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1. Introduction.
There is a huge literature on the subject of transition probabilities of random walks

on graphs. For a recent and comprehensive account, see the book [Wo]. The vast majority
of the work, however, has been for nearest neighbor Markov chains. The purpose of this
paper is to obtain good transition probability estimates for Markov chains on the integer
lattice Zd in d dimensions in the case when the probability of a jump from a point x to a
point y is comparable to that of a symmetric stable process of index α ∈ (0, 2).

To be more precise, for x, y ∈ Zd with x 6= y, let Cxy be positive finite numbers such
that

∑
z Cxz <∞ for all x. Set Cxx = 0 for all x. We call Cxy the conductance between x

and y. Define a symmetric Markov chain by

P(X1 = y | X0 = x) =
Cxy∑
z Cxz

, x, y ∈ Zd. (1.1)

In this paper we will assume that α ∈ (0, 2) and there exists κ > 1 such that for all x 6= y

κ−1

|x− y|d+α
≤ Cxy ≤

κ

|x− y|d+α
. (1.2)

Write p(n, x, y) for Px(Xn = y). The main result of this paper is

Theorem 1.1. There exist positive finite constants c1 and c2 such that

p(n, x, y) ≤ c1
(
n−d/α ∧ n

|x− y|d+α

)
, (1.3)

and for n ≥ 2
p(n, x, y) ≥ c2

(
n−d/α ∧ n

|x− y|d+α

)
. (1.4)

If n = 1 and x 6= y, (1.4) also holds.

The Markov chain Xn is discrete in time and in space. Closely related to Xn is
the continuous time process Yt, which is the process that waits at a point in Zd a length
of time that is exponential with parameter 1, jumps according to the jump probabilities
of X, then waits at the new point a length of time that is exponential with parameter 1
and independent of what has gone before, and so on. A continuous-time continuous state
space process related to both Xt and Yt is the process Ut on Rd whose Dirichlet form is

E(f, f) =
∫
Rd

∫
Rd

(f(y) − f(x))2C(x, y)dxdy,

where C(x, y) is a measurable function with

κ−1

|x− y|d+α
≤ C(x, y) ≤ κ

|x− y|d+α
.
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The process Ut stands in the same relationship to Xn as the diffusion process corresponding
to a uniformly elliptic operator in divergence form does to a nearest neighbor Markov chain.

The methods of this paper allow one to obtain bounds for the transition probabilities
of Yt and the transition densities of Ut. In fact, these are considerably easier than the
bounds for Xn, so we concentrate in this paper only on the estimates for Xn. Some results
for Yt are needed, however, along the way.

Our methods are quite different from those used for diffusions or nearest neighbor
chains. Recall that for a nearest neighbor Markov chain on Zd, the transition probabilities
are bounded above and below by expressions of the form

c1n
−d/2 exp(−c2|x− y|2/n)

as long as |x − y| is not larger than n; see [SZ]. One way of obtaining these results is
to use a method of Davies as developed in [CKS]. The lack of a suitably fast decay in
the conductances in (1.2) makes the powerful theorem of [CKS] only partially successful.
We use that theorem to handle the small jumps and use a perturbation argument to
handle the large jumps. Another difficulty that shows up is that, unlike the diffusion case,
Px(|Xn − y| < 1) is not comparable to Px(maxk≤n |Xk − x| > |x − y|) when |x − y| is
relatively large. We circumvent this by proving a parabolic Harnack inequality and using
another perturbation argument.

Previous work related to this paper includes [Kl] and [Km]. In both these works
partial results were obtained for estimates for the process Ut mentioned above. [SY] studies
nearest neighbor chains on Zd. In [HS-C] upper bounds of Gaussian type were obtained
for Markov chains whose jumps had bounded range or where the conductances decayed at
a Gaussian rate.

After some preliminaries, we obtain in Section 2 a tightness (or large deviations)
estimate for our Markov chain Xn. This is followed in Section 3 by a parabolic Harnack
inequality. In Section 4 we obtain the upper bound in Theorem 1.1, and in Section 5 we
prove the lower bound.

2. Tightness.
We denote the ball of radius r centered at x by B(x, r); throughout we use the

Euclidean metric. TA will denote the first hit of a set A by whichever process is under
consideration, while τA will denote the first exit. The letter c with subscripts will denote
positive finite constants whose exact value is unimportant and may change from occurrence
to occurrence.

We assume we are given reals Cxy satisfying (1.2) and we define the transition
probabilities for the Markov chain Xn by

p(1, x, y) = Px(X1 = y) =
Cxy
Cx

, x 6= y, (2.1)
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where Cx =
∑
z Cxz, and p(1, x, x) = 0 for every x. The process Xn is symmetric (or

reversible): Cx is an invariant measure for which the kernel Cxp(1, x, y) is symmetric in
x, y. Note that c−1

1 ≤ Cx/Cy ≤ c1 for some positive and finite constant c1.
Our main goal in this section is to get a tightness, or large deviations, estimate for

Xn. See Theorem 2.8 for the exact statement.
We will need Yt, the continuous time version of Xn, which we construct as follows:

Let U1, U2, . . . be an i.i.d. sequence of exponential random variables with parameter 1
that is independent of the chain Xn. Let T0 = 0 and Tk =

∑k
i=1 Ui. Define Yt = Xn if

Tn ≤ t < Tn+1. If we define A(x, y) = |x−y|d+αCxy/Cx, then by (1.2), κ−1 ≤ A(x, y) ≤ κ,
and the infinitesimal generator of Yt is∑

y 6=x
[f(y)− f(x)]

A(x, y)
|x − y|d+α

.

We introduce now several processes related to Yt, needed in what follows. The
rescaled process Vt = D−1YDαt takes values in S = D−1Zd and has infinitesimal generator∑

y∈S,y 6=x
[f(y) − f(x)]

AD(x, y)
Dd |x− y|d+α

,

where AD(x, y) = A(Dx,Dy) for x, y ∈ S. If the large jumps of Vt are removed, we obtain
the process Wt with infinitesimal generator

Af(x) =
∑

y∈S,y 6=x
|x−y|≤1

[f(y)− f(x)]
AD(x, y)
|x − y|d+α

.

To analyze Wt, we compare it to a Lévy process with a comparable transition kernel:
Let Zt be the Lévy process which has no drift and no Gaussian component and whose Lévy
measure is

nZ(dh) =
∑

y 6=0,|y|≤1
y∈S

1
Dd|y|d+α

δy(dh).

Write qZ(t, x, y) for the transition density for Zt.

Proposition 2.1. There exist c1, c2 such that the transition density qZ (t, x, y) satisfies

qZ(t, x, y) ≤
{
c1D

−dt−d/α, t ≤ 1,
c2D

−dt−d/2, t > 1.

