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Abstract. To highlight the role of the protein in metal enzyme catalysis, we optimize ONIOM 

QM:MM transition states and intermediates for the full reaction of the non-heme iron enzyme 

isopenicillin N synthase (IPNS). Optimizations of transition states in large protein systems are 

possible using our new geometry optimizer with quadratic coupling between the QM and MM 

regions. [Vreven, T. et. al., Mol. Phys. 2006, 104, 701–704]. To highlight the effect of the metal 

center, results from the protein model are compared to results from an active site model 

containing only the metal center and coordinating residues [Lundberg, M. et. al., Biochemistry 

2008, 47, 1031–1042]. The analysis suggests that the main catalytic effect comes from the metal 

center, while the protein controls the reactivity to achieve high product specificity. As an 

example, hydrophobic residues align the valine substrate radical in a favorable conformation for 

thiazolidine ring closure and contribute to product selectivity and high stereospecificity. A low-

barrier pathway for β-lactam formation is found where the proton required for heterolytic O–O 

bond cleavage comes directly from the valine N–H group of the substrate. The alternative 

mechanism, where the proton in O–O bond cleavage initially comes from an iron water ligand, 

can be disfavored by the electrostatic interactions with the surrounding protein. Explicit protein 

effects on transition states are typically 1–6 kcal/mol in the present enzyme, and can be 

understood by considering whether the transition state involves large movements of the substrate 

as well as whether it involves electron transfer. 

                                                
∗ To whom correspondence should be addressed: E-mail: morokuma@fukui.kyoto-u.ac.jp, Telephone:+81-75-711-
7843 
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 1. Introduction  

 

Transition-metal enzymes catalyze some of the most fundamental biochemical processes, and 

can serve as inspiration for novel biomimetic catalysts. From the latter perspective, it is 

important to understand how the metal center and the protein matrix separately contribute to the 

catalytic activity of the enzyme system. A well-established approach to clarify the catalytic 

power of enzymes is to compare rates for the same reaction in enzyme and solution.
1,2 This is not possible for most transition-metal enzymes because their activity is critically linked 

to the redox activity of the metal. An alternative approach, employed in this investigation, is to 

calculate reaction barriers in the protein environment and directly compare these to barriers 

obtained without protein environment and to experimental reaction rates. 

In the present investigation, the catalytic mechanism of the non-heme iron enzyme 

isopenicillin N synthase (IPNS)3,4 is analyzed using ONIOM(QM/MM), an integrated quantum 

mechanics:molecular mechanics (QM:MM) method.5-8 In the present QM:MM model, the metal 

center, i.e., iron, iron ligands and substrate, is treated by density-functional theory (DFT), while 

the rest of the enzyme is treated by a classical force field. The two-layer approach is not only 

computationally efficient, but also makes it easier to separate effects from the metal center from 

those of the surrounding protein because they are described at different computational levels. To 

further highlight the effects of the protein, the ONIOM results are compared to results from a 

study where the protein was treated as a homogenous dielectric medium (active-site QM-only 

approach).9 QM/MM methods can be considered as extensions of the active-site approach as they 

explicitly include the effects of the protein on geometry, electronic structure and energies. 10 

The most important feature of the investigation is the large number of fully optimized 

transition states in QM:MM models with several thousands of atoms. This is possible by the use 

of an advanced optimization algorithm, the “fully coupled macro/micro–iterative” optimization 

scheme. 11  In this method, the macro-iteration of the “macro/micro iteration” scheme 12  is 

modified by explicitly including the quadratic coupling of the QM region with the MM region, 

which significantly improves the geometry convergence for optimization of transition states and 

avoids restrictions common in standard schemes. The MM contributions to the Hessian are 

described using analytical second derivatives of the MM potentials. To avoid cubic scaling with 

system size, direct and linear scaling (FMM) methods for the MM contributions are used to make 
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this step feasible. The same optimization algorithm has previously been used to identify two 

transition states in mammalian glutathione peroxidase (GPx) 13  and a transition state for 

homolysis of the Co–C bond in methylmalonyl-CoA mutase.14 

The ability to locate transition states makes it possible to see how the protein matrix 

affects the reaction coordinate and to quantify the effects on reaction rates. Optimization 

approaches are appropriate when there are no major changes in protein structure, but cannot 

describe major changes in protein conformation. Still, optimized transition states gives the best 

estimate of the reaction coordinate and are ideal starting points for calculations of enzymatic free 

energies, using e.g., quantum mechanical thermodynamic cycle perturbation (QTCP) 15  or 

QM/MM free-energy perturbation.16 

Isopenicillin N synthase is a member of a family of mononuclear non-heme iron enzymes 

with a 2-His-1-carboxylate iron-binding motif.17-19 It uses the four-electron oxidative power of 

O2 to transform the tripeptide substrate δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to 

isopenicillin N (IPN). The proposed mechanism20 fits into a general scheme for the oxygen-

activated non-heme iron enzymes, with initial formation of a ferryl–oxo [Fe(IV)=O] intermediate 

that then acts as a powerful oxidant, see Scheme 1. The reaction starts when dioxygen binds to 

the high-spin21 ferrous iron, which gives a ferric superoxo species22 that activates the cysteine β-

C–H bond leading to formation of an iron-bound peroxide.23 According to the proposal in 

reference 20, the peroxide abstracts the valine N–H proton to generate the ferryl–oxo and a water 

molecule. At the same time, the nitrogen performs a nucleophilic attack on the cysteine β-

carbon, which leads to formation of the four-membered β-lactam ring, see Scheme 2. This 

pathway, in the present paper called the “substrate donor” mechanism, could not be found in 

previous active-site modeling.9,24 In the alternative “ligand donor” mechanism a water ligand 

provides the proton required for O–O bond cleavage, and the ferryl–oxo is formed before the β-

lactam ring can close, see Scheme 2.9 In the ligand donor mechanism, β-lactam ring closure is 

coupled to a separate proton transfer reaction from the substrate to the iron water ligand. In total, 

this leads to the same ferryl-oxo intermediate as in the substrate donor mechanism, see Scheme 

2. From this intermediate, the high-valent iron species further oxidizes the substrate by activation 

of the strong valine β-C–H bond. This reaction produces a reactive substrate radical that attacks 

the thiolate, leading to formation of the five-membered thiazolidine ring and the completed IPN 

product, see Scheme 1. There are fully synthetic routes to generate IPN,25 but the enzymatic 
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reaction is still used in large-scale production of antibiotics.26 A detailed understanding of the 

enzyme-substrate interactions can help to design biosynthetic routes for β-lactam antibiotics of 

clinical importance. 

