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a b s t r a c t

The transition from periodic to chaotic vibrations in free-edge, perfect and imperfect circular plates, is

numerically studied. A pointwise harmonic forcing with constant frequency and increasing amplitude is

applied to observe the bifurcation scenario. The von Kármán equations for thin plates, including

geometric non-linearity, are used to model the large-amplitude vibrations. A Galerkin approach based

on the eigenmodes of the perfect plate allows discretizing the model. The resulting ordinary-differential

equations are numerically integrated. Bifurcation diagrams of Poincaré maps, Lyapunov exponents and

Fourier spectra analysis reveal the transitions and the energy exchange between modes. The transition

to chaotic vibration is studied in the frequency range of the first eigenfrequencies. The complete

bifurcation diagram and the critical forces needed to attain the chaotic regime are especially addressed.

For perfect plates, it is found that a direct transition from periodic to chaotic vibrations is at hand. For

imperfect plates displaying specific internal resonance relationships, the energy is first exchanged

between resonant modes before the chaotic regime. Finally, the nature of the chaotic regime, where a

high-dimensional chaos is numerically found, is questioned within the framework of wave turbulence.

These numerical findings confirm a number of experimental observations made on shells, where the

generic route to chaos displays a quasiperiodic regime before the chaotic state, where the modes,

sharing internal resonance relationship with the excitation frequency, appear in the response.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

When subjected to intensive and large-amplitude external

forcing, thin plates and shells can easily experience chaotic

vibrations. The study of the transition from periodic to chaotic

vibrations is of primary interest in numerous applied fields such

as aeronautic and aerospace or civil engineering, where shell-like

structural components are often used [1,2]. Another field where

chaotic vibration of shells is searched for, is that of musical

acoustics and more precisely the sound of gongs and cymbals

where the chaotic nature of the vibration ensures for the peculiar

bright and shimmering sound of these instruments [3–8].

A convenient and reproducible way to experimentally study the

chaotic vibrations of gongs and cymbals consists in harmonically

forcing the structure with an increasing amplitude. Numerous

experiments on different cymbals and gongs have been performed

and are reported in [9,7,10,8,11,12]. The generic observation, that

is also valid for plates and shells, reveals a scenario for the

transition to chaotic vibrations including two bifurcations,

separating three distinctive regime. Fig. 1 shows two typical

spectrograms of recorded pointwise velocity (measured with a

laser vibrometer) for an experiment with increasing amplitude of

forcing. Fig. 1(a) shows the case of a cymbal of diameter 55.6 cm

excited at O¼ 467Hz, while in Fig. 1(b) a smaller cymbal of

diameter 30.4 cm is excited at 1151Hz. For small amplitude

values of the forcing, a periodic regime is at hand. When the

excitation frequency is close to an eigenfrequency, a linear

resonance occurs, large-amplitude motions are more easily

observable, resulting in the appearance of harmonics of the

forcing frequency. For moderate amplitudes, a bifurcation occurs

and a quasiperiodic regime is observed. This quasiperiodic state is

characterized by the appearance of a number of distinct frequency

peaks in the spectrum, each of them being an eigenmode of the

structure. Moreover, these new frequency peaks can be grouped

by two or three, and they present simple non-linear resonance

relationships with the excitation frequency [9,7,10,8]. Hence, this

transition is interpreted as a loss of stability of the first excited

mode, in favour of a coupled regime, involving all the modes that

share an internal resonance relationship with the excitation

frequency, the injected energy being spread all over this specific

set of modes. Finally, for high values of the forcing amplitude, a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

0020-7462/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijnonlinmec.2010.09.004

� Corresponding author. Tel.: +33169319734; fax: +33169319997.

E-mail addresses: cyril.touze@ensta-paristech.fr (C. Touzé),
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second bifurcation occurs and a chaotic vibration, characterized

by a broadband Fourier spectrum and a positive Lyapunov

exponent, sets in [7,8].

From the numerical viewpoint, the transition from periodic to

chaotic vibrations in continuous systems has been considered by

Awrejcewicz et al. in a series of papers [13–16], with various

numerical methods (finite-difference and Bubnov–Galerkin meth-

od) and for plates, cylindrical shells, panels and sector-type

spherical shells. No confrontations to experiments were reported,

but a modified Ruelle–Takens–Newhouse scenario is found in [16]

which closely resembles our experimental results. Amabili

studied the transition to chaotic vibrations for circular cylindrical

shells and doubly curved panels [17,18,2], but only in the vicinity

of the fundamental frequency. The dynamic instability and

chaotic vibration occurring near the buckling critical load are

also investigated in [19]. Comparisons of experimental and

theoretical results are provided by Murphy et al. for a plate

subjected to large-amplitude acoustical excitation [20]. Amongst

other things, they underline the difficulty of finding out the

convergence in the dimension calculation for the underlying

attractor. Nagai et al. provided very detailed analytical and

experimental results for a shallow cylindrical panel, with or

without a concentrated mass [21–23]. In this case, the dimension

of the shell is smaller, so that a limited number of modes can be

excited, and the amplitude of the forcing is kept constant while

varying the frequency. Convincing experimental proofs for the

presence of a low-dimensional attractor are given.

From the theoretical viewpoint, the long-time behaviour and

the existence of global attractors and inertial manifolds in von

Kármán dynamical equations have been studied by Chueshov and

Lasiecka for various type of damping laws (viscous, structural and

thermoelastic damping on the structure, or linear and non-linear

boundary dissipation) [24–28]. Existence of finite-dimensional

attractors with upper bounds on their Hausdorff dimension is

provided [25], inertial manifolds are also shown to exist when a

spectral gap condition is fulfilled, which leads to require a large

amount of damping in the case of viscous dissipation [26]. On the

other hand, for very lightly damped plates without strong finite-

size effects, the framework of wave turbulence can be applied to

study the energy repartition through lengthscales [29,30].

