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Direct numerical simulations (DNS) are presented of three-dimensional, Rayleigh—
Taylor instability (RTI) between two incompressible, miscible fluids, with a 3:1
density ratio. Periodic boundary conditions are imposed in the horizontal directions
of a rectangular domain, with no-slip top and bottom walls. Solutions are obtained
for the Navier—Stokes equations, augmented by a species transport-diffusion equation,
with various initial perturbations. The DNS achieved outer-scale Reynolds numbers,
based on mixing-zone height and its rate of growth, in excess of 3000. Initial growth is
diffusive and independent of the initial perturbations. The onset of nonlinear growth
is not predicted by available linear-stability theory. Following the diffusive-growth
stage, growth rates are found to depend on the initial perturbations, up to the end of
the simulations. Mixing is found to be even more sensitive to initial conditions than
growth rates. Taylor microscales and Reynolds numbers are anisotropic throughout
the simulations. Improved collapse of many statistics is achieved if the height of the
mixing zone, rather than time, is used as the scaling or progress variable. Mixing has
dynamical consequences for this flow, since it is driven by the action of the imposed
acceleration field on local density differences.

1. Introduction

Rayleigh-Taylor instability (RTI) occurs whenever fluids of different density are
subjected to acceleration in a direction opposite that of the density gradient (Rayleigh
1883; Taylor 1950; Chandrasekhar 1955, 1961; Duff, Harlow & Hurt 1962; Sharp
1984). RTI is encountered in a variety of contexts, such as combustion, rotating
machinery, inertial-confinement fusion, supernovae explosions, and geophysics. The
Richtmyer—Meshkov instability (RMI, Richtmyer 1960; Meshkov 1969) is closely
related and may be regarded as a special case of RTI; it corresponds to the case of
an impulsive acceleration. Both flows can become turbulent, as secondary, Kelvin—
Helmholtz instabilities (KHI) develop that broaden the spectrum of spatial and
temporal scales participating in the dynamics.

RTI flows represent an important simulation and modelling test case for hydro-
dynamic codes, in general, involving many aspects of turbulence, transport, and
diffusion in non-uniform-density flows subject to external body forces. RTI is driven
by a directed forcing term, scaled by local density differences. This flow is thus capable
of sustaining anisotropy in fully developed turbulence. Secondly, for miscible fluids,
species diffusion, which reduces density differences and hence local forcing, plays a
dynamic role in this flow and must be captured to simulate the full dynamics.
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One class of models for RTI in the turbulent regime assumes that the mixing zone
grows quadratically in time (Annuchina et al. 1978; Read 1984; Youngs 1984, 1989).
For a constant and uniform acceleration, g, the vertical penetration, hy(t), of the light
fluid into the heavy fluid (dubbed ‘bubbles’), is modelled as

hy(t) ~ oo/ gt>. (1a)

The penetration, hy(t), of the advancing heavy into light fluid (‘spikes’), is similarly
modelled

hy(t) ~ —o,./ gt2, (1b)

where the subscripts b and s denote bubbles and spikes, and «, and o5 are model
constants. The parameter .« in (1) is the Atwood number, defined as

g=Pr—p_R-1 _P 2)
p2+p1 R+ pr’

with p, and p; the densities of the heavy and light fluids, respectively. The total
extent, h(t), of the RTI mixing zone can be defined as

h(t) = hy(t) — hy(2), (3a)
and, from (1),
h(t) ~ 0l gt?, (3b)
where o = oy, + o. The rate of growth of the mixing zone can then be estimated by
. dh
h= s 2o/ gt = 2ol gh)'/>. (3¢)

As discussed by Dimonte & Schneider (2000), experimental and computational esti-
mates for o span a fairly large range, 0.01 < o« < 0.07.

A heuristic model for the growth of the mixing zone can be outlined as follows.
The advancement of RTI bubbles and spikes in the respective pure fluids may be
viewed as the result of a buoyancy force scaled by the density difference across the
corresponding front, i.e.
du,» _ dh,

Py, =Pq = Lubrg, (4a)
where p = (p2 + p1)/2 and Ap = pr — py, for i = b,s, corresponding to bubbles
and spikes, respectively, with the o; representing suitable model constants. Integrating
once yields

Iy ~ iociAppg(t + tio), (4b)

and again,
hi ~ o g(t + tio)* + hio, (4¢)
with .o/ = Ap/(2p), as in (2), and t;y and hy integration constants. This recovers (3b),
via (3a), within the undetermined integration constants. The validity of such a scaling
argument hinges on a few implicit assumptions, e.g. that the density difference across
the advancing fronts be constant and that the flow structure in the vicinity of the
fronts, as scaled by the mixing-zone extent, h, be self-similar.
Growth models with additional flexibility have been proposed to accommodate the
initial perturbation amplitude as well as pressure and other drag components on the
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advancing structures. In these, the respective front velocities are modelled as

diy il i
dt _Blﬂg_cl hl .

The model coefficients, ff; and C;, in this expression are reported to depend on the
density ratio, R, and hy,/hs. If f; and C; are approximated as constants, the previous
model parameters are given by

(Sa)

Pi

o = m’ (5b)
and (5a, b) yields the approximate solution
hi(t) >~ O(,‘JZ{g{t + [1 — w,‘(t)]ti()}z, (50)

where tig = \/hio/(0;.72) and py <K t/tip + 1 (Dimonte & Schneider 2000), i.e. the
same basic result as the scaling argument outlined in (4).

Experimental evidence and numerical simulations of this phenomenon to date
have not provided unambiguous support for these model expressions, with variations
reportedly dependent on Atwood number (e.g. Dalziel, Linden & Youngs 1999), initial
perturbations (Linden, Redondo & Youngs 1994), geometry (Andrews & Spalding
1990), and profile of the density interface (Young et al. 2001). Even less is known
about the behaviour for the evolution with variable acceleration, g = g(t), as well as
the behaviour in fully developed turbulent flow.

Generally, the growth of the RTI mixing zone between viscous and miscible fluids
with light and heavy fluid viscosities u;, i, respectively, and a (binary) diffusivity &,
in a domain of transverse extent, L, subject to initial perturbations of a characteristic
(dominant-mode) wavelength, ., can be parameterized as,

h(t) = n(L, g, t, Ac, p1, P2, W1» ta, D), (6a)
or, relating the seven possible (but non-unique) dimensionless groups,
h(t)/L = flt/7,L/ %, R, po/ 1, Rey, Sc] (6b)
with R as in (2),
L\ 2
(%) 0
a characteristic time,
phh
Re, =22 (6d)

the outer-scale Reynolds number of the evolving flow, with p as in (4a) and p =
(t1 + 12)/2, and
Se=t =

> (6¢)

!
O =

the Schmidt number.

In the limit of Re, > 1 and Sc ~ 1, it may be possible to neglect viscous and
diffusive effects, removing Re;, and Sc as important parameters. If the parameterization
in the density ratio is captured by the characteristic time scale, 7 (6¢), in which case
R would not enter as an independent dimensionless parameter, then we must have
h/L ~ f(t/7). Quadratic growth may then be expected if, in addition, L/A. > 1, or
if h/L < 1, in which case the transverse extent, L, will not be felt. This leads to
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h/L oc (t/7)* as the only possibility that removes L from the dynamics, and (3b) is
recovered.

