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For nondegenerate bulk semiconductors, we have used the virial theorem to derive an expression

for the temperature Tj of the transition from the regime of “free” motion of electrons in the c-band

(or holes in the t-band) to their hopping motion between donors (or acceptors). Distribution

of impurities over the crystal was assumed to be of the Poisson type, while distribution of their

energy levels was assumed to be of the Gaussian type. Our conception of the virial theorem

implementation is that the transition from the band-like conduction to hopping conduction occurs

when the average kinetic energy of an electron in the c-band (hole in the t-band) is equal to the

half of the absolute value of the average energy of the Coulomb interaction of an electron (hole) with

the nearest neighbor ionized donor (acceptor). Calculations of Tj according to our model agree with

experimental data for crystals of Ge, Si, diamond, etc. up to the concentrations of a hydrogen-like

impurity, at which the phase insulator-metal transition (Mott transition) occurs. Under the temperature

Th � Tj /3, when the nearest neighbor hopping conduction via impurity atoms dominates, we obtained

expressions for the electrostatic field screening length Kh in the Debye-Hückel approximation, taking

into account a nonzero width of the impurity energy band. It is shown that the measurements of

quasistatic capacitance of the semiconductor in a metal-insulator-semiconductor structure in the regime

of the flat bands at the temperature Th allow to determine the concentration of doping impurity or its

compensation ratio by knowing Kh. VC 2011 American Institute of Physics. [doi:10.1063/1.3667287]

I. INTRODUCTION

In order to form highly sensitive photodetectors (from

infrared to terahertz wavelengths) based on crystalline semi-

conductors, the hopping conduction via hydrogen-like

impurities should be inhibited (see, e.g., Refs. 1 and 2). It is

necessary to block (minimize the value of) hopping conduc-

tion by epitaxially growing the layer of semiconductor with

a low content of impurities at the surface of the heavily

doped semiconductor; this technique provides the energetic

barrier for electron (hole) transport over the impurity band

states. For this purpose, it is useful to know the characteristic

temperature Tj (see Fig. 1), when the band-like electrical

conduction (of electrons in the c-band or holes in the t-band)

is superseded by the hopping conduction via impurities.

Our work aims to present a quasiclassical model of the tem-

perature Tj dependence on the concentration of hydrogen-

like impurities in crystalline semiconductors.

In homogeneous-doped and nondegenerate semiconduc-

tors, drift and diffusion of electrons and/or holes are commonly

described in the terms of their transitions between single-

electron states (see, e.g., Refs. 3–8). The direct current electrical

conduction is tentatively subdivided into three regimes (mecha-

nisms) (see Fig. 1): the propagating (or band) conduction
(BC), the hopping conduction (HC), and the hybrid regime

(BCþHC), which is sometimes called the jumping conduc-
tion.4 It should be noted that, at the characteristic temperature

Tj, the electrical conductivity rp¼ 1/qp with thermal activation

energy e1 in the BC regime is equal to the electrical conductiv-

ity rh¼ 1/qh with thermal activation energy e3 in the nearest

neighbor hopping (NNH) regime of the dc conduction. Here,

resistivity in the BC regime is qp¼ q1 exp(e1/kBT) and resistiv-

ity in the NNH regime is qh¼ q3 exp(e3/kBT), where kBT is the

thermal energy and q1, e1, q3, and e3 are the parameters which

weakly depend on temperature T. Some partial expressions for

Tj obtained by fitting experimental data for germanium crystals

of p-type are reported in Refs. 9 and 10. However, for applica-

tions, it is necessary to have an analytical dependence of Tj on

concentration N of the majority (doping) impurity and the ratio

0<K< 1 of its compensation by the minority impurity with

the concentration KN.
The BC regime is realized in crystalline semiconductors at

temperatures T>Tj. Here, the states of electrons in the c-band

and the states of holes in the t-band are characterized by eigen-

values of a quasimomentum operator and average values of

lifetime in delocalized states of the c- or t-bands, which are

determined by phonons and atomic defects of a lattice (as well

as by a capture of electrons and holes on traps and an electron-

hole recombination). In the BC regime, electrons and holes are

“free” to move by tunneling in the crystalline matrix between

successive acts of scattering on structure defects and phonons.