Proof. The characteristic function ϕt(u) of Zt is periodic with period 2πD since Zt is
supported on S = D−1Zd. By the Lévy-Khintchine formula and the symmetry of nZ ,

ϕt(u) = exp
(
− 2t

∑
x∈S,|x|≤1

[1− cosu · x]
1

Dd|x|d+α

)
. (2.2)
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Let
Q(a) = {(u1, . . . , ud) : −a < ui ≤ a, i = 1, . . . , d}. (2.3)

We estimate ϕt as follows.

Case 1: |u| ≤ 1
2 .

Since |x| ≤ 1, we have 1 − cosu · x ≥ c3(u · x)2 = c3|u|2|x|2hu(x), where hu(x) =
(u · x)2/|u|2|x|2. Thus

∑
|x|≤1

[1− cosu · x]
1

Dd|x|d+α
≥ c3|u|2

∑
|x|≤1

hu(x)|x|2−d−αD−d

≥ c4D
α−2|u|2

∫
B(0,D)

|x|2−d−αhu(x)dx

= c4D
α−2|u|2

∫ D

0

r1−α

[∫
S(r)

hu(s)σr(ds)

]
dr,

where S(r) is the (d − 1)-dimensional sphere of radius r centered at 0, and σr(ds) is
normalized surface measure on S(r). Since hu(x) depends on x only through x/|x|, the
inner integral does not depends on r. Furthermore, by rotational invariance, it does not
depend on u. Thus, ∑

|x|≤1

[1− cosu · x]
1

Dd|x|d+α
≤ c5|u|2 .

Case 2: 1
2 ≤ |u| ≤ D/32.

Let A = {x ∈ S : 1
4|u| ≤ |x| ≤

4
|u|∧1, 1 ≥ u·x ≥ 1

16}. If x ∈ A, then [1−cosu·x] ≥ c6,
the minimum value of |x|−d−α is c7|u|d+α, and a bit of geometry shows that there are at
least c8|u|−dDd points in A. (Notice that |u| < D/32 is required to prevent A from being
empty.) We then have

∑
|x|≤1

[1− cosu · x]
1

Dd|x|d+α
≥
∑
A

[1− cosu · x]
1

Dd|x|d+α
≥ c6c7|u|d+αc8|u|−d = c9|u|α.

Case 3: D/32 < |u|, u ∈ Q(πD).
At least one component of u must be larger than c10D where c10 = 1/(32

√
d);

without loss of generality we may assume it is the first component. Let y0 = (D−1, 0, . . . , 0).
Since |u1| ≤ πD and u · y0 ≥ c10, then 1− cosu · y0 ≥ c11. Hence

∑
|x|≤1

[1− cosu · x]
1

Dd|x|d+α
≥ c11D

−d|y0|−d−α ≥ c12D
α ≥ c13|u|α,

since u ∈ Q(πD).
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For u ∈ Q(πD), we then have that ϕt(u) is real and

0 < ϕt(u) ≤ e−c14t|u|2 + e−c15t|u|α .

Since Zt is supported on S,

qZ(t, x, y) =
1

|Q(πD)|

∫
Q(πD)

eiu·(x−y)ϕt(u)du

≤ 1
|Q(πD)|

∫
Q(πD)

ϕt(u)du

≤ c16

Dd

∫
Rd

(e−c14t|u|2 + e−c15t|u|α)du,

where |Q(πD)| denotes the Lebesgue measure of Q(πD). Our result follows from applying
a change of variables to each of the integrals on the right hand side.

We now obtain bounds for the transition probabilities of Wt:

Proposition 2.2. If qW (t, x, y) is the transition density for W , then

qW (t, x, y) ≤
{
c1D

−dt−d/α, t ≤ 1,
c2D

−dt−d/2, t > 1.

The proof of Proposition 2.2 is almost identical with that of Theorem 1.2 in [BBG], and
is omitted here.

To obtain off-diagonal bounds for qW we again proceed as in [BBG]. Let

Γ(f, f)(x) =
∑
y∈S

0<|x−y|≤1

(f(x) − f(y))2 AD(x, y)
Dd|x− y|d+α

,

Λ(ψ)2 = ‖e−2ψΓ(eψ , eψ)‖∞ ∨ ‖e2ψΓ(e−ψ, e−ψ)‖∞,
E(t, x, y) = sup{|ψ(x)− ψ(y)| − tΛ(ψ)2 : Λ(ψ) <∞}.

Proposition 2.3. For t ≤ 1 and x, y ∈ S,

qW (t, x, y) ≤ c1D−dt−d/αe−E(2t,x,y).

Proof. Allowing for slight differences in notation, the proof is very similar to the proof
of Lemma 1.4 in [BBG]. The principal difference is the following. Let K be an integer
larger than 1

2 + 1
α . Let M be a sufficiently regular manifold with volume growth given by

V (x, r) ≈ r2Kd , r > 1 and V (x, r) ≈ rd, r < 1, where V (x, r) is the volume of the ball
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in M of radius r centered at x. We can then find a symmetric Markov process Ṽt on M

independent of W whose transition density with respect to a measure m on M satisfies

q
Ṽ

(t, x, y) ≤ c2t
−d/2, 0 < t ≤ 1,

q
Ṽ

(t, x, y) ≤ c2t
−dK , 1 < t <∞,

q
Ṽ

(t, x, x) ≥ c3t
−d/2, 0 < t ≤ 1,

q
Ṽ

(t, x, x) ≥ c3t
−dK , 1 < t <∞.

Then qW (t, x, y)q
Ṽ

(t, x′, y′) ≤ c4D
−dt−d( 1

2 + 1
α ) for all t while qW (t, x, y)q

Ṽ
(t, 0, 0) ≥

c5D
−dt−d( 1

2 + 1
α ) for t ≤ 1. With these changes, the proof is now as in [BBG].

The next step is to estimate E(t, x, y) and use this in Proposition 2.3.

Proposition 2.4. Suppose t ≤ 1. Then

qW (t, x, y) ≤ c1D−dt−d/αe−|x−y|.

In particular, for 1
4 ≤ t ≤ 1,

qW (t, x, y) ≤ c1D
−de−|x−y|.

Proof. Let ψ(ξ) = B · ξ, where B = (y − x)/|y − x|. Note that if |ξ − ζ | ≤ 1, then
(eψ(ζ)−ψ(ξ) − 1)2 = (eB·(ζ−ξ) − 1)2 is bounded by c2|B|2|ζ − ξ|2 = c2|ζ − ξ|2. Hence

e−2ψ(ξ)Γ(eψ , eψ)(ξ) =
∑
ζ∈S

0<|ξ−ζ|≤1

(eψ(ζ)−ψ(ξ) − 1)2 AD(ξ, ζ)
Dd|ξ − ζ |d+α

is bounded by
c3

∑
ζ∈S

0<|ξ−ζ|≤1

D−d|ξ − ζ |2−d−α.

