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TRANSITION TIME ANALYSIS IN SINGULARLY PERTURBED
BOUNDARY VALUE PROBLEMS

FREDDY DUMORTIER AND BERT SMITS

Abstract. The paper deals with the boundary value problem ex+xx-x2 = 0,
with jc(0) = A, x(T) = B for A, B, T > 0 and e > 0 close to zero. It is
shown that for T sufficiently big, the problem has exactly three solutions, two
of which reach negative values. Solutions reaching negative values occur for
T > T(e) > 0 and we show that asymptotically for e —> 0, T(e) ~ -ln(e),
i.e. lime_o _ wj) = 1 ■ The main tools are transit time analysis in the Liénard
plane and normal form techniques. As such the methods are rather qualitative
and useful in other similar problems.

Introduction

In this paper, the authors will apply desingularization techniques to a singu-
larly perturbed boundary value problem. By doing so, we will be able to explain
apparent transition phenomena in a geometric way.

The equation we study is given by

(1) ex + xx-x2 —Q

and was introduced by O'Malley [AO]. The geometric approach consists of
rewriting ( 1 ) as a vector field in the Liénard plane and then to study the phase
portrait. It turns out that the global desingularization technique reveals essential
information about the flow near the degenerate singularity at the origin.

O'Malley's interest included the non-uniqueness of solutions to the boundary
value problem (1) with x(0) = A, x(T) = B, for A, B, T > 0. We will prove
the existence of exactly three such solutions, provided T is large enough, with
the aid of transition time analysis as in [CD]. In Figure 1 we show three such
solutions for e = 1, T = 4.3, A = B = 10.

Furthermore, we will give an asymptotic estimate for the minimal transition
time as e —* 0 using normal forms for the blown-up vector field.

We also prove that outer expansion techniques are equivalent to center man-
ifold reduction and shed light on a good choice of initial conditions.
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4130 FREDDY DUMORTIER AND BERT SMITS

Figure 1. Three different solutions to the same bound-
ary value problem.

1. Setup
Rewriting ( 1 ) as a Liénard vector field is a standard method which applies to

all perturbation problems of the form

ex + f(x)x + gix) = 0.
Put y = ex + Fix) where

Fix) = I   fiu)du.
Jo

This last equation is the so called "Liénard transformation". After rescaling
time by a factor 1 ¡e and renaming the variables we obtain

x = y- Fix)
y = -egix).

For our equation this yields

x = y-*>r
y = ex2;

hence a one parameter family {X£ = X(x, y, e)}e>o • Later on, we will have to
perform a desingularization because of the appearance of a degenerate singu-
larity at the origin. The unperturbed system e = 0, which has has a parabola
of singularities, all but one of which are elementary (i.e., having a linear part
with one non-zero eigenvalue), is drawn in Figure 2.

Figure 2. Phase portrait of the unperturbed system.
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TRANSITION TIME ANALYSIS 4131

The desingularization at (0, 0) will consist of a weighted blow-up. By do-
ing this, we lose the family character of X(x, y, e) and the resulting object
need not be a vector field any more, but only a "foliated local vector field". A
formal build up of this procedure has been done in [DeR] and in [DR]. For
a didactic introduction, the reader can look in [D], where the Andronov-Hopf
bifurcation is discussed as an example. We limit ourselves here to describing
the desingularizing maps.

2. Transition time analysis of a single vector field
We first observe that, fixing e , we can rescale the original Liénard system by

taking

to obtain

(3) X

x = ex
y = e2y

et = t

x = y-i2

y = x2.

(See Figure 3.)
This proves that all vector fields in the family {XE}s>o are linearly equivalent

to X. We would like to stress, however, that it is purely coincidental and not
necessary for the desingularization analysis in the sequel to have X independent
of e . Let us for the rest of this paragraph concentrate on X. For each fixed
e, the original boundary value problem

x(0) = A,     x(T) = B, with A, B>0
is transformed into

x(0) = A,x(T) = 5, with T =T,A = A/e, B = B/e.
Let us in the sequel omit the bars over x, y, A, B and T. The singularity

at the origin can be identified topologically as a cusp, by means of a quasi-
homogeneous blow-up (see [D, p. 21] for the calculation). All the singularities
on the blow-up locus are hyperbolic. It was then proved in [CD] that the orig-
inal transition time goes monotonously to infinity as the trajectory approaches
the singularity. This implies that solutions obtained from a movement along the