 

 

Scheme 1. General reaction scheme for isopenicillin N synthase including the proposed 
[Fe(IV)=O] intermediate. R=L-α-amino-δ-adipoyl. 

 

 

Scheme 2. Ligand donor and substrate donor mechanisms for heterolytic O–O bond cleavage 

and β-lactam formation. 

 
Isopenicillin N synthase is a suitable target for QM/MM investigations because X-ray 

structures have been collected at different stages of the reaction, including the IPN product and 

an analogue of the β-lactam intermediate.20,27 Independent deuterium kinetic isotope effects for 

both the cysteine β-carbon and the valine β-carbon suggests that both C–H bond activation steps 

are at least partially rate-limiting,28 which gives two steps where the calculated barrier can be 

compared to experiment.  
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2. Computational Details 

  

Methods. In a two-layer ONIOM calculation5-8 the system is divided into two parts, a selected 

model system treated by a high-level (QM) method and the remainder treated by a low-level 

method, often molecular mechanics (MM). In this study the high-level method was the density 

functional B3LYP, 29 , 30  and the low-level method was the Amber96 force field. 31  The 

applicability of the ONIOM (B3LYP:Amber) method has previously been illustrated for several 

enzymatic systems.32-36 Geometries were optimized at the 6-31G(d) level and final energies were 

evaluated with the 6-311+G(d,p) basis set.9 Differences between active-site and ONIOM models 

come from the potential energy, but also from the dielectric continuum that was used to 

approximate the protein in the active-site model, but that was not included in the ONIOM 

models. Zero-point and thermal corrections were assumed to be similar between the two 

approaches and were taken from fully optimized active-site models. 

 Calculations have been performed using a private development version of Gaussian37 that 

includes the “fully coupled macro/micro–iterative” optimization scheme described previously. 

The algorithm was initially implemented for the mechanical embedding (ME) scheme, and all 

optimizations have been performed with ONIOM-ME. Stationary points, including transition 

states, are fully optimized using the default convergence criteria, while transition state 57S has all 

but the maximum displacement converged (details in the Supporting information). Transition 

states are characterized by a single negative eigenvalue in the Hessian matrix.  

 In mechanical embedding, the electrostatic interactions between the reactive region and 

the surrounding protein are calculated classically. In the standard implementation the point 

charges assigned to the reactive region are not automatically updated. The present models use 

charges from ESP (Merz-Kollman) calculations. Charges are calculated for the first stationary 

point of each model, and the same charges are then used in all optimizations with that model. 

Details are given in the description of the model setup below. Standard ONIOM-ME only 

includes electrostatic effects due to geometrical changes but neglect the changes in the electronic 

structure of the model system, e.g., on charge transfer.  A common alternative approach is to 

calculate the electrostatic interactions semi-classically, i.e., to incorporate the MM charges into 

the QM Hamiltonian (electronic embedding or EE).8,38 The main advantage is that QM/MM-EE 

includes the exact electrostatic interaction between the electron density and the point charges in 
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the protein environment. In addition, QM/MM-EE self-consistently updates the response of the 

electron density to the external charges. However, QM/MM methods typically neglect electronic 

polarization of the MM part, which should lead to an overestimation of the effect of the MM 

charges. Optimization schemes also underestimate effects of geometric polarization as the 

geometry stays in the same local minima. 

If a dielectric constant of four, as commonly used in protein modeling, is introduced into 

the Coulomb expression for electrostatic interactions, these effects decreases to ¼. ONIOM-EE 

should correctly indicate the presence and the direction of protein electrostatic effects, but the 

effects are likely to be overestimated, especially for distant residues. ONIOM-ME neglects some 

effects while it may overestimate others and only gives the correct energy if the total effect is 

small, or if there is a favorable cancellation of errors. In this report results are given at the 

ONIOM-ME level, because this is the level where all structures have been optimized. Reaction 

steps where ONIOM-EE (still using ONIOM-ME geometries) gives a significantly different 

description of the relative energy are discussed separately in the text. 

Models. The original design of the ONIOM system was made to facilitate a comparison 

between previously published active-site (B3LYP) and QM:MM (B3LYP:Amber) approaches. In 

the first series of ONIOM models (A–C), the model system is identical to the corresponding 

active-site model.9 Initially the model system includes Fe, a water ligand, selected parts of the 

three amino acids His214, Asp216, His270 (Aspergillus nidulans numbering), and the substrate 

(model A), see Figure 1. Model A contains 65 atoms including the link hydrogens. In the active-

site study, the water formed after O–O bond cleavage was removed from the model because its 

mobility led to problems with artificial hydrogen bonds. In the ONIOM setup the same water 

was moved to the MM part in model B. For similar reasons the substrate carboxylate was moved 

to the MM part after β-lactam ring formation (model C). The changes in ONIOM setup were 

made to enable a direct comparison between the QM contribution in the active-site and the 

ONIOM models, and would not have been required in regular ONIOM modeling. Model A is 

applied to stationary points 1-9 and uses QM charges calculated at point 1. Models B (points 9-

13) and C (points 13-18) use charges from stationary points 9 and 13 respectively. 
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Figure 1. ONIOM QM:MM models A and D. The high-level part of model A includes all atoms 

in ball-and-stick representation while the high-level part of model D additionally includes 

residues in stick representation. Water molecules are numbered according to the PDB structure 

1BLZ. 

 
In ONIOM model D, an extension of the QM part is made by including selected parts of 

the side-chains of Tyr189, Arg279, Ser281, and a water molecule interacting with the substrate 

carboxylate, see Figure 1. The extension is made in order to improve the description of the 

substrate donor mechanism. The QM part of model D contains 103 atoms. The QM charges are 

taken from the parameterization of model A, and Amber charges are used for the newly added 

residues. The procedure facilitates the comparisons between model D and model A. 