Since the sum is over ζ ∈ S that are within a distance 1 from ξ, this in turn is bounded
by c4. We have the same bound when ψ is replaced by −ψ, so Λ(ψ)2 ≤ c24. Moreover the
bound does not depend on x or y. On the other hand,

ψ(y)− ψ(x) = (y − x) · (y − x)/|y − x| = |y − x|.

Using this in Proposition 2.3 and recalling t ≤ 1, we have our result.

From the above estimate we can obtain a tightness estimate for Wt.
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Proposition 2.5. There exists c1 such that if t ≤ 1 and λ > 0, then

Px(sup
s≤t
|Ws − x| > λ) ≤ c1e−λ/8.

Proof. From Proposition 2.4 and summing, if t ∈ [ 1
4 , 1] and λ > 0,

Px(|Wt − x| ≥ λ) ≤
∑
y∈S

|y−x|≥λ

c2t
−d/αD−de−|y−x| ≤ c3e

−λ/2. (2.4)

Let Sλ = inf{t : |Wt −W0| ≥ λ}. Then using (2.4),

Px( sup
s≤1/2

|Ws − x| ≥ λ) = Px(Sλ ≤ 1/2)

= Px(|W1 − x| > λ/2) + Px(Sλ ≤ 1/2, |W1 − x| ≤ λ/2)

≤ c3e
−λ/4 +

∫ 1/2

0

Px(|W1 −Ws| > λ/2, Sλ ∈ ds).

By the Markov property, the last term on the right is bounded by

∫ 1/2

0

E x[PWs(|W1−s −W0| > λ/2);Sλ ∈ ds] ≤ c3e
−λ/4

∫ 1/2

0

Px(Sλ ∈ ds) ≤ c3e
−λ/4,

using (2.4) again.
Adding gives

Px(sup
s≤t
|Ws − x| > λ) ≤ c4e−λ/4 (2.5)

as long as t ≤ 1
2
. For t ∈ (1

2
, 1], note that if sups≤t |Ws−x| > λ, then sups≤ 1

2
|Ws−x| > λ/2

or sup 1
2<s≤1 |Ws−W1/2| > λ/2). The probability of the first event is bounded using (2.5),

while the probability of the second event is bounded using the Markov property at time 1
2

and (2.5).

Define B to be the infinitesimal generator of Vt without small jumps:

Bf(x) =
∑
y∈S
|y−x|>1

[f(y)− f(x)]
AD(x, y)

Dd |x− y|d+α
.

Our next goal is to obtain tightness estimates for the process Vt = D−1YDαt, whose
generator is A+ B.
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Proposition 2.6. Let Vt be the process whose generator is A+B. There exist c1, c2 and

δ0 such that if δ ≤ δ0 and λ ≥ 1, then

Px(sup
s≤δ
|Vs − x| > λ) ≤ c1e

−c2λ + c1δ.

Proof. Since summing Dd|y − x|−d−α over |y − x| ≥ 1 is a constant,

|Bf(x)| ≤ c3‖f‖∞, (2.6)

and hence B is a bounded operator on L∞.
Define QWt f(x) =

∑
qW (t, x, y)f(y). Let QVt be the corresponding transition semi-

group for Vt. Let S0(t) = QWt and for n ≥ 1, let Sn(t) =
∫ t

0
Sn−1BQWt−sds. Then

QVt =
∞∑
n=0

Sn(t);

see [Le], Theorem 2.2, for example. Obviously QWt is a bounded operator on L∞ of norm
1, so for t < δ0 = 1/(2c3) the sum converges by (2.6). In particular, for t ≤ δ ≤ δ0, we
have

|QWt f(x) −QVt f(x)| ≤ c4δ‖f‖∞.

Fix x and apply this to f(y) = 1B(x,λ)(y). We obtain

Px(|Vt − x| > λ) = QVt f(x) ≤ QWt f(x) + c4δ = Px(|Wt − x| > λ) + c4δ ≤ c5e
−λ/8 + c4δ.

We now obtain our result by applying the method of proof of Proposition 2.5.

Now notice that Yt = DVt/Dα . Translating Proposition 2.6 in terms of Yt, we have

Corollary 2.7. If λ ≥ 1 and δ ≤ δ0,

Px( sup
s≤δDα

|Ys − x| > λD) ≤ c1e
−c2λ + c1δ. (2.7)

for every D.

We can now obtain the tightness result for Xn.

Theorem 2.8. Given C > 1 and β ∈ (0, 1), there exists γ such that

Px( max
k≤[γSα]

|Xk − x| > CS) ≤ β (2.8)
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for all S > 0.

Proof. Let β ∈ (0, 1). By Corollary 2.7 we may choose λ and δ ≤ δ0/2 so that

Px( sup
s≤2δDα

|Ys − x| > λD) ≤ β/2

for every D. Define D = CS/λ. We may suppose Y is constructed as in Section 2. Then

Px( max
k≤[δDα ]

|Xk − x| > CS)

≤ Px( sup
s≤2δDα

|Ys − x| > CS)

+ Px(|T[δDα] − [δDα]| > [δDα])

≤ β

2
+

c3
δDα

.

We used Chebyshev’s inequality and the fact that T[δDα] is the sum of i.i.d. exponentials to
bound the second probability on the right hand side. Choose S0 large so that c3/δDα < β/2
if S ≥ S0. We thus have the desired result of S ≥ S0.

Finally choose γ smaller if necessary so that γSα0 < 1. If S < S0, then γSα < 1.
But Xk needs at least one unit of time to make a step; hence the left hand side of (2.8) is
0 if S < S0.

Remark 2.9. Given the above tightness estimate, one could formulate a central limit the-
orem. Under a suitable normalization a sequence of Markov chains whose jump structure
is similar to that of a symmetric stable process should converge weakly to a process such
as the Ut described in Section 1.

Remark 2.10. We expect that our techniques could also give tightness for Markov chains
where the conductances decay more rapidly than the rates given in this paper. In this
case one might have a central limit theorem where the limiting distributions are those
of processes corresponding to elliptic operators in divergence form. It would be quite
interesting to formulate a central limit theorem for Markov chains where the limit processes
are diffusions but the Markov chains do not have bounded range.