This paper addresses some of the scaling issues, to the extent feasible by direct
numerical simulation (DNS), focusing on the effect of initial conditions on the growth
and development of the Rayleigh-Taylor mixing zone. The effects are studied by
comparing the response to different perturbations of the initial diffusion interface, each
characterized by a different dominant wavenumber, k.. In particular, the perturbation
spectra are chosen to have dominant wavenumbers smaller than, comparable to, and
higher than the most unstable wavenumbers, according to the Duff et al. (1962) linear
stability theory.

2. Problem description

We report on a study of incompressible RTI flow, with a density ratio, R = p,/p; =
3, in a rectangular parallelepiped with square cross-section, subject to an acceleration
field in the negative-z direction, i.e.

g=—2g (7)
The flow is investigated through DNS by solving the Navier—Stokes and species
transport-diffusion equations.
Diffusion between the two miscible fluids is modelled as Fickian, i.e. with a diffusive
mass flux of the heavy fluid given by

Jj(x.t) = —pDVY (x.1) = —%@mx, ), (8)

where p = p(x,t) is the fluid density, 2 is the binary species diffusivity (6a), and
Y (x,t) and X(x,t) are the heavy-fluid mass fraction and mole fraction, respectively.
These are related to density by

X(x,t) = M, (9a)
P2 —p1
1 _ Y (x,t) + 1— Y(x,t)’ (9b)
p(x,1) p2 p1

with pY = p,X. Incompressible (uniform number density) fluids are assumed with
density fluctuations arising solely from composition variations.

In the simulations presented here, the flow is followed well past the linear-growth
regime. Simulation and flow parameters are selected such that spectral resolution
limitations towards the end of the simulations are encountered before the RTI mixing
zone is affected by the upper or lower walls.

The range of length scales can be characterized by the outer-scale Reynolds number,
Rey, (6d). In simulations of viscous/diffusive flow, Re;, must be high enough for viscous
effects to be relatively unimportant.

2.1. Governing equations

Choosing the light-fluid density, p;, the length / = L/(2rn), and the acceleration

magnitude, g, as the scaling parameters, the dimensionless equations governing the

flow may be written as (cf. Sandoval 1995),
dp  Opu;j

E_{— axj

=0, (10)
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where p is the fluid-mixture density, scaled by p;; t is time, scaled by +///g; u =
(ur,uz,u3) = (u,v,w) is the velocity vector, scaled by U = /g/; x = (x1,X2,X3) =
(x,y,z) is the Cartesian coordinate vector, scaled by /;

opu;  Opuu;  dp It

__ — pon, 11
o T ax, o Tox, POR (11a)
where p is the pressure, scaled by p; U2, with
1 6u,~ ﬁuj 2
= — 2(V-u)S:: 11
"'~ Re ox;  0x; 3 (V- u)dy (115)

the scaled stress tensor, where Re = p;/U/u is the scaling Reynolds number, with
u a viscosity discussed below. In this non-dimensionalization, the Froude number,
Fr = U/./g/, whose square typically divides the last term in (11a), is identically equal
to unity and does not enter as a parameter.

The species-transport equation, with Fickian fluxes (8) and no interfacial surface
tension, is given by

opY  Opu;Y 1 0 oY
— =— | p— 12
ot 0x; Pe 0x; <p6xj>’ (124)
where
Pez% = ReSc (12b)

is the scaling Péclet number (for mass diffusion). This formulation is appropriate for
an ideal gas, for example, in the limit of kgT large compared to the difference in
potential energy of molecules at the top and bottom of the flow domain.

The fluids are chosen with matched viscosities, ie. uy = pw = u = p (6d,e),
and therefore have different kinematic viscosities, i.e. v, = uy/p> = vi/R. Choosing
9 = u/p, = vy = v, we then also have Sc = 1, approximating gas-phase mixing. The
scaling Péclet number (12b) is then equal to the scaling Reynolds number.

Anticipating late-time spatial-resolution requirements, the dimensional value of u
is chosen so as to yield a scaling Reynolds number given by

4/3
Re=pliU=<A/> , (13)
xy

with Ay, = L/N,, = 2n//N,,, the horizontal grid spacing, and Ny, = 256 the number
of grid points along each horizontal direction. With these choices, the (fixed) scaling
Reynolds number is equal to Re ~ 140.2 and the outer-scale Reynolds number (6d)
is given by
phh h h
Rej, = pT = 4nRe - (14)
The specific-volume (9), continuity (10), and species-transport (12) equations imply
a divergent velocity field (Sandoval 1995),

1 1
Veu=——V-: (Vp) . (15)
Pe p

Expanding the second term in (10) and combining with (15) yields a non-zero
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FIGURE 1. Initial interfacial perturbation field (18), {(x, y), for Cases A (a), B (b), and C (c).
Deep blue: X < 0.35; green: X = 0.5; red: X > 0.65.

dilatation field, 1.e.

op P 1

— =—u- —V-(- = Y(x,t 16
o u-Vp+ Pev <pr> (x,1), (16)
despite the incompressibility of the flow, a consequence of diffusive mixing of the two,

unequal-density species.

2.2. Boundary and initial conditions

Periodic boundary conditions are applied in x and y, with no-slip walls at the top
and bottom z-boundaries. With # = 0 and Vp = 0 (no mixed fluid) along the top
and bottom walls, the z-momentum equation yields the Neumann condition on wall
pressure,
op 1 *w
— == —p. 17
9z 3Redzz P (17)
The implementation of this boundary condition is discussed in Appendix A.
The mole-fraction field (9a) is initialized as an error function, i.e.

1 z
X(x,y,z,t—O)—Z{l—l-erf{SAz—{—C(x,y)}}, (18)
where A, is the grid spacing in z and {(x, y) is the perturbation field. To accommodate
the unequal bubble and spike growth, the unperturbed origin (z = 0) of the initial
intermediate (X = 1/2) isosurface is placed H/32 above the midheight plane, where
H is the domain height.

The {(x,y) perturbation field is generated as a two-dimensional field of random
numbers, filtered to impose periodicity, transformed to Fourier space, and then
Gaussian-filtered before transforming back to physical space. The filter is applied to
fit the perturbations to a prescribed spectrum. To satisfy (15), the initial velocity field
is prescribed as

1 Vp
u= Pe p (19)
resulting in small initial velocity perturbations in the interfacial region. This is the
minimum initial velocity perturbation that must be included for consistency, in the
sense that an arbitrary divergence-free velocity field could also be superposed.
Three simulations, Cases A, B, and C, were performed, each with a different
initial {(x,y) perturbation, but otherwise identical in every other respect. The two-
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FIGURE 2. Spectra (left axis) of initial interfacial perturbations (18) for Cases A, B, and C, with k
denoting the number of waves within L. The exponential growth coefficient (right axis), a(k), with
units of inverse time, from viscous and diffusive linear-stability theory (Duff et al. 1992) is also
plotted.

dimensional perturbation fields, {(x,y), are depicted in figure 1. They correspond
to initial perturbations of decreasing spatial scale, for Cases A, B, and C, respec-
tively.