The setup of the real system of models A–D largely follows the procedure used to study 

O2-binding in IPNS.39 A detailed description is available in the Supporting information. The real 

system includes all protein atoms in the X-ray structure and crystallographic water within 20 Å 

from iron. No solvent water molecules were included, similar to a previous QM/MM study of 

camphor hydroxylation in which no major effect of solvent water could be observed.40 The real 

system includes 5368 atoms, including hydrogens. 

Investigations of the reaction mechanism were made with a protein structure obtained by 

optimization of the X-ray structure. During optimization of large systems, structural changes 

may occur that are not directly related to the reaction coordinate. To approximately handle these 

artificial changes, iterations between reactant and product states were performed until both had 

the same conformation of the protein environment. Transition states are also relaxed both in the 

forward and backward direction. This does not prove that there is a connection between reactant, 
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transition state and product, but at least it gives an indication about the shape of the potential 

energy surface. The improved ONIOM optimization algorithm minimizes the number of bad 

steps and helps the MM part to stay in the same local minimum during the reaction.11 

The static optimization procedure does not take into consideration the possibility of 

changes in the protein configuration or large movement of water molecules. In the ligand donor 

mechanism, one of the reaction steps involves a proton transfer from the substrate to an iron 

ligand through a bridging water molecule. In the structure obtained by a static QM:MM 

optimization, this reaction is highly unfavorable because there is no water molecule bridging the 

donor and acceptor sites. To probe the possibility of other more favorable water configurations, 

an alternative model setup, based on a classical molecular dynamics simulation, was used for the 

proton transfer step in the ligand donor mechanism (model E).  

Here an ensemble of starting geometries was obtained from an MD simulation with the 

geometry of the QM part frozen (details of the simulations are provided in the Supporting 

information). Calculations were performed using the program NAMD2.41  After 2.5 ns of 

equilibration, a snapshot was obtained each 50 ps for 500 ps, with one additional structure 

selected after visual inspection of the trajectory. This gave a total of 12 different starting 

structures with different alignment of water molecules around the active site. Model E uses the 

same high-level part as model B, but the real system includes all protein atoms and all water 

molecules with at least one atom within 15 Å from any high-level atom. Atoms more than 12 Å 

from any high-level atom were kept frozen to eliminate movement at the model surface. 

Additional models have been used to analyze specific reaction steps, but they only 

include minor modifications and will therefore be introduced in the Results section. 

 

 

3. Results 

 

The effects of the protein will be described by following the reaction from the iron-bound 

dioxygen species until the formation of the thiazolidine ring. The term “protein effect” is used 

for changes in relative energy when going from the active-site model (without explicit treatment 

of the protein matrix) to the QM:MM protein model. It is not a stringent definition because it 
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depends on the choice of model system. In the present comparison, the active-site model only 

includes a minimum amount of residues, and this should give large protein effects. 

Whether the protein effect is considered significant depends on the properties of interest. 

If the purpose is to propose a general reaction mechanism, a protein effect of a few kcal/mol does 

not change the conclusions because the high-level hybrid DFT method has an error of ~5 

kcal/mol,42 and the window for accepting mechanisms based on the barrier height is therefore 

rather wide. However, when discussing rates of competing reactions, a protein effect of 3 

kcal/mol can determine the relative product distribution. 

The biosynthesis of isopenicillin N involves a large number of stationary points, and to 

facilitate the discussion each point is assigned a number (appearing in bold face) according to the 

order in which it appears along the reaction coordinate. The nature of the stationary point is 

indicated with TS for a transition state and INT for reaction intermediate. A left superscript 

shows the spin multiplicity of the state. For example, the label 53 TS is assigned to the third 

stationary point on the quintet spin surface, which is a transition state. Transition states have not 

been optimized for some minor steps, e.g., bond rotation, and two intermediates may therefore 

appear next to each other in the reaction energy diagram. 

 

3.1. Transition state for Cys-β-C–H bond activation.  

The reaction is initiated by binding of dioxygen to the metal center. Our previous ONIOM 

QM:MM study showed that explicit inclusion of the protein stabilized the O2-bound state by 8–

10 kcal/mol by improving the description of the metal coordination geometry and the van der 

Waals interactions.39 In the ONIOM model, binding of dioxygen was close to thermoneutral 

(+1.0 for O2 bound end-on and +2.5 kcal/mol for side-on binding). For completeness, the initial 

[Fe(II) + O2] state is included in the energy diagram, but to be consistent with reference 9, the 

structure with O2 bound side-on (71 Reactant) is taken as the zero-energy level in the energy 

diagram below. 

Oxygen binding gives a ferric superoxide where an electron from iron has been 

transferred to an antibonding π*-orbital on oxygen. Spectroscopic studies highlight the role of 

charge donation from the ACV thiolate ligand that renders the formation of the ferric superoxo 

complex energetically more favorable.22 The six unpaired electrons required to form the septet 

come from the parallel alignment of the unpaired spin on the superoxide with the spins from the 
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five d-electrons of Fe(III). As the quintet state is the most reactive in C–H bond activation,9 the 

unpaired electron on the superoxo must first flip, but this spin transition does not affect the rate 

of the reaction.43 In the quintet spin state, the end-on structure (52 INT) is the most stable, and 

this structure is in good alignment to abstract hydrogen from the Cys β-carbon.22 Compared to 

the active-site model, explicit inclusion of the protein mainly affects the position of the 

hydrophobic side chain of the valine and the orientation of the amino acid ligands, but has only 

small effects on the alignment of the reactive superoxide or the cysteine part of the substrate, see 

Figure 2. 

 

 

Figure 2. Geometries and spin populations for the intermediate with end-on bound dioxygen in 

the quintet state (52 INT) optimized using the active-site model (silver) and the ONIOM 

QM:MM model (blue). 

 

After probing the reaction coordinate using the C1–H1 and the O2–H1 distances, (see 

Figure 3 for labels) a transition state for C–H bond activation (53 TS) could be fully optimized in 

the “fully coupled macro/micro–iterative” optimization scheme. The same method, i.e., initial 

mapping of the reactive space using one or two reaction coordinates followed by full 

optimization, has been used for all transition states. 
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Figure 3. Geometries and spin populations of the transition states for; Cys-β-C–H bond 

activation 53 TS (left), initial O–O bond cleavage in the ligand donor mechanism 56 TS (middle), 

and water formation 58 TS. The active-site model is shown in silver and the high-level part of the 

ONIOM QM:MM model is shown in blue. 

