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TRANSITION TIMES AND STOCHASTIC RESONANCE FOR
MULTIDIMENSIONAL DIFFUSIONS WITH TIME PERIODIC

DRIFT: A LARGE DEVIATIONS APPROACH
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Université Henri Poincaré Nancy I, Humboldt-Universität zu Berlin
and Humboldt-Universität zu Berlin

We consider potential type dynamical systems in finite dimensions with
two meta-stable states. They are subject to two sources of perturbation: a slow
external periodic perturbation of period T and a small Gaussian random
perturbation of intensity ε, and, therefore, are mathematically described as
weakly time inhomogeneous diffusion processes. A system is in stochastic
resonance, provided the small noisy perturbation is tuned in such a way that
its random trajectories follow the exterior periodic motion in an optimal fash-
ion, that is, for some optimal intensity ε(T ). The physicists’ favorite, mea-
sures of quality of periodic tuning—and thus stochastic resonance—such as
spectral power amplification or signal-to-noise ratio, have proven to be defec-
tive. They are not robust w.r.t. effective model reduction, that is, for the pas-
sage to a simplified finite state Markov chain model reducing the dynamics to
a pure jumping between the meta-stable states of the original system. An en-
tirely probabilistic notion of stochastic resonance based on the transition dy-
namics between the domains of attraction of the meta-stable states—and thus
failing to suffer from this robustness defect—was proposed before in the con-
text of one-dimensional diffusions. It is investigated for higher-dimensional
systems here, by using extensions and refinements of the Freidlin–Wentzell
theory of large deviations for time homogeneous diffusions. Large deviations
principles developed for weakly time inhomogeneous diffusions prove to be
key tools for a treatment of the problem of diffusion exit from a domain and
thus for the approach of stochastic resonance via transition probabilities be-
tween meta-stable sets.

Introduction. The ubiquitous phenomenon of stochastic resonance has been
studied by physicists for about 20 years and recently discovered in numerous areas
of natural sciences. Its investigation took its origin in a toy model from climatol-
ogy, which may serve to explain some of its main features.

To give a qualitative explanation for the almost periodic recurrence of cold and
warm ages (glacial cycles) in paleoclimatic data, Nicolis [12] and Benzi, Sutera
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and Vulpiani [3] proposed a simple stochastic climate model based on an energy
balance equation for the averaged global temperature T (t) at time t. The balance
between averaged absorbed and emitted radiative energies leads to a deterministic
differential equation for T (t) of the form

Ṫ (t) = b
(
Q(t), T (t)

)
.(0.1)

The solar constant Q(t) fluctuates periodically at a very low frequency of
10−5 times per year due to periodic changes of the Earth orbit’s eccentricity (Mi-
lankovich cycles), which coincide roughly with the observed frequency of ice
and warm ages. Under reasonable assumptions, for frozen q , the nonlinear func-
tion b(q,T ) describes the force associated with a double well potential possessing
two stable temperature states which represent cold and warm ages. As Q varies
periodically, these states become meta-stable and are moved periodically by Q(t).

Most importantly, transitions between these states are impossible. Only the addi-
tion of a stochastic forcing allows for spontaneous transitions between the meta-
stable climate states, thus explaining roughly transition mechanisms leading to
glacial cycles.

In general, trajectories of the solutions of differential equations of this type,
subject to two independent sources of perturbation, an exterior periodic one of
period T , and a random one of intensity ε, say, will exhibit some kind of randomly
periodic behavior, reacting to the periodic input forcing and eventually amplifying
it. The problem of optimal tuning at large periods T consists in finding a noise
amplitude ε(T ) (the resonance point) which supports this amplification effect in
a best possible way. During the last 20 years, various concepts of measuring the
quality of periodic tuning to provide a criterion for optimality have been discussed
and proposed in many applications from a variety of branches of natural sciences
(see [7] for an overview). Its mathematical treatment started only very recently,
and criteria for finding an optimal tuning are still under discussion.

The first approach toward a mathematically precise understanding of stochastic
resonance was done by Freidlin [5]. Using large deviations theory, he explains ba-
sic periodicity properties of the trajectories in the large period (small noise) limit
by the effect of deterministic quasi-periodic motion, but fails to account for op-
timal tuning. The most prominent quality measures for periodic tuning from the
physics literature, the signal-to-noise ratio and the spectral power amplification
coefficient (SPA), were investigated in a mathematically precise way in Pavlyuke-
vich’s thesis [13], and seen to have a serious drawback. Due to the high complexity
of original systems, when calculating the optimal noise intensity, physicists usu-
ally pass to the effective dynamics of some kind of simple caricature of the system
reducing the diffusion dynamics to the pure inter well motion (see, e.g., [11]). The
reduced dynamics are represented by a continuous time two state Markov chain.
Surprisingly, due to the importance of small intra well fluctuations, the tuning
and resonance pattern of the Markov chain model may differ essentially from the
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resonance picture of the diffusion. It was this lack of robustness against model
reduction which motivated Herrmann and Imkeller [9] to look for different mea-
sures of quality of periodic tuning for diffusion trajectories, retaining only the
rough inter well motion of the diffusion. The measure they treat in the setting of
one-dimensional diffusion processes subject to periodic forcing of small frequency
is related to the transition probability during a fixed time window of exponential
length, the position of which is tracked by a parameter of period length in which
maximization is performed to account for optimal tuning.

The subject of the present paper is to continue our previous work in the gen-
eral setting of finite-dimensional diffusion processes. Our approach of stochastic
resonance thereby is based on the same robust probabilistic notion of periodic tun-
ing. This extension is by no means obvious, since the multidimensional problem
requires entirely new methods. We recall at this point that in [9] methods of inves-
tigation of stochastic tuning were heavily based on comparison arguments which
are not an appropriate tool from dimension 2 on. Time inhomogeneous diffusion
processes, such as the ones under consideration, were compared to piecewise ho-
mogeneous diffusion processes by freezing the potential’s time dependence on
small intervals. We study a dynamical system in d-dimensional Euclidean space
perturbed by a d-dimensional Brownian motion W , that is, we consider the solu-
tion of the stochastic differential equation

dXε
t = b

(
t

T
,Xε

t

)
dt + √

ε dWt, t ≥ 0.(0.2)

One of the system’s important features is that its inhomogeneity is weak in the
sense that the drift depends on time only through a re-scaling by the time parame-
ter T = T ε which will be assumed to be exponentially large in ε. This corresponds
to the situation in [9] and is motivated by the well-known Kramers–Eyring law
which was mathematically underpinned by the Freidlin–Wentzell theory of large
deviations [6]. The law roughly states that the expected time it takes for a homo-
geneous diffusion to leave a local attractor, for example, across a potential wall of
height v

2 , is given to exponential order by T ε = exp(v
ε
). Hence, only in exponen-

tially large scales of the form T ε = exp(
µ
ε
) we can expect to see effects of tran-

sitions between different domains of attraction. b is assumed to be one-periodic
w.r.t. time. The deterministic system ξ̇t = b(s, ξt ) with frozen time parameter s is
supposed to have two domains of attraction that do not depend on s ≥ 0. In the
“classical” case of a drift derived from a potential, b(t, x) = −∇xU(t, x) for some
potential function U , equation (0.2) describes the motion of a Brownian particle in
a d-dimensional time inhomogeneous double-well potential.

Since our stochastic resonance criterion is based on transition times between
the two meta-stable sets of the system, our analysis relies on a suitable notion
of transition or exit time. The Kramers–Eyring formula suggests to consider the
parameter µ from T ε = exp(

µ
ε
) as a natural measure of scale. Therefore, if at
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time s the system needs energy e(s) to leave some meta-stable set, an exit from
that set should occur at time

aµ = inf{t ≥ 0 : e(t) ≤ µ}
in the diffusion’s natural time scale. If ai

µ are the transition times for the two do-
mains of attraction numbered i = ±1, we look at the probabilities of transitions
between them within a time window [(ai

µ − h)T ε, (ai
µ + h)T ε] for small h > 0.

Assume for this purpose that the two corresponding meta-stable points are given
by xi, i = ±1, and denote by τ−i

� the random time at which the diffusion reaches
the �-neighborhood B�(x−i) of x−i . Then we use the following quantity to mea-
sure the quality of periodic tuning:

M(ε,µ) = min
i=±1

sup
x∈B�(xi)

Px

(
τ−i
� ∈ [(ai

µ − h)T , (ai
µ + h)T ]),

the minimum being taken in order to account for transitions back and forth. In or-
der to exclude trivial or chaotic transition behavior, the scale parameter µ has to be
restricted to an interval IR of reasonable values which we call resonance interval.
With this measure of quality, the stochastic resonance point may be determined as
follows. We fix the window width parameter h > 0 and maximize M(ε,µ) in µ

asymptotically as ε → 0, or, equivalently, as T ε = exp µ
ε

→ ∞. If the asymptotic
maximizer exists and is reached for the time scale µ0(h), we call the eventually
existing limit µ0 = limh→0 µ0(h) resonance point. This is the optimal tuning w.r.t.
our quality measure, that is, the best asymptotic relation between the noise ampli-
tude ε and the period T ε .

To calculate µ0(h) for fixed positive h, we use large deviations techniques. In
fact, our main result contains a formula which states that

lim
ε→0

ε log{1 − M(ε,µ)} = max
i=±1

{µ − ei(a
i
µ − h)}.

We show that this asymptotic relation holds uniformly w.r.t. µ on compact sub-
sets of IR , a fact which enables us to perform a maximization and find µ0(h). The
techniques needed to prove our main result feature extensions and refinements
of the fundamental large deviations theory for time homogeneous diffusions by
Freidlin–Wentzell [6]. We prove a large deviations principle for the inhomoge-
neous diffusion (0.2) and strengthen this result to get uniformity in system para-
meters. Similarly to the time homogeneous case, where large deviations theory is
applied to the problem of diffusion exit culminating in a mathematically rigorous
proof of the Kramers–Eyring law, we study the problem of diffusion exit from a
domain which is carefully chosen in order to allow for a detailed analysis of tran-
sition times. The main idea behind our analysis is that the natural time scale is so
large that re-scaling in these units essentially leads to an asymptotic freezing of the
time inhomogeneity, which has to be carefully studied, to hook up to the theory of
large deviations of time homogeneous diffusions.
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The material in the paper is organized as follows. Section 1 is devoted to the
careful extension of large deviations theory to diffusions with slow time inhomo-
geneity. The most useful result for the subsequent analysis of exit times is Propo-
sition 1.8, with a large deviations principle for slowly time dependent diffusions,
uniform with respect to a system parameter. In Section 2 upper and lower bounds
for the asymptotic exponential exit rate from domains of attraction for slowly time
dependent diffusions are derived. The main result Theorem 2.3 combines them.
Section 3 is concerned with developing the resonance criterion and computing the
resonance point from the results of the preceding section.

1. Large deviations for diffusion processes. Let us now consider dynami-
cal systems driven by slowly time dependent vector fields, perturbed by Gaussian
noise of small intensity. We shall be interested in their large deviation behavior.
Due to the slow time inhomogeneity, the task we face is not covered by the clas-
sical theory presented in [4] and [6]. For this reason, we shall have to extend the
theory of large deviations for randomly perturbed dynamical systems developed
by Freidlin and Wentzell [6] to drift terms depending in a weak form to be made
precise below on the time parameter. Before doing so in the second subsection, we
shall recall the classical results on time homogeneous diffusions in the following
brief overview.

1.1. The time homogeneous case: classical results. For a more detailed ac-
count of the following well-known theory, see [4] or [6].

We consider the family of R
d -valued processes Xε , ε > 0, defined by

dXε
t = b(Xε

t ) dt + √
ε dWt, Xε

0 = x0 ∈ R
d,(1.1)

on a fixed time interval [0, T ], where b is Lipschitz continuous and W is a
d-dimensional Brownian motion. This family of diffusion processes satisfies in
the small noise limit, that is, as ε → 0, a large deviations principle (LDP) in the
space C0T := C([0, T ],R

d) equipped with the topology of uniform convergence
induced by the metric ρ0T (ϕ,ψ) := sup0≤t≤T ‖ϕt − ψt‖, ϕ,ψ ∈ C0T . The rate

function or action functional is given by I
x0
0T :C0T → [0,+∞],

I
x0
0T (ϕ) =




1
2

∫ T

0
‖ϕ̇t − b(ϕt )‖2 dt,

if ϕ is absolutely continuous and ϕ0 = x0,

+∞, otherwise.

(1.2)

Moreover, I
x0
0T is a good rate function, that is, it has compact level sets. The LDP

for this family of processes is mainly obtained as an application of the contrac-
tion principle to the LDP for the processes

√
ε W , ε > 0. More precisely, in the

language of Freidlin and Wentzell, the functional I
x0
0T is the normalized action

functional corresponding to the normalizing coefficient 1
ε
. In the sequel we will
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not consider scalings other than this one. We have I
x0
0T (ϕ) < ∞ if and only if ϕ be-

longs to the Cameron–Martin space of absolutely continuous functions with square
integrable derivatives starting at x0, that is,

ϕ ∈ H
x0
0T :=

{
f : [0, T ] → R

d
∣∣∣f (t) = x0 +

∫ t

0
g(s) ds for some g ∈ L2([0, T ])

}
.