The corresponding initial perturbation spectra are plotted in figure 2, along with
the exponential growth coefficient from viscous and diffusive linear-stability theory
(Duff et al. 1962). The wavenumber k in figure 2 denotes the number of waves in the
flow-domain width, L, i.e. k = 2n/(1//) = L//, in the notation of (6a,b) and the non-
dimensionalization of (10) and (11). Scaling the linear-stability theory wavenumbers,
the growth rate factor is negative for k > 19, with associated initial perturbation
modes expected to be initially damped.

The perturbation energy (interface displacement amplitude squared) is the same in
all three cases, in particular

1
E : = ¥
| Btk dhdl = 5o [ oo axay
km
=((*)y =05x 1077 ~ / E;(k)dk, (20)
0
where k =, /kZ +k? is the radial wavenumber and E((k) is the initial radial auto-

spectrum of {(x, y). With 256 points in each of the (x, y)-plane directions, the maximum
number of waves that can be supported is k,, = 127. In dimensional units, the
magnitude of the perturbation r.m.s., for each case, is 0.0707/ ~ 0.0113L. Defining
the profile thickness, h = z;—z, in terms of the 1% profile points, i.e. X(z;) = 0.01 and
X(z2) = 0.99, the (unperturbed) initial error-function thickness is given by hy ~ 16.5A,,
cf. (18). For all three cases, the ratio of the initial r.m.s.-based perturbation amplitude
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to interface thickness is
£ 20, (21)
ho
If, for scaling purposes, k. = L/A. in (6a,b) is identified with the peak of the
perturbation spectrum, then k. >~ 4, 9, and 12.5 for Cases A, B, and C, respectively,
with modal contributions extending to roughly twice these values in each case (cf.

figures 1 and 2).

3. Solution technique
3.1. Spatial discretization

To capture the full range of length scales in this flow, high-order, high-resolution
numerical methods are employed, so that numerical dissipation does not compete
with physical dissipation. For example, mixing, represented by the diffusion term in
(12), involves second derivatives and is sensitive to high wavenumbers.

The simulations are performed on a mesh of 256 x 256 x 1024 grid points in Xx,
y and z, respectively, with x- and y-derivatives computed spectrally. Derivatives in
z are computed with an eighth-order compact scheme (Lele 1992). The grid spacing
in z is reduced, relative to the spacing in x and y, to account for the difference in
resolving power between the Fourier-spectral and the compact methods (Appendix
B). This leads to the choice, A, = 8A,, /13, yielding a flow-domain aspect ratio of
H/L =32/13.

3.2. Temporal discretization

Time integration of (16) is via the third-order Adams—Bashforth-Moulton (ABM)
method. The predictor and corrector steps are

,0* — pn 4 %Al’(SY” _ Y‘nfl)’ (22)
and
P =p" 4+ SAYT =27+ ), (23)
respectively. Here n = t/At denotes the integer timestep and an asterisk denotes a
predicted value at the n + 1 timestep. Before (23) can be computed, ¥ must first be
obtained, which requires that (11) be advanced by the predictor step.

A pressure-projection scheme for the momentum equation is derived by integrating
(11) from ¢ to t + At, i.e.

t+At ap
o =+ [ Aae—a ( D, +pa5i3) , (24)
t Xi
where
0
4= aTCj(Tij — puju;),
1 t+At
a = dtﬂ
p At /[ D
and

1 t+At
b= [ pdr=1 4 )+ 0P
t
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Equation (24) is split into two parts. The first,

t+At
(Di = (pu,-)” + / A,‘d[, (25)
t
accounts for advection and diffusion, while the second,
(o) = b, — At (‘2” T paa,g,) , (26)
Xi

accounts for pressure and acceleration.
Equations (25) and (26) are advanced as follows. In the predictor step, @; is
computed using the Adams—Bashforth approximation,

t+At
/ A;dt = 1A1(347 — A7) + O(AP).
t

At this point, p, is needed for (26). Taking the divergence of (26) yields the Poisson
equation,
0%pa 1[0 w1 0D 0pa
ox? T At {M(pui) - ax,} Tz
Since (pu;)"*! is unknown at this point, d(pu;)"*!/0x; is approximated by expanding
and combining with (15), i.e.

i(pu_)nﬂ :u(wlaprﬁl _ pn+1 i 1 6pn+1
ox; L0x; ReSc ox; \ pmt! 0x; )~

n+1
i

(27)

and extrapolating u}"™ from previous timesteps, i.c.

Wt =20 —u T + O(AP).

In this first step, p"*! is approximated using p*. With these substitutions, (27) is solved
for p, (see Appendix A) which is then substituted into (26) to compute (pu;)*, the
predicted value of (pu;)"'.

In the corrector step, u; and Y* are computed from p* and (pu;)*, and p"*! is
obtained from (23). Next, (25) is computed using the trapezoidal rule, i.e.

t+At
/ A;dt = JA(A] + A7) 4+ O(AP).
t

Equation (27) is now solved using (pu;)* in place of (pu;)"*'. No approximation is
necessary for p"*!, which is now known. Finally, (26) is used to compute (pu;)"*!, from
which /™! is obtained. Time integration is initiated using the Matsuno (1966) method
for the first timestep (cf. Durran 1991), i.e. a first-order predictor and corrector are
used instead of (22) and (23), with the first-order extrapolation, u/=! = u/=°, for the

velocity.

4. Results
4.1. Verification

The code was verified to conserve mass and momentum, as well as preserve symmetry
in separate tests with symmetric initial and boundary conditions.

Numerical results for the growth of small-amplitude, single-mode perturbations
were tested against predictions of linear stability theory (LST). A comparison is
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FIGURE 3. Comparison of direct numerical simulation (DNS, solid line) with linear-stability theory
(LST, dashed line) for a single-mode, two-dimensional, small-amplitude perturbation.

shown in figure 3, using t as the scaling time (6b,c), whose non-dimensional value
is T = /2n/«/ and which, for the ./ = 1/2 case investigated here, is 7 = \/AT .
The comparison was performed in the low-k regime where viscous and diffusive
contributions are negligible. The z-grid spacing was reduced by a factor of 4, compared
to the x-grid spacing, to decrease the density interface thickness relative to the
perturbation amplitude. The thickness correction, v, in the Duff et al. (1962) notation,
was determined to decrease the growth rate by about 1%; this was factored into
the LST curve. The agreement between theory and simulation is very good until
amplitudes become weakly nonlinear, causing the LST prediction to slightly exceed
the simulated growth rate.