 
Compared to the end-on quintet state (52 INT), the relative energy of the transition state 

53 is 10.2 kcal/mol in the ONIOM model compared to 11.7 kcal/mol in the active-site model, see 

Figure 4. Using ONIOM-EE instead of ONIOM-ME has a limited effect (+0.2 kcal/mol). The 

relatively small effect of the protein environment on the C–H bond activation step can be 

rationalized from the nature of the reaction. The Mulliken spin populations, see Figure 3, show 

significant spin (-0.39) building up on the Cys β-carbon, indicative of a hydrogen atom transfer 

for which no large electrostatic effects should be expected. Further, the reaction does not require 

any major geometrical changes, and potential steric effects of protein are limited. The structural 

differences in the alignment of the valine side chain and the histidine ligands are seen already in 

the reactant structure (compare Figure 2 and Figure 3) and should not affect the relative energy 

between 52 INT and 53 TS. 
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Figure 4. Energy diagrams for formation of [Fe(IV)=oxo] in the ligand donor mechanism. 

Energies calculated with the active-site model are shown in grey while energies from the 

ONIOM-ME QM:MM system are shown in blue.  

 

Based on these considerations, the origin of the 1.5-kcal/mol effect is not easy to 

pinpoint. The most significant geometric effect is a decrease in the C–H bond distance from 1.41 

Å in the active-site structure to 1.36 Å with QM:MM, leading to a shorter donor-acceptor 

distance that may facilitate the reaction. In summary, the barrier of the C–H bond activation step 

from 52 INT to 53 TS is mainly determined by the electronic properties of the iron center with 

only minor effects of the surrounding protein. 

  However, the total reaction barrier must be calculated from the lowest preceding 

intermediate, which in both models still is the state before oxygen binding, see Figure 4. As the 

QM:MM model stabilizes the end-on quintet state by >10 kcal/mol, the total C–H bond 

activation barrier in the QM:MM model is only 11.8 kcal/mol. This step is proposed to be 

partially rate limiting and the barrier, as calculated by transition state theory, should be close to 

16.8 kcal/mol.44 The modeled reaction barrier is thus underestimated by 5 kcal/mol. 

After passing the transition state, the system reaches a ferrous peroxide [Fe(II)–OOH] 

intermediate (54 INT). Formation of this product requires that one proton and two electrons are 

transferred from the substrate. This does not contradict the observation that the transition state 
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describes hydrogen atom transfer, because intrinsic reaction coordinate (IRC) calculations 

showed that the second electron is transferred only after passing the transition state.9 The relative 

energy of the ferrous peroxide intermediate is similar in active-site and ONIOM-ME models 

when the preceding intermediate 52 is used as reference, see Figure 4. However, the protein 

effect of the “electron transfer” from substrate to iron that occurs after 53 TS is not properly 

included in any of these models. The effect on the relative energy of 54 INT of applying 

ONIOM-EE instead of ONIOM-ME is large, approx. +8 kcal/mol, even after geometry 

relaxation at the ONIOM-EE level.  

 

3.2. Transition states for O–O bond cleavage – ligand donor mechanism.  

The next step in the reaction is closing of the β-lactam ring together with formation of 

[Fe(IV)=oxo]. In the active-site study,9 a new mechanism for O–O bond cleavage was proposed 

in which the water ligand acts as a proton donor. The first step in this mechanism is rotation of 

the peroxide (54 → 55) to align the outer oxygen in a position where it can accept a proton from 

the water ligand. This bond rotation is slightly less exothermal (by 2.4 kcal/mol) than in the 

active-site model, because the QM:MM model includes the original protein-carboxylate 

interactions at the MM level, which prevents formation of artificial hydrogen bonds between 

peroxide and substrate carboxylate, see Figure 5. The same effect was seen in a larger active-site 

model that included residues interacting with the carboxylate (Tyr189, Arg279 and Ser281),9 but 

if the purpose is simply to keep the hydrogen bond network intact a QM:MM model is 

significantly cheaper than a large QM model. The reason the energetic effect is still relatively 

small is that a large part of the error in the active-site model disappears when the solvent 

correction is included. 
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Figure 5. The QM:MM model (right) avoids artificial hydrogen bonds between peroxide and the 

valine carboxylate group in the Fe(II)-OOH intermediate 55. The active-site model (left) is 

optimized with atoms frozen in the position from the X-ray structure (marked with X). The 

QM:MM model has the same size of the QM region, but include MM residues hydrogen bonding 

to the carboxylate in the QM:MM description (shown in grey), as well as all other protein 

residues.  

 

O–O bond cleavage in the ligand donor mechanism proceeds by initial electron transfer 

from iron to an antibonding O–O σ* orbital (56 TS). This process leads to a shallow minimum 

with a long O–O bond (57 INT) that quickly abstracts a proton from the water ligand and a 

second electron from iron to form water, see reference 9 for details. O–O bond cleavage is 

similarly described in the active-site and the ONIOM models, but the orientation of the donating 

water and the peroxide changes due to the difference in the initial position of the peroxide, see 

Figure 3. The effect on the relative energies is small with the barrier for 56 TS going from 9.8 

kcal/mol in the active-site model to 10.3 kcal/mol in the ONIOM model, see Figure 4. The 

second transition state (58 TS) disappears after adding corrections for thermal effects and large 

basis, but whether the intermediate 57 appears on the calculated potential energy surface seems to 

be determined by minor details, and for all practical purposes, O–O bond heterolysis can be 

considered as a concerted reaction. 

The first step, from 55 INT to 56 TS, is an electron transfer from iron to oxygen and there 

is a non-negligible effect when going to ONIOM-EE (+5.9 kcal/mol at the ONIOM-ME 

geometry). Such a large effect would make this step potentially rate limiting, but as argued 

before, it is likely to be overestimated.  

 The total O–O bond cleavage reaction is heterolytic and leads to formation of a water 

molecule and an [HO–Fe(IV)=O] intermediate (59). Unlike the previous reaction steps, the 

protein effect is very large, -20.1 kcal/mol, see Figure 4. The effect comes from interactions 
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between the released water and atoms outside the QM model. In the active-site model the newly 

formed water bridged the valine N–H group and the iron hydroxo ligand. In the ONIOM model 

the same water makes hydrogen bonds with explicit MM waters instead of the substrate, see 

Figure 6, which leads to large effects on the reaction energy for this step. As a general 

observation, release of a product shows large protein effects due to explicit interactions with 

residues not included in the active-site model. These effects are also sensitive to the choice of 

mechanical or electronic embedding. 