3. Harnack inequality.
It is fairly straightforward at this point to follow the argument of [BL] and obtain

a Harnack inequality of Moser type for functions that are harmonic with respect to Xn.
In this paper, however, we are primarily interested in transition probability estimates. As
a tool for obtaining these, we turn to a parabolic Harnack inequality.
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Let T = {0, 1, 2, . . .}×Zd. We will study here the T -valued Markov chain (Vk,Xk),
where Vk = V0 + k. We write P(j,x) for the law of (Vk,Xk) started at (j, x). Let Fj =
σ((Vk ,Xk) : k ≤ j). A bounded function q(k, x) on T will be said to be parabolic on D ⊂ T
if q(Vk∧τD ,Xk∧τD ) is a martingale.

Define
Q(k, x, r) = {k, k + 1, . . . , k + [γrα]} ×B(x, r). (3.0)

Our goal in this section is the following result:

Theorem 3.1. There exists c1 such that if q is bounded and nonnegative on T and

parabolic on Q(0, z, R), then

max
(k,y)∈Q([γRα],z,R/3)

q(k, y) ≤ c1 min
y∈B(z,R/3)

q(0, y).

We prove this after first establishing a few intermediate results.
From Theorem 2.8 there exists γ such that for all r > 0

Px( max
k≤[γrα ]

|Xk − x| > r/2) ≤ 1
4
. (3.1)

Without loss of generality we may assume γ ∈ (0, 1
3 ).

We will often write τr for τQ(0,x,r). For A ⊂ Q(0, x, r) set A(k) = {y : (k, y) ∈ A}.
Define N(k, x) to be P(k,x)(X1 ∈ A(k + 1)) if (k, x) /∈ A and 0 otherwise.

Lemma 3.2. Let

Jn = 1A(Vn,Xn)− 1A(V0,X0)−
n−1∑
k=0

N(Vk,Xk).

Then Jn∧TA is a martingale.

Proof. We have

E [J(k+1)∧TA − Jk∧TA | Fk] = E [1A(V(k+1)∧TA,X(k+1)∧TA)− 1A(Vk∧TA ,Xk∧TA)

−N(Vk∧TA ,Xk∧TA) | Fk].

On the event {TA ≤ k}, this is 0. If TA > k, this is equal to

P(Vk,Xk)((V1,X1) ∈ A)−N(Vk,Xk) = PXk(X1 ∈ A(Vk + 1))−N(Vk,Xk) = 0.

Given a set A ⊂ T , we let |A| denote the cardinality of A.
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Proposition 3.3. There exists θ1 such that if A ⊂ Q(0, x, r/2) and A(0) = ∅, then

P(0,x)(TA < τr) ≥ θ1
|A|
rd+α

.

Proof. Observe that TA cannot equal τr. If P(0,x)(TA ≤ τr) ≥ 1
4 we are done, so assume

without loss of generality that P(0,x)(TA ≤ τr) < 1
4 . Let S = TA ∧ τr. From Lemma 3.2

and optional stopping we have

E (0,x)1A(S,XS) ≥ E (0,x)
S−1∑
k=0

N(k,Xk).

Note that if (k, x) ∈ Q(0, x, r)

N(k, x) = P(k,x)(X1 ∈ A(k + 1)) ≥
∑

y∈A(k+1)

c1
|x− y|d+α

≥ c2
rd+α

|A(k + 1)|.

So on the set (S ≥ [γrα]) we have
∑S−1

k=0 N(k,Xk) ≥ c3|A|/rd+α. Therefore, since τr ≤
[γrα],

E (0,x)1A(S,XS) ≥ c4
|A|
rd+α

Px(S ≥ [γrα])

≥ c4
|A|
rd+α

[1− Px(TA ≤ τr)− Px(τr < [γrα])].

Now Px(τr < [γrα]) ≤ 1
4 by (3.1). Therefore E (0,x)1A(S,XS) ≥ c5|A|/rd+α. Since A ⊂

Q(0, x, r/2), the proposition follows.

With Q(k, x, r) defined as in (3.0), let U(k, x, r) = {k} ×B(x, r).

Lemma 3.4. There exists θ2 such that if (k, x) ∈ Q(0, z, R/2), r ≤ R/4, and k ≥ [γrα]+2,

then

P(0,z)(TU(k,x,r) < τQ(0,z,R)) ≥ θ2r
d+α/Rd+α.

Proof. Let Q′ = {k, k − 1, . . . , k − [γrα]} ×B(x, r/2). By Proposition 3.3,

P(0,z)(TQ′ < τQ(0,z,R)) ≥ c1r
d+α/Rd+α.

Starting at a point in Q′, by (3.1) there is probability at least 3
4 that the chain stays

in B(x, r) for at least time γrα. So by the strong Markov property, there is probability
at least 3

4c1r
d+α/Rd+α that the chain hits Q′ before exiting Q(0, z, R) and stays within

B(x, r) for an additional time c2rα, hence hits U(k, x, r) before exiting Q(0, z, R).
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Lemma 3.5. Suppose H(k,w) is nonnegative and 0 if w ∈ B(x, 2r). There exists θ3 (not

depending on x, r, or H) such that

E (0,x)[H(Vτr ,Xτr )] ≤ θ3E (0,y)[H(Vτr ,Xτr )], y ∈ B(x, r/3).

Proof. Fix x and r and suppose k ≤ [γrα] and w /∈ B(x, 2r). Assume for now that
[γrα] ≥ 4. We claim there exists c1 such that

Mj = 1(k,w)(Vj∧τr ,Xj∧τr )−
j−1∑
i=0

c1
|w − x|d+α

1(i<τr)1k−1(Vi)

is a submartingale. To see this we observe

E [1(k,w)(V(i+1)∧τr ,X(i+1)∧τr)− 1(k,w)(Vi∧τr ,Xi∧τr ) | Fi]

is 0 if i ≥ τr and otherwise it equals

E (Vi,Xi)1(k,w)(V1∧τr ,X1∧τr ).

This is 0 unless k = Vi + 1. When k = Vi + 1 and i < τr this quantity is equal to

PXi(X1 = w) ≥ c2
|Xi − w|d+α

≥ c3
|x− w|d+α

.

Thus E [Mi+1−Mi | Fi] is 0 if i ≥ τr or k 6= Vi+1 and greater than or equal to 0 otherwise
if c1 is less than c3, which proves the claim.

Since Py(maxi≤[γrα] |Xi −X0| > r/2) ≤ 1
4 , then

E (0,y)τr ≥ [γrα]P(0,x)(τr ≥ [γrα]) ≥ [γrα]/2. (3.3)

The random variable τr is obviously bounded by [γrα], so by optional stopping,

P(0,y)((Vτr ,Xτr ) = (k,w)) ≥
(
E (0,y)τr − 1

) c4
|x− w|d+α

≥ c4r
α

|x− w|d+α
.