The case of plates have been treated recently in [31], and

experimental investigations were reported in [32–34].

In this paper, the transition scenario is specifically addressed.

A Galerkin method with the eigenmodes as expansion functions,

is used to discretize the von Kármán plate equations. As a

consequence of the number of expansion functions retained in the

truncations, the scenario can be numerically tested in the vicinity

of the seven first eigenfrequencies. A particular attention is paid

on the existence of energy transfer between modes, that can give

birth to the quasiperiodic regime occurring before the chaotic

state. For perfect plates with cubic non-linearity and only order

three internal resonance relationships, it is shown that no

resonance relations exist for free-edge circular plates between

the seven first eigenfrequencies. Consequently, as shown in

Section 3, a direct transition to chaos is generically observed.

Then an imperfect plate is considered, and the imperfection is

selected so as to tune the first eigenfrequencies and exhibit

particular order-two internal resonance. In this case, as shown in

Section 4, energy exchanges are possible and the coupled regime

is observed. The critical values of the force amplitude, which are

needed to attain the chaotic state, are also carefully studied.

Numerical results show that the imperfection significantly lowers

the critical value needed to observe chaotic vibration, which is

fully consistent with the experimental observations. Finally, the

convergence of the Galerkin truncation is systematically

addressed, with respect to the critical force, the Lyapunov

exponents and the Fourier spectra of vibration, leading to a

discussion of the results obtained in the chaotic state, with regard

to the occurrence of wave turbulence or low-dimensional chaos.

2. Model equations

2.1. von Kármán equations for perfect and imperfect plates

The dynamic analog of the von Kármán equations for thin

plates is used to model the large-amplitude vibrations. The main

assumptions of the model rely in the strain/displacement

relationship, where only the leading term depending on the

transverse displacement w, is retained [2,35,36]. In the remainder

Fig. 1. (color online) Spectrograms of the vibration of two different cymbals excited harmonically with a linearly increasing amplitude. (a) cymbal of diameter 55.6 cm,

thickness 1.3mm, excited at 467Hz. (b) cymbal of diameter 30.4 cm, thickness 0.7mm, excited at 1151Hz. In each case the three different vibration regimes are clearly

identified.
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of the paper, bar-variables (such as w) refer to dimensional

quantities. The bars will be omitted when non-dimensionalization

will be realized. In-plane and rotary inertia are neglected, so that

an Airy stress function F can be used. An imperfect circular plate

of diameter 2a, thickness h, made of an homogeneous isotropic

material of density r, Poisson’s ratio n and Young’s modulus E is

considered. A static imperfection associated with zero initial

stress is denoted as w0. The local equations for the imperfect plate

reads [37–39]:

DDDwþrh €w ¼ Lðw,F ÞþLðw0,F Þ�c _wþp, ð1aÞ

DDF ¼�
Eh

2
½Lðw,wÞþ2Lðw,w0Þ�, ð1bÞ

where w represents the transverse displacement from the

deformed static configuration, c is a damping coefficient, p

represents the external distributed forcing, and D is the flexural

rigidity. The bilinear operator L writes, in polar coordinates:

Lðw,F Þ ¼w
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When w0 ¼ 0 (no imperfection), one recovers the usual von

Kármán equations for perfect plates [40]. A free-edge boundary

condition is considered, which enforces the following relation-

ships to be fulfilled, for all t and y:

F and w are bounded at r ¼ 0, ð3aÞ
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Eqs. (1)–(3) are made non-dimensional by introducing the

following quantities:

w ¼ hw, w0 ¼ hw0, r ¼ ar, ð4aÞ

F ¼ Eh
3F, t ¼

ffiffiffiffiffiffiffiffiffiffiffi

rha4

D

s

t, ð4bÞ

p ¼
Eh

4

ea4
p, c ¼

Eh
3

2ea2

ffiffiffiffiffiffi

rh

D

r

4m, ð4cÞ

with e¼ 12ð1�n2Þ.
Substituting the above definitions in Eqs. (1), non-dimensional

equations of motion of imperfect plates with free-edge and

subjected to large deflection finally writes, in terms of the

non-dimensional variables:

DDwþ €w ¼ e½Lðw,FÞþLðw0,FÞ��2m _wþp, ð5aÞ

DDF ¼�1
2½Lðw,wÞþ2Lðw,w0Þ�: ð5bÞ

All the numerical analysis of the next sections will be made on the

non-dimensional equations, without referring to a particular

plate, so that the study focuses now on the variables without

a bar.