Figure 3. Phase portrait of X(x, y, e) for e > 0.
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4132 FREDDY DUMORTIER AND BERT SMITS

right side of the singularity are unique per given T, if T is large enough. In a
neighbourhood of the cusp we also have monotonicity of the time on the left side
thus proving the existence of a second solution to the boundary value problem.
The third and final solution to the boundary value problem can be found in
trajectories that move near the left branch of the parabola y = \ for a long
time before crossing over to the right. To prove uniqueness in this case, we will
rescale the vector field X to get an expression at infinity and use monotonicity
of the time map along some saddle sector at infinity. This involves some careful
treatment because we are again considering a different (scaled) time map in the
neighbourhood of a semi-hyperbolic singularity.

The proposed rescaling at infinity means transforming (3) with

x = u/s
y = i/s 2

This is called a "quasi-homogeneous blow up at infinity (on the Poincaré
sphere) in the y-direction". It yields a vector field

f s = -\su2
ù = i - lí- - ±w3

and by multiplying the time with a factor 5 we get

s = -hs2u2
X' ■ ) 2

\ ù = 1 - — - *£.
On the blow-up locus {s = 0} , representing infinity on the Poincaré sphere,

we find two singularities k\ and k2  (5 = 0, u — ±\/2) that are semi-hyperbolic:

DX(0,+V2)={-V2    -V2

DX'(0,-V2)=(+J2   +V2J-

To explain the behaviour in the ^-direction we perform a center manifold re-
duction [Ca] at k\ and k2. At k\ = (0, -\/2), we simplify X' by substituting
w = u + \f2:

f 5 = -\s2iw - V2)2
\ tb = 1 - %iw % V2)2 - ±siw - v7!)3.

Figure 4. Partial phase portrait at infinity.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Writing the center manifold as a graph (s, w(s)) and using the invariance
under the flow we find

1 iw(s) = —¡=s + 0(s¿)
v2

which results in the quadratic behaviour

s = -s2 + 0(s3)

along the center manifold. We conclude that kx is a saddle (for e > 0). At
&2 = (0, +y/2) we put w = u + y/2 :

j s = -±s2(w + V2)2

\ lib = 1 - \(w + V2)2 - \s(w + V2)3
and in a similar way we see that Ä2 is a sink (Figure 4). As we indicated
before, it is not enough to prove monotonicity of the new time, because we
have to consider the original X-time that we have altered in the rescaling. We
will do this by using appropriate normal forms. By using a theorem of Takens
[Tl], the vector field X' near kx is C-conjugate (for any r) to some

(4) X»:{1 = /W
l y = g(x)y

and we may suppose that the conjugacy sends {s = 0} to {x = 0}. In our case,
we have g(0) # 0, /(0) = f(0) = 0, f"(0) ¿ 0. Hence, we can rewrite X" as

xn .   Í X = X2f(x)*■; y = h(x)yf(x)
with /(0) ^ 0 and h(0) ^ 0.  Dividing by f(x) we get a simpler equivalent
vector field

,2(5) Xs : P ~ X
\} \y = -h(x)y.

Recall that, to obtain the original vector field again, we have to divide Xs
by the function s/f(x), which is given by some xH(x, y) with H(0, 0) ^ 0.
We restrict H to some compact neighbourhood of the singularity and suppose,
without loss of generality, that it contains [0, l]2. We now prove the following

Proposition. Let X = ^ ' Xs with Xs = xnf¿ - h(x)y^, n > k on
{x > 0} and H, h C-functions (r>2), with H(0, 0) > 0, h(0) > 0. Let Cx
and C2 be two transversal sections to the positive y-axis and the positive x-axis
respectively. Let s be a regular parameter on Cx. Then the transit time from
Cx to C2 expressed in s goes monotonously to infinity with derivative going to
-oc.

Proof. We first calculate the time between the two standard sections {x = 1}
and {y = 3} for some S > 0 in the normal form and use 5 to be Xo for any
point (xo,S) (see Figure 5).

