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ABSTRACT. Density Functional Theory and small-core, relativistic pseudopotentials were used 

to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of 

uranium hexafluoride, UF6, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric 

transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F5, and hydrogen 

fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 

kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms 

except uranium led to only minor changes in the structure and relative energies of the reacting 

complex and transition state. However, a significant change in the product complex structure was 

found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and 

values were found for PBE0 and MP2 calculations with this larger basis set, supporting the 

B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide 

tetrafluoride, UOF4, was found, indicating that the reaction under ambient conditions likely 

includes several more steps than the mechanisms commonly mentioned. The transition state 

presented here appears to be the first published transition state for the important gas-phase 

reaction of UF6 with water. 

KEYWORDS. Uranium hexafluoride, transition state, hydrolysis, water, Density Functional 

Theory, DFT, Relativistic effective core potential, pseudopotential, actinides. 
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Introduction 

The molecule uranium hexafluoride (UF6) is synonymous with the nuclear industry. It is the 

basis for both the gaseous diffusion and gas centrifuge enrichment processes for nuclear fuel rods 

and weapon cores. The United States Department of Energy currently maintains approximately 

57,000 cylinders containing a total of almost 700,000 metric tons of depleted UF6. Of special 

concern is the reaction of UF6 with water due to the corrosion caused by the hydrogen fluoride 

(HF) produced, which can significantly degrade the tanks commonly used for storage. 

Additionally, UF6 is highly toxic, and the thermochemistry of its hydrolysis reaction plays an 

important role in its environmental dispersion by affecting the atmospheric transport of 

accidentally released UF6. 

Given the importance of the hydrolysis reaction of UF6, the limited number of published 

studies focusing on the details of this reaction is rather surprising. Kessie reported overall 

reaction kinetics for uranium and plutonium hexafluoride in packed bed reactors.1 Klimov, 

Kravetz, and Besmelnitzin published a brief note on the reaction suggesting that the rate limiting 

step in the hydrolysis of UF6 to uranyl difluoride, UO2F2, was the first step of the following two-

stage mechanism the proposed.2 

 UF6 + H2O → UOF4 + 2HF       (1) 

 UOF4 + H2O → UO2F2 + 2HF      (2) 

Sherrow and Hunt have studied the UF6 + H2O system with FTIR and have found indications 

that the reaction occurred spontaneously at temperatures above 30 K when UF6 and H2O were 

co-deposited in thin films without a rare gas matrix.3 However, when the reactants were co-

deposited in an argon matrix, the reaction required UV illumination to proceed. Additionally, at 
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low water concentrations, the gas-phase reaction was not spontaneous and was surmised to be a 

surface reaction requiring a catalytic surface. 

Although not specifically looking at the kinetics of the hydrolysis reaction, researchers have 

investigated the product composition of the reaction as a function of water concentration, i.e., 

humidity.4 In that work, researchers found only UO2F2 product for UF6:H2O molar ratios of less 

than about five (5) and a new uranium oxofluoride compound, U3O5F8, for UF6:H2O molar ratios 

greater than approximately fifty-five (55). No experiments were performed at ratios in between 

these two values and no reaction mechanisms were proposed. Additionally, several groups have 

studied the particle morphology5-10 and reactor design for the production of particles from 

aerosols of UF6.11 

Some researchers have studied various uranium oxide, fluoride, and oxofluoride systems using 

computational chemistry and modern electronic structure methods. Privalov et al. studied the 

reaction enthalpies for the hydrolysis reactions of UO3, UO2F2, and UF6 and the gas-phase 

geometries and heat capacities of the corresponding reactants and products.12 While failing to 

look for transition states of any of the reactions, they did determine a transition state (a planar 

D2h structure) and barrier for the inversion of the fluorine atoms in UO2F2. Additionally, they 

found that their calculated enthalpies for reactions that produced HF were consistently more 

endothermic than the “experimental” values, which were “derived from a combination of 

experiments and theory.”12 The large, but consistent and correctable, overestimations were 

hypothesized to be due to poor treatment of the HF molecule by the methods and basis sets used.  