In the HC regime, an ordinary mobile electron (or hole) is

localized near a single impurity atom the majority of the time.

Electrons (or holes) can migrate between immovable impurities

only due to phonons (or other quasiparticles); thus, the con-

ductivity is exponentially decreased under the temperaturea)Electronic mail: poklonski@bsu.by.
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decrease. In the BCþHC regime,4 electrons (or holes) are

almost delocalized, but the phase coherence is destroyed for

their thermally activated tunneling motion from atom to atom

(it can be an atom of a crystalline matrix as well as an impurity

atom). It should be noted that, in the band scheme (see the inset

in Fig. 1), the BCþHC regime corresponds to merged-into-

each-other conduction mechanisms: the thermally activated

tunneling of holes in the A-top band (activation energy e4) and

hole transitions from the A-top band to the t-band (activation

energy e1 – e2). On the one hand, in contrast to the BC regime,

alternating paths of hole tunneling have accidental phases and

do not interfere with each other. On the other hand, in contrast

to the HC regime with thermal activation energies e2 and e3

(in the temperature range close to Th � Tj /3), thermally acti-

vated tunneling in the BCþHC regime slightly depends on

temperature comparing to the hopping conduction (activation

energy e4< e3< e2). [Note that the temperature Th � Tj /3 was

chosen as an average value from analysis of dependences ln(q)

on 1/T in the NNH temperature range of whole experimental

data from Refs. 9, 11–31.] The activation energy e1 corresponds

to the transition of a typical acceptor from the charge state (0)

to the charge state (�1) and appearance of a hole in the t-band.

The activation energy e2 corresponds to the transition of two

electrically neutral acceptors into negative- and positive-

charged ions; this transition is contributed to the e2-conduction.

The activation energy e1 – e2< e2 corresponds to the transition

of a typical acceptor from the charge state (þ1) to the charge

state (0) and appearance of a hole in the t-band. As a rule, in

the BCþHC regime, it is quite difficult to measure thermal

activation energies e4 and e1 – e2, which are not pronounced in

the galvanomagnetic measurements and require the low-

temperature photoconduction measurements.32

For a p-type semiconductor at very low temperatures

(less than Th /2), conduction is realized by hops of holes (elec-

tron vacancies) between acceptors which are not necessarily

neighbored to each other, but which have a minimal difference

in their energy levels. [We estimate that the variable range

hopping (VRH) regime starts dominating over the NNH re-

gime at a temperature less than Th /2, which was chosen as an

average value from analysis of dependences ln(qh) on 1/T (see

Fig. 1) of experimental data from Refs. 9, 11–31. In the tem-

perature range T< Th /2, the hopping activation energy e3

behaves as e3 / T3/4 (Mott model)33 or e3 / T1/2 (Efros-

Shklovskii model).34] This regime is usually called variable

range hopping (VRH). When the temperature increases, this

mechanism of conduction is superseded by hops of holes

between the nearest neighbor acceptors (NNH) with activation

energy e3, which is equal within an order of magnitude to the

root-mean-square fluctuation W of their energy levels (the

width of the acceptor A-bot band). [In Ref. 35, a relation of

proportionality for boundary temperature between NNH and

VRH regimes is obtained based on statistics of pair donors,

between which an electron jump takes place, taking into

account the D-bot and D-top donor bands in crystalline n-type

semiconductors.] Further increase of temperature leads to the

emission of the holes from the A-bot band to the A-top band;

