speed to
Si−1 and also the extended execution time of JC(Li−1), there must be at least
enough slack time left for making another processor speed change. On the other
hand, since tsi−1 is at most the pre-scheduling point of the next coming job, no
transition error or preemption error will occur.

(ii) In this scenario, JC(Li−1) = JC(Li). There is no need for transition since
Si−1 ensures the feasibility of JC(Li−1) and low priority jobs it may interfere.
Therefore, there is no transition error or preemption error.

(iii) In this case, JC(Li−1) will be preempted by JC(Li). If the feasible speed for
JC(Li) is less than that for JC(Li−1). There is no need for transition and thus
no transition/preemption error. We next consider the case when Si−1 < Si. As
explained in case i, there is enough slack available at tsi−1 for a processor speed
transition. Therefore, changing the processor speed at tsi will not compromise
the schedulability of JC(Li−1) and the other ready jobs. On the other hand,
since tsi is a pre-scheduling point, which means that JC(Li) arrives no earlier
than tsi + ∆t, the processor speed can be updated to Si before JC(Li) arrives.
Therefore there will be no transition error. Furthermore, by looking ahead Li =
2∆t, the arrival of the next critical interval, i.e., JC(Li+1), will be no earlier
than tsi + 2∆t. Since the processor will finish the transition to Si at tsi + ∆t,
the processor speed can still be updated to Si+1 in time to avoid a preemption
error.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 29 of 32 Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

App–4 · Bren Mochocki et al.

Theorem 4 The schedule produced by lpLDAt guarantees all system
deadlines and has a computational complexity of O(n) per scheduling
point, where n is the number of tasks in the system.

Proof. The conclusion for the schedulability guarantee comes straightforwardly
from Theorem 3. Finding the critical job takes one comparison for each task in the
system. The speed decision step takes O(n) time for the slack estimation (because
it uses lpWDA) and constant time to select the correct speed based on the slack.
Calculating the limiter also takes O(n) time. Hence, the overall time complexity is
O(n).

Theorem 5 The policy followed by lpLDAT will guarantee all system
deadlines, and has a computational complexity of O(n) per scheduling
point, where n is the number of tasks in the system.

Proof. Theorem 4 states that lpLDAt guarantees all deadlines. Algorithm lpL-
DAT is identical to lpLDAt, with two key differences. First, Smax is conditionally
set to the minimum constant speed that meets all deadlines under the worst case
phasing condition off-line. If Smax is scaled down, then Lemma 4 still holds for
lpLDAT, because the system is still schedulable at the new speed S ′

max. The sec-
ond change accounts for transition energy overhead. The modification is to only
scale down to a lower speed if the energy overhead of the transition is offset by the
energy gained from executing at a lower speed. Because the alternative is execut-
ing at a higher speed than the identified overhead-feasible speed, the alternative
speed is also overhead-feasible. The first modification is off-line, so it does not alter
the on-line complexity. The energy estimation for the second modification takes
constant time, so the complexity of lpLDAT is O(n).

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 1, April 2006.

Page 30 of 32Transactions on Design Automation of Electronic Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