Shamov, Schreckenbach, and Vo investigated “all the possible uranium (IV, V, VI) oxides, 

fluorides, and oxofluorides” with several different electronic structure methods and basis sets,13 

but focused on bond dissociation energies (BDEs) and reaction enthalpies. Other researchers 
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have studied the geometry14,15 and BDEs16 of various halogenated uranium compounds finding 

that the optimized geometries of the molecules and the accuracy was sometimes dependent on 

the electronic structure method or basis set used. Others have focused on minimum energy 

structures or the number of hydrating water molecules in solvation complexes of uranyl ion 

(UO2
2+),17 halogenated uranyl compounds,18-20 and uranyl hydroxides.20,21 

Methods 

When studying uranium, relativistic effects on the inner core electrons must be included. 

While spin-orbit coupling corrections may affect the energetics of open-shell configurations and 

transition states in actinide systems, the effects are generally negligible for uranium(VI) 

compounds and are otherwise limited to a few kcal/mol. This is within experimental error and is 

less significant than other sources of error in most computational methods applied to actinide 

systems.13 As such it is reasonable to initially approach such systems of interest with scalar 

relativistic approaches, neglecting spin-orbit coupling. Previously mentioned researchers have 

used all-electron scalar relativistic approaches, the two-component third order Douglas-Kroll-

Hess (DK3) Hamiltonian,22,23 the zeroth-order regular approximation (ZORA),24 and relativistic 

effective core potentials (RECPs) to account for these corrections. An added benefit of using 

RECPs is that the core potential implicitly accounts for a number of electrons, reducing the 

computational cost by reducing the number of electrons explicitly modeled. However, care must 

be applied when choosing how many electrons to include in the core. Batista et al. showed for 

uranium that a “large-core,” 78-electron RECP that included the 5s, 5p, and 5d electrons in the 

core failed to give accurate results in contrast to a “small-core,” 60-electon RECP that treated the 

5s, 5p, and 5d shells as valence electrons.25  
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The electronic structure calculations presented here were performed using Density Functional 

Theory (DFT) and the Gaussian03 (G03)26 implementation of the B3LYP hybrid functional, 

which includes a portion of the exact, Hartree-Fock exchange. The combination of DFT with 

small-core RECPs has been shown to yield good results for actinide systems at reasonable 

computational cost.13,25 Additionally, hybrid functionals have been shown to be more accurate 

for uranium systems than DFT functionals based on the Generalized Gradient Approximation 

(GGA) for reaction enthalpies, molecular geometries, BDEs, and vibrational frequencies, except 

for U=O frequencies. As a check on our results, we have also used the PBE0 (commonly referred 

to as PBE1PBE in G03) DFT functional and second order Møller-Plesset perturbation theory 

(MP2) to study the stationary points and energetics of the hydrolysis reaction. 

For uranium, the Stuttgart energy-adjusted, small-core RECP (SDD)27 included with G03 was 

combined with the associated SDD basis set, also included in G03. (Note that the most diffuse 

primitive for each shell, each with an exponent of 0.005, was removed in order to obtain proper 

convergence of the electronic density.) For the light atoms, fluorine, oxygen, and hydrogen, a 

double-ζ, all-electron basis set with polarization functions on each light atom, i.e., the 6-31G(d,p) 

basis set, was used initially. The resulting configurations for the reactants, products, and 

transition state calculated using the 6-31G(d,p) basis set on the light atoms were used as initial 

configurations for corresponding minima and transition state optimizations where the light atom 

basis set was supplemented with diffuse functions, i.e., the 6-31++G(d,p) basis set. An ultrafine 

grid was used for the numerical integrations in the DFT calculations. 