Similarly, there exists c5 such that

1(k,w)(Vj∧τr ,Xj∧τr )−
j−1∑
i=1

c5
|w − x|d+α

1(i<τr)1k−1(Vi)

is a supermartingale and so

P(0,x)((Vτr ,Xτr ) = (k,w)) ≤
(
E (0,x)τr

) c6
|x− w|d+α

≤ c6r
α

|x− w|d+α
.

13



Letting θ3 = c6/c4, we have

E (0,x)[1(k,w)(Vτr ,Xτr )] ≤ θ3E (0,y)[1(k,w)(Vτr ,Xτr )].

It is easy to check that θ3 can be chosen so that this inequality also holds when [γrα] < 4.
Multiplying by H(k,w) and summing over k and w proves our lemma.

Proposition 3.6. For each n0 and x0, the function q(k, x) = p(n0 − k, x, x0) is parabolic

on {0, 1, . . . , n0} × Zd.

Proof. We have

E [q(Vk+1,Xk+1) | Fk] = E [p(n0 − Vk+1,Xk+1, x0) | Fk]

= E (Vk,Xk)[p(n0 − V1,X1, x0)]

=
∑
z

p(1,Xk, z)p(n0 − Vk − 1, z, x0).

By the semigroup property this is

p(n0 − Vk,Xk, x0) = q(Vk,Xk).

Proof of Theorem 3.1. By multiplying by a constant, we may suppose

min
y∈B(z,R/3)

q(0, y) = 1 .

Let v be a point in B(z,R/3) where q(0, v) takes the value one. Suppose (k, x) ∈
Q([γRα], z, R/3) with q(k, x) = K. By Proposition 3.3 there exists c2 ≤ 1 such that
if r < R/3, C ⊂ Q(k + 1, x, r/3), and |C |/|Q(k + 1, x, r/3)| ≥ 1

3 , then

P(k,x)(TC < τr) ≥ c2. (3.4)

Set
η =

c2
3
, ζ =

1
3
∧ (θ3η). (3.5)

Define r to be the smallest number such that

|Q(0, x, r/3)|
Rd+α

≥ 3
θ1ζK

(3.6)

and
rd+α

Rd+α
≥ 2
ζKθ2

. (3.7)
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This implies
r/R = c3K

−1/(d+α). (3.8)

Let
A = {(i, y) ∈ Q(k + 1, x, r/3) : q(i, y) ≥ ζK}.

Let U = {k} ×B(x, r/3). If q ≥ ζK on U , we would then have by Lemma 3.4 that

1 = q(0, v) = E (0,v)q(VTU∧τQ(0,z,R) ,XTU∧τQ(0,z,R) )

≥ ζKP(0,v)(TU < τQ(0,z,R)) ≥
θ2r

d+αζK

Rd+α
,

a contradiction to our choice of r. So there must exist at least one point in U for which q
takes a value less than ζK.

If E (k,x)[q(Vτr ,Xτr );Xτr /∈ B(x, 2r)] ≥ ηK, then by Lemma 3.5 we would have

q(k, y) ≥ E (k,y)[q(Vτr ,Xτr );Xτr /∈ B(x, 2r)]

≥ θ3E (k,x)[q(Vτr ,Xτr );Xτr /∈ B(x, 2r)] ≥ θ3ηK ≥ ζK

for y ∈ B(x, r/3), a contradiction to the preceding paragraph. Therefore

E (k,x)[q(Vτr ,Xτr );Xτr /∈ B(x, 2r)] ≤ ηK. (3.9)

By Proposition 3.3,

1 = q(0, v) ≥ E (0,v)[q(VTA ,XTA);TA < τQ(0,z,R)]

≥ ζKP(0,v)(TA < τQ(0,z,R)) ≥
θ1|A|ζK
Rd+α

,

hence
|A|

|Q(k + 1, x, r/3)| ≤
Rd+α

θ1|Q(k + 1, x, r/3)|ζK ≤
1
3
.

Let C = Q(k + 1, x, r/3) − A. Let M = maxQ(k+1,x,2r) q. We write

q(k, x) = E (k,x)[q(VTC ,XTC );TC < τr]

+ E (k,x)[q(Vτr ,Xτr ); τr < TC ,Xτr /∈ B(x, 2r)]

+ E (k,x)[q(Vτr ,Xτr ); τr < TC ,Xτr ∈ B(x, 2r)].

The first term on the right is bounded by ζKP(k,x)(TC < τr). The second term on the
right is bounded by ηK. The third term is bounded by MP(k,x)(τr < TC). Therefore

K ≤ ζKP(k,x)(TC < τr) + ηK +M(1 − P(k,x)(TC < τr)).
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It follows that
M/K ≥ 1 + β

for some β not depending on x or r, and so there exists a point (k′, x′) ∈ Q(k + 1, x, 2r)
such that q(k′, x′) ≥ (1 + β)K.

We use this to construct a sequence of points: suppose there exists a point (k1, x1)
in Q([γRα], z, R/6) such that q(k1, x1) = K. We let x = x1, k = k1 in the above and
construct r1 = r, x2 = x′, and k2 = k′. We define r2 by the analogues of (3.6) and
(3.7). We then use the above (with (k, x) replaced by (k2, x2) and (k′, x′) replaced by
(k3, x3)) to construct k3, x3, and so on. We thus have a sequence of points (ki, xi) for
which ki+1 − ki ≤ (2ri)α, |xi+1 − xi| ≤ 2ri, and q(ki, xi) ≥ (1 + β)i−1K. By (3.8) there
exists K ′ such that if K ≥ K ′, then (ki, xi) ∈ Q([γRα], z, R/3) for all i. We show this
leads to a contradiction. One possibility is that for large i we have ri < 1, which means
that B(xi, ri) is a single point and that contradicts the fact that there is at least one
point in B(xi, ri) for which q(ki, ·) is less than η(1 + β)i−1K. The other possibility is
that q(ki, xi) ≥ (1 + β)i−1K ′ > ‖q‖∞ for large i, again a contradiction. We conclude q is
bounded by K ′ in Q([γRα], z, R/3).

4. Upper bounds.
In this section our goal is to obtain upper bounds on the transition probabilities for

our chain Xn. We start with a uniform upper bound.
Let is begin by considering the Lévy process Zt whose Lévy measure is

n(dx) =
∑

y∈Zd,y 6=0

|y|−(d+α)δy(dx).

Proposition 4.1. The transition density for Zt satisfies qZ(t, x, y) ≤ c1t−d/α.

Proof. The proof is similar to Proposition 2.1 (with D = 1). The characteristic function
ϕt(u) is given by

ϕt(u) = exp
(
− 2t

∑
x∈Zd

[1− cos(u · x)]
1

|x|d+α

)
.