To test species-diffusion effects, early-time results were compared to theoretical
predictions for the diffusive evolution of the initial mole-fraction profile (18). In the
limit of {(x,y) — 0 and the units of (12), purely diffusive evolution leads to

} , (28)

with /ty/Pe = 5A,/2, as required to match the profile thickness at t = 0. Measuring
the profile thickness, h, in terms of the 1% points (21), this predicts

h(t) ~ 6.58 \/(t + to)/ Pe. (29)

The steep initial mole-fraction profiles lead to rapid diffusive growth, which dominates
overall growth at early times, resulting in a simulated mixing-zone evolution well-
approximated by (Case C data)

hsim(t) >~ 6.6 \/(t + ty)/Pe, (30)

in good agreement with theory. Growth during the diffusive-growth stage is the same
for all cases (independent of initial perturbations), as will be discussed below.

z

1
X(z) = 3 {1 +erf W NI
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FIGURE 4. Time-evolution of intermediate (X = 0.5)-isosurface (green) for Case C. Pure heavy fluid
(X =1) is red, pure light fluid (X = 0) is blue. Times for the three images displayed: (a) ¢/t = 0,
(b) 3.44, and (c) 4.63.

4.2. Diffusive and nonlinear stages
4.2.1. Visualization

As mentioned previously, three simulations were carried out: Cases A, B, and C.
The evolution of the density field for Case C is depicted in 4, which is initiated with the
maximum number of waves. Pure heavy fluid (X = 1) is red, pure light fluid (X = 0)
is blue, and the intermediate (X = 0.5)-isosurface (1 :1 molar ratio) is green. In (a)
(t/T = 0), the initial perturbations are just barely discernible on the interface. In (b)
(t/t = 3.44), mushroom-like structures are visible on the upper side of the isosurface.
In (c) (t/T = 4.63), the original mushrooms have merged into larger structures and a
long, thin protuberance (‘spike’) can be seen penetrating deep into the light fluid. The
neck of this structure has been pinched off by diffusion. The diffusion term in (12) is
responsible for altering the topology of the (X = 0.5)-isosurface; absent this term, all
isopycnals would remain simply connected.

4.2.2. Mixing-zone growth

To measure mixing-zone growth, the mole-fraction field (9a) is averaged in the
homogeneous directions, i.e.

1
(2m)? (2m)2

Figure 5 displays the horizontally averaged mole-fraction profile for Case C, at five
different times. The profile retains the initial error-function shape, for some time, in
a manner that belies the complexity of the underlying flow structure. As discussed
below, it subsequently evolves to a different shape and eventually exhibits irregular
features, a consequence of averaging over fewer, larger-scale structures.

The penetration length of the spikes and bubbles, h(t) and hy(t), respectively, are

(X(x,0)xy = X(x,t)dxdy. (31)
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FIGURE 5. Time-evolution of horizontally averaged mole-fraction field for Case C. Dotted line:
t/t = 0, short-long dashed line: ¢/t = 2.26, short-dashed line: ¢/t = 3.40, long-dashed line:
t/T = 3.95, solid line: ¢/t = 4.52.
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FIGURE 6. Penetration distance of bubbles (h,/L) and spikes (hs/L) vs. (t/7)*.

defined as the z-distances for which (X (x, 1)), = € and (X(x,1)),, < 1—¢, respectively,
with e = 0.01. This criterion for profile thickness was used in providing a verification
comparison with diffusive-growth predictions, as discussed above. It is also commonly
used in boundary-layer analysis, as a marker of velocity-profile edges, as well as for
the analysis of shear-layer growth and mixing (e.g. Dimotakis 1991), permitting direct
comparisons between these two flows, as discussed below. The initial intermediate
isosurface (X = 1/2) is placed at z = 0; cf. (18).

The resulting bubble and spike penetrations are plotted in figure 6, vs. (t/1)%, to
facilitate comparison with the growth models described in the Introduction. Growth
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FIGURE 7. Growth coefficients for the three cases: o, for ‘bubbles’ (positive values)
and o for ‘spikes’ (negative values).

rates can be seen to sensitively depend on the initial conditions. Case A, initialized with
perturbations encompassing the fewest waves (k. ~ 4), grows fastest. Progressively
slower growth is found for Cases B and C (k. ~ 9 and 12.5, respectively). The values
for (t/t)> required to attain the same h;/L differ by a factor of 3 between Cases
A and C. The Duff et al. linear-stability analysis might have suggested that Case
B, subtending the greatest mean-square amplitude under the instability curve, a(k),
should have exhibited the highest growth rate.

The departure of the bubble-/spike-front growth from a quadratic time dependence
can be assessed by computing the derivative of hy/L and hy/L with respect to (t/7),
permitting a comparison with the o; model parameters in (1) and (4). The results are
depicted in figure 7. The o; exhibit substantial differences between cases and are not
well-approximated by constants. No doubt, the variations must be attributed, in part,
to the fact that only a few bubble/spike structures are responsible for defining the 1%
front, and hence the value of the o;. Nevertheless, the variations are large. For Case B,
the «; decrease in absolute value for t/7 = 1.5, corresponding to overall growth slower
than quadratic. For Case C, which is initialized by a large number of waves (recall
figure 1) and exhibits the smallest fluctuations, their difference approaches a constant,
1.e. overall growth nearly quadratic, but with (algebraically) decreasing individual o;
for t/t 2 3, i.e. non-quadratic individual front advance.

Figures 6 and 7 also illustrate the slightly asymmetric bubble/spike evolution at
this Atwood number. Penetration of the high-density fluid into the low-density fluid
exceeds that of the low-density fluid into the high-density fluid, as noted previously
(e.g. Read 1984, in experiments with p,/p; = 3, reports hs/h, ~ 1.3). If the overall
mixing zone is defined as bounded by the 1% limits of the horizontally averaged
mole-fraction profiles, it is seen to be descending into the light fluid. Slightly more
low-density than high-density fluid is entrained into the RTI mixing zone.

Figure 8 depicts the overall extent, h(t), of the RTI mixing zone (3a), along
with indicatrices corresponding to t'/?> and t> growth. Growth during the diffusion-
dominated, h oc t!/2, regime is seen to be the same for all cases, ie. independent
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FIGURE 8. Mixing-zone extent, h/L = (hy — hs)/L, vs. t/t for the three cases.

of the initial perturbations, and in good agreement with analytical predictions for
purely diffusive growth (recall discussion in §4.1). The onset of a faster-growth stage
is conspicuous, where growth is faster than diffusive. This occurs at a different time
for each of the three cases, reflecting differences in the initial modal seeding in each
case.

Despite the significant variation in the o; (cf. figure 7), figure 8 confirms that
overall growth in the post-diffusive regime is well-represented as quadratic for Case C.
However, it is difficult to say whether deviation from quadratic growth for Cases A and
B is because of inadequate statistical convergence, because asymptotic growth is not
quadratic, or because asymptotic behaviour has not been attained, e.g. because initial
modal seeding (k.) is too low for those cases. If overall growth is to be approximated
as quadratic, with departures attributed to statistical reasons, the results indicate that
the effective growth coefficients, o, are sensitive functions of the initial conditions.

4.2.3. Mole-fraction profiles

The evolution of the (X(z,t)),, profiles can be assessed by plotting them with
respect to a scaled vertical coordinate, z/h(t). Averaged profiles from the three cases,
scaled in this fashion, are depicted in figures 9, 10, and 11.

The mole-fraction profiles transition from their initial error-function shape, retained
during most of the h oc t'/? stage, to a profile that is slightly asymmetric, i.e. with a
small deviation from antisymmetry. This is illustrated by the scaled profiles for Cases
A (figure 9) and B (figure 10).