 

 

Figure 6. Different alignment of the water formed after O–O bond heterolysis, highlighted in 

green, in active-site and ONIOM models. Selected water residues in the MM description are 

shown in stick representation. 

 

3.3. Transition state for β-lactam ring formation – ligand donor mechanism.  

To conclude the formation of the β-lactam ring, the valine N–H proton should be transferred to 

the hydroxyl ligand at the same time as the C–N bond of the four-membered β-lactam ring is 

formed, see Scheme 2. However, the barrier for the first step in this mechanism (510 TS) 

becomes unreasonably high (>45 kcal/mol) in the original ONIOM model. The corresponding 

barrier was ~11 kcal/mol in the active-site model, so the protein effect is >30 kcal/mol. The large 

effect is different from what was observed for C–H bond activation (53 TS) and O–O bond 

cleavage (56 and 58 TS), but similar to the effect on the preceding water formation step. The 

reason is that to function as a proton relay in 510 TS the QM water must return to the position 

where it bridges the valine N–H group and the hydroxo ligand. The QM:MM interactions that 

stabilized water release are lost in the transition state, which leads to an exceedingly high barrier. 

A deficiency in the optimization approach is the relatively static description of the protein 

that usually leads to small changes in the position of different groups. This is problematic when 
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handling potentially mobile water molecules. In the ligand donor mechanism, the barrier for β-

lactam ring formation is sensitive to the position of a single water molecule, exactly the kind of 

situation that the optimization approach has problems to handle. It is possible that the required 

bridging position is empty because water molecules inside the protein simply cannot move to the 

desired position during an optimization.  

To find configurations where water is bridging the substrate and the iron ligand, twelve 

snapshots were taken from a molecular dynamics (MD) equilibration with the QM coordinates 

frozen from 510 TS as described in the Computational details (model E).Proton transfer barriers 

were calculated by separately optimizing the reactant and a transition state guess with frozen 

proton-transfer coordinates from the MD snapshot. 

This approach gave barriers ranging from 20.8 to 43.3 kcal/mol, and the major difference 

comes from the low-level MM contribution, see Figure 7. The large variability in the barrier 

height reflects the number of conformations available for water molecules around the active site, 

see Figure S1. Taking the lowest barrier (snapshot at 2.75 ns) and performing a full transition 

state optimization of the QM:MM model gives a barrier of 20.7 kcal/mol. As an alternative, 

taking the structure with the highest barrier for a single water bridge (2.54 ns snapshot) and 

transferring the proton using one additional QM water (model F) leads to an optimized barrier of 

21.0 kcal/mol, see Figure S2. 

 

 

Figure 7. Proton transfer barriers (510 TS) for different snapshots from a molecular dynamics 

trajectory. In the snapshot at 2.7 ps, the QM barrier is high because the accepting hydroxo ligand 

has lost its hydrogen bond to Asp216. 



 17 

 

The calculated barrier of ~21 kcal/mol is high compared to the experimental limit of 17 

kcal/mol, despite the fact that performing the MD simulation with the QM geometry frozen at the 

transition state could overestimate the stability of that state and underestimate the barrier height. 

However, the modeled reaction is restricted to residues in the QM system and alternative 

pathways may be available in the real protein. The ligand donor mechanism can therefore not be 

excluded. Instead, the most important conclusion is that barriers for reactions involving mobile 

water molecules cannot be consistently modeled with pure optimization schemes. 

 

3.4. Transition states for O–O bond cleavage and β-lactam formation - substrate donor 

mechanism.  

The most direct way to close the β-lactam ring is to use the valine N–H proton during O–O bond 

cleavage, see Scheme 2. Previous active-site investigations9,24 could not find a low-energy path 

for the substrate donor mechanism. With ONIOM model A the search for the substrate donor 

pathway eventually led to the electron transfer required to weaken the O–O bond, but the 

electron came from the substrate carboxylate, not from iron. The observed reaction was therefore 

decarboxylation rather than β-lactam formation. From this observation it is clear that the problem 

with model A (in active-site and ONIOM-ME) is that the ionization potential of the carboxylate 

is underestimated unless its hydrogen-bonding residues are included. To handle this deficiency, 

the QM system is extended by including residues closest to the valine carboxylate (Tyr189, 

Arg279, Ser281, and W523), see model D in Figure 1. The same extension of the active-site 

model in reference 9 would also have been sufficient. This illustrates the importance of including 

a large QM part in active-site and QM:MM-ME calculations. The advantage of the QM:MM 

model is that it allows the additional QM residues to move with the substrate without the risk of 

creating new artificial hydrogen bonds.  

 Starting from the [Fe(II)-OOH] intermediate 54, see Figure 8, the reaction proceeds 

through three separate transition states, although no long-lived intermediate is expected to appear 

along the pathway. The initial reaction coordinate is elongation of the O–O bond, coupled to 

electron transfer from iron. Passing 55S TS at an O–O bond distance of 1.73 Å, see Figure 9, has 

a barrier of 7.8 kcal/mol and leads to an intermediate with a long (2.17 Å) O–O bond (56S INT). 

The additional label S refers to intermediates appearing only along the substrate donor pathway. 
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Further O–O bond elongation leads to a second electron transfer from iron to the leaving 

hydroxyl and the valine N–H proton is transferred from the substrate to complete the formation 

of water (57S TS). This leads to a high-energy ferryl-oxo structure (58S INT) with a linear 

substrate that quickly undergoes cyclization (59S TS) to form the β-lactam ring (510S INT). All 

transition states along the pathway are shown in Figure 9. The highest barrier, 9.3 kcal/mol, is 

observed for proton transfer from the substrate (57S TS), while cyclization, i.e., C–N bond 

formation (59S TS), has a barrier of only 2.8 kcal/mol compared to the peroxide intermediate 54 

INT, see Figure 10.  

 

 

Figure 8. Geometry and spin population of the [Fe(II)-OOH] intermediate 54 optimized with 

ONIOM model D. 