If S = 1, the time map is given by

T(x0)= f    H(x,yx°(x))~
Jx=xa x
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4134 FREDDY DUMORTIER AND BERT SMITS

{y = S}

Figure 5. Transit from {y = 3} to {x = 1}.

and its derivative is

(6)
dT      . Hix0, 1)

„n-k + fJ x=

dG .        .  dx
dx-0{x'Xo)x^

\Q J X=Xo

with Gix, xq) = 77(x, yXoix)). We now give an absolute estimate for the
integral on the right-hand side of (6). If we suppose that ||y(x, y)\ < M on
[0, l]2 then we get

(7)

V     9G .        ,  dx I     I /"    977. „3j>*>0)  ¿x
x=x0

1
Ôy <9x0 n-k

<M I
Jx=x0

\dyx°ix)
dxn

dx
■Y-n—k '

If we change (x, y) by (x, y) with y = Sy then the expression of Xs does
not change while X changes into xkx gp)Xs, which we write as xkBx    ,XS .
On the other hand,  ~ = S ̂ y- < Ko, for some K independent of Ô if we
take (x, y) G [0, l]2 and hence (x, y) G [0, 1] x [0, S]. As such in (7) we
may suppose that iV7 = SK, with ô as small as we want. In the original
(x, y)-coordinates this corresponds to studying the transit time from {y = ô}
to {x = 1}. As in the end we will fix some ô > 0, this extra assumption on
M is permitted. Let us continue to work in (x, y)-coordinates from {y = 1}
to {x = 1}. Now

dy_
dx

-hix)y        .  .       -r^du
-> y(x) = e  Jxo "

x"
and thus

.Ôy^x),     hix0)  - fx h-$du     C  -c^--^)
——— = e    *o "      < —e      o

dxo xi x/?
for some C > 0, C > 0. This leaves us with finding an estimate for

i/'
X0 7*o

C(   n-l       *»-
e 0

dx
■y-n—k '

Changing over to the time variable again we get

xo Jt=o
r(-¿ -Dt X,n-\

I-in- l)tx{srr)
kl(n-\) dt
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with D = (n- 1)C>0, or

r(-^r-i) -D,1 /'--Tl-i-T-U e-Dt ß        r-_.
—-T /       °-iràt <w -=-r \ e-t'dt
x¡¡-k Jt=0 (\-(n- l)tx¡¡-l)¿i *0     ¿"o

E   1 -^^(-^t-i) F
-(1 - e o        ) <vn-k T) ' —   -y-n—k 'Aq Aq

(8) e-*'{l -(n-\)tx"~x)-^ <E

In equality (*) we use that

for all / e [0, rzr(-^r - 1)]  and for some E > 0, only depending on  Z)
and not on Xo, for xn sufficiently small. We therefore first observe that since
k < n - \ , 0 < x0 < 1 and

0<x^_1 <l-(n- l)/x0"-' < 1,

we have
e ft ^ g    2t g   u

(l-(«-l)?x0"-')^r -(l-(«-l)ix0"-')      l-eu

with  u = § t e [0, ^(-J-t - 1)]  and e = ¿(« - l^""1 .   Inequality (8)
follows if we can prove that there is some E > 0 not depending on e (for e
sufficiently small) such that

e~u
(9) -<E1 - eu ~
for  u e [0, i - A]  and A > 0  some arbitrary but fixed real number.   As
e~u(l - eu)~l is monotone decreasing on [0, | - 1], monotone increasing on

[j - 1, j[ and its value at \- A is e A+sc  , inequality (9) is straightforward.
The final estimate can then be written as

/"'     dG, ■ dx
Jx=xo dx0{X'Xo)x»-*

i
< SKC'F-

x0n-k-

Let L be a lower bound for H(x, y). Choosing 5 < 2kc>f we nawe Proved
that

dT
ä— (x0) -> -co   as x0 -> 0
OXn

and hence that T(xo) —► +oo in a monotone way.
The fact that the monotonicity of the transit time is independent of the

chosen sections is a consequence of the fact that a transit time between sections
both transverse to the same separatrix has a bounded derivative. Along the x-
axis this is a standard observation and along the y-axis it easily follows from
the results in [CD]. The monotonicity is clearly not depending on the regular
parameter. ■

The above theorem is sufficient to prove the existence of exactly three solu-
tions to the boundary value problem for large enough T.