We omit the superscript x0 whenever there is no confusion about the initial condi-
tion we are referring to.

Observe that I0T (ϕ) = 0 means that ϕ (up to time T ) is a solution of the deter-
ministic equation

ξ̇ = b(ξ),(1.3)

so I0T (ϕ) is essentially the L2-deviation of ϕ from the deterministic solution ξ .
The cost function V of Xε , defined by

V (x, y, t) = inf{I0t (ϕ) :ϕ ∈ C0t , ϕ0 = x,ϕt = y},
takes into account all continuous paths connecting x, y ∈ R

d in a fixed time inter-
val of length t , and the quasi-potential

V (x, y) = inf
t>0

V (x, y, t)

describes the cost of Xε going from x to y eventually. In the potential case, V

agrees up to a constant with the potential energy to spend in order to pass from x

to y in the potential landscape, hence, the term quasi-potential.
The classical LDP due to Freidlin and Wentzell requires the usual global Lip-

schitz and linear growth conditions from the standard existence and uniqueness
results for SDE. In our setting the coefficients will (in general) not be globally
Lipschitz since the drift is given by a potential gradient. An extension to locally
Lipschitz and ε-dependent drift terms was provided by Azencott [1]. The follow-
ing proposition is a special case of [1], Chapter III, Theorem 2.13. See also [2],
Theorem 2.1.

PROPOSITION 1.1. Assume that the equation (1.1) has a unique strong solu-
tion that never explodes and that the drift is locally Lipschitz. Then Xε satisfies on
any time interval [0, T ] a large deviations principle with good rate function I0T .
Furthermore, the LDP for Xε holds uniformly w.r.t. the initial condition of the dif-
fusion. More precisely, if Py(X

ε ∈ ·) denotes the law of the diffusion Xε starting
in y ∈ R

d and K ⊂ R
d is compact, we have, for any closed F ⊂ C0T ,

lim sup
ε→0

ε log sup
y∈K

Py(X
ε ∈ F) ≤ − inf

y∈K
inf
ϕ∈F

I
y
0T (ϕ)(1.4)

and for any open G ⊂ C0T ,

lim inf
ε→0

ε log inf
y∈K

Py(X
ε ∈ G) ≥ − sup

y∈K

inf
ϕ∈G

I
y
0T (ϕ).(1.5)
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REMARK 1.2. (i) A sufficient condition for the existence of a nonexploding
and unique strong solution is a locally Lipschitz drift term b which satisfies

〈x, b(x)〉 ≤ γ (1 + ‖x‖2) for all x ∈ R
d(1.6)

for some constant γ > 0 (see [17], Theorem 10.2.2). This still rather weak condi-
tion is obviously satisfied if 〈x, b(x)〉 ≤ 0 for large enough x, which means that b

contains a component that pulls X back to the origin.
(ii) A strengthening of condition (1.6) ensuring superlinear growth will be

used in subsequent sections. In that case, the laws of (Xε) are exponentially
tight, and I0T is a good rate function. Recall that the laws of (Xε) are expo-
nentially tight if there exist some R0 > 0 and a positive function ϕ satisfying
limx→∞ ϕ(x) = +∞ such that

lim sup
ε→0

ε log P(σ ε
R ≤ T ) ≤ −ϕ(R) for all R ≥ R0.(1.7)

Here σε
R denotes the first time that Xε exits from BR(0).

1.2. General results on weakly time inhomogeneous diffusions. Let us now
come to inhomogeneous diffusions with slowly time dependent drift coefficients.
For our understanding of stochastic resonance effects of dynamical systems with
slow time dependence, we have to adopt the large deviations results of the previ-
ous subsection to diffusions moving in potential landscapes with different valleys
slowly and periodically changing their depths and positions. In this subsection we
shall extend the large deviations results of Freidlin and Wentzell to time inhomo-
geneous diffusions which are almost homogeneous in the small noise limit, so that,
in fact, we are able to compare to the large deviation principle for time homoge-
neous diffusions. The result we present in this subsection is not strong enough for
the treatment of stochastic resonance (one needs uniformity in some of the system
parameters), but it most clearly exhibits the idea of the approach, which is why we
state it here. Consider the family Xε , ε > 0, of solutions of the SDE

dXε
t = bε(t,Xε

t ) dt + √
ε dWt, t ≥ 0, Xε

0 = x0 ∈ R
d .(1.8)

We assume that (1.8) has a global strong solution for all ε > 0. Our main large
deviations result for diffusions for which time inhomogeneity fades out in the small
noise limit is summarized in the following proposition. The ε-dependence of the
drift term was assumed in the same way in [1], Chapter III, Theorem 2.13 and [2],
Theorem 2.1. See also [14].

PROPOSITION 1.3 (Large deviations principle). Assume that the drift of the
SDE (1.8) satisfies

lim
ε→0

bε(t, x) = b(x)(1.9)
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for all t ≥ 0, uniformly w.r.t. x on compact subsets of R
d , for some locally Lipschitz

function b : Rd → R
d . Assume that the time homogeneous diffusion Y ε associated

to the limiting drift b [i.e., the solution of (1.1) with the same initial condition x0]
does not explode.

Then (Xε) satisfies a large deviations principle on any finite time interval [0, T ]
with good rate function I0T given by (1.2).

PROOF. For notational convenience, we drop the ε-dependence of X and Y .
We shall prove that X and Y are exponentially equivalent, that is, for any δ > 0,
we have

lim sup
ε→0

ε log P
(
ρ0T (X,Y ) > δ

)= −∞.(1.10)

In order to verify this, fix some δ > 0, and observe that

‖Xt − Yt‖ ≤
∫ t

0
‖bε(u,Xu) − b(Xu)‖du +

∫ t

0
‖b(Xu) − b(Yu)‖du.

For R > 0, let τR := inf{t ≥ 0 :Xt /∈ BR(x0)}, let τ̃R be defined similarly with X

replaced by Y , and σR := τR ∧ τ̃R . The local Lipschitz continuity of b implies the
existence of some constant KR(x0) such that ‖b(x) − b(y)‖ ≤ KR(x0)‖x − y‖ for
x, y ∈ BR(x0). An application of Gronwall’s lemma yields

ρ0T (X,Y ) ≤ eKR(x0)T
∫ T

0
‖bε(u,Xu) − b(Xu)‖du on {σR > T }.

Due to uniform convergence, for any η > 0, we can find some ε0 > 0 s.t.

sup
x∈BR(x0)

‖bε(t, x) − b(x)‖ ≤ η for t ∈ [0, T ], ε < ε0.

This implies

ρ0T (X,Y ) ≤ ηT eKR(x0)T for ε < ε0 on {σR > T }.(1.11)

By choosing η small enough s.t. ρ0T (X,Y ) ≤ δ/2 on {σR > T } [i.e., X and Y are
very close before they exit from BR(x0)], we see that, for ε < ε0,

P
(
ρ0T (X,Y ) > δ

)≤ P(τR ≤ T ) + P(τ̃R ≤ T ).

Since X and Y are close within the ball BR(x0), we deduce that if X escapes
from BR(x0) before time T , then Y must at least escape from BR/2(x0) before time
T (if R > δ). So we have P(ρ0T (X,Y ) > δ) ≤ P(τ̃R/2 ≤ T ) for ε < ε0. Hence, the
LDP for Y gives

lim sup
ε→0

ε log P
(
ρ0T (X,Y ) > δ

)≤ − inf
0≤t≤T ‖y−x0‖≥R/2

V (x0, y, t).

Sending R → ∞ yields the desired result (see Theorem 4.2.13 in [4]). �
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It is easy to see that the uniformity w.r.t. the diffusion’s initial condition also
holds for the weakly inhomogeneous process Xε of this proposition. One only has
to carry over Proposition 5.6.14 in [4], which is easily done using some Gronwall
argument. Then the proof of the uniformity is the same as in the homogeneous
case (see [4], Corollary 5.6.15). We omit the details.

1.3. Weak inhomogeneity through slow periodic variation. In this subsection
we shall deal with some particular diffusions for which the drift term is subject to
a very slow periodic time inhomogeneity. More precisely, we shall be concerned
with solutions of the following stochastic differential equation taking their values
in d-dimensional Euclidean space, driven by a d-dimensional Brownian motion W

of intensity ε:

dXε
t = b

(
t

T ε
,Xε

t

)
dt + √

ε dWt, t ≥ 0,X0 = x0 ∈ R
d .(1.12)

Here T ε is a time scale parameter which tends to infinity as ε → 0. In the subse-
quent sections, we shall assume that T ε is exponentially large, in fact,

T ε = exp
µ

ε
with µ > 0.(1.13)

The drift b(t, x) of (1.12) is a time-periodic function of period one. Concerning its
regularity properties, we suppose it to be locally Lipschitz in both variables, that
is, for R > 0, x ∈ R

d , there are constants KR(x) and κR(x) such that

‖b(t, y1) − b(t, y2)‖ ≤ KR(x)‖y1 − y2‖,(1.14)

‖b(t, y) − b(s, y)‖ ≤ κR(x)|t − s|(1.15)

for all y, y1, y2 ∈ BR(x) and s, t ≥ 0. Furthermore, we shall assume that the drift
term forces the diffusion to stay in compact sets for long times in order to get
sufficiently “small” level sets. We suppose that there are constants η, R0 > 0 such
that

〈x, b(t, x)〉 < −η‖x‖(1.16)

for t ≥ 0 and ‖x‖ ≥ R0. This condition is stronger than (1.6), so the existence
of a unique strong and nonexploding solution is again guaranteed. Moreover, this
growth condition implies the exponential tightness of the diffusion (see Proposi-
tion 1.4 for the precise asymptotics).

1.3.1. Boundedness of the diffusion. The aim of this subsection is to exploit
the consequences of the growth condition (1.16). In fact, it implies that the dif-
fusion (1.12) cannot leave compact sets in the small noise limit. For positive ε,
it stays for a long time in bounded domains. In the following proposition we
shall make precise how the law of the exit time from bounded domains depends
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on ε. The arguments are borrowed from the framework of self-attracting diffu-
sions; see [15] or [10].

For R > 0, let σε
R := inf{t ≥ 0 :‖Xε

t ‖ ≥ R} denote the first exit time from the
ball BR(0).

PROPOSITION 1.4. Let δ > 0, and let r : (0, δ) → (0,∞) be a function sat-
isfying limε→0

ε
r(ε)

= 0. There exist R1, ε1 > 0 and C > 0 such that, for R ≥ R1,
ε < ε1,

Px

(
σε

R ≤ r(ε)
)≤ Cη2 r(ε)

ε
e−ηR/ε for ‖x‖ ≤ R

2
.(1.17)

PROOF. For convenience of notation, we suppress the superscript ε in Xε,σ ε
R

and so on. Choose a C2-function h : Rd → R s.t. h(x) = ‖x‖ for ‖x‖ ≥ R0 and
h(x) ≤ R0 for ‖x‖ ≤ R0, where R0 is the constant given in the growth condi-
tion (1.16). By Itô’s formula, we have

h(Xt) = h(x) + √
ε

∫ t

0
∇h(Xs) dWs

+
∫ t

0

〈
∇h,b

(
s

T ε
, ·
)〉

(Xs) ds + ε

2

∫ t

0
h(Xs) ds.

Let ξt := ∫ t
0 ‖∇h(Xs)‖2 ds, that is, ξt is the quadratic variation of the continuous

local martingale Mt := ∫ t
0 ∇h(Xs) dWs, t ≥ 0. Since ∇h(x) = x

‖x‖ for ‖x‖ ≥ R0,
we have dξt = dt on {‖Xt‖ ≥ R0}. Now we introduce an auxiliary process Z

which shall serve to control ‖X‖.
Let 0 < η̃ < η. According to Skorokhod’s lemma (see [16]), there is a unique

pair of continuous adapted processes (Z,L) such that L is an increasing process
(of finite variation) which increases only at times t for which Zt = R0, and Z ≥ R0,
which satisfies the equation

Z := R0 ∨ ‖x‖ + √
εM − η̃ξ + L.

We will prove that

‖Xt‖ ≤ Zt a.s. for all t ≥ 0.(1.18)

For that purpose, choose f ∈ C2(R) such that

f (x) > 0 and f ′(x) > 0 for all x > 0,

f (x) = 0 for all x ≤ 0.

According to Itô’s formula, for t ≥ 0,

f (h(Xt) − Zt) = f (h(x) − ‖x‖ ∨ R0) +
∫ t

0
f ′(h(Xs) − Zs

)
d
(
h(X) − Z

)
s

+ 1
2

∫ t

0
f ′′(h(Xs) − Zs

)
d〈h(X) − Z〉s .
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By definition of h and Z, we have h(Xt) ≤ Zt on {‖Xt‖ ≤ R0}, so {h(Xt) >

Zt } = {‖Xt‖ > Zt }. Moreover, by definition, h(X)−Z is a finite variation process.
Hence, the expression∫ t

0
f ′(‖Xs‖ − Zs)

{
1

‖Xs‖
〈
Xs, b

(
s

T ε
,Xs

)〉
+ ε

2
h(Xs) + η̃

}
ds

−
∫ t

0
f ′(‖Xs‖ − Zs)dLs

is an upper bound of f (h(Xt) − Zt). Furthermore, h(x) = d−1
‖x‖ for ‖x‖ ≥ R0,

which by (1.16) implies

1

‖Xs‖
〈
Xs, b

(
s

T ε
,Xs

)〉
+ ε

2
h(Xs)+ η̃ <

ε(d − 1)

2‖Xs‖ + η̃−η on {‖Xs‖ > Zs}.