e2-conduction takes place. In the temperature region interme-

diate between e2-conduction and e1-conduction, the BCþHC

regime can be observed. For temperatures T> Tj, the emission

of holes from the A-bot and A-top bands to the t-band occurs

as well as the capture of holes from the t-band on the A-bot

and A-top bands. These processes correspond to the band con-

duction (BC) with activation energy e1, which is equal within

an order of magnitude to the thermal ionization energy of the

acceptor. According to the common experimental observa-

tions, the conduction with activation energy e2 rarely happens

in crystalline semiconductors with hydrogen-like impurities

for compensation ratios K> 0.1.36 Note that e2 energy can be

considered as a difference between energies of the ground and

excited states of a neutral acceptor, e.g., a boron atom in the

diamond crystalline matrix site.37 In the BCþHC regime

(T< Tj), the decrease of resistivity q¼ 1/r with decreasing in

T is caused by capturing holes from the t-band on acceptors in

the charge state (–1) and by the consequent decrease of scat-

tering on ions for the holes left in the t-band. It is clear that,

for all three regimes of hole transport (BC, BCþHC, and

HC), the charge states (0) and (–1) of immobile acceptors can

migrate over a crystal and all donors, which are in the charge

state (þ1), are also immobile. Charge state migration occurs

due to the capture of holes from the t-band on acceptors and

emission of holes from acceptors into the t-band and also due

to hops of holes from acceptors in the charge state (0) to

acceptors in the charge state (–1). Figure 1 shows (not in the

scale) a typical picture in moderately doped and moderately

compensated semiconductors, when only the BC and HC

regimes are well approximated by straight lines in the

dependence of ln q on 1/T.

FIG. 1. Schematic inverse temperature (1/T) dependence of logarithm of the

electrical resistance (lnq) of p-type crystalline semiconductor in different

regimes of hole transport: BC is the band conduction, BCþHC is the mix-

ture of the band and hopping conductions, HC is the hopping conduction,

NNH is the hopping conduction rh¼ 1/qh via the nearest neighbor accept-

ors, and VRH is the hopping conduction via nearest acceptors by energy. In

the inset: gt is the density of states near the top of the valence band (E is the

single-electron energy, E
ðlÞ
t is the mobility edge of holes in the t-band), gb

and gt are the density of states of the A-bot and the A-top bands (centered on

Eb and Et) of a hydrogen-like acceptor impurity, which can be in three

charge states (–1, 0, þ1) (see also Ref. 3). (In compensated semiconductors

(K> 0.1) the A-top band is not pronounced and acceptors can be only in the

charge states (0) and (–1) of the A-bot band. D-bot and D-top bands of

hydrogen-like donors are below the mobility edge of electrons in the c-band

and are not shown.)
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II. CALCULATIONS OF TRANSITION TEMPERATURE
FROM THE BAND TO HOPPING CONDUCTION

Let us consider a nondegenerate semiconductor of

p-type, in which only the A-bot acceptor band is pronounced.

We have adopted that p is the concentration of holes in the t-

band (valence band), N¼N0þN–1 is the total concentration

of acceptors in the charge states (0) and (–1), and KN is the

concentration of donors, which are all in the charge state

(þ1). Thus, an electroneutrality condition of semiconductor

has the form: p¼N–1 – KN. The band mechanism of the con-

duction is determined by the motion of gas of holes, and it is

characterized by the average value of kinetic energy of a

hole, which is equal to 3kBT/2, where kB is the Boltzmann

constant and T is the absolute temperature. Let us note that,

at T � Tj (Fig. 1), the concentration of holes in the t-band

p� Kð1� KÞN, so we yield N�1¼Nþ1¼KN, where N�1

and Nþ1 are concentrations of ionized acceptors and donors

(see, e.g., Ref. 38). In accordance with models (Refs. 39 and

40), the effective concentration of holes hopping between

acceptors is Nh¼N0N�1/N; thus, from the condition rp¼ rh,

i.e., eplp¼ eNhMh, at temperature Tj, it follows that p� Nh

and the drift mobility of holes in the t-band lp is much larger

than the drift hopping mobility of holes Mh via acceptors.