The results indicate an approach to self-similarity, if the vertical coordinate is
scaled by the mixing-zone height, h(t). This is in accord with previous experimental
findings (e.g. Kucherenko et al. 1997). The small deviations from such a collapse
and self-similarity are probably attributable to statistical-convergence difficulties, as
alluded to above. However, the late-time quasi-self-similar profiles are different for
each of the three cases, with profiles for Case A deviating the most from their initial
shape and less so for Cases B and C.
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FIGURE 9. Time-evolution of horizontally averaged mole-fraction profiles for Case A. Dotted line:
t/t = 0, short-long dashed line: t/t = 0.639, short-dashed line: t/t = 1.236, long-dashed line:
t/1 = 1.859, solid line: t/1 = 2.432.
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FiGure 10. Time-evolution of horizontally averaged mole-fraction profiles for Case B. Dotted line:
t/t = 0, short-long dashed line: t/t = 0.852, short-dashed line: t/t = 1.711, long-dashed line:
t/t = 2.541, solid line: t/t = 3.036.

4.2.4. Reynolds numbers

An important measure of growth and independence from viscous/diffusive effects
is the outer-scale Reynolds number (6d), (14). These are plotted in figure 12 for each
case. All cases achieve maximum outer Reynolds numbers over 3000. Case C evolves
most slowly, allowing the interpenetrating fluids more time to diffuse before strong
straining ensues. This places less stringent simulation requirements vis-d-vis aliasing
limits, permitting Case C to achieve a slightly higher Reynolds number (3700) than
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FiGure 11. Time-evolution of horizontally averaged mole-fraction profiles for Case C.
Line type legend as in figure 5.
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FIGURE 12. Outer-scale Reynolds number, Re, = phh/pu, vs. t/7, for the three cases.

Cases A or B. The non-monotonic curve for Case B is a consequence of the definition
of h, which is sensitive to the leading bubble, or spike.f This can lead to a momentary
‘retrograde’ mixing-zone advance, as illustrated in the plot of o, for Case B in figure 7.

As figure 8 suggests, time is not the most appropriate progress variable for
Rayleigh-Taylor mixing-zone dynamics. A particular mixing-zone height, h(t), is
attained at rather different times depending on initial conditions. Figure 13 depicts
outer Reynolds numbers vs. h/L and corroborates the general finding that h(t) is to be

1 Diffusive mixing can decrease the density difference across such a front and either decrease its
advance velocity (4), to be overtaken by another bubble or spike, or decrease its contribution to the
mole-fraction profile, resulting in a different leading feature marking the 1% point.
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FIGURE 13. Outer Reynolds number, vs. h/L, for the three cases.

preferred as a progress variable, resulting in improved collapse in the post-diffusive
regime, when quantities are scaled in terms of it. Interestingly, Re,(h) for Case C
crosses over that for Case B, whereas the Rej(t) (figure 12) are ordered as for h
(figure 8). Since Re;, oc hh, this also indicates an improved, if imperfect, correlation
between mixing-zone height, h, and its rate of growth, i (3).

4.3. Mixing

The preceding analysis focuses on the behaviour of the averaged density field, without
regard to local-composition behaviour. Averaged density profiles do not distinguish
between unmixed fluid in equal proportions in a particular z-plane, for example, for
which (X(z,t))y, = 1/2, and fluid mixed on a molecular scale to a 50 :50 ratio, for
which X (x,t) = 1/2. The distinction is significant since the driving force depends on
local density differences (4). Also, molecular mixing and chemical reactions between
the two interpenetrating fluids may be of specific interest.

Mixture composition can be expressed in terms of the local mole fraction (9a)
and quantified in terms of the amount of chemical product that would result from
a fast-kinetic chemical reaction between the two fluids. In particular, the chemical
product is limited by the amount of lean reactant, i.e.

% for X < X,
X5X5X) =9 1y (32a)
—X. for X > X,

where X is the (heavy-fluid) mole fraction for a stoichiometric mixture. This will
be taken as X; = 1/2 in the analysis below. The total chemical product (thickness)
formed in the Rayleigh—Taylor cell is then given by the integral over the cell height,
1e.

P = /H (X, (X)), dz. (32b)
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FIGURE 14. Scaled maximum (Py,/h; top curves) and total (Py/h; bottom curves) chemical product
thickness, vs. t/7, for the three cases.

If all fluid in a particular z-plane were mixed, it would have a composition
X(x,y,2) = (X(2))x- (33)

This can be used to compute the maximum amount of chemical product per unit
area that would be formed at z in a fast chemical reaction, as a result of complete
mixing/homogenization of the fluid,
1
~ (@np

Gy = s [ XX (2 dxdy, (34a)
(2m)

Similarly, the maximum product (thickness) possible in the cell, resulting from com-

plete homogenization of fluid in each z-plane, is given by

P = /H X,((X)y,) dz. (34b)

The normalized product thicknesses, P;/h and Py, /h, are plotted in figure 14, vs. t/7,
for the three cases. As the figure illustrates, there are significant differences between
the h, P, and P, length scales. The extent, h, of the mixing zone is not a good
surrogate for either the total product, or the maximum possible product, as defined
above. Interestingly, the total chemical product returns to its initial (diffusive) value
towards the end of all three simulations, P,/h ~ 0.34. This is very close to values
encountered in high Reynolds number, gas-phase, chemically reacting shear layers
(Dimotakis 1991, figure 21, P;/h — d,(£ = 0.5)/0 in that notation).

The ratio of the two chemical-product thicknesses,

-_ P

E=z (35)
measures the total product formed relative to the product that would be formed
if all entrained fluid were completely mixed within each z-plane. The parameter &
provides a mixing metric analogous to the Youngs (1994) ‘molecular mixing fraction’
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FIGURE 15. Mixing parameter, = (35), vs. t/t, for the three cases. Z = 1 implies complete mixing
within each z-plane (homogenized fluids). & = 0 implies completely segregated fluids.
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FIGURE 16. Mixing parameter, =, vs. h/L, for the three cases.

parameter, ©. The mixing parameter, =, is plotted in figure 15 vs. t/7. Initially, the
layers are diffuse, with only small-amplitude perturbations, and = is close to unity in
all cases, i.e. fluid within the mixing zone during the diffusive-growth phase may be
regarded as completely mixed. Considering differences in initial modal seeding (k.)
between the three cases, the results support the intuitive notion that fluid entrained
as a consequence of large-scale motions (lower surface-to-volume ratio) mixes more
slowly than fluid entrained at smaller scales. Hence, mixing for Case A is slowest
and mixing for Case C is fastest (cf. figure 2). Mixing, as measured by =, differs
substantially between the cases. Comparison in terms of Z(h/L) indicates a somewhat



88 A. W. Cook and P. E. Dimotakis

10° . .