The latter expression is negative if ε is small enough, so we can find some ε0 > 0
such that f (‖Xt‖ − Zt) ≤ 0 for ε < ε0. This implies ‖Xt‖ ≤ Zt a.s. by the defini-
tion of f , and (1.18) is established.

We therefore can bound the exit probability of X by that of Z. If Q denotes the
law of the process Z, we see that, for any α > 0,

Px

(
σR ≤ r(ε)

)≤ Q
(
σR ≤ r(ε)

)≤ eαr(ε)
EQ[e−ασR ].(1.19)

In order to find a bound on the right-hand side of (1.19), let us define K :=
sup‖x‖≤R0

‖∇h(x)‖2. Then we have ξt ≤ Kt for all t ≥ 0. Note that w.l.o.g. h can
be chosen so that K ≤ 2R0. Now observe that, by Itô’s formula, for any ϕ ∈ C2(R),

d
(
ϕ(Zt)e

−(α/K)ξt
)= √

εϕ′(Zt )e
−(α/K)ξt dMt + ϕ′(Zt )e

−(α/K)ξt dLt

+ e−(α/K)ξt

{
ε

2
ϕ′′(Zt ) − η̃ϕ′(Zt ) − α

K
ϕ(Zt)

}
dξt .

Now let R ≥ R0. If we choose ϕ such that

ε

2
ϕ′′(y) − η̃ϕ′(y) − α

K
ϕ(y) = 0 for y ∈ [R0,R],

ϕ′(R0) = 0, ϕ(R) = 1,

then ϕ(Zt )e
−(α/K)ξt is a local martingale which is bounded up to time σR . Hence,

we are allowed to apply the stopping theorem to obtain

ϕ(R0 ∨ ‖x‖) = EQ

[
ϕ
(
ZσR

)
e−(α/K)ξσR

]= EQ

[
e−(α/K)ξσR

]
.(1.20)

Hence, ξσR
≤ KσR , which implies EQ[e−(α/K)ξσR ] ≥ EQ[e−ασR ], and we deduce

from (1.19) that

Px

(
σR ≤ r(ε)

)≤ eαr(ε)
EQ

[
e−(α/K)ξσR

]≤ eαr(ε)ϕ(R0 ∨ ‖x‖).(1.21)
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Solving the differential equation for ϕ yields

ϕ(x) = −λ−eλ+(x−R0) + λ+eλ−(x−R0)

−λ−eλ+(R−R0) + λ+eλ−(R−R0)
,

with λ± = η̃±
√

η̃2+2(α/K)ε

ε
. Hence,

ϕ(x) ≤ (λ+ − λ−)eλ+(x−R0)

(−λ−) eλ+(R−R0)
.

Taking α = r(ε)−1 in (1.21), we obtain

Px

(
σR ≤ r(ε)

)≤ exp(1)ϕ(R0 ∨ ‖x‖) ≤ λ+ − λ−

−λ− exp{1 + λ+(R0 ∨ ‖x‖ − R)}.

It is obvious that exp{λ+(R0 ∨ ‖x‖ − R)} ≤ exp{− η̃R
ε

} for R ≥ 2(‖x‖ ∨ R0), so it
remains to comment on the prefactor. We have

λ+ − λ−

−λ− = 2
√

η̃2 + 2(α/K)ε√
η̃2 + 2(α/K)ε − η̃

≤ 4(η̃2 + 2ε/(Kr(ε)))

2ε/(Kr(ε))
.

Since limε→0
ε

r(ε)
= 0, the latter expression behaves like 2η̃2K r(ε)

ε
as ε → 0.

Putting these estimates together yields the claimed asymptotic bound with η̃ in-
stead of η. Letting η̃ → η completes the proof. �

REMARK 1.5. The proof of Proposition 1.4 shows a lot more. The crucial
inequality (1.21) contains a bound which is independent of Xε , since ϕ is defined
by means of h, ε, η̃ and R0 only. Thus, we have shown that the bound (1.17)
holds for all diffusions satisfying the growth condition (1.16), that is, ε1 and R1
are independent of Xε . In particular, (1.17) holds uniformly w.r.t. µ.

1.3.2. Properties of the quasi-potential. Taking large period limits in the sub-
sequently derived large deviations results for our diffusions with slow periodic
variation will require to freeze the time parameter in the drift term. The corre-
sponding rate functions are given a separate treatment in this subsection. We shall
briefly discuss their regularity properties. This will be of central importance for the
estimation of exit rates in Section 2. For s ≥ 0, T > 0, we consider

I s
0T (ϕ) =




1
2

∫ T

0
‖ϕ̇t − b(s,ϕt )‖2 dt,

if ϕ is absolutely continuous,
+∞, otherwise.

(1.22)

As in the first section, we need associated cost functions. For s ≥ 0, x, y ∈ R
d ,

they are given by

V s(x, y, t) = inf{I s
0t (ϕ) :ϕ ∈ C0t , ϕ0 = x,ϕt = y}.(1.23)
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V s(x, y, t) is the cost of forcing the frozen system

dY ε
t = b(s, Y ε

t ) dt + √
ε dWt, t ≥ 0,

to be at the point y at time t when starting at x. The corresponding quasi-potential

V s(x, y) = inf
t>0

V s(x, y, t)(1.24)

describes the cost for the frozen system to go from x to y eventually. Let us note
that since the drift b is locally Lipschitz in the time variable, the family of action
functionals I s

0T is continuous w.r.t. the parameter s, and the corresponding cost
functions and pseudo-potentials inherit this continuity property. Let us recall some
further useful properties of the quasi-potentials and their underlying cost and rate
functions. The following properties are immediate.

LEMMA 1.6. For any x, y, z ∈ R
d and s, t, u ≥ 0, we have the following:

(a) V s(x, y, t + u) ≤ V s(x, z, t) + V s(z, y,u),
(b) (s, y) �→ V s(x, y, t) is continuous on R+ × R

d ,
(c) inf‖y‖≥R V s(x, y, t) −→

R→∞∞ uniformly w.r.t. s ≥ 0.

The following lemma establishes the local Lipschitz continuity of the quasi-
potential w.r.t. the state variables, uniformly w.r.t. the parameter s.

LEMMA 1.7. For any compact subset K of R
d , there exists �K ≥ 0 such that

sup
s≥0

V s(x, y) ≤ �Kdist(x, y)

for all x, y ∈ K .

PROOF. Let x and y belong to K . There exists some radius R > 0 such that
K ⊂ BR(0). Set T = dist(x, y). We construct a path ϕ ∈ C0T by setting ϕt =
x + y−x

dist(x,y)
t for t ∈ [0, T ]. Since b(s, ·) is locally Lipschitz uniformly w.r.t. s ≥ 0,

we obtain an upper bound for the energy of ϕ:

I s
0T (ϕ) ≤ 1

2
sup
u≥0

∫ T

0
‖ϕ̇t − b(u,ϕt )‖2 dt

≤ 1

2

∫ T

0

( ‖y − x‖
dist(x, y)

+ sup
0≤u≤1

‖b(u,ϕt )‖
)2

dt

≤ 1

2

∫ T

0

(
1 + κR(0) + ‖b(0, ϕt )‖)2 dt

≤ 1

2

∫ T

0

(
1 + κR(0) + KR(0)‖ϕt‖ + ‖b(0,0)‖)2 dt

≤ T

2

(
1 + κR(0) + RKR(0) + ‖b(0,0)‖)2.
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For �K := 1
2(1 + κR(0) + RKR(0) + ‖b(0,0)‖)2 and by the definition of T , we

obtain

sup
s≥0

V s(x, y) ≤ sup
s≥0

I s
0T (ϕ) ≤ �Kdist(x, y). �

1.3.3. Large deviations. We shall now specialize the general large deviations
results of the previous subsection to the family Xε , ε > 0, of solutions of (1.12).
At the same time they will be strengthened, to obtain uniformity w.r.t. some of
the system’s parameters: the scale parameter µ, the starting time and the initial
condition.

It is an immediate consequence of Proposition 1.3 that the solution of (1.12)
satisfies a large deviations principle with rate function I 0

0T , that is, the rate function
is the same as that of a homogeneous diffusion governed by the frozen drift b(0, ·).
In order to see this, one only has to mention that limε→0 b( t

T ε , x) = b(0, x) locally
uniformly w.r.t. x due to the Lipschitz assumptions on b.

But this result is not strong enough. We also need some uniformity w.r.t. the
starting times of the diffusions we consider. Our large deviations statements de-
rived so far rely on comparison arguments which yield exponential equivalence
with time homogeneous diffusions for which an LDP is well known from the clas-
sical theory of Freidlin and Wentzell. In order to achieve uniform large deviations
estimates, we have to refine this technique, to derive a large deviations principle
for our family of diffusions (1.12), which is uniform with respect to both the start-
ing time and the scale parameter. This will be our main tool for estimating the
asymptotics of exit time laws in the subsequent section.

The diffusion (1.12) is a time inhomogeneous Markov process. The solution
starting at time r ≥ 0 with initial condition x ∈ R

d has the same law as the solution
Xr,x of the SDE

dX
r,x
t = b

(
r + t

T ε
,X

r,x
t

)
dt + √

ε dWt, t ≥ 0,X
r,x
0 = x ∈ R

d .(1.25)

We denote its law by Px,r (·), assume from now on that T ε = exp µ
ε

for some µ > 0,
and fix T ≥ 0.

PROPOSITION 1.8. Let K ⊂ R
d be a compact set and V ⊂ (0,∞). For µ ∈ V ,

r ∈ [0,1] and β ≥ 0, let Sr,β(ε,µ) be a neighborhood of rT ε such that

lim sup
ε→0

sup
µ∈V,r∈[0,1]

diam(Sr,β(ε,µ))

T ε
≤ β.

Then for any closed F ⊂ C0T , there exists δ = δ(F ) such that

lim sup
ε→0

ε log sup
y∈K,µ∈V,u∈Sr,β(ε,µ)

Py,u(X
ε ∈ F) ≤ − inf

y∈K
inf

ϕ∈Fγ0 ,ϕ0=y
I r

0T (ϕ),
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where γ0 = γ0(F ) = βδ(F ) and Fγ0 is the closed γ0-neighborhood of F . For any
open G ⊂ C0T , there exists δ = δ(G) and β0 = β0(G) such that, if β ≤ β0,

lim inf
ε→0

ε log inf
y∈K,µ∈V,u∈Sr,β (ε,µ)

Py,u(X
ε ∈ G) ≥ − sup

y∈K

inf
ϕ∈Gγ0 ,ϕ0=y

I r
0T (ϕ),

where γ0 = γ0(G) = βδ(G) and Gγ0 is the complement of (Gc)γ0 .
These bounds hold uniformly w.r.t. r .

REMARK 1.9. The upper bound means that, for any ϑ > 0, we can find ε0 > 0
s.t. for ε ≤ ε0, we have

ε log sup
y∈K,µ∈V,u∈Sr,β (ε,µ)

Py,u(X
ε ∈ F) ≤ − inf

y∈K
inf

ϕ∈Fγ0 ,ϕ0=y
I r

0T (ϕ) + ϑ.

The uniformity in the statement means that ε0 can be chosen independently of r .
A similar statement holds for the lower bound.

Observe that the expression for the blowup-factor γ0(F ) depends on the set F

only through δ(F ) which is independent of β , and that γ0(F ) → 0 as β → 0 for
all F . In particular, if β is equal to zero, we recover the classical bound of the
uniform LDP.

PROOF OF PROPOSITION 1.8. For y ∈ R
d and r ∈ [0,1], let Y r,y be the solu-

tion of the homogeneous SDE

dY
r,y
t = b(r, Y

r,y
t ) dt + √

ε dWt, t ≥ 0, Y
r,y
0 = y.

Let W ⊂ [0,1] and r0 ∈ W . For r ∈ W , u ∈ Sr,β(ε,µ),µ ∈ V and R > 0, let
τ

u,y
R := inf{t ≥ 0 :Xu,y

t /∈ BR(0)}, and let τ̃
r0,y
R be defined similarly with Xu,y re-

placed by Y r0,y , and σ
u,y,r0
R := τ

u,y
R ∧ τ̃

r0,y
R .

As a consequence of Gronwall’s lemma, we see just as in the proof of Proposi-
tion 1.3 that, for r, r0 ∈ [0,1], u ∈ Sr,β(ε,µ),

ρ0T (Xu,y, Y r0,y) ≤ eKR(0)T
∫ T

0

∥∥∥∥b
(

u + t

T ε
,X

u,y
t

)
− b(r0,X

u,y
t )

∥∥∥∥dt

on {σu,y,r0
R > T }. This implies

ρ0T (Xu,y, Y r0,y) ≤ κR(0)T eKR(0)T

(
diam(Sr,β(ε,µ)) + T

T ε
+ |r − r0|

)

on {σu,y,r0
R > T }. Due to our assumption, the last expression is bounded by

β1 = β1(W) = β0(W)M(R) as ε → 0,(1.26)

where

β0(W) := β + sup
r∈W

|r − r0| and M(R) := T κR(0)eKR(0)T .(1.27)
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Upper bound. Fix some closed set F ⊂ C0T . For all γ > 0, we have

P(Xu,y ∈ F) ≤ P(Y r0,y ∈ Fγ ) + P
(
ρ0T (Xu,y, Y r0,y) > γ

)
.