A transit time between sections {x = Xo} and {y = Yn} in system (3)
corresponds after blowing up to a movement between sections {« = Xqs} and
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4136 FREDDY DUMORTIER AND BERT SMITS

Yn

x = Xd

u = Xns

VyT,

Figure 6. Saddle sectors on the Poincaré sphere and in
the blown-up situation.

{s = -4=} which, in normal form coordinates, transform to some transverse
V Yo

sections {u = sy/\is)} and {s = y/2(u)} , with ^,(0) ^ 0, / = 1,2 (see Figure
6). We are now in a situation like in the proposition with k = 1 and n = 2,
thus the transit time between these sections goes monotonously to infinity as
the starting point gets closer to the separatrix.

From the implicit function theorem, it follows that the transition time is
analytic, hence continuous. Therefore, there exists a minimal transition time
for solutions passing left of the origin. We will use global desingularization to
estimate its asymptotic behaviour as e —> 0.

3. Desingularization of the family of vector fields

Consider the map

(10)     <D:S2 x[0, U[- x R¿ : ix, y, e, u) i-> (ux, u y, ue) = (x, y, e).

The pull back of X by O results in a vector field X on S2 x [0, U[. Dividing
X by the function u we obtain an equivalent vector field X, which is called the
blown-up vector field, from which the local vector field will be constructed. In
practice, we will use two systems of charts, covering the blow-up locus {« = 0} .

3.1. Reseating of the family. This is the traditional part of the blow-up method,
as described in, e.g., [D] or [AP]. In (10), we take ë = 1 and let (x, y) vary
in some large disk D of R2, the blown-up vector field is in these coordinates
given by

' x = y-X:
si
2

Note that the vector field is described by the same equations as in (3), only
the coordinate system is different. The singularity at (0, 0) has already been
identified topologically as a cusp.

3.2. Phase directional rescaling. Looking at this chart is the really innovative
part of the global blowing-up technique. In (10), we now choose X2 + y2 = 1
and take e in a neighbourhood of 0. From the form of O we have uë = e,
hence ùë + uë = 0, or I = — |. To simplify the calculations, we will merely
consider a directional blow-up, i.e., we look at four subcharts each covering an
open half circle. For reasons of symmetry, it suffices to consider just two such
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subcharts. The actual rescaling formula (for the x-direction) is given by

x = u
y = u2v
e = uë

which transforms the vector field X to

ÛA
ù — u2(v - \)
v = u(e - 2v(v - 5))

I e"

After division by u we obtain

1 -U = -U:{u

-ue(v - j).

ù - u(v - I]
v = e - 2v(v - %
s = -e(v - j).

On the blow-up locus {u = 0} we notice two singularities for the unperturbed
system at v = 0 and v = \ .

The singularity at (0,0,0) is hyperbolic, for

^l(o,o,o)= I   02
0

0
+1

0
1

0     +i

which locally gives a phase portrait as in Figure 7.
At (0, j, 0) we find a semi-hyperbolic singularity:

DÜ\(O.i.0)

0     0     0
0   -1    1

,0     0     0
Along the circle (represented by the v-direction), the movement will be at-

tracting. To see what happens in the ë-direction, we look at the 2-dimensional
part of the vector field

{v = £ - 2v (v - 5 )

S=-e(v-\)

Figure 7. Local phase portrait around the hyperbolic
singularity.
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4138 FREDDY DUMORTIER AND BERT SMITS

and perform another center manifold reduction. To simplify the calculation,
we again translate by w = v - \ and study

w = ë - 2w(w + j)
ë - -ëw.

Writing an invariant center manifold as a graph (e, iu(£)) with

wie) = aê+ Oie2).
Expressing the invariance under the flow we find a = 1, thus

e = -e2 + Oie3)
which means that the singularity has an attracting behaviour in the e-direction
along the center manifold.

With the phase-directional rescaling in the y-direction,
X = uv
y - u2
e = ue

and dividing by u we analogously obtain

77':
uev'u = a

v = 1

with singularities at (0, ±V2, 0) with respective Jacobian matrices
'0      0 0

\e2v2

DÜ' (0,±\/2,0) 0   tV2    tv7!
0      0 0

Again by center manifold reduction, we find that both singularities are at-
tracting in the ë-direction.