2.2. Modal projection

The equations of motion (5) are discretized by expandingw,w0

and F onto the eigenmodes of the perfect plate, i.e. the modes of

the linear system associated to Eqs. (5a,b) with w0¼0, via:

w0ðr,yÞ ¼
X

N0

p ¼ 1

apFpðr,yÞþzg , ð6aÞ

wðt,r,yÞ ¼
X

N

p ¼ 1

qpðtÞFpðr,yÞ, ð6bÞ

Fðt,r,yÞ ¼
X

NF

p ¼ 1

ZpðtÞCpðr,yÞ, ð6cÞ

where zg is the center of mass’ offset, fapgp ¼ 1...N0
represent the

projection of the imperfection onto the eigenmodes of the perfect

plate, and fqpgp ¼ 1...N , the modal amplitudes for the vibratory part,

which will be our main unknown in the remainder of the study. In

the above equations, the fFigiAN are the transverse vibration

mode shapes of the perfect plate and the fCigiAN are membrane

modes, defined by, for all iAN�:

DDFi�o
2
i Fi ¼ 0, ð7aÞ

DDCi�z
4
i Ci ¼ 0, ð7bÞ

together with boundary conditions (3a,c,d) for Fi and (3a,b) for

Ci. In the above equations, oi is the i-th non-dimensional natural

flexural frequency of the perfect plate. The analytical expressions

for Fi and Ci as well as numerical values for oi and zi can be

found in [40]. The critical parameters in such Galerkin expansions

are the number of retained mode in the numerical analysis. In this

study, the number of in-plane modes has been fixed to 12, a

sufficient value to ensure a five-digits accuracy for the cubic

non-linear coefficients up to the 15th modes, and four-digits

accuracy up to the 26th modes [40,41]. This accuracy is sufficient

for the truncations we will study in the remainder of the paper.

The imperfections that will be considered in Section 4 have the

shape of the first axisymmetric mode, so that we will have N0¼1.

Finally, the number of transverse modes N is kept variable so as to

carefully study the convergence of the results. Assuming normal-

ization of the modes and applying a usual projection technique,

one finally obtains the following dynamical equations governing

the evolution of the modal amplitudes, for all uA ½1, N�:

€quþo2
uqu ¼�e

X

N

p ¼ 1
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X

N

p ¼ 1

X

N

r ¼ 1

b
u
prqpqr

"

þ
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N
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X

N

r ¼ 1

X
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s ¼ 1

Gu
rspqpqrqs

#

�2m _quþpu: ð8Þ

Expressions for pu and Gu
rsp are

pu ¼

Z Z

S
Fuðr,yÞpðr,y,tÞdS, ð9aÞ

Gu
rsp ¼�

1

2

X

NF

q ¼ 1

1

z4q

Z Z

S
FuLðFp,CqÞ

Z Z

S
CqLðFr ,FsÞdS: ð9bÞ

The cubic coefficients Gu
rsp are those of the perfect case, presented

in [40]. The linear and quadratic coupling coefficients au
p and bu

pr

appearing in Eq. (8) stem from the geometric imperfectionw0, and

are thus expressed as functions of the amplitudes ap of the
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expansion of w0 introduced in Eq. (6a). They write [37]

au
p ¼�

X

N0

r ¼ 1

X

N0

s ¼ 1

2Gu
rpsaras, ð10aÞ

bu
pr ¼�

X

N0

s ¼ 1

ðGu
rpsþ2Gu

srpÞas: ð10bÞ

2.3. Numerical details

In the remainder of the paper, a dimensional pointwise harmonic

forcing of magnitude F (in N) and frequency O (in rad/s), located

at ðr0,y0Þ, is considered, thus pðr ,y,tÞ ¼ dðr�r0Þdðy�y0ÞFcosOt .

Following Eqs. (4)–(9a), the non-dimensional forcing on Eq. (8)

reads

pu ¼Fuðr0,y0ÞFcosOt with F ¼
ea4

Eh
4
F and O¼

a2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12rð1�n2Þ

E

r

O:

ð11Þ

In order to simulate the response of lightly damped plates, which is

generally the case for a metallic material such as brass or steel, the

damping coefficient has been set to m¼ 0:002. The non-linear cubic

coefficients are computed once and for all from the analytical

expressions, and are stored in a subsequent four-dimensional array.

The non-dimensional eigenfrequencies ok for the perfect plate are

recalled in Table 1. The modes are classified, as it is usual for circular

plates, with two indexes (k,n), k being the number of nodal

diameters and n the number of nodal circles. Modes (0,n) are called

axisymmetric, while ka0 implies an asymmetric mode, which have

two companion (or preferential) configurations for the same

eigenfrequency [40,37]. For asymmetric modes, a binary index is

often added in order to distinguish the two configurations, say

(2,0,C) for the cosine mode and (2,0,S) for the sine configuration.

Hence each column corresponding to an asymmetric mode in

Table 1 has dimension two, for the two preferential configurations.

Four truncations in the Galerkin expansion (6b) are retained in

the numerical simulations. The first one contains N¼10 modes:

(2,0), (0,1), (3,0), (1,1), (4,0) and (0,2). In each truncation, the

eigenmodes are retained by increasing values of their eigenfre-

quencies. When the last asymmetric mode is selected, one

(or two) axisymmetric modes are added in order to ensure a

good stability of the model, due to the well-known coupling

between asymmetric and axisymmetric motions [42–44]. This is

also why in Table 1, eigenmodes are presented by increasing order

of the frequencies, except the last two (axisymmetric), which

have significantly larger eigenfrequencies: asymmetric modes in

between have not been reported in the table. The second

truncation contains Nw¼19 modes. Modes (5,0), (2,1), (6,0),

(0,3), (0,4) and (0,5) are added to the previous 10 modes

truncation. A 27 modes model is considered by adding modes

(3,1), (1,2), (7,0) and (4,1), and a 35 modes truncation will also be

selected by adding (8,0), (2,2), (5,0) and (9,0).