104}

E,(k) 10°F

10712_

\ \/

\
) \
VN Al
10716 L Ej"”?"'“"'\‘“ i
1 10 100
k

FIGURE 17. Radial autospectra of density fluctuations in the (z = 0)-plane for Case C. Lines of
increasing solidity denote increasing time. Dotted line: t/7 = 1.15, short-dashed line: ¢/t = 2.26,
long-dashed line: t/t = 3.40, solid line: t/7 = 4.52.

lower variance (figure 16), but the significant differences among cases persist. Mixing
appears to be even more sensitive to initial conditions than growth rates. Again, h/L
emerges as the preferred progress variable, with all three cases indicating a qualitative
change (improved mixing for Cases A and B) at h/L ~ 0.5.

4.4. Spectra

The radial autospectra, E,(k), of the density fluctuations were computed in the
(z = 0)-plane, p(x,y,z = 0), defined as was E:(k) for {(x,y) in (20),

ki
/0 E, (k) dk = (p)y — (0)2, = (0%, (36)

with k the radial wavevector, as in (20). These are plotted in figure 17 for Case C. As
the flow evolves, the peak in the spectrum moves to lower wavenumbers, as long-range
correlations develop and as bubbles merge. The spectrum also broadens as higher
wavenumbers develop through secondary instabilities and nonlinear interactions.

When fluctuations reach the Nyquist wavenumber, they pile up. This occurs in
spectral simulations with insufficient numerical dissipation to damp out the highest
wave-numbers. The magnitude of the high-wavenumber up-turn provides a measure
of aliasing errors. They are inconsequential, provided the up-turn is many orders of
magnitude below the peak of the spectrum, as is the case here. The latest time reported
for each case very nearly corresponds to the DNS resolution limit (Appendix B).

To assess the evolution of the density spectra in terms of mixing-zone variables,
scaled spectra were computed in the (z = 0)-plane (36), i.e.

kmh/L . kh kh )
/0 E, (L) d <L> = (p 2>xy- (37)
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FIGURE 18. Scaled radial spectra, E;(kh/L) in the (z = 0)-plane for Case C, vs. kh/L.
Lines of increasing solidity denote increasing time (legend as in figure 17).

The scaled spectra, E;(kh/L), are plotted in figure 18. The beginning of a collapse
at low wavenumbers is evident towards the end of the simulations. The spectra
indicate that self-similarity has been attained at low wavenumbers by the end of the
simulations and that horizontal large-scale structures scale with mixing-zone height.
The full spectra are still evolving, however, consistent with the attainment of only
moderate Reynolds numbers in the simulation. It is interesting that differences in
nonlinear growth among the three cases persist, despite the fact that the initial-
perturbation contributions appear completely subsumed in the spectra towards the
end of the simulations.

4.5. Taylor statistics

Rayleigh-Taylor flow is driven by a directed force field, capable of sustaining
anisotropy, at least over a portion of the spectrum. As a consequence, Taylor mi-
croscales and Reynolds numbers for this flow must be defined in a manner that
accommodates anisotropy. A surrogate microscale in the i-direction can be defined in
terms of (e.g. Tennekes & Lumley 1972; Nomura & Elghobashi 1993)

o 1"
Ji = [’x)] (no sum on i), (38a)
l <(aui/axi)2>xy
with statistics computed in the (z = 0)-plane. With statistical isotropy in the (z = 0)-
plane, the x and y microscales are very close and can be averaged to define a single
horizontal microscale,
) I+ Ay
Lxy = 2
Figure 19 depicts the temporal growth of the vertical and horizontal Taylor micro-
scales in the (z = 0)-plane. As can be seen, the initial values for A/L are ranked in
order of the dominant-k contribution of the initial perturbation spectra (figure 2).
The flow exhibits strong anisotropy between horizontal and vertical microscales,
even in the mixing-zone interior. While horizontal and vertical microscales appear

: (38b)
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FIGURE 19. Temporal evolution of vertical and horizontal Taylor microscales (38),
on the (z = 0)-plane, for Cases A, B, and C.
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FIGURE 20. Temporal evolution of vertical and horizontal Taylor Reynolds number (39),
in the (z = 0)-plane, for Cases A, B, and C.

to converge towards the end of the simulations, the anisotropic driving term for this
flow could sustain anisotropy at the microscale level in the limit t — co.

Figure 20 depicts the temporal evolution of the horizontal and vertical Taylor
Reynolds numbers on the (z = 0)-plane. These are defined as

X, li z xy 172
Re;; = {p)oy 21 Lo (no sum on i), (39q)

u

again with spatial averages computed in the (z = 0)-plane. As with the microscales,
horizontal isotropy permits a horizontal Taylor Reynolds number to be defined as
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FIGURE 21. Vertical and horizontal Taylor microscales (38), on the (z = 0) plane,
for Cases A, B, and C.

the average of Re;, and Re, ), ie.

Re/l,x + Rei,y

The anisotropy in microscales (figure 19) is also manifest in the Taylor Reynolds
numbers, which only partially collapse as a function of time.

Figure 21 depicts the evolution of the Taylor microscales, normalized by mixing-
zone height, for the three cases, to assess the utility of h as a progress variable.
Vertical microscales during the early diffusive-growth stage (h/L < 0.2) are in accord,
when scaled in this fashion, for all three cases. Horizontal microscales, A,,/h, agree
remarkably well for h/L = 0.6. The product hReZl/ : provides reasonable late-time
(h/L =z 0.6) scaling for the microscales for Case C, for which 1, ~ 3.2 hRe,:l/z, and
Ay =~ 1.7 hRe;U ?. The late-time prefactors for Case C of 3.2 and 1.7 for the vertical
and horizontal microscales, respectively, bracket experimental values of this quantity
in other flows, e.g. a prefactor of 2.3 for microscales on the axis of turbulent jets
(Dimotakis 2000, equation (19)). The product hReh_l/ ?, however, does not capture the
microscale evolution for Cases A and B.

Figure 22 depicts the Taylor Reynolds numbers as a function of h/L. As is evident,
vertical Taylor Reynolds numbers do not collapse in these coordinates. Conversely,
near-perfect collapse is exhibited by the horizontal Taylor Reynolds numbers, over the
full range of mixing-zone heights, h/L, indicating that interior dynamics responsible
for the generation of transverse scales are coupled to (and scaled by) outer scales.

Re; = (39b)

5. Discussion

Available RTI linear-stability theory does not capture the early-time (diffusive)
evolution discussed above, or the onset and growth-rate ranking in the nonlinear-
growth regime. A possible reason for this discrepancy is the diffusive growth of the
thin initial composition profiles, independently of the initial perturbations. Diffusion
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FIGURE 22. Evolution of vertical and horizontal Taylor Reynolds numbers (39), vs. h/L,
in the (z = 0)-plane, for Cases A, B, and C.

initially dominates and alone is able to predict growth of the overall mole-fraction
profile thickness, up to times comparable to the outer-scale time, 7, at least for the
set of initial perturbations explored in these simulations. RTI between immiscible
fluids would not exhibit this early-time diffusive phase and can be expected to behave
rather differently.