Sherrow’s and Hunt’s analysis of the FTIR spectra of UF6 deposited with water in an argon 

matrix indicated that a 1:1 complex was formed with the UF6 interacting with water through the 

oxygen.3 As such, attempts to find transition states for the gas-phase hydrolysis reaction were 
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started by performing a relaxed potential energy surface (PES) scan of the system while 

changing the U-O distance and searching for a maximum in the energy. For the relaxed PES 

scans where a maximum energy configuration was located, quadratic synchronous transit28 

calculations (denoted as QST3 in G03) were run using the maximum energy configurations as 

initial guesses. The final configurations from the QST3 scans were then used as initial 

configurations for fully-unconstrained transition state optimizations with analytical Hessians 

calculated at each step.  

The U-O bond distance was chosen as the control variable for the relaxed PES scans to avoid 

biasing the results towards reactions involving only a single hydrogen atom. The scans were 

started at a U-O separation distance of 2.85 Å for four different symmetric configurations of CS 

symmetry and one slightly asymmetric configuration as described in Figure 1. For the symmetric 

configurations, the plane of symmetry (roughly a horizontal plane perpendicular to the page in 

Figure 1) always contained the uranium and oxygen atoms. The difference between the initial 

configurations was whether the symmetry plane also included two fluorine atoms and two or no 

hydrogen atoms (Figure 1a and 1b, respectively), or four fluorine atoms and two or no hydrogen 

atoms (Figure 1c and 1d, respectively). The asymmetric configuration, Figure 1e, is only a slight 

distortion of the symmetric structure in Figure 1b, but is sufficient to break the symmetry within 

the calculations. All five configurations had the oxygen pointing towards and the hydrogen 

atoms pointing away from the uranium atom in agreement with the aforementioned results of 

Sherrow and Hunt.3  

Results and Discussion 

A maximum in the energy as a function of U-O separation distance was found for the 

asymmetric case as well as for three of the four symmetric cases. For structure 1d with four 
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fluorine atoms and no hydrogen atoms in the plane of symmetry, the energy increased 

monotonically as the U-O separation distance was decreased. For the transition state 

optimizations using the three remaining symmetric cases, 1a, 1b, and 1c, no transition states were 

found, only higher-order saddle points with more than one imaginary vibrational frequency. For 

the asymmetric system, a stationary point with a single imaginary frequency was found at a U-O 

separation distance of 2.275 Å. Analysis of the vibrational modes confirmed that the mode with 

the imaginary frequency (i455.3 cm-1) corresponded to a transfer of a hydrogen from the water 

oxygen to a fluorine and concomitant decrease in the U-O bond length and increase in the U-F 

bond length. An Internal Reaction Coordinate (IRC) scan from the transition state indicated that 

the transition state connected two local minima, one corresponding to the hydrogen as HF and 

one with the hydrogen as H2O. A diagram of the reaction path is given in Figure 2. 

In addition to analyzing the vibrational modes of the transition state, we also studied the modes 

of the optimized UF6…H2O pre-reactive complex in order to compare with the experimental 

FTIR data.3 The scaling factor from the NIST Computational Chemistry Comparison and 

Benchmark Database (CCCBDB) for B3LYP/6-31G(d,p)29 was applied and the agreement 

between the scaled frequencies and the experimental results in Table 1 is quite good. (Note that 

the correction factor for B3LYP/6-31G(d,p), 0.961, is the same as the factor for B3LYP/SDD). 