The resulting ordinary-differential equations (ODEs) governing

the dynamics, Eq. (8), are numerically integrated by using the

DIVPAG routine of the Fortran library IMSL, where a variable-order

method based on backward differentiation formulas (BDFs), also

known as Gear’s BDFs, is implemented. The Gear’s BDFs method is

a multistep, implicit method especially designed for stiff problems

[45,46]. In our case, the dynamical solutions are particularly

difficult to integrate, because of the large dimension of the phase

space, the stiff character of the simulated dynamics, the very low

value of the damping, and the bifurcations, implying finally a

chaotic state with an attractor of large dimension. In particular,

explicit Runge–Kutta methods, leap-frog scheme (also known as

Störmer–Verlet [47]), as well as all the algorithm of the Matlab ODE

suite [48], have been tested, all of them giving divergence due to

numerical instability.

For analyzing the results when varying the amplitude of the

external forcing, three usual techniques are used. First, strobo-

scopic Poincaré maps at the excitation frequency (with a zero

phase) will permit detection of the different regimes (periodic,

quasiperiodic and chaotic). Power spectra of the transverse

velocity will be used to analyze the chaotic motions in Section

3.5. Finally Lyapunov exponents will be computed for reviewing

the presence of chaos, using the numerical procedures described

in [2,18].

3. Simulation results for the perfect plate

In this section the numerical results on the transition from

periodic to chaotic vibration for a perfect plate, are considered.

The plate is harmonically forced with fixed O and increasing F.

Section 3.1 shows the generic result obtained, for excitation

frequencies O between 1.5 and 25. The convergence vs the critical

value Fcr needed to attain the chaotic regime is shown in Section

3.2, and the complete bifurcation diagram F vs O is given in

Section 3.3. Some particular cases are shown in Section 3.4.

Finally, Lyapunov exponents and power spectra are shown in

Section 3.5, which leads to discuss the nature of the chaotic

regime and to reconsider the convergence for the chaotic solution.

3.1. Generic result

The simulations conducted aims at finding the stability limits

of forced periodic orbits in the vicinity of the first eigenfrequen-

cies. Fig. 2 shows the response of four modal coordinates, q(2,0,C),

q(2,0,S), q(0,1) and q(3,0,C), for an excitation frequency of O¼ 5:3, and

an increasing value of the non-dimensional forcing from 0 to 20.

The excitation frequency has been chosen close to oð2,0Þ, and the

point of excitation is located at r¼1, y¼ 0, so that only the cosine

configuration is excited. The model with 19 modes is selected for

this simulation. Each time the value of the forcing is increased

(with a step of 0.03), a long transient of 5 000000 of periods is

waited, then 1000000 of periods are recorded for the Poincaré

section. As the upper stability limit is sought, particular attention

must be paid in the numerical simulations: the force amplitude

must be very slowly increased step by step, so as not to jump in

the chaotic regime because of a large perturbation given to the

system. Long transients are needed because of the low damping

value, so that each run is particularly time-consuming. A typical

Table 1

Non-dimensional frequencies of a perfect circular plate with a free-edge, by increasing order.

Mode (2,0) (0,1) (3,0) (1,1) (4,0) (5,0) (2,1) (0,2) (6,0) (3,1)

ok 5.26 9.06 12.24 20.51 21.52 33.06 35.24 38.51 46.81 52.92

Mode (1,2) (7,0) (4,1) (8,0) (2,2) (0,3) (5,1) (9,0) (0,4) (0,5)

ok 59.86 62.73 73.37 80.83 84.37 87.81 96.50 101.07 156.88 245.69

The first 18th frequencies are given, then the two next axisymmetric modes are included in the table, as being present in the retained truncations for stability.

C. Touzé et al. / International Journal of Non-Linear Mechanics 46 (2011) 234–246 237
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run shown in Fig. 2 took around 20h of computation on a

standard PC with a CPU-clock at 2GHz.

In Fig. 2, which is typical of the results, a periodic response is

obtained until F¼Fcr¼15.92, where the chaotic regime suddenly

sets in with energy on all the modal amplitudes {qi}i¼1y19. Before

the chaotic regime, non-zero (though small) values for modes

(0,1) and (3,0,C) are observed. These are due to non-resonant

couplings between the linear modes, that bends the non-linear

normal mode (NNM) corresponding to the mode (2,0,C) that is

directly excited [49]. As the invariant manifold is curved and the

periodic orbits computed are contained within it, small non-zero

values are obtained for some modal amplitudes. However, a

strong coupling is not at hand, and the regime is periodic along

the NNM corresponding to (2,0,C). In the chaotic regime, the

amplitudes of low-frequency modes are larger than the others,

more precisely the amplitudes of the modal coordinates decrease

continuously with frequency.

From Eq. (11), the relationship between the non-dimensional

force F reported in Fig. 2 and its dimensional counterpart F reads

F ¼ ðEh
4
=ea4ÞF. For a typical circular plate having the dimension of

a cymbal, i.e. with E¼110GPa, h¼1mm, a¼0.2m and

e¼ 12ð1�n2Þ with n¼ 0:33, the critical non-dimensional force

Fcr¼15.92 leads to a dimensional forcing F ¼ 102:35N, which is

significantly larger than the experimental values needed to obtain

chaotic behaviour, which are of the order of 2–10N [8,50]. In

Section 4, it will be shown that considering an imperfection

(unavoidable in real plates) significantly reduces this critical value

to those observed experimentally.

The result shown in Fig. 2 is generic in the sense that

numerous simulations have been performed for O varying

between 1.5 and 25, and in quite all cases a direct transition

from periodic to chaotic motion has been observed. This will be

reconsidered in Section 3.3.