Near-quadratic (overall) growth is exhibited by the slowest-growing Case C (fig-
ure 8), initially seeded by the highest-wavenumber perturbations (figures 1, 2). Even
Case C, however, did not exhibit a quadratic advance of individual (bubble/spike)
fronts, cf. (1) and figures 6 and 7, i.e. the advance of the two fronts was not represented
particularly well by fixed «. The results suggest a dependence on the number of waves
in the initial perturbation field (figure 1) and that the initial seeding for Cases A and
B may not have permitted sufficient interactions to take place for quadratic growth
to develop. Cases A and B, seeded with lower wavenumber perturbations, exhibited
faster growth, with overall growth rates (including Case C) in the order of the initial
perturbation waves, i.e. k.L. Importantly, all three cases achieved self-similar mole-
fraction profiles towards the end of the simulation (figures 9-11), which, however,
were different for each case, indicating that while self-similarity may be necessary for
quadratic growth it is not sufficient. At least for the set of initial perturbations con-
sidered, these results indicate a sensitive dependence of the nonlinear growth stage on
initial conditions, even after allowances are made for the limited statistical confidence
in conclusions derived from the small ensemble of runs and interactions between
structures within each run. RTI flows possess no inherent length scale, other than
those imposed by viscosity and diffusion. Perhaps as a consequence, the imprint of
initial perturbation wavenumbers is imposed well into their nonlinear growth regime.

Mixing, which depends on small-scale behaviour, exhibits an even greater sensitivity
to initial conditions, varying significantly between cases. Case A, which is seeded by
the lowest wavenumber perturbations, exhibits the largest unmixedness, consistent
with the notion that entrainment and mixing processes occur at opposite ends of the
spatial spectrum. Case C, seeded at the highest wavenumbers, may have attained a
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quasi-asymptotic mixing level, which, however, is different from the values attained
by the other two cases.

An investigation of quasi-asymptotic mixing would require investigations extending
beyond the mixing transition. With increasing Reynolds number, this transition is
expected when outer and inner (viscous) scales become sufficiently separated for a
quasi-inviscid range of scales to be accommodated. Experimental data for many flows
indicate weaker Reynolds number effects beyond that transition. This requirement
translates to a criterion that outer Reynolds numbers must exceed, approximately,
1-2 x 10%, or Taylor Reynolds in excess of 100-140, at a minimum. These are required
to generate the high interfacial surface-to-volume ratios needed for good mixing
(Dimotakis 1993, 2000). As the outer Reynolds numbers in figures 12 and 13 indicate,
such a regime is not attained in the simulations reported here, as also corroborated by
the mixing metrics in figures 14 and 16. Nevertheless, mixing and other flow statistics
in this simulation appear to have attained values experimentally observed in high
Reynolds number flows, such as the chemical-product thickness in gas-phase shear
layers and Taylor microscales in turbulent jets, as discussed above.

The coupling between growth and mixing renders RTI mixing-zone evolution po-
tentially dependent on Reynolds number (and Schmidt number). While the maximum
Reynolds numbers in these simulations are the highest achieved in DNS of RTI to
date they are below the expected mixing-transition values by about a factor of three.
Nevertheless, the indications are that the sensitivity of the growth rate to initial con-
ditions will persist to higher Reynolds numbers. Such sensitivity has been reported
for turbulent jets, at Reynolds numbers beyond the mixing transition (Miller 1991),
as well as high Reynolds number shear layers (Slessor, Bond & Dimotakis 1998).
These flows, and perhaps others, exhibit self-similar but non-universal behaviour in
their mixing and other attributes.

Microscale statistics reveal substantial anisotropy, even in the interior of the mixing
zone, with vertical microscales roughly twice as large as the horizontal microscales,
ie. A./Ay ~ 2 fort/t 2 1. This flow is driven by a directed force field and may exhibit
non-isotropic statistics at the microscale level, even at later times.

Each run was executed on 128 CPUs of the ASCI Blue-Pacific (IBM SP2) machine
at LLNL. Simulation times, which depend on i, were, approximately, 200 hours
for Case A, 280 hours for Case B, and 300 hours for Case C. The runs required
almost 2 months of wall-clock time. The simulations reported here followed an
earlier set, which explored various boundary as well as initial conditions, computed at
lower resolution and final Reynolds number (Dimotakis et al. 1999). Each simulation
required 30 GBytes of RAM. Data dump (restart) files required 2 GBytes of disk
storage. 109 files were retained for Case A, 155 for Case B, and 169 for C.

6. Conclusions

Three RTI cases were investigated, each with different initial conditions, but oth-
erwise identical in every respect. The runs were initialized with wavenumbers below
(Case A), comparable to (Case B), and above (Case C) the most unstable wavenum-
bers predicted by the linear-stability theory (LST) of Duff et al. (1962). The spectral
(wavenumber) content for all three initial perturbations is below the diffusive/viscous
cutoff predicted by LST. The simulations attained final outer-scale Reynolds numbers,
Re;, = phh/[i, ranging from 3000 to 3700.

Mixing-zone growth exhibits two well-defined regimes: an initial diffusive-growth
stage, followed by a nonlinear-growth stage. During the diffusive-growth stage, mixing-
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zone height evolves as, h(t) ~ 6.6/(t + ty)/Pe, in good agreement with the theoretical
prediction corresponding to the 1% points for the error-function solution of the
diffusion equation. The end of the diffusive-growth regime differs substantially, how-
ever, among cases. Subsequent growth rates exhibit large differences among the cases,
ranked in the same order as the onset of nonlinear growth. In particular, Case A
(low-k) grows the fastest, Case B (mid-k) is next, with Case C (high-k) the slowest.
This is not in the order expected from linear-stability theory. Mixing exhibits an even
greater sensitivity to initial conditions, with no obvious scaling nor collapse in any of
the three cases. Final Reynolds numbers attained, however, are not high enough to
permit inferences about asymptotic-mixing behaviour.

Density-fluctuation spectra computed on the (z = 0)-plane indicate that the imprint
of the initial perturbation spectra is eventually lost. Furthermore, density-fluctuation
spectra exhibit good collapse at low wavenumbers in the post-diffusive-growth regime.
This is perhaps surprising in view of the persistent influence of the initial conditions on
growth and mixing. Taylor microscales and Reynolds numbers also exhibit sensitivity
to initial conditions, are non-monotonic in their temporal evolution, and reflect
considerable and persistent anisotropy in the flow, at least for the time spanned by
these simulations. An important finding is that mixing-zone height, h, is a better
progress and scaling variable than time. In particular, improved collapse occurs
if statistics are compared at the same value of h and if spatial scales are non-
dimensionalized in terms of h.

These results suggest that further numerical and experimental work is necessary to
document the behaviour of this flow at higher Reynolds and Schmidt numbers. The
apparent sensitivity to initial conditions renders such a quest particularly challenging.
Experiments, already difficult to design with controlled initial and boundary condi-
tions, must include a detailed characterization of the initial perturbation environment
in which the Rayleigh—Taylor instability develops.
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the pressure boundary conditions, discussions and assistance with the text by P. L.
Miller and D. Pullin, discussions with D. I. Meiron, and assistance with exploratory
computer visualization by S. B. Deusch, S. V. Lombeyda, and J. M. Patton based on
the results of the earlier runs.