Glueing the charts together, we are now ready to draw the local phase portrait
around (0,0), as in Figure 8.

Figure 8. Global blow-up of the degenerate singularity.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRANSITION TIME ANALYSIS 4139

4. Asymptotic estimates for the time map as e —► 0

We are now going to make use of the global blowing up method in determining
the asymptotic behaviour of a minimal time solution. We will consider various
passages in the neighbourhood of singularities by means of normal form theory,
thus providing a useful tool for the calculation of transit time asymptotics in
general. As indicated in the end of the previous paragraph, the global phase
portrait at the origin contains five singularities: two hyperbolic ones, two semi-
hyperbolic ones and a cusp singularity. Any solution to the boundary value
problem must, for e sufficiently small, pass near the hyperbolic singularity to
the right and near at least one of the two semi-hyperbolic ones. Hence, we will
have to find lower estimates for the transit time in a neighbourhood of those
singularities. First, we remark that a passage along the curve of zeroes outside a
neighbourhood of the cusp has no big influence on the transit time asymptotics.

4.1. Passage along the parabola. By a theorem of Takens [T2] (or using the
e-dependent version in [B]) in a neighbourhood of a point (xn, Xq/2) ,¿(0,0)
on the parabola of zeroes, the vector field is C-conjugate (for any r ) to the
normal form

d d(H) <P{y^)—±\p(y,e)x—.

It is easy to see that
<p(y, e) = ey(y, e)

with  0(0,0) / 0.   In a sufficiently small neighbourhood of (0,0),   <p  is
bounded by two positive constants N, M.

Hence, for a passage from j/n to yx , the transition time is calculated by

Tr"dy
Jo   z<P

Therefore
C D

(12) ^<T<-e ~     ~ e
for some positive constants C, D .

Of course in the simple situation we are dealing with we could just as well
do this calculation directly without using a normal form; the current method is
adapted to study more general problems.

4.2. Passage near the hyperbolic singularity. Let us start by changing the
vector field Ü in the x-directional blown-up situation to the equivalent vector
field

(13) Us .
l€  —   Li

v = E(v - i)_1 - 2v

and calculate the transit time of it between two points (1, uq) and (en, 1)
on respective sections {ê = 1} and {u = 1}. It is given by respectively
- ln(wn) or - ln(e"o) but we can also write it as - ln(e) for e = uë since uë = e
represents an invariant foliation. For the transit time in the original vector field
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4140 FREDDY DUMORTIER AND BERT SMITS

we first observe that changing the transverse sections will not induce an essen-
tial difference and w.r.t. the given section we get the original transit time if we
multiply IIs by u(v - \). For each 0 < a < b, with a as small and b as
large as we want, and for (u, v , e) sufficiently near (0,0,0) we get

buë < u(v — ■=) < a

and hence
1 1 1— < ~~,-TT < IT-
a     u(v - A)     be

As such, the original transit time T can be estimated as

,*A\ 1 i   /   \       -r 1 m(£)(14) --la(fi) <{T < "ß-j-1--

4.3. Passage near a single semi-hyperbolic singularity. Starting from the blown
up vector field in the y-direction, we perform a normal form calculation to
obtain a relatively simple model equation. We simplify the computation by
translating the singularity (0, —y/l~, 0) to the origin with v = v - \[2 and by
introducing the linear change of coordinates

The result is a new vector field X'(x, y, z) with linear part

/0     0     0>
7)1'|(0,0,0)=    O   V2   0

\0     0     0,
Again by Theorem 1 of [B], there exists a C^-coordinate change, whose linear

part is the identity, which transforms the vector field to

' x = xzfix, z)
(15) X"\y = ygix,z)

,z = -z2/(x,z)

with fix, z) = l+fix, z), /(0, 0) = 0, gix, z) = V2-z+gix, z), M(0, 0)
= 0, and leaving the foliation xz = e invariant. Because the variables are sep-
arated in (15), we can calculate the transit time by studying the easy equivalent
two-dimensional model

f x = x
[ z = -z.

Here, the time from (xo, 1) to (1, zn) is

Ts = -lnie).