3.2. Convergence study

Before entering more deeply in the analysis of the numerical

results, a convergence study is in order. Here, the convergence of

the Galerkin expansions is checked with respect to the critical

force Fcr needed to attain the chaotic regime. Table 2 sums up the

convergence study, showing Fcr obtained for three different

frequencies O tested, and for an increasing number of modes N

retained in the truncation for the transverse displacement, see

Eq. (6b). The results show that the model with 19 modes captures

the good value of Fcr in the three cases. More surprisingly, the

convergence study highlights the fact that a very limited number

of modes are needed for obtaining a converged value for Fcr. Only

three modes are necessary for getting the critical force when

exciting around the first eigenfrequency, namely (2,0,C), (2,0,S)

and (0,1). This result underlines once again the importance of

axisymmetric modes. With only the two companion configuration

(2,0,C) and (2,0,S), in 1:1 internal resonance, another bifurcation is

found with a much larger value of F¼75.9. Hence the dynamics

for the transition to chaos in the vicinity of the first mode is

completely determined by the first three modes. When O¼ 9:4,

i.e. in the vicinity of mode (0,1), seven modes are necessary to get

the correct result. The number of involved modes increases

logically as we are obliged to include all the modes that have an

eigenfrequency smaller than the excitation. However, only a very

few modes over the excitation frequency are needed to get

convergence.

These results indicates that the transition to the chaotic

vibration is completely governed by the slow-flow equations, i.e.

the low-frequency part of the dynamics. The fast-flow dynamics

has no influence on the determination of Fcr and can be discarded.

From a phase-space point of view, the numerical experiment

studied here can be seen as searching the stability limit of the

NNM in the vicinity of the eigenfrequencies of the structure.

A NNM being composed of periodic orbits, by increasing the force

we move away from the stable origin until the limit of the stable

manifold is attained. Then the chaotic motion, also referred to as

global stochasticity for Hamiltonian systems [51], is observed. Our

numerical results show that the geometry and the limiting stable

periodic orbits are completely determined by the slow-flow

modes.

However, once the chaotic state established, all the modal

coordinates have a significant amplitude, as already noted in

Fig. 2, which means that the energy is spread all over the modes.

Hence a major effect of increasing the number of modes is to

lower the response amplitude of the slow-flow modes. Fig. 3

shows the amplitude of mode (0,1) for the same experiment with

O¼ 5:3, and conducted with N¼3 and 27. For N¼3, all the energy

is spread between three modes and (0,1) has a very large

amplitude. This amplitude is continuously decreased when modes

Fig. 2. Bifurcation diagram of Poincaré section for the first four modes of a perfect

plate, excited at O¼ 5:3, with an increasing F from 0 to 20. From top to bottom:

modes (2,0,C), (2,0,S), (0,1) and (3,0,C). A periodic regime is observed until

F¼Fcr¼15.92, where a chaotic vibration sets in.

Table 2

Value of the critical force Fcr needed to observe the chaotic regime, for three

different excitation frequencies O¼ 5:3, 9.4 and 21.2, and for eight different

truncations with an increasing number of modes N.

N 2 3 5 7 10 19 27 35

O¼ 5:3 75.9 15.80 16.03 � 15.88 15.95 15.95 �

O¼ 9:4 = = 14.54 12.49 12.29 12.19 12.24 �

O¼ 21:2 = = = = 30.24 9.17 10.29 10.1

The symbol = means that chaos was not observed until very large values of F, and

� means that the simulation has not been realized.
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are added in the truncation, showing that there is a flux of energy

from low to high-frequency modes. This cascade of energy in the

spectral domain leads to a decrease of the amplitudes of the slow-

flow modes, as shown in Fig. 3. This result indicates that the

numerical solution is probably not converged in the chaotic

regime. This will be more deeply investigated in Section 3.5,

where the wave turbulence framework will allow for a better

understanding of the chaotic regime.

3.3. Bifurcation diagram

The complete bifurcation diagram Fcr vs O is given in Fig. 4, for

OA ½1:5,25�. Each point represents a numerical experiments

equivalent to the one shown in Fig. 2, where the value Fcr has

been reported. On the diagram are represented the eigenfrequen-

cies of (2,0), (0,1), (3,0), (1,1) and (4,0). As the perfect plate

displays only cubic non-linearity, only order-three resonances are

supposed to come into play. Hence the 1/3 subharmonics have

also been represented in thin dashed lines, as well as the only

superharmonic of order three: 3oð2,0Þ ¼ 15:78. The diagram has

been obtained with the model composed of 19 modes, except

from the frequency O¼ 16 where the 27 modes truncation has

been used. Effectively, from O¼ 16 appears the 1/3 subharmonics

of modes (3,1) (oð3,1Þ=3¼ 17:64), (1,2) (oð1,2Þ=3¼ 19:95) and (7,0)

(oð7,0Þ=3¼ 20:91) that have to be included in the truncation.

Fig. 4 shows that the critical values are generally large, except

around 6.6 and in the interval [20.5, 21.5] where two minimums

are observed with Fcr around 5 and 3, values that are close to the

experimental ones. Each subharmonic creates a short tongue

where the resonance give rise to a lower Fcr, which is particularly

evident before the first eigenfrequency. In the linear resonance

regions, i.e. in the vicinity of the eigenfrequencies, the minimum

value of Fcr is observed at a higher value of excitation frequency

than the eigenfrequency. This is a consequence of the hardening

character of the plate: frequency-response curves in forced

regime are bended to the higher frequencies. For example

the region where mode (2,0) is directly excited corresponds

to the tongue that extends up to O¼ 6:6. The value of Fcr
decreases when O is increased from 5.26 to 6.6: as long as the

system is able to catch the upper branch of the frequency-

response curve by jump phenomenon, large-amplitude motions

are more easily attained and chaos is observed for a smaller value

of Fcr. The same reasoning holds for the other frequencies; the

tongue corresponding to mode (0,1) hence extends to O¼ 10, and

the one for mode (3,0) extends to O¼ 14:7.