This yields

lim sup
ε→0

ε log sup
y∈K,µ∈V,r∈W ,u∈Sr,β(ε,µ)

Py,u(X
ε ∈ F)

≤ lim sup
ε→0

ε log max
{

sup
y∈K

P(Y r0,y ∈ Fγ ),(1.28)

sup
y∈K,µ∈V,r∈W ,u∈Sr,β (ε,µ)

P
(
ρ0T (Xu,y, Y r0,y) > γ

)}
.

Now we wish to find some γ such that the asymptotics of the maximum is deter-
mined by the left term supy∈K P(Y r0,y ∈ Fγ ). In that case the uniform LDP for Y

will give us the bound

lim sup
ε→0

ε log sup
y∈K,µ∈V,r∈W ,u∈Sr,β (ε,µ)

Py,u(X
ε ∈ F)

(1.29)
≤ − inf

y∈K
inf

ϕ∈Fγ ,ϕ0=y
I

r0
0T (ϕ).

Unfortunately, such a γ will depend on F . In order to see that it exists and can be
chosen as claimed in the statement, we define

�(R,ε) := sup
r∈[0,1],y∈K,µ∈V,u∈Sr,β (ε,µ)

P(τ
u,y
R ≤ T ) + sup

r∈[0,1],y∈K

P(τ̃
r,y
R ≤ T ).

By Proposition 1.4 and Remark 1.5, we have lim supε→0 ε log�(R,ε) ≤ −ηR for
all R ≥ R1. Hence, we may find R ≥ R1 such that

lim sup
ε→0

ε log�(R,ε) ≤ − sup
r∈[0,1]

inf
y∈K

inf
ϕ∈F,ϕ0=y

I r
0T (ϕ).

Fix this R, let δ(F ) = M(R), and note that δ(F ) is independent of β and W .
By (1.26), for any γ > β1(W) = β0(W)δ(F ), we can find ε0 > 0 such that, for
ε ≤ ε0,

sup
r∈W ,y∈K,µ∈V,u∈Sr,β(ε,µ)

P
(
ρ0T (Xu,y, Y r0,y) > γ

)≤ �(R,ε).(1.30)

Now we exploit the definition of δ(F ), which ensures that the maximum in (1.28)
is given by the left term. Indeed, for γ > β1(W), we have

lim sup
ε→0

ε log sup
r∈W ,y∈K,µ∈V,u∈Sr,β (ε,µ)

P
(
ρ0T (Xu,y, Y r0,y) > γ

)

≤ lim sup
ε→0

ε log�(R,ε) ≤ − sup
r∈[0,1]

inf
y∈K

inf
ϕ∈F,ϕ0=y

I r
0T (ϕ)

≤ − inf
y∈K

inf
ϕ∈Fγ ,ϕ0=y

I
r0
0T (ϕ),
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which implies (1.29). The particular choice W = {r0} yields this bound for all
γ > γ0(F ) = βδ(F ) given in the statement and proves the claimed bound. By
taking the limit γ → γ0(F ), we get the asserted upper bound since I is a good rate
function (see [4], Lemma 4.1.6).

It remains to prove the uniformity w.r.t. r . For that purpose, fix ϑ > 0, and
for r0 ∈ [0,1], let Wr0 be a neighborhood of r0. Choose φ∗ ∈ Fγ0 [here γ0 =
γ0(F ) = βδ(F )] starting at some point y0 ∈ K with infy∈K infϕ∈Fγ0 ,ϕ0=y I

r0
0T (ϕ) ≥

I
r0
0T (φ∗) − ϑ/8. By Lemma 4.1.6 in [4] and the continuity of r �→ I r

0T (φ∗),
we can assume Wr0 to be small enough such that, for r ∈ Wr0 , denoting γ ∗ =
β0(Wr0)δ(F ),

inf
y∈K

inf
ϕ∈Fγ ∗

,ϕ0=y
I

r0
0T (ϕ) ≥ inf

y∈K
inf

ϕ∈Fγ0 ,ϕ0=y
I

r0
0T (ϕ) − ϑ/8

≥ I
r0
0T (φ∗) − ϑ/4

≥ I r
0T (φ∗) − ϑ/2

≥ inf
y∈K

inf
ϕ∈Fγ0 ,ϕ0=y

I r
0T (ϕ) − ϑ/2.

Due to compactness, we can choose finitely many points r1, ..., rN such that their
corresponding neighborhoods cover [0,1]. Denote γ ∗

n := β0(Wrn)δ(F ). For each
1 ≤ n ≤ N , there exists some εn > 0 such that, for ε ≤ εn and r ∈ Wrn ,

ε log sup
y∈K,µ∈V,u∈Sr (ε,µ)

Py,u(X
ε ∈ F) ≤ − inf

y∈K
inf

ϕ∈Fγ ∗
n ,ϕ0=y

I
rn
0T (ϕ) + ϑ

2

≤ − inf
y∈K

inf
ϕ∈Fγ0 ,ϕ0=y

I r
0T (ϕ) + ϑ.

Hence, for ε ≤ min1≤n≤N εn, the preceding inequality holds for all r ∈ [0,1].

Lower bound. Let G ⊂ C0T be an open set. Consider the increasing function

f (l) := 1

η
sup
y∈K

inf
φ∈Gl : φ0=y

I
r0
0T (φ),

let l0 = inf{l ≥ 0 : f (l) = +∞}, and recall that η is the constant introduced in the
growth condition (1.16) for the drift. Assume first that l0 < ∞ (this is guaranteed
if G is bounded), and set

R := f

((
l0 − β0(W)

)∨ l0

2

)
∨ R1 and γ := β0(W)M(R),

where R1 is given by Proposition 1.4. Then

P(Y r0,y ∈ Gγ ) ≤ P(Xu,y ∈ G) + P
(
ρ0T (Y r0,y,Xu,y) > γ

)
.
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By the uniform LDP for Y r0,y and (1.30), we conclude that

−ηf (γ ) = − sup
y∈K

inf
ϕ∈Gγ ,ϕ0=y

I
r0
0T (ϕ) ≤ lim inf

ε→0
ε log inf

y∈K
P(Y r0,y ∈ Gγ )

≤ max
{

lim inf
ε→0

ε log inf
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P(Xu,y ∈ G),

lim sup
ε→0

ε log sup
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P
(
ρ0T (Y r0,y,Xu,y) > γ

)}

≤ max
{

lim inf
ε→0

ε log inf
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P(Xu,y ∈ G),

lim sup
ε→0

ε log�(R,ε)

}
.

Since f is increasing and R ≥ R1, we obtain by Proposition 1.4

−ηf
(
γ + β0(W)

)
≤ −ηf (γ )

≤ max
{

lim inf
ε→0

ε log inf
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P(Xu,y ∈ G),−ηR

}
.

Now we have to compare f (γ ) and R in order to see when the maximum is given
by the left term.

If f (γ ) > R, then γ > (l0 − β0(W)) ∨ l0
2 ≥ l0 − β0(W) by monotonicity of f ,

hence, f (γ + β0(W)) = +∞ by definition of l0. Otherwise, we have f (γ ) ≤ R,
which means that the left term dominates the maximum.

In both cases we get

−ηf
(
γ + β0(W)

)≤ lim inf
ε→0

ε log inf
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P(Xu,y ∈ G).

Now consider the unbounded case l0 = +∞. Recall M defined by (1.27), and
let β0(G) := supl≥0

l
M(f (l))

, the existence of which was claimed in the statement.

If β0(W) < β0(G), we can choose l1 such that l1
M(f (l1))

≥ β0(W) and set γ :=
β0(W)M(f (l1)). Using the same arguments as in the bounded case, we deduce
that

−ηf (γ ) ≤ max
{

lim inf
ε→0

ε log inf
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P(Xu,y ∈ G),−ηf (l1)

}
.

Since f is increasing and l1 ≥ γ , we obtain

−ηf (γ ) ≤ lim inf
ε→0

ε log inf
r∈W ,y∈K,µ∈V,u∈Sr (ε,µ)

P(Xu,y ∈ G).

In both the bounded and the unbounded case we have found γ = β0(W)δ(G) such
that the desired bound holds: we have δ(G) = M(R) + 1 in the bounded case
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and δ(G) = M(f (l1)) in the unbounded case. Furthermore, the choise W = {r0}
corresponds to β0(W) = β and yields γ0(G) = βδ(G), in complete analogy to the
situation of the upper bound. The uniformity is also proved in exactly the same
way as already shown for the upper bound. �

2. Exit and entrance times of domains of attraction. We continue to study
asymptotic properties of diffusions with weakly periodic drifts given by the SDE

dXε
t = b

(
t

T ε
,Xε

t

)
dt + √

ε dWt, t ≥ 0,Xε
0 = x0 ∈ R

d .(2.1)

In this section we shall work out the effects of weak periodicity of the drift on
the asymptotic behavior of the exit times of its domains of attraction. This will be
done under simple assumptions on the geometry associated to it. So we will have
to specify some assumptions on the attraction and conservation properties of b.
Essentially, we shall assume that R

d is split into two domains of attraction, sepa-
rated by a simple geometric boundary which is invariant in time. Apart from that,
we shall assume that the drift is pointing inward sufficiently strongly so that the
diffusions will not be able to leave compact sets in the small noise limit. Let us
make these assumptions more precise. We recall that, according to the Kramers–
Eyring law (see, e.g., [9]), the mean time a homogeneous diffusion of noise in-
tensity ε needs to leave a potential well of depth v

2 is of the order exp v
ε

. Nature
therefore imposes the time scales T ε with which we have to work. For simplic-
ity, we measure these scales in energy units: with µ > 0, we associate the time
scale T ε = exp µ

ε
. We assume as before that b satisfies the local Lipschitz condi-

tions (1.14) and (1.15), and that the growth of the inward drift is sufficiently strong
near infinity which is expressed by (1.16).

The additional conditions concerning the geometry of b are specified in the
following.

ASSUMPTION 2.1. The two-dimensional ordinary differential equation

ϕ̇s(t) = b
(
s, ϕs(t)

)
, t ≥ 0,(2.2)

admits two stable equilibria x− and x+ in R
d which do not depend on s ≥ 0.

Moreover, the domains of attraction defined by

A±(s) =
{
y ∈ R

d : ϕ̇s(t) = b
(
s, ϕs(t)

)
(2.3)

and ϕs(0) = y imply lim
t→∞ϕs(t) = x±

}

are also independent of s ≥ 0 and denoted by A±. They are supposed to satisfy
A− ∪ A+ = R

d , and ∂A− = ∂A+. We denote by χ the common boundary (see
Figure 1).
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FIG. 1. Domains of attraction.

The asymptotic results concerning the exit and entrance time should remain true
in a more general setting, where the stable equilibrium points and the domains of
attraction depend on s ≥ 0. We stick to Assumption 2.1 for reasons of technical
and notational simplicity.

The main subject of investigation in this section is given by the exit times of the
domains of attraction A±, provided that the weakly time inhomogeneous diffusion
starts near the equilibrium points x±. By obvious symmetry reasons, we may re-
strict our attention to the case of an exit from A−. As we shall show, this exit time
depends on the quasi-potential, that is, on the cost function taken on the set of all
functions starting in the neighborhood of x− and exiting the domain of attraction
through χ. For this reason, we introduce the one-periodic energy function

e(s) := inf
y∈χ

V s(x−, y) < ∞ for s ≥ 0,(2.4)

which is continuous on R+. In the gradient case b(t, x) = −∇xU(t, x), this func-
tion coincides with twice the depth of the potential barrier to be overcome in order
to exit from A−, that is, the energy the diffusion needs to leave A−. Therefore,
scales µ—corresponding to the Kramers–Eyring times T ε = exp(

µ
ε
) according to

the chosen parametrization—at which we expect transitions between the domains
of attraction must be comprised between

µ∗ := inf
t≥0

e(t) and µ∗ := sup
t≥0

e(t).

These two constants are finite and are reached at least once per period since e(t) is
continuous and periodic. Now fix a time scale parameter µ. This parameter serves
as a threshold for the energy, and we expect to observe an exit from A− at the
first time t at which e(t) falls below µ. For µ ∈]µ∗,µ∗[, we therefore define (see
Figure 2).

aµ = inf{t ≥ 0 : e(t) ≤ µ}, αµ = inf{t ≥ 0 : e(t) < µ}.(2.5)
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FIG. 2. Definition of aµ and αµ.

The subtle difference between aµ and αµ may be important, but we shall rule it
out for our considerations by making the following assumption.

ASSUMPTION 2.2. The energy function e(t) is strictly monotonous between
its (discrete) extremes, and every local extremum is global.

Under this assumption, we have aµ = αµ. We are now in a position to state the
main result of this section. Let � > 0 be small enough such that the Euclidean ball
B�(x+) ⊂ A+, and let us define the first entrance time into this ball by

τ� = inf{t ≥ 0 :Xε
t ∈ B�(x+)}.(2.6)

This stopping time depends of course on ε, but, for notational simplicity, we sup-
press this dependence.