Appendix A. Poisson solver

With periodic boundary conditions in x and y, the Poisson equation can be Fourier
transformed to obtain

62 82 52 A A A N
Ty {p I A . Q(x,y,z)} o KD Rp = Dlknk,2)
z
where " = 82)/dz% Thus (i is the z-index of the grid)
Pl =Qi+ kb, with K=k + k;. (A1)

An eighth-order, compact approximation for 23;/ can be written as (Collatz 1966;
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Lele 1992),

ﬁpl 2+apl +ﬁ;/+aﬁ;/+l+ﬁpl+2

=7 Az(p1+2 2p; + Pia) + AZ(pl+1 2P+ Pit)s (A2)

where A, is the grid spacing in z and o = 344/1179, f = 23/2358, a = 320/393, and
b = 310/393. Inserting (A 1) into (A 2) and collecting the coefficients of p; yields the
pentadiagonal system,

b A a |z
{ﬁkz - 4A2] pi-2 + {akz - Az} p
[akz - Az} oot + {ﬁkz

— [BQis + OCQH + Qi+ “Qm + BQipa. (A3)

At points neighbouring boundaries, i.e. i = 2 and i = N, — 1, where N, is the number
of z grid points, a fourth-order, compact stencil is used in which « = 1/10, f = 0,
a=6/5and b=0

The Neumann boundary condition (17), applied at i = 1 and i = N,, is implemented
via the second-order approximations:

3

2 b 2a A
_1+ k +E+A2 Di

N 2 N A N
2Azp1 Kp 2+ 2A., pP3 = —Dy»
1 2 2 3 A7

2A PN 2+A pN—I_TAzi’N; = —Dn.>

where ﬁQ and i;jv are the (x, y)-transforms of the z-derivatives at the walls.

The pentadiagonal matrix for this linear system is well-conditioned, except for
k = 0, in which case it is singular. This situation arises because, with Neumann
conditions at both ends of the domain, the solution for the pressure is non-unique
since pressure is only defined within a constant. This can be remedied by specifying
the mean pressure on either wall by replacing one of the boundary conditions
with pl(k = 0) = constant, or pN (k = 0) = constant. The value of the constant is
inconsequential in incompressible flow as the momentum equation involves only the
gradient of p.

Appendix B. Resolution considerations

Spatial derivatives are computed using a Fourier spectral method in x and y and an
eighth-order compact scheme in z. Because the resolving efficiency of finite-difference
schemes is less than that of spectral schemes, the grid spacing in z is reduced relative
to the spacing in x and y, to compensate for this difference. The proper ratio of grid
spacings was determined by the following analysis.

Equations (10), (11), and (12) can be cast in the form

¢
ot

where ¢ = ¢(x,1) is a scalar and f = f(x,t) is the associated flux vector. Let ¢;(t)
be a spatially discrete sampling of a continuous, band-limited function ¢(x,1), i.e.

+V-f=0, (B1)



96 A. W. Cook and P. E. Dimotakis

¢i(t) = @(iA, t), where i is the integer index vector of an infinite, uniform, Cartesian
grid with spacing A between nodes. According to the sampling theorem (Shannon
1949), if ¢(x,t) contains no wavenumbers above the Nyquist frequency, k, = /A, the
continuous function is completely determined by its samples, i.e.

A
¢uw—§}mwﬂﬁigﬁh”xA, (B2)

where the sum is over each component of i (a triple sum), and j denotes a par-
ticular Cartesian-vector component. Therefore, discrete and continuous band-limited
functions contain the same information.

The continuous counterpart of a discrete function can be expressed as a convolution
of a raw signal with a filter kernel, subject to certain constraints on the filter (to be
derived), i.e

B = [ Glx=spr0dy =G g (B3)
The governing equation for ¢(x,t) is derived by applying (B 3) to (B 1), which yields
o9
— = - f. B4
= —GV-f (B4)
Consider now the spatially discrete analogue of (B 1), i.e
0¢i
= — . . B
ot Vd ft:- ( 5)

where V4- denotes a finite-difference approximation to the divergence operator. In
order for ¢; and ¢ to evolve in the same manner, the right-hand sides of (B 4) and (B 5)
must be equivalent. Since (B 4) is continuous and (B 5) is discrete, comparison is made
by taking continuous and discrete Fourier transforms of (B4) and (B 5), respectively,
both of which yield continuous functions in wavenumber space. Consistency between
(B4) and (B 5) requires
F{G*V - f} =Fa{Vafi}, (B6)

where # {-} and Z4{-} denote the continuous and discrete Fourier transforms, re-
spectively.

Evaluation of the left-hand side of (B 6) is straightforward. The right-hand side can
be evaluated using the modified-wavenumber concept (Vichnevetsky & Bowles 1982).
The result is

o s _ [ ik, fork <k,

ik ;GUk) { 0 fork >k, B7)
where Ej is a modified wavenumber (to be computed for a given finite-difference
scheme) and k = (k;k;)'/? is the wavevector magnitude. The directional indices (j
subscripts) will now be dropped for notational simplicity. This is allowed since the
filtering operation is orthogonal, i.e. the filter can be directionally split and applied

sequentially in each direction. From (B7), the transfer function of the filter must
satisfy (Salvetti & Beux 1998)

~. [ k/k fork<k
G(k)_{O fork>kz. (B8)

To evaluate k for a given finite-difference scheme, let [ and m be integer indices in
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FiGure 23. Implicit filters of spectral and compact derivatives.

the j-direction of the grid. From the Shifting Theorem, the discrete Fourier transform
of fH—m is

frem = exp (ikmA)f. (BY)
The modified wavenumber for compact finite-difference approximations of the form

Bfia+ofi_+fi+ofi+Bfl

¢ b a
= a(fm —fi3) + E(ﬂ” —fi2) + ﬁ(fm — fi-1)  (B10)
is obtained by taking the discrete Fourier transform of (B 10) and applying (B9). The
result is
{1 + a [exp (ikA) + exp (—ikA)] + fexp (i2kA) + exp (—i2kA)] }?,/

¢ . . b . .
= {6A [exp (i3kA) — exp (—i3kA)] + 1A [exp (12kA) — exp (—i2kA)]

—I—% [exp (ikA) — exp (—ikA)] }?,, (B11)
and hence (Lele 1992)
- ﬁ _asin(kA) + (b/2)sin (2kA) + (c/3) sin (3kA) (B12)
i A[1 + 20ccos (kA) + 28 cos (2kA)] ’

For a simulation to qualify as a DNS, we must have ¢(x,t) = ¢(x,t), to a very
close approximation. The viscous-stress tensor and the Fickian diffusion term in the
governing equations must suffice to damp out all fluctuations outside the band of
well-resolved wavenumbers. The maximum Reynolds number that can be achieved
in a DNS is directly related to the width of this band of resolved wavenumbers.

The implicit filters for the spectral and eighth-order compact schemes are plotted
in figure 23. By decreasing the grid spacing by 8/13, the band of well-resolved
wavenumbers for the compact scheme becomes nearly equal to that of the spectral
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sAcheme. In this fashion, the Nyquist wavenumber is resolved to within 1%, i.e.
Gk =m;A=28/13) =0.991.
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