Remark that we have rescaled the time by a factor x (from the desingular-
ization) and a factor z . Furthermore, we can choose our neighbourhood small
enough so that, for any 3 > 0,

1 - S < 1 + fix, z) < 1 + 5.
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So the original time T(e) has the property that

eT(e)lim
«-.o ln(e)

1

which we write as

(16) T ln(fi)

Again, near such a semi-hyperbolic singularity we could easily obtain the
same result from the expression of Ü' itself without having to use a normal
form theorem. However, we want to present it in this way in order to rely on
techniques that can also be applied in more complicated situations.

The same observation can be made with respect to the next reasoning, where
of course something has to be proved. Our approach, though not very long, is
far too general for the example in consideration.

4.4. Passage near both semi-hyperbolic singularities. Finally, we consider
the transition between the two semi-hyperbolic singularities. We calculate the
passage time in three steps: the first, starting from the plane {z = 1} to {y — 1}
in the normal form coordinates around the left singularity. The second part of
the orbit is a regular passage between transverse sections Tx and T2. The third,
between the planes {y = 1} and {x - 1} in the normal form coordinates of
the right singularity. (See Figure 9.)

The contribution that any of the steps make to the total transit time (when
e —> 0 ) depends on the curve x — y(y), describing the initial conditions in the
plane {z - 1}. The sum of the contributions, however, reveals to be equivalent
to -Öfci.for e-*0.

The regular passage can be described by the normal form -jj- and does not
contribute significantly to the transition asymptotics. If we start from a segment
Lx on the transversal section Tx, then the regular flow takes this to a segment
L2 on the transversal section T2 . Considered as a map between Li and L2 ,
the flow is a diffeomorphism. Hence, in normal form coordinates around the

{xz = e}

Figure 9. Passage near both semi-hyperbolic singular-
ities.
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4142 FREDDY DUMORTIER AND BERT SMITS

respective singularities, the order of contact between the segments and the yz-
plane (or xy-plane) is preserved. In this way, a segment Li = {x = azk+h.o.t.}
is mapped onto L2 — {x — bzk + h.o.t.}.

In the normal form coordinates around any of the semi-hyperbolic singu-
larities, the transit time asymptotics only depend on the z-coordinate of the
intersection of the segment L¡ with the invariant plane xz = e . Since the -j^-
and ^-components are the same in the normal forms of both singularities and
since the (x, z)-variables are separated, the transit time is the same as with a
single semi-hyperbolic singularity, up to the time needed for a passage between
the sections L\ and L2 in any of the two normal form coordinates.

This last time can be calculated explicitly: for special segments Li = {x =
azk} and L2 = [x = bzk} we have

eTs (S)*->*.-ITT"G)
thus constant.

For arbitrary non-flat contacts Li = {x = a!zk + h.o.t.} and L2 = {x =
b'zk +h.o.t.} we look for special sections [x = azk} and {x — bzk} immedi-
ately above and below L\UL2 respectively. The transit time is then bounded
by the transit time between these special segments, hence also bounded by a
constant.

If the segments L, = (¡pAz), z) have a flat contact with the yz-plane, we
remark that we can find a constant c such that, for any k , the segment Sk =
{x = czk} lies above both L\ and L2. The transit time Ts is then bounded
by the transit from {z = 1} to any segment Sk , so

Zo dC       ,_,   . 1    , /,       Afz° dC
Tsik,e)=        -^ = -ln(z0)

7z=i   <=
ln(e)+k+l    w     k+l

for any k , hence Tsik, e) -> 0, as k -* +00 .
For segments that are tangent to the xy-plane, the calculations are the same

if we work with the x-variable in the simple model.
As in the previous paragraph, we remark that we have scaled the transit time

Ts by a factor e and that, to compare it with the original time in (15), the
neighbourhoods around the respective semi-hyperbolic singularities (in which
the normal form coordinates hold) should be chosen small enough.

From (12), (14) and (16), we conclude that the minimal transit time of a
solution passing left of the origin is equivalent to

-^-1     as^O.