 

 

Figure 9. Close-ups of the transition states for heterolytic O-O bond cleavage and β-lactam 

formation in the “substrate donor” mechanism. Labels show important bond distances in Å and 

Mulliken spin populations. 
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Figure 10. Energy diagram for formation of the β-lactam + [Fe(IV)=oxo] intermediate from 

[Fe(II)-OOH] in substrate and ligand donor mechanisms using model D. The energies for β-

lactam ring closure in the ligand donor mechanism (thin brown line) are taken from the active-

site model.  

 

After formation of water and the β-lactam ring, the relative energy of 510S INT is much 

higher than the energy of the corresponding [Fe(IV)=oxo] intermediate 513 INT along the ligand 

donor pathway. In 510S the water formed during O–O bond heterolysis remains in the 

hydrophobic pocket trans to Asp216, but it is assumed that it can rearrange to reach the low-

energy structure observed in the ligand donor pathway. 

To be able to directly compare the ligand and substrate donor mechanisms, the former 

mechanism was reoptimized using model D, see Figure 10. Compared to model A with its 

smaller model system, the changes in transition state barriers are relatively small (-0.3 kcal/mol 

for 56 TS and -0.6 kcal/mol for 58 TS).  

The barrier for O–O bond cleavage in the substrate donor mechanism, 9.3 kcal/mol, is 

slightly lower than the highest barrier in the ligand donor mechanism, 10.0 kcal/mol, see Figure 

10. Single point calculations using ONIOM-EE gives a much larger difference in barrier height 

(8.5 kcal/mol), mainly due to the electrostatic effects on O–O bond cleavage in the ligand donor 

mechanism. Even if the effect is overestimated, it is still likely that electrostatic interactions 

favor the substrate donor pathway by a few kcal/mol. 
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3.5. Transition state for Val-β-C–H bond activation.  

After formation of the [Fe(IV)=oxo] intermediate, the reaction proceeds by C–H bond 

activation at the valine β-carbon. Using the optimized structure obtained from previous modeling 

(513 INT), the valine side chain must rotate almost 180º to align the C–H bond towards the iron 

center (514 INT). This is a difficult reaction to model, because it could be accompanied by 

changes in the conformation of the hydrophobic residues surrounding the side chain. In ONIOM 

model C, which is similar to model A, the rotation leads to movement of the newly formed 

water, but the reaction energy for bond rotation is the same in the active-site and ONIOM models 

(+0.9 kcal/mol). 

Activation of the Val-β-C–H bond (515 TS) is a hydrogen atom transfer, and the effect of 

the protein is expected to be small, as it was for the activation of the corresponding Cys-β-C–H 

bond. On the contrary, in ONIOM model C the reaction barrier becomes 22.0 kcal/mol compared 

to 15.3 kcal/mol in the active-site model, see Figure 11. This is a significant effect, but it makes 

the barrier much higher than the experimental value of ~17 kcal/mol for this partly rate-limiting 

step. 

 

 

Figure 11. Energy diagrams for Val-β-C–H bond activation and thiazolidine ring closure with 

the active-site model and ONIOM models C and G. Values of relative energies are placed below 

the line for the active-site model, above the line for ONIOM model C and on the side for 

ONIOM model G.   

 
What distinguishes this reaction from the previous C–H bond activation (53 TS) is that it 

requires a large movement of the substrate, because the valine side chain must approach the oxo 

group. All comparisons of the optimized structures from active-site and ONIOM models show 
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large differences in the alignment of the valine side-chain, see e.g., Figure 2. This is true also in 

the transition state 515 TS, although the effect on the reaction coordinate is less obvious. The 

ONIOM model has a longer C2-H3 distance and a slightly shorter O1-H3 distance, see Figure 

12.  

 

 

Figure 12. Geometries and spin populations for the transition state for Valine-β-C–H bond 

activation (515 TS) optimized using the active-site model (silver) and the ONIOM QM:MM 

model C (blue).  

 

In the active-site model the transition state was favored by 3.5 kcal/mol by the IEFPCM 

solvent description because the movement of the side chain leads to a more compact QM region 

and therefore a decrease in the cavitation energy. Explicit inclusion of the protein in model C 

instead disfavors the transition state by 3.2 kcal/mol (+2.9 at the high level and +0.3 kcal/mol 

from the low level). The sum of these two effects leads to the large difference between the 

ONIOM and the active-site model. 

As the barrier in the ONIOM model is too high compared to experiment, several attempts 

were made to find a lower barrier. Applying model D with its larger QM part did not change the 

total barrier from 513 INT, and the barrier was not stabilized with ONIOM-EE (effect of +0.8 

kcal/mol). The reaction pathway was also optimized on the septet and the triplet surfaces, but the 

barriers were higher in energy (by 3.6 kcal/mol for 715 TS and by 3.7 kcal/mol for 315 TS). 
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In order to check for major errors in the structure, the optimized structure of 513 INT was 

compared with an X-ray structure of ACmC, that forms an analogue of the monocyclic β-lactam 

intermediate.27 The major structural differences are in the arrangement of the water molecules. In 

the ONIOM structure the newly formed water molecule is located close to the oxo ligand trans to 

Asp216, but there is no water in that position in the X-ray structure of the ACmC substrate. 

Furthermore, there is no water in the corresponding pocket in the X-ray structure with ACV and 

NO20 or in the structure of the IPN product, see Figures S3 and S4.27 The presence of a water 

molecule in that position was investigated by classical MD simulations. In these simulations, the 

QM region was kept frozen (except the water molecule and the hydrophobic valine side chain). 

After a few picoseconds water leaves its position close to the oxo group and does not return. 

Details of the MD simulations are given in the supporting information.    

Consequently, it was assumed that the water molecule leaves the active site through the 

channel occupied by WAT544 and WAT560 in the X-ray structure, see Figure 6. This process is 

difficult to model, and the water molecule was simply removed from model D to form the new 

ONIOM model G. Optimization of the C–H activation transition state with the new model gave a 

total barrier of 20.4 kcal/mol, 1.6 kcal/mol lower than models with a water in close to the oxo 

group, see Figure 11. 

The product of the C–H bond activation is a ferric hydroxo species and a substrate radical 

located on the valine-β-carbon (716 INT). The relative energy of this intermediate is rather 

similar in all different models. 