Neglecting zero-point energy (ZPE) corrections, our calculated energy barrier for the reaction 

is 86.7 kJ/mol. The inclusion of ZPE corrections lowers this barrier to 77.3 kJ/mol. The reaction 

is endothermic with a calculated enthalpy of reaction of +63.0 kJ/mol. Addition of diffuse 

functions to the light atoms did not significantly alter the structure of the reactant complex or 

transition state, only marginally increasing the energy barrier to 87.7 kJ/mol (78.2 kJ/mol with 

ZPE corrections). However, the inclusion of diffuse functions did significantly affect the 
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interaction between the product HF and the hydroxyl group on the uranium. The result is the 

formation of a nearly linear F-H…O hydrogen-bonded structure and a lowering of the enthalpy 

of reaction to +31.9 kJ/mol (+26.0 kJ/mol with ZPE corrections). The hydrogen bond angle of 

167.9° in the 6-31++G(d,p) F-H…O structure is more physically intuitive than the “bent” 

structure from the 6-31G(d,p) calculations and likely indicates that the 6-31G(d,p) basis set does 

not sufficiently capture the physics of this system, consistent with previous results.12,13 Pertinent 

structural parameters and Mulliken atomic charges for the reactant, product, and transition state 

configurations for both basis sets are listed in Table 2.  

An optimization in the 6-31G(d,p) basis set, but initiated from the configuration of the product 

minimum for the 6-31++G(d,p) basis set, failed to locate a corresponding local minimum and 

collapsed to the original minimum energy product structure calculated for the 6-31G(d,p) basis 

set. A similar calculation in the 6-31++G(d,p) basis set failed to find a local minimum 

corresponding to the 6-31G(d,p) minimum energy product structure as well. Optimizations using 

an even larger basis set (without analytical Hessians) resulted in negligible changes in the 

stationary point configurations, energy barrier, and reaction energy – this larger basis set was 

Dunning’s augmented, correlation-consistent, triple-ζ basis set30,31 for the light atoms and a 

quadruple-ζ, Stuttgart basis set32 for uranium. Consequently, the combination of the 6-

31++G(d,p) and SDD basis sets was assumed to be sufficiently accurate for the calculations 

reported here. Additional confirmation of the results is seen in Table 3 where calculations with 

the PBE0 DFT functional and with MP2 result in nearly identical configurations and similar 

energies, barriers, and enthalpies.  

In agreement with reported, experimental enthalpies of reaction for gas phase hydrolysis 

reactions of UF6,12,13,33,34 but in contrast to experimental work reporting spontaneous reaction of 
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UF6 with water to form UO2F2,1,4,11,35-39 the calculated barrier is substantial and the gas-phase 

reaction is predicted to be endothermic at the current level of theory. This discrepancy may have 

several explanations. While the experimental enthalpy of reaction for the complete, gas-phase 

hydrolysis of UF6 (Reactions 1 and 2 combined) is also endothermic,12,13,33,34 phase change and 

solvation contributions make the physical reaction exothermic.39,40 Such contributions are likely 

also important for the first step proposed here. Additionally, Privalov et al. estimated an error of 

approximately 21 kJ/mol per molecule of HF produced for reaction enthalpy calculations similar 

to those presented here.12 

Given the presence of the asymmetric transition state and the lack of a symmetric transition 

state, the hydrolysis of UF6 to UO2F2 likely involves a series of single fluorine atom removals in 

a scheme similar to Reactions 3-6. 

 UF6 + H2O → U(OH)F5 + HF      (3) 

 U(OH)F5 + H2O → U(OH)2F4 + HF      (4) 

 U(OH)2F4 → U(OH)OF3 + HF      (5) 

 U(OH)OF3 → UO2F2 + HF       (6) 

Secondary hydrolysis reactions, such as Reaction 4, may occur before, after, or concurrently 

with HF elimination reactions. The proposed initial hydrolysis reaction product, U(OH)F5, and 

the possibility that the reaction proceeds by adding additional hydroxyl groups to the uranium 

may explain the difficulty researchers have had in producing UOF4 by hydrolysis of UF6.4,38 