As stated in Section 3.1, all the tested frequencies O show a

direct transition from periodic to chaotic motion, without an

intermediate stage of quasiperiodic motion with a significative

coupling between internally resonant modes. The most important

order-three internal resonances involving the first 10 modes in
Fig. 3. Bifurcation diagram of Poincaré maps for mode (0,1), excited at O¼ 5:3

with FA ½0,20�. Top: with a three modes model. Bottom: with a 27 modes model.
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Fig. 4. Complete bifurcation diagram F vs O for a perfect circular plate with a free-edge. The gray region (green with online colors) stands for chaotic regime, below periodic

regime are found. Thick dashed lines indicate the eigenfrequencies, thin dotted lines the 1/3 subharmonics and thin dashed line the third superharmonics of the

eigenfrequencies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the circular plate are the following:

�oð3,0Þþoð0,2Þ�oð6,0Þþoð1,1Þ ¼�0:03, ð12aÞ

�oð4,0Þþoð2,1Þ�oð6,0Þþoð5,0Þ ¼�0:03, ð12bÞ

�oð0,1Þþoð4,0Þ�oð5,0Þþoð1,1Þ ¼�0:09, ð12cÞ

�oð0,1Þþoð2,1Þ�oð0,2Þþoð3,0Þ ¼�0:09: ð12dÞ

As already noted by Nayfeh [52], when internal resonances are

present, the energy transfer is from the high to the low

frequencies, which means that in order to observe a modal

coupling and a quasiperiodic regime, one must excite a mode

involved in an internal resonance relationship with lower

frequency modes. In Eqs. (12), at least two modes of higher

frequencies than the tested range are present, except for (12c),

where a coupling may have been observed when exciting mode

(1,1). However, no mode coupling have been numerically found in

the tested interval. Evidently, one should excite higher frequency

modes to have a chance to excite lower frequencies internal

resonance relationships. Things will be different in Section 4

where the geometric imperfection will be chosen so as to tune

perfectly the very first eigenfrequencies in specific internal

resonance relations.

3.4. Particular cases

In this section, three particular cases from the complete

bifurcation diagram of Fig. 4 are shown, because they exhibit

particular interesting structures before the chaotic regime. These

structures have been found to occur for certain frequencies, so

their existence is limited in a very narrow region of the parameter

space. In that sense, some couplings are here shown but they

differ radically from the modal couplings observed experimen-

tally and that will be investigated numerically in Section 4 in the

sense that they do not exist for a large band of frequency

excitation and are not robust to variations.

The first case considers the 1/3 subharmonic regime, obtained

when forcing the perfect plate at a frequency close to one third of

the first eigenfrequency oð2,0Þ. Fig. 5 shows the bifurcation

diagram of Poincaré maps obtained for O¼ 1:8 and FA ½0,27�.

For FA ½0,3:8�, the subharmonic resonance follows the lowest

branch in the Duffing-type frequency-response curve, and mode

(2,0,C) is logically the most excited one. At F¼3.9, the jump from

the low to the high-amplitude branch occurs. A coupling with

(2,0,S) then occurs on a very narrow region between 7.2 and 8,

then another branch is found between 12.3 and 14.4 with

participation of (2,0,S) and (3,0,S). Note that at the end of this

branch around F¼14.4, the Poincaré section hesitates between

two branches which shows that a symmetric branch exist on the

whole interval, which could be chosen by the system with a slight

change in the parameters. Coupling with (0,1) and (3,0,C) is quite

strong: it is the bending of the manifold that has been already

underlined in Fig. 2 for O¼ 5:3. Then finally chaos appears for a

very high value of the forcing at F¼24.3. This figure is quite

typical of what has been observed for the first three subharmonic

excitation, namely at O¼ 1:8, 3.0 and 4.1, with many localized

events of small amplitude before the chaotic regime.

Fig. 6 shows a period-four motion that has been found for

O¼ 7:4, for FA ½6,10�. This structure has not been found neither

for O¼ 7:2, nor for 7.6, and hence exist in a very narrow region.

The period-four motion exist until F¼8.7, followed by a modula-

tion of amplitudes. Then a periodic motion is found back. A jump

phenomena occur for F¼12.6, it is clearly visible for mode (4,0,C)

as it correspond to the jump from the low to the high-amplitude

branch in the frequency response of the 1/3 subharmonic motion

that is here excited. Finally chaos occurs for F¼14.3.

The last investigated particular case corresponds to O¼ 19:8.

The bifurcation diagram of Poincaré maps has been obtained with

the 27 modes truncation (the two other cases with 19 modes),

and is shown in Fig. 7. This case is particularly interesting because

of all the tested case, the structure that appears shares most

resemblance with the sought mode coupling. The excitation

frequency O¼ 19:8 is smaller than the eigenfrequencies of modes

(1,1) and (4,0), which thus appears with important amplitudes in

Fig. 5. Bifurcation diagram of Poincaré maps, O¼ 1:8 with FA ½0,27�. Fig. 6. Bifurcation diagram of Poincaré maps, O¼ 7:4 with FA ½0,15�.
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the response. From F¼17.4, a modulated response appears, with

strong participation of (2,0,C) and (0,1) that were not excited

before. Moreover, we have the relationship:

2oð2,0Þþoð0,1Þ ¼ 2 � 5:26þ9:06¼ 19:58C19:7, ð13Þ

so that it is very likely that the frequencies of the two modes have

been slightly modified by the non-linearity in order to perfectly

fulfill the relationship and renders the mode coupling effective.