 

3.6. Transition state for thiazolidine ring formation.  

From the substrate radical state (516 INT) the five-membered thiazolidine ring can be formed by 

an attack of the carbon radical on sulfur. Compared to the QM model, the ONIOM transition 

state for C–S bond formation (517 TS) does not change much (from 2.73 Å in the active-site 

model to by 2.71 Å), but the barrier drops from 4.5 kcal/mol to 1.5 kcal/mol compared to the 

preceding intermediate 516 INT. A tentative explanation for the decrease in barrier is that the 

protein favorably aligns the valine β-carbon radical for a reaction with the thiolate, see Figure 

13. A geometric indication is that the C–S distance in the reactant is 3.6 Å in the protein and 

slightly longer in the active-site structure (3.79 Å). The barrier height is sensitive to the choice of 
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QM model because in both models with larger QM part (D and G), the barrier disappears after 

the basis set correction has been applied, see Figure 11. 

Formation of the thiazolidine ring includes a final electron transfer from the thiolate to 

iron to regenerate Fe(II), and again there is a significant difference between ONIOM-ME and 

ONIOM-EE (+3–4 kcal/mol at the ONIOM-ME geometry for different models). 

 

 

Figure 13. Reactant and transition state for thiazolidine ring formation in the active-site model 

(left) and ONIOM model C (right). The improved alignment of the substrate side chain in the 

ONIOM model is highlighted in blue. 

   

Formation of the C–S bond creates the thiazolidine ring and completes the formation of 

the bicyclic IPN product (518 INT). The reaction decreases the strength of the substrate-metal 

coordination, and in all models the substrate loses its coordination to iron. The energy of product 

formation is rather different in the active-site and the ONIOM models, see Figure 11. The 

ONIOM models give much shorter Fe–S bond distances (3.2-3.5 Å) compared to the active-site 

model (Fe–S distance of 4.2 Å). 

However, the Fe–S distance is still much longer than in the X-ray structure of the IPN 

product (Fe–S distance of 2.87 Å, see Figure S3). In the X-ray structure, the water formed during 

the second part of the reaction has already left the active site and iron is five-coordinated.27 This 

is different from the final optimized structure 518 INT that still has a hydroxyl ligand trans to 

Asp216. To complete the enzymatic reaction the hydroxyl group should receive a proton and 

form water. This proton is equivalent to the proton lost from the thiol during the initial binding of 

ACV, but these processes are not modeled because no proton acceptor/donor was included in the 
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QM part. Attempts to reproduce the Fe–S distance in the product X-ray structure using a model 

with a water ligand (model H) or a model with five-coordinate iron (model I) did not succeed 

(Fe–S distances >3.2 Å). The QM:MM models still has problems to describe structures with very 

weak metal ligand interactions that are balanced by large changes in the MM interactions during 

substrate release. 

 

 

4. Discussion 

 

4.1. Transition state effects.  

The reaction barrier is the most common computational criterion when discriminating between 

different reaction mechanisms. In the present study, the ease in which transition states can be 

optimized allows for a broad comparison of protein effects on different types of transition states. 

The effects of the protein in the current study are either steric or electrostatic, and can be 

rationalized by considering whether the transition state involves large movements of the 

substrate, or whether it involves electron transfer. In the ONIOM-ME description, the protein 

effect is small (~1–2 kcal/mol) for transition states; 53 (Cys-β-C–H bond activation), 56, and 58 

(O–O bond cleavage) because they lead to relatively small changes in the active site structure, 

see Figure 3. Although not compared to an active-site model, transition states 55S and 57S (O–O 

bond cleavage) in Figure 9 also belong to this category. Protein effects are larger (3–6 kcal/mol) 

for transition states that involve movement of the hydrophobic side chain, i.e., 515 (Val-β-C–H 

bond activation) and 517 (thiazolidine ring formation), see Figures 12 and 13. The transition state 

for β-lactam ring closure, 59S in Figure 9, is likely to belong to this category. The absolutely 

largest protein effect is observed for the transition state 510 (proton transfer) that requires 

rearrangement of a mobile water molecule, a situation that is not handled well with the present 

approach. 

In the single-point ONIOM-EE description, electrostatic effects become significant (>4 

kcal/mol) for the transition states 56 (O–O bond cleavage) and 517 (thiazolidine ring formation) 

that include electron transfer between substrate and iron. In both cases the effect leads to an 

increase in the barrier. The transition states for O–O bond cleavage in the substrate donor 

mechanism (55S and 57S) also involve electron transfer, but the effects of applying ONIOM-EE 
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are small. A rough rationalization of the electrostatic effects can be made by considering the 

“direction” of electron transfer relative to the electric field of the protein, see Figure 14. The 

electrostatic interactions favor the substrate donor pathway because the critical electron transfer 

from iron to the anti-bonding O–O π* orbital proceeds perpendicular to the electric field, while 

in the ligand donor mechanism it proceeds partly in the direction of the electric field. Although 

the electrostatic effects are difficult to calculate correctly, control of the reactivity in IPNS by a 

directional electric field is an interesting concept that requires a more careful investigation. 

 

 

 

Figure 14. Cartoon to rationalize electrostatic effects on electron transfer in the ONIOM-EE 

description. The red arrow shows the rough direction of the electric field while blue arrows show 

the estimated “direction” of electron transfer. 

 

In principle, both ligand and substrate donor routes could be active as they lead to the 

same [Fe(IV)=oxo] state (513 INT), assuming that there really is a proton transfer pathway from 

substrate to the iron ligand W650. The difference between the two mechanisms could become 

clearer by studying the enzymatic reaction with the alternative ACOV substrate. The major 

difference between the normal substrate (ACV) and ACOV is that the latter lacks a valine N–H 

proton. The substrate donor mechanism is therefore not viable. Experimentally, reactions with 

ACOV lead to hydroxylation of the Cys-β-carbon, presumably by the iron bound peroxide (54 

INT).45 In the ligand donor mechanism, the [Fe(IV)=oxo] species (59 INT) can still be generated 
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without the substrate proton. If it can be shown that the ferryl-oxo intermediate does not lead to 

hydroxylation of the Cys-β-carbon, the ligand donor mechanism can be ruled out. 