For |u| ≤ 1/32, we proceed similarly to Case 2 of the proof of Proposition 2.1: we set
D = 1, set A = {x ∈ Zd : 1

4|u| ≤ |x| ≤
4
|u| , 1 ≥ u · x ≥ 1

16}, and obtain∑
[1− cosu · x]

1
|x|d+α

≥ c2|u|α.

Let Q(a) be defined by (2.3). For |u| > 1/32 with u ∈ Q(π), we proceed as in Case 3
of the proof of Proposition 2.1 and obtain the same estimate. We then proceed as in the
remainder of the proof of Proposition 2.1 to obtain our desired result.
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Proposition 4.2. The transition densities for Yt satisfy

qY (t, x, y) ≤ c1t−d/α.

Proof. This is similar to the proof of Proposition 2.2, but considerably simpler, as we do
not have to distinguish between t ≤ 1 and t > 1.

Now we can obtain global bounds for the transition probabilities for Xn.

Theorem 4.3. There exists c1 such that the transition probabilities for Xn satisfy

p(n, x, y) ≤ c1n−d/α, x, y ∈ Zd.

Proof. Recall the construction of Yt in Section 1. First, by the law of large numbers
Tn/n→ 1 a.s. Thus there exists c2 such that P(T[n/2] ≤ 3

4
n < Tn) ≥ c2 for all n.

Let Cx =
∑

z Cxz, and set r(n, x, y) = Cxp(2n, x, y). Since Cxp(1, x, y) is symmet-
ric, it can be seen by induction that Cxp(n, x, y) is symmetric. The kernel r(n, x, y) is
nonnegative definite because∑

x

∑
y

f(x)r(n, x, y)f(y) =
∑
x

∑
y

∑
z

f(x)Cxp(n, x, z)p(n, z, y)f(y)

=
∑
x

∑
y

∑
z

f(x)f(y)Czp(n, z, x)p(n, z, y)

=
∑
z

Cz
(∑

x

f(x)p(n, z, x)
)2

≥ 0.

If we set rM (n, x, y) = r(n, x, y) if |x|, |y| ≤M and 0 otherwise, we have an eigenfunction
expansion for rM :

rM (n, x, y) =
∑
i

λni ϕi(x)ϕi(y), (4.1)

where each λi ∈ [0, 1]. By Cauchy-Schwarz,

rM (n, x, y) ≤
(∑

i

λni ϕi(x)2
)1/2(∑

i

λni ϕi(y)2
)1/2

= rM (n, x, x)1/2rM (n, y, y)1/2.

Also, by (4.1) rM (n, x, x) is decreasing in n. Letting M → ∞ we see that p(2n, x, x) is
decreasing in n and

p(2n, x, y) ≤ p(2n, x, x)1/2p(2n, y, y)1/2.
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Suppose now that n is even and n ≥ 8. It is clear from (1.2) and (2.1) that
there exists c3 such that p(3, z, z) ≥ c3 for all z ∈ Zd. If k is even and k ≤ n, then
Px(Xk = x) ≥ Px(Xn = x). If k is odd and k ≤ n, then

Px(Xk = x) = p(k, x, x) ≥ p(k − 3, x, x)p(3, x, x) ≥ c3Px(Xk−3 = x) ≥ c3Px(Xn = x).

Setting t = 3
4n, using Proposition 4.2, and the independence of the Ti from the Xk, we

have

c4t
−d/α ≥ Px(Yt = x) =

∞∑
k=0

Px(Xk = x, Tk ≤ t < Tk+1)

≥
∑

[n/2]≤k≤n
Px(Xk = x)P(Tk ≤ t < Tk+1)

≥ c3Px(Xn = x)Px(T[n/2] ≤ t < Tn) ≥ c2c3Px(Xn = x).

We thus have an upper bound for p(n, x, x) when n is even, and by the paragraph above,
for p(n, x, y) when n ≥ 8 is even.

Now suppose n is odd and n ≥ 5. Then

c5(n + 3)−d/α ≥ p(n+ 3, x, y) ≥ p(n, x, y)p(3, y, y) ≥ c3p(n, x, y),

which implies the desired bound when n is odd and n ≥ 5.
Finally, since p(n, x, y) = Px(Xn = y) ≤ 1, we have our bound for n ≤ 8 by taking

c1 larger if necessary.

We now turn to the off-diagonal bounds, that is, when |x − y|/n1/α is large. We
begin by bounding Px(Yt0 ∈ B(y, rt1/α0 )). To do this, it is more convenient to look at
Wt = t

−1/α
0 Yt0t and to obtain a bound on Px(W1 ∈ B(y, r)) for x, y ∈ S = t

−1/α
0 Zd. The

infinitesimal generator for Wt is

∑
y∈S

[f(y) − f(x)]
At

1/α
0 (x, y)

t
d/α
0 |x− y|d+α

.

Fix D and let E = D1/2. Let Qt be the transition operator for the process Vt
corresponding to the generator

Af(x) =
∑
y∈S

|y−x|≤E

[f(y) − f(x)]
At

1/α
0 (x, y)

t
d/α
0 |x− y|d+α

.

Define

Bf(x) =
∑
y∈S

|y−x|>E

[f(y) − f(x)]
At

1/α
0 (x, y)

t
d/α
0 |x− y|d+α

and ‖f‖1 =
∑
S |f(y)|.
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Proposition 4.4. There exists c1 such that

‖Qtf‖1 ≤ c1‖f‖1, ‖Qtf‖∞ ≤ ‖f‖∞. (4.2)

Also

‖Bf‖1 ≤
c1
Eα
‖f‖1, ‖Bf‖∞ ≤

c1
Eα
‖f‖∞. (4.3)

Proof. The second inequality in (4.2) follows because Qt is a Markovian semigroup.
Notice that CxQt(x, y) is symmetric in x, y. Then

‖Qtf‖1 ≤
∑
x

∑
y

Qt(x, y)|f(y)| =
∑
y

|f(y)|
∑
x

Qt(x, y) ≤ c2
∑
y

|f(y)|

because
∑

xQt(x, y) =
∑

x
Cy
Cx
Qt(y, x) ≤ c2

∑
xQt(y, x) = c2. This establishes the first

inequality.
Note ∑

y∈S
|y−x|>E

At
1/α
0 (x, y)

t
d/α
0 |x− y|d+α

≤ c3E
−α. (4.4)

Then

|Bf(x)| ≤ 2‖f‖∞
∑
y∈S

|y−x|>E

At
1/α
0 (x, y)

t
d/α
0 |x− y|d+α

≤ 2c3E−α‖f‖∞.