Similarly, a noticeable amplitude is observed on modes (4,0) and

(5,0) (not shown), and the relationship:

oð5,0Þ�oð4,0Þþoð0,1Þ ¼ 20:5 ð14Þ

shows that energy can also be transferred through this relation.

To conclude with these examples, we have shown that

although the generic scenario in the very low-frequency range

is that of a direct transition to chaotic vibrations, some particular

cases exist for limited values of the parameter, so that they are not

robust to very slight changes in the parameters. In Section 4, by

adding an imperfection and finely tuning the eigenfrequency, we

will show how perfectly matched internal resonance relationships

leads to robust and efficient mode coupling and the appearance of

coupled solutions with few modes before the chaotic regime.

3.5. Lyapunov exponents and power spectra

This section investigates the numerical results obtained in the

chaotic regime by inspecting Lyapunov exponents and power

spectra of transverse velocity, and reconsiders the modal trunca-

tions for the chaotic state. First, the convergence of the maximum

Lyapunov exponent is shown in Fig. 8, for O¼ 5:3 and 9.4. The

maximum Lyapunov exponent l1 has been calculated as a side-

result of the computation in the numerical experiments where the

forcing amplitude is gradually increased. A positive maximum

Laypunov exponent is shown in Fig. 8, evidencing the presence of

a chaotic dynamics.

For O¼ 5:3, l1 decreases when the number of modes N

retained in the truncation increases. Although the difference

between N¼10 and 19 is less significant than between N¼5 and

10, the value still continue to slightly decrease, showing that the

convergence is more difficult to obtain than for the value of

the critical force Fcr, studied in Section 3.2. For O¼ 9:4, the

convergence seems to be better but a slight decrease of l1 is still

observable. This result shows that in the chaotic regime, the

convergence is more difficult to obtain and need to be more

meticulously studied.

The whole Lyapunov spectrum has been computed for the

model with 19 modes. As a second-order problem is at hand, we

obtain 38 Lyapunov exponents that are shown in Fig. 9 for

O¼ 5:3, and two different values of the forcing amplitude: F¼17.1

and 27.1. The most striking result is the number of positive

exponents: half of them are positive, half of them are negative.

This indicates, by applying the Lyapunov dimension assumption

[53], that the attractor has a dimension equal to that of the phase

space. Hence a low-dimensional chaos is not at hand and the

trajectories explore the whole phase space. Another striking

feature of the Lyapunov spectra, for the two forcings (and for all

the cases studied: two other excitation frequencies with 10 level

of excitation amplitudes have been computed, yielding the same

results), is its symmetry. For Hamiltonian systems, the Lyapunov

exponents are symmetric with respect to zero. For assembly of

oscillators with the same damping term of the form used here, i.e.

2m _qp, see Eq. (8), Dressler showed that the Lyapunov exponent

must be symmetric with respect to �m [54]. This symmetry

property is here exactly verified, i.e. for all i¼1yN (N¼19),

we have

liþlNþ1�i ¼�2m¼�0:004: ð15ÞFig. 7. Bifurcation diagram of Poincaré maps, O¼ 19:8 with FA ½0,23�.
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Dressler also showed that the whole spectrum should verify the

following property:

X

2N

i ¼ 1

li ¼�2Nm, ð16Þ

which is also perfectly verified by the numerical results.

As a high-dimensional attractor is at hand in the chaotic

regime, the framework of wave turbulence is more adapted in

order to describe this regime. The numerical experiments

reported in previous section and the remarks on Fig. 3 already

pointed out that a cascade of energy from the long to the short

wavelength was present. Wave (or weak) turbulence describes

the distribution of energy for out-of-equilibrium systems, pro-

vided that the non-linearity is weak, and that the waves persist

(no intermittency), hence allowing one for closed equations that

provide analytical predictions for the statistics of cumulants

[29,30]. The case of plates within the von Kármán assumptions

have been tackled in [31], predicting a direct cascade with a

power spectrum for the displacement:

PwðkÞ ¼ C
P1=3

½12ð1�n2Þ�1=6
ln1=3

ðk
%
=kÞ

ffiffiffiffiffiffiffiffiffi

E=r
p k4, ð17Þ

where C is a constant, P is the energy flux per unit mass, and k
%
an

ad-hoc cut-off wave number. The logarithmic correction is weak,

so that the main dependence is on k to the power �4. Translating

in the frequency domain via PwðkÞkdkpPwðf Þdf and using the

dispersion relation, the prediction for the power spectrum of the

velocity reads [32,34]

P _w ðf Þ ¼
CuP1=3h

½12ð1�n2Þ�2=3
f 0, ð18Þ

where Cu is another constant and the logarithmic correction has

not been taken into account. The independence on f has been

highlighted by writing explicitly f0 in Eq. (18).

Fig. 10 shows P _w ðf Þ computed by the model, for two different

forcing frequencies O, and three different truncations: N¼10, 19

and 35. When increasing the number of modes retained, one can

see clearly a first regime which would correspond to the cascade

regime, where the power spectrum shows no dependence on f and

thus behaves as predicted theoretically by Eq. (18). For N¼10,

which is evidently a too small number of modes for simulating

this regime, the cascade range is severely limited, while it is of

one decade for N¼35 and for the two tested excitation

frequencies, O¼ 5:3 and 20.7. As soon as no more modes are

included, the curves change of behaviour and decreases rapidly.