 

4.2 Other significant protein effects.  

As the real transition state barrier should be calculated against the lowest preceding intermediate, 

relative energies of intermediates can affect the rate of a reaction step. As an example, the barrier 

for the first C–H bond activation step, 53 TS in Figure 4, decreases significantly when the protein 

is included, mainly due to the failures of the active-site model to describe O2 binding.39 In the 

present study, large effects on relative energies are found for reactions involving formation of 

water and the IPN product. These effects are handled mainly at the MM level and are difficult to 

describe accurately. Fortunately, the effects are not critical when determining the reaction 

mechanisms because product formation is often exothermal and the degree of exothermicity has 

no effect on the barrier of the next step. As an example, the barrier for Cys-β-C–H bond 

activation is not affected by the calculated exothermicity of β-lactam formation. 

 Formation of the [Fe(II)-OOH] species (54 INT) shows large electrostatic effects with 

ONIOM-EE because it involves electron transfer from substrate to iron. As long as peroxide 

formation is still an exothermal reaction, this should not affect the rate of O–O bond cleavage. 

 

4.3  Modeling accuracy.  

Assuming that the two C–H bond activation transition states both are partially rate-limiting with 

barriers of ~17 kcal/mol, the discrepancy between experiment and calculation is  5 and 3 

kcal/mol, respectively. This not considered a reason to reevaluate the mechanism, because 3–5 

kcal/mol is within the expected accuracy for density functional calculations of transition metal 

systems. The first C–H bond activation (53 TS) is a simple hydrogen atom transfer from the 

substrate to the superoxo radical, a reaction type for which DFT might underestimate the barrier. 

The second C–H bond activation (515 TS) is also a hydrogen atom transfer, but here the reaction 

barrier is overestimated. A significant difference is that this C–H bond activation requires a 

change in the electronic configuration of the iron-oxo bond, a situation where trends from simple 

organic reactions may no longer hold. A possible reason for the too high barrier for 515 TS is that 

the optimization to the closest local minimum may not allow the protein model to relax properly. 

This could overestimate the energy required to move the substrate towards the oxo group. 
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There are also shortcomings in the description of the protein interactions. As discussed in 

the Computational details, mechanical embedding largely neglects protein effects on electron 

transfer while electronic embedding qualitatively gives a better description of the direction of the 

electrostatic effects, but is likely to overestimate the effects due to lack of polarization of the 

MM part. We are at present testing improved optimization algorithms for electronic embedding, 

as well as two-layer DFT:DFTB46,47 and three-layer DFT:DFTB:MM models that naturally 

include electronic polarization and charge transfer effects through an inexpensive QM layer. 

Another issue concerns the setup of the model, especially water molecules whose 

positions are not well determined, but still can have large effects in QM:MM calculations.48,49 

This is illustrated by the large differences in barrier for water-mediated proton transfer (510 TS, 

see Figure 7). A related problem is the uncertainty in the position of the water molecule formed 

after O–O bond heterolysis. In the present static study, two alternatives have been accounted for, 

one where the water is located close to the oxo group, and one where it has been removed from 

the system. The latter choice is supported by a separate molecular dynamics simulation. It also 

leads to a lower barrier for C–H bond activation by ~2 kcal/mol. 

  

4.4. Catalytic efficiency of the metal center.  

The low barriers achieved with an active-site model indicated that the main catalytic effect of 

IPNS comes from the metal center. In principle agreement with experiment can be achieved with 

a method that consequently underestimates barriers together with a neglect of the “real” protein 

effects. A QM/MM model that includes an explicit description of the protein is therefore a better 

argument for the catalytic proficiency of the non-heme iron center. The competence of the metal 

center is also shown by the reactivity of biomimetic complexes,17,50,51 although they do not show 

the same efficiency and specificity as the enzymatic reactions. 

 

4.5. Protein control of IPNS reactivity.  

Apart from the initial O2-binding step, the suggested role of the protein in IPNS is to control the 

reactivity of the metal center. One example is the effect of the hydrophobic side chains that 

orient the valine side chain in an orientation that is favorable for thiazolidine ring formation. 

Although not important for the total reaction rate, this protein effect may prevent side reactions 

of the substrate radical. It has previously been observed that mutations of the hydrophobic 
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residue Leu223 lining the valine side chain leads to changes in the product ratio for an alternative 

substrate.52 The conclusion was that the bulky side chain hinders the rotation of the substrate in 

the native enzyme. These two mechanisms may work in concert to achieve high product and 

stereospecificity in IPNS.53 

An important result of the ONIOM calculations is the detailed description of the substrate 

donor mechanism for β-lactam formation. However, the reason this pathway could be found was 

not the long-range protein effects, but that the QM:MM model made it easier to include residues 

close to the substrate while still keeping the hydrogen bonds intact during β-lactam ring 

formation. The residues (Tyr189, Arg279, Ser281, and W523) can have a role in preventing side 

reactions, e.g., decarboxylation or cleavage of the C–C bond between the carbonyl and the 

carboxylate. 

 

 

5. Conclusions 

 

With the new quadratically coupled QM/MM geometry optimization algorithm it is feasible to 

locate transition states in protein systems, similar as in single-layer QM calculations. The 

optimization procedure allows for a direct evaluation of protein effects on all the transition states 

appearing along the reaction pathway of isopenicillin N synthase. The effects are typically 

smaller than 4 kcal/mol and can be understood by considering whether the transition state 

involves large movements of the substrate and whether it involves electron transfer. 

The lack of major stabilizing protein effects on the rate-limiting transition states of IPNS 

suggest that a large part of the catalytic effect comes from the metal center. The suggested role of 

the protein is to control the reaction and achieve high product specificity. Hydrophobic residues 

align the valine substrate radical in a favorable conformation for thiazolidine ring closure and 

contribute to the product selectivity and high stereospecificity of the reaction. An interesting 

possibility that merits further investigation is that the mechanism for heterolytic O–O bond 

cleavage is determined by the direction of the electric field at the active site. 

A detailed comparison of the polarization/charge transfer effects in the ONIOM 

QM:MM-EE, QM:QM and QM:QM:MM models will be presented in a separate paper.  Another 

extension is to include statistical averaging of the protein effects over an ensemble of MM 
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configurations. Detailed studies on this aspect using free-energy perturbation and other methods 

will also be discussed separately. 
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