THEOREM 2.3. Let µ < e(0). There exist η > 0 and h0 > 0 such that, for
h ≤ h0,

lim
ε→0

ε log sup
y∈Bη(x−)

Py

(
τ� /∈ [(aµ − h)T ε, (αµ + h)T ε])= µ − e(aµ − h).

Moreover, under Assumption 2.2, this convergence is uniform w.r.t. µ on compact
subsets of ]µ∗, e(0)[.

Note that Assumption 2.2 implies the continuity of µ �→ µ − e(aµ − h), and
that µ − e(aµ − h) < 0 if h is small enough. The statement of the theorem may be
paraphrased in the following way. It specifies time windows in which transitions
between the domains of attraction will be observed with very high probability. In
particular, if e(t) is strictly monotonous between its extremes, we prove that the
entrance time into a neighborhood of x+ will be located near aµT ε in the small
noise limit. The assumption µ < e(0) is only a technical assumption in order to
avoid instantaneous jumping of the diffusion to the other valley. It can always be
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achieved by simply starting the diffusion a little later. We could even assume that
e(0) = µ∗, which then would yield uniform convergence on compact subsets of
]µ∗,µ∗[.

The rest of this section is devoted to the proof of this main result and is subdi-
vided into separate subsections in which lower and upper bounds are established.

2.1. Lower bound for the exponential exit rate: diffusion exit. We have to es-
tablish upper and lower bounds on the transition time τ� which both should be
exceeded with an exponentially small probability that has to be determined ex-
actly. It turns out that the probability of exceeding the upper bound (αµ − h)T ε

vanishes asymptotically to all exponential orders, so the exact large deviations rate
is determined only by the probability Px(τ� ≤ (aµ −h)T ε) of exceeding the lower
bound.

For a lower bound of the latter probability, as well as for an upper bound on
Px(τ� ≥ (αµ + h)T ε), one has to prove large deviations type upper bounds of
the asymptotic distribution Px(τ� ≥ s(ε)) for suitably chosen s(ε). This can be
expressed in terms of the problem of diffusion exit from a carefully chosen bounded
domain.

Recall that τ� is the first entrance time of a small neighborhood B�(x+) of the
equilibrium point x+. Consider for R,� > 0 the bounded domain

D = D(R,�) := BR(0) \ B�(x+),

and let

τD := inf{t ≥ 0 :Xt /∈ D}
be the first exit time of X from D. An exit from D means that either X enters
B�(x+), that is, we have a transition to the other equilibrium, or X leaves BR(0).
But, as a consequence of our growth condition (1.16), the probability of the latter
event does not contribute on the large deviations scale due to Proposition 1.4, as
the following simple argument shows.

Let s(ε,µ) = sT ε for some s > 0. Since τD = τ� ∧ σR , where σR is the time of
the diffusion’s first exit from BR(0), Proposition 1.4 provides constants R1, ε1 > 0
s.t. for R ≥ R1, ε ≤ ε1,

Px

(
τ� ≥ s(ε,µ)

)≤ Px

({τ� ≥ s(ε,µ)} ∩ {σR ≥ s(ε,µ)})+ Px

(
σR < s(ε,µ)

)
≤ Px

(
τD ≥ s(ε,µ)

)+ Cη2 s(ε,µ)

ε
e−ηR/ε for ‖x‖ ≤ R

2
.

By the choice of s(ε,µ) and T ε = exp
(µ

ε

)
, the right-hand side term in the last sum

is of the order 1
ε

exp µ−ηR
ε

, that is, it can be assumed to be exponentially small
of any exponential order required by choosing R suitably large. Obviously, this
holds uniformly with respect to µ on compact sets. This argument shows that the
investigation of asymptotic properties of the laws of τ� may be replaced by a study
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of similar properties of τD , with an error that may be chosen arbitrarily small by
increasing R.

Similarly to the time homogeneous exit problem, we need a lemma which shows
how to approximate the energy of a transition by the cost along particular trajec-
tories which exit some neighborhood of D. This is of central importance to the
estimation of the asymptotic law of τD .

LEMMA 2.4. Let ϑ > 0 and M a compact interval of R+. Then there exist
T0 > 0 and δ > 0 with the following property:

For all x ∈ D and s ∈ M , we can find a continuous path ζ x,s ∈ C0T0 starting in
ζ

x,s
0 = x and ending at some point of distance d(ζ

x,s
T0

,D) ≥ δ away from D such
that

I s
0T0

(ζ x,s) ≤ e(s) + ϑ for all s ∈ M.

PROOF. This proof extends arguments presented in Lemmas 5.7.18 and 5.7.19
in [4].

Fix ϑ > 0, and let us decompose the domain D into three different ones.
Fixing l > 0, define a domain βl by βl = {x ∈ D : dist(x,χ) < l}. We recall
that χ is the separation between A− and A+. Then we define two closed sets
D− = (D \ βl) ∩ A− and D+ = (D \ βl) ∩ A+. We shall construct appropriate
paths from points y ∈ D to points a positive distance away from D not exceeding
the energy e(s) by more than ϑ uniformly in s ∈ M in four steps.

Step 1. Assume first that y ∈ D−. For l > 0 small enough, we construct δl
1 > 0,

Sl
1 > 0 and a path ψ

s,y,l
1 defined on a time interval [0, τ

s,y,l
1 ] with τ

s,y,l
1 ≤ Sl

1 for
all y ∈ D−, s ∈ M and along which we exit a δl

1-neighborhood of D− at cost at
most e(s) + 2

3ϑ.

Step 1.1. In a first step we go from y to a small neighborhood Bl(x−) of x−,
in time at most T l

1 < ∞, without cost.

We denote by ϕ
s,y,l
1 the trajectory starting at ϕ

s,y,l
1 (0) = y ∈ D− of

ϕ̇1(t) = b
(
s, ϕ1(t)

)
,

and reaching Bl(x−) at time σ
y,s,l
1 . Since D− ⊂ A− and due to Assumption 2.1,

σ
y,s,l
1 is finite. Moreover, since b is locally Lipschitz, stability of solutions with

respect to initial conditions and smooth changes of vector fields implies that there
exist open neighborhoods Wy of y and Ws of s and T

s,y,l
1 > 0 such that, for all

z ∈ Wy , u ∈ Ws , σ
u,z,l
1 ≤ T

s,y,l
1 . Recall that D− is compact. Therefore, we may

find a finite cover of D− × M by such sets, and, consequently, T l
1 < ∞ such that,

for all y ∈ D− and s ∈ M , σ
s,y,l
1 ≤ T l

1 . Denote zs,y,l = ϕ
s,y,l
1 (σ

s,y,l
1 ).
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Step 1.2. In a second step, we go from a small neighborhood Bl(x−) of x−
to the equilibrium point x−, in time at most 1, at cost at most ϑ

3 . In fact, by the
continuity of the cost function, for l small enough, s ∈ M , there exists a continuous
path ϕ

s,y,l
2 of time length σ

s,y,l
2 ≤ 1 such that ϕ

s,y,l
2 (0) = zs,y,l , ϕ

s,y,l
2 (σ

s,y,l
2 ) = x−

and I
0σ

s,y,l
2

(ϕ
s,y,l
2 ) ≤ ϑ/3.

Step 1.3. In a third step, we exit some δ-neighborhood of D−, starting from
the equilibrium point x−, in time at most T3 < ∞, at cost at most e(s) + ϑ

3 for
s ∈ M.

By (2.4) and the continuity of the cost function for any s ∈ M , there exists
zs /∈ A− ⊃ D−, T s

3 < ∞, some neighborhood Ws of s and for u ∈ Ws , we have
ϕu

3 ∈ C0σu
3

such that ϕu
3 (0) = x−, ϕu

3 (σu
3 ) = zs , σu

3 ≤ T s
3 and

sup
u∈Ws

I u
0σu

3
(ϕu

3 ) ≤ e(s) + ϑ/3.

Use the compactness of M to find a finite cover of M by such neighborhoods, and,
thus, some T3 < ∞ such that all the statements hold with σ s

3 ≤ T3 for all s ∈ M.

Finally, remark that the exit point is at least a distance δ = infi∈J |zi | away from
the boundary of D−, if zi, i ∈ J, are the exit points corresponding to the finite
cover.

In order to complete Step 1, we now define a path ψ
s,y,l
1 ∈ C

0τ
s,y,l
1

by concate-

nating ϕ
s,y,l
1 , ϕ

s,y,l
2 and ϕs

3. This way, for small l > 0, we find Sl
1 > 0 such that, for

all s ∈ M,y ∈ D−, we have τ
s,y,l
1 ≤ Sl

1,ψ
s,y,l
1 (τ

s,y,l
1 ) = y,ψ

s,y,l
1 (τ

s,y,l
1 ) /∈ A− and

I s

0τ
s,y,l
1

(ψ
s,y,l
1 ) ≤ e(s) + 2

3ϑ for all s ∈ M,y ∈ D−.

At this point, we can encounter two cases. In the first case ψ
s,y,l
1 exits a

δl-neighborhood of BR(0). In this case we continue with Step 4. In the second
case, ψ

s,y,l
1 exits D− into βl , and we continue with Step 2.

Step 2. For l small enough, we start in y ∈ βl to construct Sl
2 > 0 and a path

ψ
s,y,l
2 defined on a time interval [0, τ

s,y,l
2 ] with τ

s,y,l
2 ≤ Sl

2 for all y ∈ D−, s ∈ M

and along which we exit βl into the interior of D+ at cost at most ϑ
3 .

In fact, due to the continuity of the cost function (see Lemma 1.6), there exists
l > 0 small enough such that, for any s ∈ M,y ∈ βl , there exists zs,y,l in the interior

of D+, such that, ψ
s,y,l
2 (0) = y ψ

s,y,l
2 (τ

s,y,l
2 ) = zs,y,l and Iu

0τ
s,y,l
2

(ψ
s,y,l
2 ) ≤ ϑ/3.

We may take Sl
2 = 1.

Step 3. We start in y ∈ D+ to construct δl
3 > 0, Sl

3 > 0 and a path ψ
s,y,l
3 defined

on a time interval [0, τ
s,y,l
3 ] with τ

s,y,l
3 ≤ Sl

3 for all y ∈ D−, s ∈ M and along which
we exit D+ into B�−δl

3
(x+) at no cost.
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Let δl
3 = �/2. Since D+ is compact and contained in the domain of attraction

of x+, stability of the solutions of the differential equation ϕ̇(t) = b(s,ϕ(t)) with
respect to the initial condition y ∈ D+ and the parameter s guarantees the existence
of some time Sl

3 > 0 such that the entrance time τ
s,y,l
3 of B�/2(x+) by the solution

starting in y is bounded by Sl
3. Therefore, we may take ψ

s,y,l
3 to be defined by this

solution restricted to the time interval before its entrance into B�/2(x+).

Step 4. For l > 0 small enough, we start in x ∈ D− and construct T0 > 0, δ > 0
and a path ζ s,x defined on the time interval [0, T0], exiting a δ-neighborhood of D

at cost at most e(s) + ϑ for all s ∈ M.

For l small enough, take T0 = Sl
1 + Sl

2 + Sl
3. We just have to concatenate paths

constructed in the first three steps. Recall that ψ
s,x,l
1 passes through the equilibrium

x− due to Step 1. In case ψ
s,x,l
1 exits a δl

1-neighborhood of BR(0), just let the path
spend enough time in x− without cost to obtain a path ζ s,x,l defined on [0, T0],
and take δ = δl

1. In the other case, we concatenate three paths constructed in Steps
1–3 to obtain a path defined on a subinterval of [0, T0] depending on s, x, l and
which exits a δl

3-neighborhood of D. Recall from Step 1 that this path also passes
through x−. It remains to redefine the path by spending extra time at no cost in this
equilibrium point to complete the proof. �

We now proceed to the estimation of uniform lower bounds for the asymptotic
law of τD. The uniformity has to be understood in the sense of Remark 1.9.

PROPOSITION 2.5. Let K be a compact subset of D:

(a) If e(s) > µ, then

lim inf
ε→0

ε log inf
x∈K

Px(τD < sT ε) ≥ µ − e(s),

locally uniformly on {(s,µ) :µ∗ < µ < min(e(0), e(s)),0 ≤ s ≤ 1}.
(b) If e(s) < µ, then

lim
ε→0

ε log sup
x∈K

Px(τD ≥ sT ε) = −∞,

locally uniformly on {(s,µ) : e(s) < µ < e(0),0 ≤ s ≤ 1}.
PROOF. We choose a compact subset L of [0,1] and a compact subset M of

]µ∗, e(0)[, as well as some ϑ > 0 such that

|e(s) − µ| ≥ ϑ ∀ (s,µ) ∈ L × M.

Later on we shall assume that e(s) − µ is uniformly positive respectively negative
in order to prove (a) respectively (b).

In a first step, we apply Lemma 2.4 to approximate the energy function e(s) by
the rate function along a particular path, uniformly w.r.t. s. For the chosen ϑ , it
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yields T0 > 0 and δ > 0, as well as continuous paths ζ x,s indexed by x ∈ D and
s ∈ [0,1] ending a distance at least δ away from D such that, for all x ∈ D and
s ∈ [0,1],

I s
0T0

(ζ x,s) ≤ e(s) + ϑ

4
.