If particles in an equilibrium system interact obeying the

Coulomb’s law, then according to the virial theorem (see,

e.g., Ref. 41 and 42),

Ekin ¼ �
1

2
Utot; (1)

where Ekin is the average kinetic energy of all particles and

Utot is the average potential energy of the Coulomb interac-

tion between all particles. In a first order approximation, the

virial theorem can be applied separately to two subsystems

(see, e.g., Ref. 42): i) holes and migrating over a crystal the

charge states (�1) of immobile acceptors and ii) immobile

donors in the charge state (þ1), electrically neutral acceptors

(bound states of holes and negatively charged acceptors),

and bounded electrons and nuclei of the crystalline matrix.

Further, for calculations of Tj, we apply the virial theorem to

the first subsystem.

The virial theorem is applicable to the semiconductor at

any temperature. At temperatures T> Tj, the t-band conduc-

tion dominates and holes freely move over the crystal. Then,

the average kinetic energy of a typical hole in the t-band is

equal to 3kBT/2; however, the average potential energy of

the hole is not known. At temperatures T< Tj, the hopping

conduction dominates and holes in the A-bot band are quasi-

localized on acceptors. Then, the hole potential energy is

equal to the Coulomb energy of interaction between a hole

and the nearest acceptor, whereas the average kinetic energy

of a typical hole moving by means of hops is not known.

Thus, only at the edge between hopping and band conduc-

tions, we can assess both the average kinetic energy and the

average potential energy of a hole in the field of the nega-

tively charged acceptor. Since they are connected to each

other according to the virial theorem, the temperature in the

kinetic energy gives the temperature of equality between the

hopping and band conductions. To this end, the transition

from the band conduction to the hopping conduction at

T¼ Tj is determined by equality of the average kinetic

energy of motion of a free (delocalized) hole in the t-band

Ekin! 3kBTj /2 to the half of the average potential energy of

a hole in the Coulomb field of the nearest ionized acceptor

Utot! Uj, i.e., from Eq. (1), we yield

3kBTj

2
¼ �Uj

2
: (2)

We take into account that all the other holes of the t-band,

acceptors in the charge states (�1) and (0), and donors in the

charge state (þ1) by virtue of the electrical neutrality of a

crystal form an electrically neutral background. It is clear

that, at temperature Tj, due to low concentration of holes, the

interhole interaction can be neglected as well as the possibil-

ity of capturing holes on acceptors in the charge state (0).

These assumptions allow to approximately describe the

many-particle closed system with the pair Coulomb interac-

tion between charged particles as a set of two-particle

systems containing a hole and the closest to it acceptor in the

charge state (�1). Note that the proposed procedure of the

virial theorem application in description of the interaction of

charge carriers and impurity ions in nondegenerate semicon-

ductor resembles a scheme of substantiation of the Boltz-

mann kinetic equation in Ref. 43.

In order to determine Uj, we assume that acceptors in the

charge states (–1) and (0) and donors in the charge state (þ1)

are randomly distributed in a crystal, i.e., according to the

Poisson distribution. Then, the probability that, at the distance

r from hole in the interval (r, rþ dr), the nearest negatively

charged acceptor occurs and there are no negatively charged

acceptors in the volume 4pr3/3 is (see, e.g., Refs. 44 and 45)

PðrÞdr ¼ 4pr2KN exp � 4p
3

r3KN

�
dr;

�
(3)

where KN is the concentration of ionized acceptors, i.e.,

acceptors in the charge state (�1).

The average Coulomb energy of the hole interaction

with the nearest negatively charged acceptor, taking into

account Eq. (3), is

Uj ¼
ð1

0

UðrÞPðrÞdr ¼ �C

�
2

3

�
e2

4pere0

�
4p
3

KN

�1=3

� �1:354
e2

4pere0

�
4p
3

KN

�1=3

; (4)

where U(r)¼�e2/(4pere0 r) is the potential energy of a t-

band hole interacting by the Coulomb’s law with the nearest

neighbor acceptor in the charge state (�1), e is the elemen-

tary charge, er is the relative permittivity of the crystalline

matrix, e0 is the electric constant, C zð Þ ¼
Ð1

0
t z�1 exp �tð Þ dt

is the Euler’s gamma-function, and N�1¼KN is the concen-

tration of negatively charged acceptors.