To get the first inequality in (4.3),

∑
x

|Bf(x)| ≤
∑
x

∑
|y−x|>E

|f(y)| At
1/α
0 (x, y)

t
d/α
0 |x− y|d+α

+
∑
x

|f(x)|
∑

|y−x|>E

At
1/α
0 (x, y)

t
d/α
0 |x− y|d+α

≤
∑
y

|f(y)|
∑

|x−y|>E

At
1/α
0 (x, y)

t
d/α
0 |x− y|d+α

+ c3E
−α
∑
x

|f(x)|.

Applying (4.4) completes the proof.

Let K be the smallest integer larger than 2(d+ α)/α and let

An = D(1/2)+(n/4K).

Let us say that a function g is in L(n, η) if

|g(z)| ≤ η
[ 1
Dd+α

+
1

|z − y|d+α
1B(y,An)c(z) +H(z)

]
for all z, where H is a nonnegative function supported in B(y,An) with ‖H‖1 +‖H‖∞ ≤ 1.
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Lemma 4.5. Suppose D1/(4K) ≥ 4 and n ≤ K. There exists c1 such that if g ∈ L(n, η),
then

(a) Bg ∈ L(n + 1, c1η);
(b) for each s ≤ 1, Qsg ∈ L(n + 1, c1η).

Proof. In view of (4.2) and (4.3), ‖B(D−d+α)‖∞ ≤ c2D
−d+α and the same bound holds

when B is replaced by Qt.
Next, set

v(z) =
1

|z − y|d+α
1B(y,An)c(z).

Note ‖v‖1 + ‖v‖∞ ≤ c3, where c3 does not depend on n or D. Let

J0(z) = |B(v +H)(z)|1B(y,An+1)(z)

and J(z) = J0(z)/(‖J0‖1 + ‖J0‖∞). Because of (4.2), we see that J0 has L1 and L∞

norms bounded by a constant, so J is a nonnegative function supported on B(y,An+1)
with ‖J‖1 + ‖J‖∞ ≤ 1. The same argument serves for Qt in place of B.

It remains to get suitable bounds on |Bv| and Qtv when |z − y| ≥ An+1. We have

|Bv(z)| ≤
∑

|w−z|>E
v(w)

c4
|w − z|d+α

+
∑

|w−z|>E
v(z)

c4
|w − z|d+α

. (4.5)

Clearly the second sum is bounded by c5v(z) as required. We now consider the first sum.
Let C = {w : |w − z| ≥ |w− y|}. If w ∈ C , then |w − z| ≥ |y − z|/2. Hence∑

w∈C,|z−w|>E

1
|w− z|d+α

1
|w − y|d+α

≤ c6
1

|y − z|d+α

∑
|w−y|>1

1
|w − y|d+α

≤ c7
|y − z|d+α

.

If w ∈ Cc, then |w − y| ≥ |y − z|/2, and we get a similar bound. Combining gives the
desired bound for (4.5).

Finally, we examine Qtv(z) when z ∈ B(y,An+1)c. We write

Qtv(z) =
∑

|z−w|≤An+1/2

Qt(z, w)v(w) +
∑

|z−w|>An+1/2

Qt(z, w)v(w). (4.6)

If |z − y| ≥ An+1 and |z − w| ≤ An+1/2, then |w − y| ≥ |z − y|/2. For such w, v(w) ≤
c8/|z − y|d+α, and hence the first sum in (4.6) is bounded by

c8
|z − y|d+α

∑
w

Qt(z, w) =
c8

|z − y|d+α
.
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For |z −w| > An+1/2, v is bounded, and the second sum in (4.6) is less than or equal to∑
|z−w|>An+1/2

Qt(z, w) ≤ Pz(|Vt − z| ≥ An+1/2) ≤ c9e−c10(An+1/2An)

using Proposition 2.5. This is less than

c11

( An
An+1

)8K2

≤ c12D
−d−α.

Combining the estimates proves the lemma.

Proposition 4.6. There exists c1 such that Px(Yt ∈ B(y, 1)) ≤ c1/|x− y|d+α.

Proof. Let D = |x − y|. Assume first that D ≥ D0, where D0 = 44K . Let f = 1B(y,1).
Clearly there exists η such that f ∈ L(1, η). Then Qtf ∈ L(2, c2η) for all t ≤ 1 by
Lemma 4.5. Set S0(t) = Qt and S1(t) =

∫ t
0
QsBQt−sds. Since Q1f ∈ L(2, c2η) and

|x− y| = D > A2 we have

|S0(1)f(x)| ≤ c3|x− y|−d−α.

By Lemma 4.5, for each s ≤ t ≤ 1, QsBQt−sf ∈ L(4, c32η). Hence |QsBQt−sf(x)| ≤
c4D

−d−α. Integrating over s ≤ t, we have

|S1(t)f(x)| ≤ c4D−d−α.

Set S2(t) =
∫ t

0
S1(s)BQt−sds =

∫ t
0

∫ s
0
QrBQs−rBQt−sdr ds. By Lemma 4.5 we see that

QrBQs−rBQt−sf ∈ L(6, c52η) and therefore |QrBQs−rBQt−sf(x)| ≤ c6D
−d−α. Integrating

over r and s, we have
|S2(t)f(x)| ≤ c6D−d−α.

We continue in this fashion and find that for all n ≤ K we have

|Sn(1)f(x)| ≤ c7(n)D−d−α.

On the other hand, by Proposition 4.4

‖B‖∞ ≤ c8/E
α.

Take D0 larger if necessary so that c8D
−α/2
0 < 1

2 . If D ≥ D0, we have by the argument of
Proposition 2.6 that

‖Sn(1)f‖∞ ≤ (c8/Eα)n.
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Consequently,
∞∑
n=K

|Snf(x)| ≤ c9/E
αK ≤ c10D

−d−α.

If we set Pt =
∑∞

n=0 Sn(t), we then have

|P1f(x)| ≤
( K∑
n=0

c7(n) + c10

)
D−d−α = c11D

−d−α.

This is precisely what we wanted to show because by [Le], Pt is the semigroup corresponding
to Wt.

This proves the result for D ≥ D0. For D < D0 we have our result by taking c1
larger if necessary.

From the probabilities of being in a set for Yt we can obtain hitting probabilities.

Proposition 4.7. There exist c1 and c2 such that

Px(Yt hits B(y, c1t
1/α
0 ) before time t0) ≤ c2

( t
1/α
0

|x− y|

)d+α

.