Conclusions 

The combination of Density Functional Theory with small-core, relativistic pseudopotentials 

has been used to look for symmetric and asymmetric transitions states in the gas-phase 

hydrolysis reaction of uranium hexafluoride with water. The inability to find a symmetric 
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transition state leading to the direct production of UOF4 and HF indicates that the reaction 

chemistry likely includes several more steps than the mechanisms commonly used or described 

by previous researchers.1,2 

The first step in the reaction pathway proposed here is the formation of a uranium hydroxyl 

fluoride, U(OH)F5, and hydrogen fluoride with a calculated energy barrier of +77.3 kJ/mol and 

an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections) at the 

B3LYP/6-31G(d,p)/SDD level. Addition of diffuse functions to the light atoms results in a 

negligible change in the pre-reactive complex structure, transition state, and the calculated 

barrier but alters the product complex, lowering the calculated enthalpy of reaction to +31.9 

kJ/mol. The calculated transition state for this reaction appears to be the first published transition 

state for the gas-phase reaction of UF6 with water. Additional research on similar systems and 

the inclusion of solvent effects using both explicit water or hydrogen fluoride molecules and 

implicit solvation models is ongoing and may provide further information on the proposed 

reaction mechanism and why researchers have been unable to produce UOF4 by hydrolysis of 

UF6 under ambient or near ambient conditions.35-37 
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Figure 1. Uranium hexafluoride and water initial configurations. 
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Figure 2. Calculated uranium hexafluoride hydrolysis reaction pathway energies (kJ/mol). 

B3LYP/6-31G(d,p)/SDD results in black, B3LYP/6-31++G(d,p)/SDD results in red, and results 

with zero-point energy corrections in parentheses. 
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Table 1: Vibrational frequencies for the pre-reactive uranium hexafluoride…water complex.  

Experimental (cm-1)a Calculated (cm-1)b Description 

587.8, 

608.8 

580 (604), 

609 (634) 
U-F Asymmetric Stretch 

1585.6, 

1588.5 
1568 (1632) H-O-H Bend 

3623.4, 

3624.7 
3641 (3789) O-H Symmetric Stretch 

3717.9 3751 (3903) O-H Asymmetric Stretch 

 
a Ref. 3. 
b B3LYP/6-31G(d,p)/SDD scaled and (unscaled) values. 
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Table 2: Pertinent structural parameters (bond lengths in Å and angles in degrees) and Mulliken 

atomic charges on relevant atomic centers for the calculated stationary points. 

(a) B3LYP/SDD/6-31G(d,p) 

 Reactant Transition State Product 

rU-O 2.79 2.27 2.09 

rU-F 2.03 2.43 3.08 

rO-H 0.97 1.26 1.79 

rF-H 2.28 1.09 0.94 

∠O…H-F 98.0 140.5 133.0 

qU +2.20 +2.15 +2.21 

qO -0.57 -0.68 -0.70 

qF -0.40 -0.39 -0.35 

qH +0.34 +0.45 +0.39 

 

(b) B3LYP/SDD/6-31++G(d,p) 

 Reactant Transition State Product 

rU-O 2.85 2.28 2.07 

rU-F 2.04 2.45 4.45 

rO-H 0.97 1.23 1.82 

rF-H 2.45 1.11 0.94 

∠O…H-F 89.3 139.5 167.9 

qU +2.63 +2.54 +2.73 

qO -0.76 -0.84 -0.88 

qF -0.46 -0.47 -0.44 

qH +0.39 +0.51 +0.44 
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Table 3: Calculated energy barriers ( ∆E‡), reaction energies  (∆Er), and enthalpies (∆H‡ and 

∆Hr) (in kJ/mol) for the initial reaction step of uranium hexafluoride and water using the SDD 

and 6-31++G(d,p) combined basis sets. Values include [neglect] zero-point energy corrections. 

 B3LYP PBE0 MP2 

 ∆E‡  

(0 K) 

78.2 [87.7] 76.1 [85.5] 81.6 [92.1] 

 ∆H‡ 

(298 K) 

74.2 72.4 78.2 

 ∆Er 

(0 K) 

30.9 [36.8] 32.3 [38.8] 36.4 [44.7] 

 ∆Hr 

(298 K) 

31.9 33.7 38.7 
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