In a second step, we use the Markov property to estimate the probability of exit-
ing D after time sT ε by a large product of exit probabilities after time intervals
of length independent of ε and µ. Since for ε > 0, µ ∈ M , the interval [0, sT ε]
becomes arbitrarily large as ε → 0, we introduce a splitting into intervals of length
ν ≥ T0 independent of ε and µ. For k ∈ N0, let tk = tk(s, ε,µ) := sT ε − kν. Then
we have, for k ∈ N0 and x ∈ D,

Px(τD ≥ tk) = Ex

(
1{τD≥tk}1τD≥tk+1

)
= Ex

(
1{τD≥tk+1}E

[
1{τD≥tk}|Ftk+1

])
≤ Px(τD ≥ tk+1) sup

y∈D

Py,tk+1(τD ≥ ν).

Here Py,s denotes the law of Xs,y , defined by the SDE

dX
s,y
t = b

(
s + t

T ε
,X

s,y
t

)
dt + √

ε dWt, t ≥ 0, X
s,y
0 = y ∈ R

d .

On intervals [0, ν] it coincides with the law of the original process X on [s, s + ν].
Denoting qk(s, ε,µ) := supy∈D Py,tk (τD ≥ ν), an iteration of the latter argument
yields

sup
x∈K

Px(τD ≥ sT ε) ≤
N(ε,µ)∏
k=1

qk(s, ε,µ)(2.7)

whenever N(ε,µ)ν < sT ε . For the further estimation of the qk , we apply some
LDP to the product (2.7). This relies on the following idea. We choose N(ε,µ) of
the order εT ε . Then the starting times tk appearing in the product belong to some
neighborhood of sT ε that, compared to T ε , shrinks to a point asymptotically. Con-
sequently, the family of diffusions underlying the product is uniformly exponen-
tially equivalent to the homogeneous diffusion governed by the drift b(s, ·).

This will be done in the following third step. For x ∈ D, s ∈ [0,1], let

�(x, s) :=
{
ψ ∈ C0T0 :ρ0T0(ψ, ζ x,s) <

δ

2

}

be the open δ/2-neighborhood of the path chosen in the first step, and let

�(x) := ⋃
s∈[0,1]

�(x, s).

To apply our large deviations estimates in this situation, note first that conditions
concerning τD translate into constraints for the trajectories of Xε as figuring in
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the preceding section: due to the definition of �(x, s), the choice ν ≥ T0 and
Lemma 2.4, we know that, for y ∈ D,k ≤ N(ε,µ), if Xtk,y belongs to �(x),
then for sure Xtk,y exits D before time ν. Keeping this in mind, we may apply
Proposition 1.8 to the neighborhoods

Ss,0(ε,µ) = [sT ε − νN(ε,µ), sT ε + ν]
of sT ε . Each of the intervals [tk, tk + ν] is contained in Ss,0(ε,µ). As men-
tioned before, N(ε,µ) is chosen of the order εT ε , and this can be done uniformly
w.r.t. µ ∈ M . More precisely, we assume to have constants 0 < c1 < c2 such that
c1εT

ε ≤ N(ε,µ) ≤ c2εT
ε . Then

lim
ε→0

sup
s∈[0,1],µ∈M

diamSs,0(ε,µ)

T ε
= 0,

and by the large deviations principle of Proposition 1.8, we obtain the lower bound

lim inf
ε→0

ε log inf
y∈K,µ∈M,k≤N(ε,µ)

Py,tk (τD < ν) ≥ − sup
y∈K

inf
ψ∈�(y)

I s
0T0

(ψ)

≥ − sup
y∈K

I s
0T0

(ζ y,s) ≥ −e(s) − ϑ

4
.

We stress that this bound is uniform w.r.t. s in the sense of Remark 1.9, so we can
find ε0 > 0 independent of s such that, for ε ≤ ε0, µ ∈ M and k ≤ N(ε,µ),

1 − qk(s, ε,µ) = inf
y∈D

Py,tk (τD < ν)

≥ inf
y∈D,µ∈M,j≤N(ε,µ)

Py,tj (τD < ν) ≥ exp
{
−1

ε

(
e(s) + ϑ

2

)}
.

From this, we obtain

sup
x∈K

Px(τD ≥ sT ε) ≤
N(ε,µ)∏
k=1

qk(s, ε,µ) ≤
(

1 − exp
{
−1

ε

(
e(s) + ϑ

2

)})N(ε,µ)

= exp
{
N(ε,µ) log

(
1 − exp

{
−1

ε

(
e(s) + ϑ

2

)})}
=: m(ε,µ).

Since log(1 − x) ≤ −x for 0 ≤ x < 1, we have

m(ε,µ) ≤ exp
{
−c1ε exp

{
µ

ε
− 1

ε

(
e(s) + ϑ

2

)}}
.

In the fourth and last step, we exploit this bound of m(ε,µ) to obtain the claimed
asymptotic bounds.

In order to prove (a), assume that µ < e(s) for (s,µ) ∈ L × M . Then the inner
exponential approaches 0 on L × M . Using the inequality 1 − e−x ≥ x exp(−1)
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on [0,1], we conclude that there exists ε1 ∈ (0, ε0) such that, for all ε ≤ ε1 and
(s,µ) ∈ L × M ,

ε log inf
x∈K

Px(τD < sT ε) ≥ ε log
(
1 − m(ε,µ)

)

≥ ε log
(
εc1 exp(−1) exp

{
1

ε

(
µ − e(s) − ϑ

2

)})

= −ε + ε log c1 + ε log ε + µ − e(s) − ϑ

2
≥ µ − e(s) − ϑ.

For (b), assume µ > e(s) on L × M . Then

ε log sup
x∈K

Px(τD ≥ sT ε) ≤ ε logm(ε,µ)

≤ −c1ε exp
{
−1

ε

(
µ − e(s) − ϑ

2

)}
−→
ε→0

−∞. �

As a consequence of these large deviations type results on the asymptotic distri-
bution of τD and the remarks preceding the statement of Lemma 2.4 and Proposi-
tion 2.5, we get the following asymptotics for the transition time of the diffusion.

PROPOSITION 2.6. Let x ∈ A−. There exists h0 > 0 such that

lim inf
ε→0

ε log Px

(
τ� ≤ (aµ − h)T ε) ≥ µ − e(aµ − h),(2.8)

lim
ε→0

ε log Px

(
τ� ≥ (αµ + h)T ε)= −∞,(2.9)

for h ≤ h0. Moreover, these convergence statements hold uniformly w.r.t. x on com-
pact subsets of D and w.r.t. µ on compact subsets of ]µ∗, e(0)[.

PROOF. As the estimation based on Proposition 1.4 at the beginning of the
section shows, we may derive the required estimates for τD instead of τ�, if R is
chosen large enough.

Let M be a compact subset of ]µ∗, e(0)[. Then 0 < aµ < 1 for µ ∈ M which
yields the existence of h0 > 0 such that the compact set Lh := {aµ − h :µ ∈ M}
is contained in ]0,1[ for h ≤ h0. Moreover, we have e(s) > µ for 0 < s < aµ due
to the assumptions on e, uniformly w.r.t. (s,µ) ∈ Lh × M by the continuity of e.
Hence, by Proposition 2.5(a),

lim inf
ε→0

ε log inf
x∈K

Px(τD ≤ sT ε) ≥ µ − e(s),

uniformly on Lh × M for all h ≤ h0. By setting s = aµ − h, we obtain the first
asymptotic inequality. The second one follows in a completely analoguous way
from Proposition 2.5(b) since αµ = aµ and e(aµ + h) < µ for small enough h.

�
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2.2. Upper bound for the exponential exit rate. Let us next derive upper
bounds for the exponential exit rate which resemble the lower bounds just ob-
tained. We need an extension of a result obtained by Freidlin and Wentzell
(Lemma 5.4 in [18]).

LEMMA 2.7. Let K be a compact subset of A− \ {x−}. There exist T0 > 0 and
c > 0 such that, for all T ≥ T0, s ∈ [0,1] and for each ϕ ∈ C0T taking its values
in K , we have

I s
0T (ϕ) ≥ c(T − T0).

PROOF. Let φs,x be the solution of the differential equation

φ̇s,x(t) = b
(
s, φs,x(t)

)
, φs,x(0) = x ∈ K.

Let τ(s, x) be the first exit time of the path φs,x from the domain K . Since A− is
the domain of attraction of x− and since K is a compact subset of A− \ {x−}, we
obtain τ(s, x) < ∞ for all x ∈ K .

The function τ(s, x) is upper semi-continuous with respect to the vari-
ables s and x (due to the continuous dependence of φs,x on s and x). Hence,
the maximal value T1 := sups∈[0,1], x∈K τ(a, x) is attained.

Let T0 = T1 + 1, and consider all functions ϕ ∈ C0T0 with values in K . This set
of functions is closed with respect to the maximum norm. Since there is no solution
of the ordinary differential equation in this set of functions, the functional I s

0T0
reaches a strictly positive minimum on this set which is uniform in s. Let us denote
it by m. By the additivity of the functional I s

0T , we obtain, for T ≥ T0 and ϕ ∈ C0T

with values in K ,

I s
0T (ϕ) ≥ m

⌊
T

T0

⌋
≥ m

(
T

T0
− 1

)
= c(T − T0),

with c = m
T0

. �

Let us recall the subject of interest of this subsection:

τ� = inf{t ≥ 0 :Xε
t ∈ B�(x+)},

the hitting time of a small neighborhood of the equilibrium point x+. First we shall
consider upper bounds for the law of this time in some window of length βT ε

where β is sufficiently small. The important feature of the following statement
is that β is independent of s, while the uniformity of the bound again has to be
understood in the sense of Remark 1.9.

PROPOSITION 2.8. For all ϑ > 0, there exist β > 0, η > 0 such that, for all
s ∈ [0,1],

lim sup
ε→0

ε log sup
x∈Bη(x−)

Px

(
sT ε ≤ τ� ≤ (s + β)T ε)≤ µ − e(s) + ϑ.
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This bound holds locally uniformly w.r.t. µ ∈]µ∗, e(0)[ and uniformly w.r.t. s ∈
[0,1].

PROOF. Let M be a compact subset of ]µ∗, e(0)[, and fix ϑ > 0. We first
introduce some parameter dependent domains, the exit times of which will prove
to be suitable for estimating the probability that τ� is in a certain time window.

For this purpose, we define for δ > 0 and s ∈ [0,1] an open domain

D(δ, s) :=
{
y ∈ R

d :V s(x−, y) < µ∗ + 1

1 + δ
,dist(y,A+) > δ

}
,

and we let D = D(δ) = ⋃
s∈[0,1] D(δ, s). Then D is relatively compact in A−,

dist(y,A+) > δ for all y ∈ D(δ), and a transition to a �-neighborhood of x+ cer-
tainly requires an exit from D(δ). The boundary of D(δ) consists of two hyper
surfaces, one of which carries an energy strictly greater than µ∗ and thus greater
than e(s) for all s ∈ [0,1]. The minimal energy is therefore attained on the other
component of distance δ from A+ which approaches χ = ∂A− as δ → 0. Thus, by
the joint continuity of the quasi-potential, we can choose δ0 > 0 and η > 0 such
that, for δ ≤ δ0 and s ∈ [0,1],

e(s) = inf
z∈χ

V s(x−, z) ≥ inf
z∈∂D(δ)

V s(x−, z)

(2.10)

≥ inf
y∈Bη(x−)

inf
z∈∂D(δ)

V s(y, z) ≥ e(s) − ϑ

4
.

Let τD be the first exit time of Xε from D. For s ∈ [0,1] and β > 0, we introduce a
covering of the interval of interest [sT ε, (s + β)T ε] into N = N(β, ε,µ) intervals
of fixed length ν, that is, ν is independent of ε, µ, s and β . We will have to assume
that ν is sufficiently large, which will be made precise later on. Thus, we have
Nν ≥ βT ε , and we can and do assume that N ≤ βT ε . For k ∈ Z, k ≥ −1, let

tk = tk(s, ε,µ) := sT ε + kν

be the starting points of these intervals. We consider t−1 since we need some infor-
mation about the past in order to ensure the diffusion to start in a neighborhood of
the equilibrium x−. Then for x ∈ Bη(x−), we get the desired estimation of proba-
bilities of exit windows for τ� by those with respect to τD :

Px

(
sT ε ≤ τ� ≤ (s + β)T ε)≤ N∑

k=0

Px(tk ≤ τD ≤ tk+1).

In a second step we will fix k ≥ 0 and estimate the probability of a first exit from D

during each of the intervals [tk, tk+1] separately. Here the difficulty is that we do
not have any information on the location at time tk . We therefore condition on
whether or not Xε has entered the neighborhood Bη(x−) in the previous time in-
terval. For that purpose, let

σk := inf{t ≥ tk ∨ 0 :Xε
t ∈ Bη(x−)}, k ≥ −1.
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Then for k ≥ 0,

Px(tk ≤ τD ≤ tk+1) ≤ Px(tk ≤ τD ≤ tk+1|σk−1 ≤ tk)
(2.11)

+ Px(τD ∧ σk−1 ≥ tk).