5. Asymptotic analysis and center manifolds
In this section we show that classical outer expansion techniques geometri-

cally amount to studying center manifold behaviour. The center manifold of the
right semi-hyperbolic singularity in the x-directional blow-up can be calculated
explicitly as (e, wië)) up to any order from the equation

(17) ((!,&', (ff-2(w(í) + i)«;(í)',fti;(í))> = 0.
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Writing w(E) = Y,i=x aië' this expression becomes
k k

(is) E+ (Y*i f)(-1 + E(< - 2)a«r) = °-
1=1 (=1

As Ä: —► oo we get
oo      Í—1

(i9) E(E a'a'-/(/ -2) - a<)*'+e" = °-
i=i ¡=i

Solving this term per term is easy:

ax = 1 ; 02 = — 1 ; «3 — 1 ; a^ = 0 ; Q5 = — 1 ; a^ — — 1 ;  etc.

with

(20) a,- = Va/af_/(/-2)    for / > 2.
tí

In the original coordinates (which are blown up in the x-direction) this is
formally expressed as

.       00

w = v - - — Y, a¡£'
tí

hence
1 °°u2v = -u2 + Yaiu2êl-

;=1

Using E = I we have
. 00      i

(21) y(x, e) = -x2 + axxe + Y [$>/«/-/(/ - 2)]x2-V.
1=2   /=i

Now a formal expansion procedure in the original equation gives precisely
the same result. Putting

CO

y(x,e) = Yy¡(x)ei
¿=o

and plugging this in the original system

(22, <'-k>S="2
gives us, choosing yn = \x2 (assuming that the orbit stays "close to the parabola")

1 °°       ' 1(23) y,(x) = - and Y [(E^XW-/W) " 2* ̂ ^ = °
(=2       1=0

hence

(24) yt{x) = --rk £>(i)ytf(*)-
yoW /=0

It follows by induction that
(25) y^x) = akx2~k, for all fc > 2.
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Classically, one now calculates the time by substituting the expansion back
into the equation:

/•'■  .       fx>    edx fI   dt=        v"^xW
Jto Jxo   y      2x Jx,

L
Xl dx

J-*»~        Jx0    x      £ + Ê    + ••

*' dx     _, ,— + 0(e)."V*

If xo = 0(e) we find t = 0(-ln(e)). Rescaling the time from (22) to our
original vector field we obtain again T = 0(-^).

To calculate the transition time asymptotics with the formal expansion tech-
nique, it is crucial to choose the right initial conditions in terms of e. To
see which is appropriate, we can look at surfaces x = (pie) in the blown up
situation. Choosing x = e (or equivalently x = ae with a > 0 ) corresponds
to starting from the plane e~ = 1, respectively ë = a thus describing precisely
the transition near the semi-hyperbolic singularity. The qualitative analysis per-
formed in Sections 3 and 4 completely explains the reason why in the choice of
initial conditions x = (pie.) we need to take x ~ e (or at least x ~ ae for some
a > 0 ) and not x ~ ea with a ^ 1, in order to obtain the exact asymptotics of
the transit time for e —► 0.

However, the principal term in the asymptotic development of Tie) does
clearly not indicate the limiting position (for e —► 0 ) of the "minimal time"
orbits. To find the limiting position (if it exists) we need to perform a more
detailed analysis.

As a part of this let us observe that it is easy to show by classical asymptotic
analysis that once passed near the degenerate singularity at the origin, (hence
for y > 0 ), the movement along the left branch of the parabola is faster than
along the right one:

Using (22), we find

^ dx 1   fy/2yi dxP, = 1 r'_d4—4-= I f" ^(1 + * + Oie3))eJ^-0  x(l-| + ii-£ + ...)      ej^   x'      x

and

1   /—v^i                 dx 1   H2y' dx        e
T2 = - -^—;-= -/        — (l-- + 0(e3))«/-V*; *(i+ * + £ + £ + ...)    eV^ *      x

so T2<TX.
Along the branches it is also very easy to see that the calculation for center

manifold reduction and formal expansion are exactly the same.
This time analysis seems to indicate that the limiting position (for e —► 0 )

of the orbit between y = yo and x = xn could be like in the right picture of
Figure 10.

This is also confirmed by numerical experiments we performed with the
"dstool" package. A conclusive proof however, will require a more detailed
analysis of the passage near the origin.
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Figure 10. Minimal orbits (depending on e > 0) and
their limit position.
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