Proof. There is nothing to prove unless |x−y|/t1/α0 is large. Let D = |x−y| and let A be
the event that Yt hits B(y, t1/α0 ) before time t0. Let C be the event that sups≤t0 |Ys−Y0| ≤
c3t

1/α
0 . From Theorem 2.8, Pz(C) ≥ 1

2
if c3 is large enough. By the strong Markov property,

Px(Yt0 ∈ B(y, (1 + c3)t1/α0 )) ≥ E x[PYS (C);A] ≥ 1
2P

x(A),

where S = inf{t : Yt ∈ B(y, t1/α0 )}. We can cover B(y, (1 + c3)t1/α0 ) by a finite number
of balls of the form B(z, t1/α0 ), where the number M of balls depends only on c3 and the
dimension d. Then by Proposition 4.6, the left hand side is bounded by c4M(t1/α0 /D)d+α.

We now get the corresponding result for Xn. We suppose that Yt is constructed in
terms of Xn and stopping times Tn as in Section 2.

Proposition 4.8. There exist c1 and c2 such that

Px(Xn hits B(y, c1n
1/α
0 ) before time n0) ≤ c2

( n
1/α
0

|x− y|
)d+α

.

Proof. Let A be the event that Xn hits B(y, n1/α
0 ) before time n0, C the event that Yt

hits B(y, n1/α
0 ) before time 2n0, and D the event that Tn0 ≤ 2n0. By the independence of

A and D, we have
Px(A)P(D) = Px(A ∩D) ≤ Px(C).
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Using the bound on Px(C) from Proposition 4.7 and the fact that P(D) > c2, where c2
does not depend on n0, proves the proposition.

We now come to the main result of this section.

Theorem 4.9. There exists c1 such that

p(n, x, y) ≤ c1
(
n−d/α ∧ n

|x− y|d+α

)
.

Proof. Let D = |x− y|. Fix c2 sufficiently large. If D ≤ c2n
1/α, the result follows from

Theorem 4.3. So suppose D > c2n
1/α. Let m = n+ [γn]. By Proposition 4.8,

Px(Xm ∈ B(y,m1/α)) ≤ c3
m1+d/α

Dd+α
.

On the other hand, the left hand side is
∑
z∈B(y,m1/α) p(m,x, z). So for at least one z ∈

B(y,m1/α), we have p(m,x, z) ≤ c4m/Dd+α ≤ c5n/D
d+α. Let

q(k,w) = p(n + [γn]− k,w, x) .

By Proposition 3.6, q is parabolic in {0, 1, . . . , [γn]} × Zd, and we have shown that

min
w∈B(z,n1/α)

q(0, w) ≤ c5n/D
d+α.

Thus by Theorem 3.1 we have

p(n, x, y) =
Cy
Cx

p(n, y, x) =
Cy
Cx

q([γn], y) ≤ c6n/Dd+α.

5. Lower bounds.
Lower bounds are considerably easier to prove.

Proposition 5.1. There exist c1 ands c2 such that if |x− y| ≤ c1n
1/α and n ≥ 2, then

p(n, x, y) ≥ c2n−d/α.

Proof. Let m = n− [γn]. By Theorem 2.8 there exists c3 not depending on x or m such
that

Px(max
k≤m
|Xk − x| > c3m

1/α) ≤ 1
2
.
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By Theorem 4.9 provided m is sufficiently large, there exists c4 < c3/2 not depending on
x or m such that

Px(Xm ∈ B(x, c4m1/α)) ≤ 1
4
.

Let E = B(x, c3m1/α)−B(x, c4m1/α). Therefore

Px(Xm ∈ E) ≥ 1
4
.

This implies, since Px(Xm ∈ E) =
∑
z∈E p(m,x, z), that for some z ∈ E we have

p(m,x, z) ≥ c5m
−d−α ≥ c6n

−d−α. If w ∈ E, then by Theorem 3.1 with q(k, ·) =
p(n− k, x, ·), we have

p(n, x,w) ≥ c7n
−d/α.

This proves our proposition when n is greater than some n1.
By (1.2) and (2.1) it is easy to see that there exists c8 such that

p(2, x, x) ≥ c8, p(3, x, x) ≥ c8.

If n ≤ n1 and n = 2`+ 1 is odd,

p(n, x, y) ≥ p(2, x, x)`p(1, x, y) ≥ c`8n
−d/α.

The case when n ≤ b1 and n is even is done similarly.

Theorem 5.2. There exists c1 such that if n ≥ 2

p(n, x, y) ≥ c1
(
n−d/α ∧ n

|x− y|d+α

)
.

Proof. Again, our result follows for small n as a consequence of (1.2) and (2.1), so
we may suppose n is larger than some n1. In view of Proposition 5.1 we may suppose
|x− y| ≥ c2n

1/α. Let A = B(y, n1/α). Let N(z) = Pz(X1 ∈ A) if z /∈ A and 0 otherwise.
For z ∈ B(x, n1/α) note N(z) ≥ c3nd/α/Dd+α. As in the proof of Lemma 3.2,

1A(Xj∧TA )− 1A(X0)−
j∧TA∑
i=1

N(Xi)

is a martingale. By optional stopping at the time S = n ∧ τB(x,n1/α) we have

Px(XS ∈ A) = E x
S∑
i=1

N(Xi) ≥
c3n

d/α

Dd+α
E x[S − 1].
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Arguing as in (3.3), E xS ≥ c4n. We conclude that

Px(Xn hits B(y, n1/α) before time n) ≥ c5n
1+d/α/Dd+α.

By Theorem 2.8, starting at z ∈ B(y, n1/α), there is positive probability not depending on
z or n such that the chain does not move more than c6n1/α in time n. Hence by the strong
Markov property, there is probability at least c7n1+d/α/Dd+α that Xn ∈ B(y, c8n1/α). Let
m = n− [γn] Applying the above with m in place of n,

Px(Xm ∈ B(y, c9n1/α)) ≥ c10
m1+d/α

Dd+α
≥ c11

n1+d/α

Dd+α
.

However this is also
∑
w∈B(y,c9n1/α) p(m,x,w). So there must exist w ∈ B(y, c9n1/α) such

that p(m,x,w) ≥ c12n/D
d+α. A use of Theorem 3.1 as in the proof of Theorem 5.1 finishes

the current proof.

Proof of Theorem 1.1. This is a combination of Theorems 4.9 and 5.2. If n = 1 and
x 6= y, the result follows from (1.2) and (2.1).

Remark 5.3. Similar (but a bit easier) arguments show that the transition probabilities
for Yt satisfy

c1
(
t−d/α ∧ t

|x− y|d+α

)
≤ qY (t, x, y) ≤ c2

(
t−d/α ∧ t

|x− y|d+α

)
. (5.1)

One can also show that the transition densities of the process Ut described in Section
1 also satisfy bounds of the form (5.1). One can either modify the proofs suitably or else
approximate Ut by a sequence of processes of the form Yt but with state space εZd, and
then let ε→ 0.
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