In the next step we shall estimate the second term on the right-hand side of (2.11).
Let K = K(δ,η) = D(δ) \ Bη(x−). Then K is compact, and by the Markov prop-
erty, we have

Px(τD ∧ σk−1 ≥ tk) ≤ sup
y∈K

Py,tk−1(τD ∧ σ1 ≥ ν),

where Py,t is as defined in the previous section. Now we wish to further estimate
this exit probability using large deviations methods. The neighborhoods

Ss,β(ε,µ) = [sT ε − ν, sT ε + νN(β, ε,µ)]
of sT ε contain each interval [tk, tk+1], −1 ≤ k ≤ N(β, ε,µ), and they satisfy

lim sup
ε→0

sup
µ∈M,s∈[0,1]

diam(Ss,β(ε,µ))

T ε
≤ β.

Hence, by the uniform LDP of Proposition 1.8, applied to the closed set

�K(δ, η) = {ϕ ∈ C0,ν :ϕt ∈ K(δ,η) for all t ∈ [0, ν]},
we obtain the upper bound

lim sup
ε→0

ε log sup
y∈K,µ∈M,k≤N

Py,tk−1(τD ∧ σ1 ≥ ν)

≤ lim sup
ε→0

ε log sup
y∈K,µ∈M,t∈Ss,β(ε,µ)

Py,t

(
Xε ∈ �K(δ, η)

)
(2.12)

≤ − inf
y∈K

inf
ϕ∈�K(δ,η)γ0(β)

I s
0,ν(ϕ),

where γ0(β) = βδ(�K(δ, η)) is the “blowup-factor” induced by the diameter β .
Since γ0(β) → 0 as β → 0, we can find β0 > 0 such that, for β ≤ β0,

�K(δ, η)γ0(β) ⊂ �K

(
δ

2
,
η

2

)
,

which amounts to saying that, instead of blowing up the set of paths, we consider
the slightly enlarged domain K(δ

2 ,
η
2 ). Thus,

− inf
y∈K

inf
ϕ∈�K(δ,η)γ0(β)

I s
0,ν(ϕ) ≤ − inf

y∈K
inf

ϕ∈�K( δ
2 ,

η
2 )

I s
0,ν(ϕ).

By Lemma 2.7, the latter expression, and therefore the r.h.s. of (2.12), approaches
−∞ as ν → ∞, uniformly w.r.t. s ∈ [0,1]. So the second term in the decomposi-
tion of Px(tk ≤ τD ≤ tk+1) can be neglected since it becomes exponentially small
of any desired order by choosing ν suitably large.
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In the next and most difficult step, we treat the first term on the right-hand side
of (2.11). It is given by the probability that, while Xε is in Bη(x−) at time σk−1,
it exits within a time interval of length tk+1 − σk−1 ≤ 2ν. Hence, by the strong
Markov property,

Px(tk ≤ τD ≤ tk+1|σk−1 ≤ tk) ≤ sup
tk−1≤t≤tk,y∈Bη(x−)

Py,t (τD ≤ 2ν).

Applying the uniform LDP to the closed set

FD(δ) := {ϕ ∈ C0,2ν :ϕ0 ∈ D(δ),ϕt0 /∈ D(δ) for some t0 ≤ 2ν}
yields the upper bound

lim sup
ε→0

ε log sup
y∈Bη(x−),µ∈M,t∈Ss,β(ε,µ)

Py,t (τD ≤ 2ν)

(2.13)
≤ − inf

y∈Bη(x−)
inf

ϕ∈FD(δ)γ0(β)
I s

0,2ν(ϕ),

where γ0(β) = 2βδ(FD(δ)). By the same reasoning as before, we can replace the
blow-up of the path sets FD(δ) by an enlargement of the domain D(δ). We find
β1 > 0 such that, for β ≤ β1

− inf
y∈Bη(x−)

inf
ϕ∈FD(δ)γ0(β)

I s
0,2ν(ϕ) ≤ − inf

y∈Bη(x−)
inf

ϕ∈FD(δ/2)
I s

0,2ν(ϕ)

≤ − inf
y∈Bη(x−)

inf
z∈∂D(δ/2)

V s(y, z).

Now we apply (2.10) and recall the uniformity of the LDP w.r.t. s. We find ε0 > 0
such that we have, for ε ≤ ε0, s ∈ [0,1], µ ∈ M and β ≤ β1,

ε log sup
y∈Bη(x−),t∈Ss,β(ε,µ)

Py,t (τD ≤ 2ν)

≤ − inf
y∈Bη(x−)

inf
z∈∂D(δ/2)

V s(y, z) + ϑ

4
(2.14)

≤ −e(s) + ϑ

2
.

We finally summarize our findings. We conclude that there exists ε1 > 0 such that,
for ε ≤ ε1, µ ∈ M and s ∈ [0,1], we have

ε log sup
x∈Bη(x−)

Px

(
sT ε ≤ τ� ≤ (s + β)T ε)

≤ ε log

{N(β,ε,µ)∑
k=0

sup
x∈Bη(x−)

Px

(
tk ≤ τD ≤ tk+1

∣∣σk−1 ≤ tk
)}+ ϑ

4

≤ ε log
{
βT ε exp

(
−1

ε

[
e(s) − ϑ

2

])}
+ ϑ

4
= ε logβ + µ − e(s) + 3

4
ϑ

≤ µ − e(s) + ϑ.
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This completes the proof. �

REMARK 2.9. If we stay away from s = 0, in the statement of Proposition 2.8
the radius of the starting domain Bη(x−) can be chosen independently of the para-
meter ϑ . It may then be brought into the following somewhat different form.

PROPOSITION 2.10. Let L and M be compact subsets of ]0,1] respectively
]µ∗, e(0)[. Let η > 0 be small enough such that Bη(x−) belongs to the domain

{y ∈ R
d :V s(x−, y) < µ∗ for all s ∈ L}.

Then, for all ϑ > 0, there exists some β > 0 such that we have

lim sup
ε→0

ε log sup
x∈Bη(x−)

P
(
sT ε ≤ τ� ≤ (s + β)T ε)≤ µ − e(s) + ϑ,

uniformly w.r.t. s ∈ L and µ ∈ M .

PROOF. To prove Proposition 2.10, one has to modify slightly the preceding
proof. Instead of just η, one has to choose two different parameters: η0 for the
definition of the starting domain D and some η1 for the description of the location
of the diffusion at time tk , that is, for the definition of the stopping times σk . �

In the following proposition, we derive the upper bound for the asymptotic law
of transition times, corresponding to the lower bound obtained in Proposition 2.6.

PROPOSITION 2.11. Let µ < e(0), and recall from (2.5) the definition aµ =
inf{t ≥ 0 : e(t) ≤ µ}. There exist γ > 0 and h0 > 0 such that, for all h ≤ h0,

lim sup
ε→0

ε log sup
x∈Bγ (x−)

Px

(
τ� ≤ (aµ − h)T ε)≤ µ − e(aµ − h).(2.15)

This bound is uniform w.r.t. µ on compact subsets of ]µ∗, e(0)[.

PROOF. Let M be a compact subset of ]µ∗, e(0)[. To choose h0, we use our
assumptions on the geometry of the energy function e. Recall Assumption 2.2
according to which e is strictly monotonous in the open intervals between the
extrema ]µ∗,µ∗[. It implies that e is monotonically decreasing on the interval
[ae(0), aµ] for any µ ∈ M. By choice of M , we further have ae(0) < infµ∈M aµ.

Now choose h0 such that infµ∈M aµ − h0 > ae(0). Then we have, for h ≤ h0,

inf
µ∈M

aµ − h > 0,(2.16)

e(0) > sup
µ∈M,h≤h0

e(aµ − h),(2.17)

e(s) ≥ e(aµ − h) for all s ≤ aµ − h.(2.18)
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To see (2.18), note that, for 0 ≤ s ≤ ae(0), by definition of ae(0), the inequality
e(s) ≥ e(0) > e(aµ − h) holds, while, for ae(0) ≤ s ≤ aµ − h by monotonicity,
e(s) ≥ e(aµ − h).

Next fix h ≤ h0. For µ ∈ M , let �0 = �0(µ) = 0, and �1(µ) ≤ infµ∈M(aµ −
h)T ε . For N ∈ N

∗, we set �i(µ) = �1 + i−1
N−1 ((aµ −h)T ε −�1), 2 ≤ i ≤ N, thus

splitting the time interval [0, (aµ − h)T ε] into the N intervals [�i(µ),�i+1(µ)],
0 ≤ i ≤ N − 1. Then for γ > 0, x ∈ Bγ (x−),

Px

(
τ� ≤ (aµ − h)T ε)≤ N−1∑

i=0

Px

(
τ� ∈ [�i(µ),�i+1(µ)]),

which implies

lim sup
ε→0

ε log sup
x∈Bγ (x−)

Px

(
τ� ≤ (aµ − h)T ε)

≤ max
0≤i≤N−1

lim sup
ε→0

ε log sup
x∈Bγ (x−)

Px

(
τ� ∈ [�i(µ),�i+1(µ)]).

Fix ϑ > 0 such that, for h ≤ h0,µ ∈ M , we have e(0) ≥ e(aµ − h) + ϑ. This is
guaranteed by (2.17). We shall show that

lim sup
ε→0

ε log sup
x∈Bγ (x−)

Px

(
τ� ∈ [�i(µ),�i+1(µ)])≤ µ − e(aµ − h) + ϑ,

uniformly in 0 ≤ i ≤ N − 1 and µ ∈ M.

Let us treat the estimation of the first term separately from the others. In fact, by
Proposition 2.8, setting s = 0, β = �1/T ε , we may choose �, ε0 > 0 and γ0 > 0
such that, for �1 ≤ �T ε, ε ≤ ε0, γ ≤ γ0,µ ∈ M , the inequality

ε log sup
x∈Bγ (x−)

Px

(
τ� ∈ [�0(µ),�1(µ)])≤ µ − e(0) + ϑ

holds. Now we use the inequality e(0) ≥ e(aµ − h) + ϑ, valid for all µ ∈ M.

Hence, there exists � > 0, ε0 > 0 and γ0 > 0 such that, for �1 ≤ �T ε , ε ≤ ε0,
γ ≤ γ0,µ ∈ M ,

ε log sup
x∈Bγ (x−)

Px

(
τ� ∈ [�0(µ),�1(µ)])≤ µ − e(aµ − h).

Let us next estimate the contributions for the intervals [�i(µ),�i+1(µ)] with
i ≥ 1. We use Proposition 2.8, this time with s = �i(µ)/T ε , β = 1

N−1 supµ∈M aµ.
By the definition of aµ, we get e(s) > e(aµ) for all s < aµ. By (2.18), we have
e(s) = e(�i(µ)/T ε) ≥ e(aµ − h). By Remark 2.9,

lim sup
ε→0

ε log sup
x∈Bγ (x−)

Px

(
τ� ∈ [�i(µ),�i+1(µ)])≤ µ − e(aµ − h) + ϑ,

uniformly w.r.t. 1 ≤ i ≤ N and µ ∈ M . Letting ϑ tend to 0, which implies that N

tends to infinity and �1 tends to zero, we obtain the desired upper bound for the
exponential exit rate. �
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3. Stochastic resonance. Given the results of the previous section on the as-
ymptotics of exit times which are uniform in the scale parameter µ, we are now in
a position to reconsider the problem of finding a satisfactory probabilistic notion
of stochastic resonance that does not suffer from the lack of robustness defect of
physical notions, such as spectral power amplification. We continue to study the
SDE

dXε
t = b

(
t

T ε
,Xε

t

)
dt + √

ε dWt, t ≥ 0,Xε
0 = x0 ∈ R

d,

introduced before, thereby recalling that the drift term b satisfies the local Lip-
schitz conditions (1.15) and (1.14) in space and time, as well as the growth con-
dition (1.16). Moreover, b is assumed to be one-periodic in time such that T ε is
the period of the deterministic input of the randomly perturbed dynamical system
described by Xε .

In typical applications, b = −∇xU is given by the (spatial) gradient of some
time periodic double-well potential U (see [13]). The potential possesses at all
times two local minima well separated by a barrier. The depth of the wells and
the roles of being the deep and shallow one change periodically. The diffusion Xε

then roughly describes the motion of a Brownian particle of intensity ε in a double-
well landscape. Its attempts to get close to the energetically most favorable deep
position in the landscape makes it move along random trajectories which exhibit
randomly periodic hopping between the wells. The average time the trajectories
need to leave a potential well of depth v

2 being given by the Kramers–Eyring law
T ε = exp(v

ε
) motivates our choice of time scales T ε = exp(

µ
ε
) and also our con-

vention to measure time scales in energy units µ.

The problem of stochastic resonance consists of characterizing the optimal tun-
ing of the noise, that is, the best relation between the noise amplitude ε and the
input period T ε—or, in our units the energy parameter µ—of the deterministic sys-
tem which makes the diffusion trajectories look as periodic as possible. Of course,
the optimality criterion must be based upon a quality measure for periodicity in
random trajectories.