Thus, substitution of expression (4) into Eq. (2) yields

kBTj � 0:73
e2

4pere0

ðKNÞ1=3; (5)
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where Tj is the temperature of equality of hopping and band

conductions (Fig. 1). [For description of kinetic phenomena

in gas plasma, the Landau length dL¼ e2/(4pere0kBT) is

used.46,47 At the temperature T¼ Tj for a nondegenerate gas

of t-band holes against a background of neutralizing their

charge negatively charged acceptors from Eq. (5), we obtain

dL � 1.37(KN)�1/3.]

Let us now relate the temperature Tj with the ionization

energy of a single hydrogen-like impurity Iim and its concen-

tration NM, which corresponds to the phase insulator-metal

transition (the Mott transition)48.

The concentration of majority (doping) hydrogen-like

impurity N¼NM, which corresponds to the Mott transition,

and the Bohr radius aim of a single (insulated) doping impu-

rity in a crystal are satisfied by the relation49

N
1=3
M aim �

0:542�
ð1� KÞðer þ 2Þ

�1=3
: (6)

Let us divide the left and right parts of the relation (5)

by ionization energy of the hydrogen-like impurity Iim¼
e2/(8pere0aim) and then multiply and divide the right part of

the obtained expression by NM
1/3; thus, from Eq. (5), taking

into account Eq. (6), we obtain

kBTj

Iim

� 0:79

�
K

ð1� KÞðer þ 2Þ

�1=3� N

NM

�1=3

: (7)

Calculations by using Eq. (7) were compared with

experimental data for p-Ge crystals doped with gallium (and

compensated with arsenic and partially with selenium) by

transmutation reactions under the influence of thermal

neutrons of a nuclear reactor.50,51 Figure 2 shows Tj values

(points a-f), which we obtain according to Fig. 1 from the

experimental dependences of lnq on 1/T of germanium sam-

ples (Refs. 9 and 12–17). Experimental values of Tj were

obtained as an intersection between the straight lines, repre-

senting the asymptotic behaviors of the band and hopping

conductions lnqp¼ lnq1þ e1/kBT and lnqh¼ lnq3þ e3/kBT,

respectively, assuming q1, q3, e1, and e3 to be constants

(Fig. 1). The deviations of the experimental data from the fit-

ting straight lines were within 3%.

The line in Fig. 2 shows the calculations of Tj using

Eq. (7) for the compensation ratio K¼ 0.35. Parameters of

p-Ge:Ga are presented in Table I.17,23,52–59 It is seen that the

temperature Tj is described in the wide range of doping im-

purity concentration by relation (7). The small deviations of

Tj from the calculations are due to the fact that the neutron-

transmutation doping of germanium crystals allows accu-

rately, within percents, to control the concentration of the

doping impurity (Ga) and the compensation ratio of samples

(see, e.g., Refs. 50, 51, 60, and 61).

Figure 3 shows the dependence of the transition temper-

ature Tj from hopping to the band conduction in boron-doped

FIG. 2. Dependence on concentration N of gallium atoms of the transition

temperature Tj from hopping to the band conduction in neutron-transmuta-

tion-doped p-Ge:Ga crystals. The line is the calculations by using Eq. (7) for

K¼ 0.35. The points a-f are experimental data from the works: (a) Refs. 12

and 13, (b) Ref. 14, (c) Ref. 15, (d) Ref. 9, (e) Ref. 16, and (f) Ref. 17. The

typical deviation of Tj for two values of N (at the beginning and at the end of

doping degree range) is indicated by vertical bars.