In this section we shall develop a measure of quality based on the transition
probabilities investigated in Section 2 and with respect to this measure for fixed
small ε (in the small noise limit ε → 0), exhibit a resonance energy µ0(ε) for
which the diffusion trajectories follow the periodic forcing of the system at in-
tensity ε in an optimal way. We shall in fact study the problem in a more gen-
eral situation which includes the double-well potential gradient case as an impor-
tant example, and draws its intuition from it. The deterministic system ϕ̇s(t) =
b(s,ϕs(t)), t ≥ 0, has to satisfy Assumption 2.1, that is, it possesses two well sep-
arated domains of attraction, the common boundary of which is time invariant.
In the first subsection we shall describe the resonance interval, that is, the set
of all parameter values µ for which in the small noise limit trivial behavior, that
is, either constant or continuously jumping trajectories, are excluded. The second
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subsection shows that a quality measure of periodic tuning is given by the expo-
nential rate at which the first transition from one domain of attraction to the other
one happens within a fixed time window around aµT ε. This quality measure is
robust, as demonstrated in the last subsection: in the small noise limit the diffusion
and its reduced model, a Markov chain jumping between the domains of attraction
reduced to the equilibrium points, have the same resonance pattern.

3.1. Resonance interval. According to Freidlin [5], quasi-periodic hopping
behavior of the trajectories of our diffusion in the small noise limit of course re-
quires that the energies required to leave the domains of attraction of the two equi-
libria switch their order periodically: if e± denotes the energy needed to leave A±,
then e+ needs to be bigger than e− during part of one period, and vice versa for
the rest. We assume that e± both satisfy Assumption 2.2 and associate to each of
these functions the transition time

a±
µ (s) = inf{t ≥ s : e±(t) ≤ µ}.

The time scales µ for which relevant behavior of the system is expected clearly
belong to the intervals

Ii =
]

inf
t≥0

ei(t), sup
t≥0

ei(t)

[
, i ∈ {−,+}.

Our aim being the observation of periodicity, we have to make sure that the process
can travel back and forth between the domains of attraction on the time scales
considered, but not instantaneously. So, on the one hand, in these scales it should
not get stuck in one of the domains. On the other hand, they should not allow for
chaotic behavior, that is, immediate re-bouncing after leaving a domain has to be
avoided.

To make these conditions mathematically precise, recall that transitions from Ai

to A−i become possible as soon as the energy ei needed to exit from domain i falls
below µ which represents the available energy. Not to get stuck in one of A±, we
therefore have to guarantee

µ > max
i=± inf

t≥0
ei(t).

To avoid immediate re-bouncing, we have to assure that the diffusion cannot
leave A−i at the moment it reaches it, coming from Ai . Suppose we consider the
dynamics after time s ≥ 0, and the diffusion is near i at that time. Its first transition
to A−i occurs at time ai

µ(s)T ε , where ai
µ(s) is the first time in the original scale at

which ei falls below µ after s. Provided e−i(a
i
µ(s)) is bigger than µ, it stays there

for at least a little while. This is equivalent to saying that, for all s ≥ 0, there exists
δ > 0 such that on [ai

µ(s), ai
µ(s) + δ] we have µ < e−i . Since by definition for t

shortly after ai
µ(s), we always have ei(t) ≤ µ, our condition may be paraphrased
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FIG. 3. Resonance interval.

by the following: for all s ≥ 0, there exists δ > 0 such that on [ai
µ(s), ai

µ(s) + δ]
we have µ < maxi=± ei. This, in turn, is more elegantly expressed by

µ < inf
t≥0

max
i=± ei(t).

Our search for a set of scales µ for which the diffusion exhibits nontrivial transition
behavior may be summarized in the following definition. The interval

IR =
]
max
i=± inf

t≥0
ei(t), inf

t≥0
max
i=± ei(t)

[

is called resonance interval (see Figure 3).
In this interval, for small ε, we have to look for an optimal energy scale µ(ε)

in the following subsection. See [9] and [8] for the definition of the corresponding
interval in the one-dimensional case and in the case of two state Markov chains.
In Freidlin’s [5] terms, stochastic resonance in the sense of quasi-deterministic
periodic motion is given if the parameter µ exceeds the lower boundary of our
resonance interval.

Let us consider the potential gradient case. Assume that b(t, x) = −∇xU(t, x),
t ≥ 0, x ∈ R

d , where U is some time periodic double-well potential with time
invariant local minima x± and separatrix. Then A− and A+ represent the two
wells of the potential, χ the separatrix. The energy e± is, in fact, the energy some
Brownian particle needs to cross χ. Freidlin and Wentzell [6] give the link between
this energy and the depth of the well.

LEMMA 3.1. If D±(t) = infy∈χ U(t, y) − U(t, x±) denote the depths of the
wells, then e±(t) = 2D±(t) for all t ≥ 0.

This link is the origin of the name “quasipotential.” The minimal energy e is
reached by some path which intersects the level sets of the potential with orthogo-
nal tangents. This path satisfies an equation of the form

ϕ̇s = ∇xU(t, ϕs), s ∈ (−∞, T ), ϕT ∈ χ.

The resonance interval is given by IR = ]maxi=± inft≥0 2Di(t),

inft≥0 maxi=±1 2Di(t)[.
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3.2. Transition rates as quality measure. Let us now explain in detail our mea-
sure of quality designed to give a concept of optimal tuning which, as opposed
to physical measures (see [13]), is robust for model reduction to Markov chains
just retaining the jump dynamics between the equilibria of the diffusion. We shall
use a notion that is based just on this rough transition mechanism. In fact, gen-
eralizing an approach for two state Markov chain models (see [8]), we measure
the quality of tuning by computing for varying energy parameters µ the probabil-
ity that, starting in xi , the diffusion is transferred to x−i within the time window
[(ai

µ − h)T ε, (ai
µ + h)T ε] of width 2hT ε . To find the stochastic resonance point

for large T ε (small ε), we have to maximize this measure of quality in µ ∈ IR. The
probability for transition within this window will be approximated by the estimates
of the preceding section. Uniformity of convergence to the exponential rates will
enable us to maximize in µ for fixed small ε.

Let us now make these ideas precise. To make sure that the transition window
makes sense at least for small h, we have to suppose that ai

µ > 0, i = ± for µ ∈ IR .
This is guaranteed if

ei(0) > inf
t≥0

max
i=± ei(t), i = ±.

If this is not granted from the beginning, it suffices to start the diffusion a little
later. For � small enough so that B�(x±) ⊂ A±, we call

M(ε,µ,�) = min
i=± sup

x∈B�(xi)

Px

(
τ−i
� ∈ [(ai

µ − h)T ε, (ai
µ + h)T ε]),(3.1)

ε > 0,µ ∈ IR,

transition probability for a time window of width h. Here

τ i
� = inf{t ≥ 0 :Xε

t ∈ B�(xi)}.
We are ready to state our main result on the asymptotic law of transition time
windows.

THEOREM 3.2. Let M be a compact subset of IR , h0 > 0 and � be given
according to Theorem 2.3. Then for all h ≤ h0,

lim
ε→0

ε log
(
1 − M(ε,µ,�)

)= max
i=±{µ − ei(a

i
µ − h)},(3.2)

uniformly for µ ∈ M.

PROOF. This is an obvious consequence of Theorem 2.3. �

It is clear that, for h small, the eventually existing global minimizer µR(h) of

IR � µ �→ max
i=±{µ − ei(a

i
µ − h)}

is a good candidate for our resonance point. But it still depends on h. To get rid of
this dependence, we shall consider the limit of µR(h) as h → 0.
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FIG. 4. Point of maximal decrease.

DEFINITION 3.3. Suppose that

IR � µ �→ max
i=±{µ − ei(a

i
µ − h)}

possesses a global minimum µR(h). Suppose further that µR = limh→0 µR(h)

exists in IR. We call µR the stochastic resonance point of the diffusion (Xε) with
time periodic drift b.

Let us now illustrate this resonance notion in a situation in which the energy
functions are related by a phase lag φ ∈]0,1[, that is, e−(t) = e+(t + φ) for all
t ≥ 0. We shall show that in this case the stochastic resonance point exists if one
of the energy functions, and thus both, has a unique point of maximal decrease on
the interval where it is strictly decreasing (see Figure 4).

THEOREM 3.4. Suppose that e− is twice continuously differentiable and has
its global maximum at t1, and its global minimum at t2, where t1 < t2. Suppose
further that there is a unique point t1 < s < t2 such that e−|]t1,s[ is strictly concave,
and e−|]s,t2[ is strictly convex. Then µR = e−(s) is the stochastic resonance point.

PROOF. As a consequence of the phase lag of the energy functions,

max
i=±{µ − ei(a

i
µ − h)} = {µ − e−(a−

µ − h)}.

Write aµ = a−
µ and recall that on the interval of decrease of e−, aµ = e−1− (µ). The

derivative of µ �→ µ − e−(aµ − h) has to vanish for the minimizer, which yields

1 = e′−(aµ − h) · a′
µ = e′−(aµ − h) · 1

e′−(aµ)
.

Our hypotheses concerning convexity and concavity of e− essentially means that
e′′−(s) = 0, and e′′−|]t1,s[ < 0, e′′−|]s,t2[ > 0, which may be stated alternatively by
saying that µ �→ e′−(aµ) has a local maximum at aµ = s. Hence, for h small,
there exists a unique point aµ(h) such that e′−(aµ(h) − h) = e′−(aµ(h)) and
limh→0 aµ(h) = s. To show that aµ(h) corresponds to a minimum of the function
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µ �→ [µ − e−(aµ − h)], we take the second derivative of this function at aµ(h),
which is given by

e′−(aµ(h) − h)e′′−(aµ(h)) − e′′−(aµ(h) − h)e′−(aµ(h))

e′−(aµ(h))
.

But e′−(aµ(h)), e′−(aµ(h) − h) < 0, whereas e′′−(aµ(h) − h) > 0, e′′−(aµ(h)) < 0.

This clearly implies that aµ(h) corresponds to a minimum of the function. But
by definition, as h → 0, aµ(h) → s. Therefore, finally, e−(s) is the stochastic
resonance point. �

3.3. The robustness of stochastic resonance. In the small noise limit ε → 0, it
seems reasonable to assume that the periodicity properties of the diffusion trajecto-
ries, caused by the periodic forcing the drift term exhibits, are essentially captured
by a simpler, reduced stochastic process: a continuous time Markov chain which
just jumps between two states representing the equilibria in the two domains of at-
traction. Jump rates correspond to the transition mechanism of the diffusion. This
is just the reduction idea ubiquitous in the physics literature, and explained, for
example, in [11]. We shall now show that in the small noise limit both models,
diffusion and Markov chain, produce the same resonance picture, if quality of pe-
riodic tuning is measured by transition rates.

To describe the reduced model, let e± be the energy functions corresponding to
transitions from A∓ to A± as before. Assume a phase locking of the two functions
according to the previous subsection, that is, assume that e−(t) = e+(t +φ), t ≥ 0,

with phase shift φ ∈ ]0,1[. So, let us consider a time-continuous Markov chain
{Y ε

t , t ≥ 0} taking values in the state space S = {−,+} with initial data Y ε
0 = −.

Suppose the infinitesimal generator is given by

G =

−ϕ

(
t

T ε

)
ϕ

(
t

T ε

)

ψ

(
t

T ε

)
−ψ

(
t

T ε

)

 ,

where ψ(t) = ϕ(t + φ), t ≥ 0, and ϕ is a 1-periodic function describing a rate
which just produces the transition dynamics of the diffusion between the equilib-
ria ±, that is,

ϕ(t) = exp
{
−e+(t)

ε

}
, t ≥ 0.(3.3)

Note that by choice of ϕ,

ψ(t) = exp
{
−e−(t)

ε

}
, t ≥ 0.(3.4)

Transition probabilities for the Markov chain thus defined are easily computed
(see [8], Section 2). For example, the probability density of the first transition
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time σi is given by

p(t) = ϕ(t) exp
{
−
∫ t

0
ϕ(s) ds

}
, if i = −,

(3.5)

q(t) = ϕ(t + φ) exp
{
−
∫ t

0
ϕ(s + φ)ds

}
, if i = +,

t ≥ 0. Equation (3.5) can be used to obtain results on exponential rates of the
transition times σi if starting from −i, i = ±. We summarize them and apply them
to the following measure of quality of periodic tuning:

N (ε,µ) = min
i=± Pi

(
σ−i ∈ [(ai

µ−h)T ε, (ai
µ+h)T ε]), ε > 0,µ ∈ IR,(3.6)

which is called transition probability for a time window of width h for the Markov
chain.

Here is the asymptotic result obtained from a slight modification of Theorems 3
and 4 of [8] which consists of allowing more general energy functions than the
sinusoidal ones used there and requires just the same proof.

THEOREM 3.5. Let M be a compact subset of IR , h0 < sup(a−1
µ ,T /2−a−1

µ ).
Then for 0 < h ≤ h0,

lim
ε→0

ε ln
(
1 − N (ε,µ)

)= max
i=±{µ − e−(ai

µ − h)},(3.7)

uniformly for µ ∈ M.

It is clear from Theorem 3.5 that the reduced Markov chain Y ε and the diffusion
process Xε have exactly the same resonance behavior. Of course, we may define
the stochastic resonance point for Y ε , just as we did for Xε . So the following final
robustness result holds true.

THEOREM 3.6. The resonance points of (Xε) with time periodic drift b and
of (Y ε) with exponential transition rate functions e± coincide.

Acknowledgment. We are much indebted to an anonymous referee for very
constructive criticism.
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