FIG. 3. Dependence on concentration of the doping impurity N of the transi-

tion temperature Tj from hopping to the band conduction in p-Dia:B and

n-GaAs. The lines are calculations by using Eq. (7) for K¼ 0.05 (1)

and K¼ 0.5 (2). The points are experimental data from the works:

Refs. 18–24 (p-Dia:B) and Refs. 25–27 (n-GaAs).

TABLE I. Semiconductor crystal parameters.

er
a Iim, meVa NM, cm�3

p-Ge:Ga 15.4 11.32 1.85� 1017b

p-Dia:B 5.7 370 2� 1020c

n-GaAs 12.4 6 2� 1016d

n-Si:Sb 11.5 42.7 3� 1018e

n-Si:P 11.5 45.6 � 4� 1018f

n-Si:As 11.5 53.8 7.8� 1018g

p-Si:B 11.5 44.39 4� 1018h

p-Si:Al 11.5 69.03 1.6� 1019i

p-Si:Ga 11.5 72.73 1.8� 1019i

n-ZnSe:Al 8.6 23.6 4.7� 1017i

aData on er and Iim are taken from Ref. 52.
bReference 17.
cReference 23.
dReferences 53 and 54.
eReference 55.
f References 56 and 57.
gReference 58.
hReference 59.
iThe Mott concentration of impurity NM is assessed by Eq. (6).
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diamond of p-type18–24 (p-Dia:B) and gallium arsenide

of n-type25–27 (n-GaAs) on the concentration of majority

(doping) impurity. In order to compare Tj for materials with

different relative permittivity er in the same plot, we, in ac-

cordance with relation (7), carried over the multiplier

(erþ 2)1/3 into the left part. Parameters of semiconductors

(er, Iim, NM) used for the construction of experimental data

dependences are given in Table I. Figure 4 shows the

concentration dependence of Tj for silicon crystals of n- and

p-types28–30 (n-Si, p-Si) and for aluminum-doped zinc

selenide crystals31 (n-ZnSe:Al). It is seen from Figs. 3 and 4

that the calculations of Tj agree with experimental data in the

limits of typical deviations of compensation ratios K for

these semiconductor materials. Note that, for n-type semi-

conductor samples shown in Figs. 3 and 4, only the D-bot

donor band is pronounced, i.e., donors are in the charge

states (0) and (þ1).

III. SCREENING LENGTH OF ELECTROSTATIC FIELD
IN THE DEBYE-HÜCKEL APPROXIMATION AT THE
NEAREST NEIGHBOR HOPPING CONDUCTION

Let us consider implementation of characteristic temper-

atures Tj and Th � Tj /3 for estimates of concentration of

hydrogen-like impurities from measurements of capacitance

in a metal-insulator-semiconductor (MIS) structure on the

example of the crystalline semiconductor of p-type (Fig. 1).

When the band conduction dominates (rp � rh), the ca-

pacitance of a MIS structure in the regime of the flat c- and

t-bands is (see, e.g., Refs. 2 and 62) Cfb¼CoxCDH/

(CoxþCDH), where Cox¼ eox/dox is the capacitance of an in-

sulator with permittivity eox and thickness dox between a

metal electrode of the unit area and semiconductor, and

CDH¼ ere0 /Kp is the capacitance of the semiconductor with

permittivity e¼ ere0 and the screening length Kp. The capaci-

tance of insulator Cox can be quite easily and accurately

measured.63 Then, the screening length of an external

electrostatic field (screened by holes of the t-band), after

Debye-Hückel, Kp¼ (ere0kBT/e2p)1/2 is found from the

flatband quasistatic capacitance of a MIS structure Cfb. Thus,

this procedure allows to find concentration of holes p from

Kp (when acceptors are totally ionized p¼ (1�K)N).

When the hopping conduction by holes via acceptors

dominates (rh � rp), to the best of our knowledge, the pos-

sibility to determine the electrostatic field screening length

Kh from measurements of quasistatic capacitance CDH¼
ere0 /Kh is not realized yet.

Hopping conduction in the NNH regime dominates

(rh � rp; Fig. 1) in the vicinity of temperature Th¼Tj /3,

where Tj is defined by formula (5). The screening length

determined by holes hopping between acceptors has, in the

Debye-Hückel approximation, the form39

Kh ¼
�

ere0nhkBTh

e2Nh

�1=2

; (8)

where Nh¼ (1�K)KN is the effective concentration of holes

hopping between acceptors in the charge states (0) and (�1).

The parameter nh � 1 characterizes the influence of fluctua-

tions of the electrostatic potential in a crystal on the ratio of

the hopping diffusion coefficient Dh to the drift hopping mo-

bility Mh of holes, Dh /Mh¼ nhkBT/e.39,40 When the acceptor

A-bot bandwidth W (see Fig. 1) is less or about thermal

energy kBTh, then nh � 1.39,40,64

At hopping conduction the root-mean-square electro-

static fluctuation of acceptor energy levels (the width W of

the acceptor A-bot band), at a random distribution of impu-

rity ions over a crystalline semiconductor and taking into

account the Coulomb interaction with the nearest neighbor

ions only, has the form10,65

W ¼
�X2

i¼1

ð1
0

PiU
2
i dr

�1=2

� 1:637
e2

4pere0

�
8p
3

KN

�1=3

; (9)

where Pidr¼ 4pr2Ci exp[–2KN(4pr3/3)]dr is the Poisson

probability that the nearest to a given ion another ion of type

i (acceptor (i¼ 1) or donor (i¼ 2)) is positioned at the dis-

tance from r to rþ dr (see Refs. 44 and 45) and there are no

other impurity ions in a sphere of the volume 4pr3/3 centered

at a given ion,
P2

i¼1 Ci ¼ 2KN is the concentration of all

ions in a crystal (C1¼C2¼KN), Ui(r)¼6 e2/4pere0 r is the

Coulomb energy of interaction between the nearest neighbor

ions having the same (signþ ) or different (sign –) charge

states,
P2

i¼1

Ð1
0

PiUidr ¼ 0 follows from the electrical neu-

trality of a crystal (N�1¼Nþ1¼KN),
P2

i¼1 Pi is the proba-

bility density of the nearest neighbor impurity ions, andÐ1
0

P2
i¼1 Pidr ¼ 1. Further, we assume that, for moderately

doped (0.01<N/NM< 0.5) and moderately compensated

(0.1<K< 0.9) semiconductors, the root-mean-square fluctu-

ation of acceptor energy levels by Eq. (9) is much larger than

the quantum-mechanical splitting of levels due to finiteness

of localization time of hopping holes (see estimations in

Ref. 64). Note that the quantum-mechanical splitting of lev-

els is more noticeable for the A-top band than for the A-bot

band (see Fig. 1).

FIG. 4. Dependence on concentration of the doping impurity N of the transi-

tion temperature Tj from hopping to the band conduction in n-Si, p-Si, and

n-ZnSe:Al. The lines are calculations by using Eq. (7) for K¼ 0.02 (1) and

K¼ 0.15 (2). The points are experimental data from the works: Refs. 28–30

(n-Si, p-Si) and Ref. 31 (n-ZnSe).
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Note that, at temperature Tj, the concentration of holes

is p� Kð1� KÞN, leading to the root-mean-square fluctua-

tion of the potential energy of a hole in the valence band

Wp � W (see Ref. 66 and references therein). Due to the

mobility edge (jEðlÞt j � Wp) is close to the top of the t-band

(see Fig. 1), the fluctuations of the top of the valence band

can be neglected (Wp � kBTj) for Tj calculations. Thus, the

formula (5) for Tj is quite correct. At temperature Th¼Tj /3,

where the hopping conduction dominates (rh � rp), the ra-

tio of the acceptor bandwidth W by Eq. (9) to the thermal

energy kBTh is W/kBTh � 13.7 and it does not depend on the

acceptor concentration N and the compensation ratio K.
Thus, it follows from Eqs. (5) and (9) that W � kBTh.

By substituting temperature Th¼ Tj /3 according to

Eq. (5) into the expression (8) for the screening length Kh,

we obtain

Kh �
0:14

ðKNÞ1=3

�
nh

1� K

�1=2

; (10)

where nh � Kð1� KÞðW=kBThÞ
ffiffiffiffiffiffi
2p
p

expðv2Þ for W � kBTh,

assuming the Gaussian distribution of acceptor energy levels

(line gb in Fig. 1), and v is the parameter obtained from the

electrical neutrality condition of a crystal: 2 K¼ 1� erf(v);

nh¼ 1 for W � kBTh. (Derivation of expressions for nh and

v is presented in Refs. 39, 40, and 64.) Note that the screen-

ing length Kh given by Eq. (10) for W � kBTh is larger than

an average distance between neighbor impurity atoms45

dim � 0.554/[(1þK)N]1/3 for all values of the compensation

ratio K (see Fig. 5). As far as Kh> dim, we can state that,

according to Ref. 67, the Debye-Hückel approximation at

temperature Th for the wide impurity band (W � kBTh,

nh> 1) is valid. To the contrary, for the narrow impurity

band (W � kBTh, nh¼ 1), we get dim>Kh for 0.1<K< 0.9.

Thus, the Debye-Hückel approximation for screening length

calculation in the case of the narrow impurity band and inter-

mediate compensation ratios is not valid.

From formula (10), for the wide impurity band

(W � kBTh, nh> 1), it follows that the quantity KhN1/3 �
0.81 K1/6 exp(v2/2), where erf(v)¼ 1� 2 K, depends only on

the compensation ratio (see Fig. 5, curve 1). The dashed line

in Fig. 5 shows calculations of the screening length Kh by

models68,69 for the case of the narrow impurity band

(W � kBTh, nh¼ 1) at temperature Th¼Tj /3. It is seen in

Fig. 5 that the screening length Kh / N�1/3 at temperature Th

weakly depends on the compensation ratio (for intermediate

values of K) for both the wide (curve 1) and narrow (curve

2) impurity bands. Unlimited increase of the screening length

at very low (K ! 0) and very high (K ! 1) compensation

ratios is related to diminishing of the effective concentration

of holes hopping between acceptors Nh¼ (1�K)KN! 0.

Note that, at a large degree of compensation 1� K � 1,

the long-range fluctuations of electrostatic potential energy

of impurity ions arise (with characteristic size much larger

than the average distance between impurity ions).6,70 Thus,

for very high compensation ratios, the expression Eq. (10)

becomes qualitative, due to Eq. (9) describes only short-

range electrostatic fluctuations. To be more precise, Eq. (9)

takes into account only Coulomb interactions between

randomly distributed nearest neighbor impurity ions in a

semiconductor.

IV. CONCLUSIONS

In the paper, we employ the virial theorem for a single

typical pair “an electron in the c-band – a nearest to it donor

in the charge state (þ1)” for nondegenerate semiconductor

of n-type or a pair “a hole in the t-band – a nearest to it

acceptor in the charge state (�1)” for a nondegenerate semi-

conductor of p-type. As a result, an expression is obtained

for the transition temperature Tj from the band electrical con-

duction (in the c- or t-band) to the electrical conduction by

hops of electrons or holes between hydrogen-like impurities.

Temperature Tj increases with the concentration of the dop-

ing impurity as well as with the compensation ratio. Calcu-

lated values of Tj agree well with known experimental data.

For temperature Th¼Tj /3, we calculate the screening length

Kh (after Debye-Hückel) when the hopping conduction dom-

inates in approximations of the wide and narrow impurity

bands. The value of Kh can be found from the measurements

of quasistatic capacitance CDH¼ ere0 /Kh (accounted for the

unit area surface of semiconductor included in a MIS struc-

ture). Using the value of Kh, the concentration N (when K is

known) or compensation K (when N is known) can be found

within the framework of our model (for the wide impurity

band, where the Debye-Hückel approximation is applicable).
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