Two peaks are visible after the fall, they correspond to the two

axisymmetric modes (0,4) and (0,5) that were added in the

truncations for stabilization.

To summarize this section, the numerical results clearly show

that a limited number of modes are necessary in order to predict

the critical value Fcr needed for the chaotic vibration to be excited.

This is interpreted as a reflection of the fact that the geometry and

the stability of the resonance manifold, which is followed in

this forced vibration experiment, is completely determined by the

slow-flow part and thus by the low-frequency modes. Once

the chaotic regime established, numerical results show evidently

that a high-dimensional chaos is at hand, in particular by the

number of positive Lyapunov exponents. Convergences are then

more difficult to attain, which has been evidenced by the

convergence of the maximum Lyapunov exponents, as well as

the results presented in Fig. 3, where a cascade of energy was

highlighted. The more modes we had to the truncation, the more

the cascade can broaden its frequency range. Hence this regime

has to be interpreted in the framework of wave turbulence (WT),

which have been also shown to predict the correct frequency

dependence of the velocity power spectrum. Finally, in the WT

regime, a very large number of modes (many more than the 35

retained here at maximum) have to be kept until one arrive to the

dissipative scale, experimentally evidenced in [32,34], which
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Fig. 10. Power spectra P _w ðf Þ of the transverse velocity _w , for two different forcing frequencies (indicated by the arrow), and for three different truncations. Left:

O¼ 5:3 ðf ¼O=2p¼ 0:84Þ, right: O¼ 20:7 (f¼3.29). Light gray curve (magenta with colors online): 10 modes truncation (N¼10), gray (brown with colors): N¼19, black:

N¼35. The horizontal segments indicate the frequency band on which the theoretical prediction for P _w ðf Þ holds (the number of modes N¼10, 19, and 35 are not recalled on

the right figure). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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renders the modal method not practically suited for these kind of

simulations.

4. Imperfect plates

In this section, an imperfect plate having the shape of the first

axisymmetric (0,1) mode is considered, see Fig. 11. For this case,

Eq. (6a) reads w0ðrÞ ¼ að0,1ÞFð0,1ÞðrÞ, and the x-axis has been chosen

so as to cancel the center of mass’offset zg. The amplitude of the

imperfection is parameterized by a(0,1) only. Evolution of all

the linear and non-linear characteristics of this imperfection has

already been studied in [37], and the type of non-linearity of

the first modes is reported in [55]. Two amplitudes will be

studied, a(0,1)¼0.45h (h is the thickness of the plate), and

a(0,1)¼1.86h; they have been selected because they create specific

internal resonance relationship that will allow for energy transfer

and mode coupling before the chaotic state.

4.1. First imperfection: a(0,1)¼0.45h

For this relatively small level of imperfection, the eigenfre-

quencies are slightly modified as compared to the perfect case, so

that the ordering of the modes is left unchanged. This value has

been selected so as to raiseoð0,1Þ in order to put it exactly at twice

the value of oð2,0Þ. The first 10 eigenfrequencies are reported in

Table 3. One can see that the following internal resonance

relationships are fulfilled:

2oð2,0ÞCoð0,1Þ, ð19aÞ

2oð0,1ÞCoð1,1Þ: ð19bÞ

The first numerical result is shown in Fig. 12, and is concerned

with the excitation of mode (2,0,C), as O¼ 5:1 is chosen, i.e. just

below the linear resonance. A 17 modes truncation has been

selected, which includes modes (2,0), (0,1), (3,0), (1,1), (4,0), (5,0),

(2,1), (6,0), (0,2) and (0,3). The 2:1 internal resonance is excited

for a very small value of the amplitude of the forcing: F¼0.21, and

leads to a chaotic region where only the first three modes

involved in the internal resonance – i.e. (2,0,C), (2,0,S) and (0,1) –

participates to the vibration. This regime extends from F¼0.21 to

1.2, and is characterized first by a low-dimensional chaos with

three modes, then this chaotic regime tends to attain the wave

turbulence regime where energy cascades to the high-frequency

modes, which is clearly visible by the important values appearing

by bursts in q3,0,C and q1,1,C (and visible in all the other

coordinates, not shown in the figure) from F¼0.6. However,

the regime is not definitely established and is broken by the

appearance of a modulated, quasiperiodic response of the

first three modes, for 0:91rFr1:2. Then the WT regime appears,

for FZ1:2, which is a very small value for the forcing

(as compared to the numerical results for the perfect plate) that

corresponds to the experimental ones.

A second numerical experiments with this 17 modes trunca-

tion is shown in Fig. 13. The forcing frequency is now selected just

above the (0,1) eigenfrequency: O¼ 10:6. The coupling between

the directly excited mode (0,1) and modes (2,0) at half the

frequency occurs for a very small value of the forcing F¼0.04. At

the beginning, for 0:04rFr0:65, the two configurations, (2,0,C)

and (2,0,S) are simultaneously excited. But this regime does not

appear to be very stable: it is followed by a modulation, and from

F¼0.65, the energy is solely transferred to (2,0,S), which is in

agreement with the analytical result obtained in [41] where it was

shown that in a 1:1:2 resonance, the energy is transferred to one

configuration only. The regime appearing in the response is that of

a(0,1)

a =1

h

a b

Fig. 11. Imperfect plate having the shape of mode (0,1). (a) 3D view. (b) Cross-section, showing the definition of a(0,1).

Table 3

Non-dimensional eigenfrequencies of an imperfect circular plate, imperfection

having the shape of mode (0,1) with an amplitude of a(0,1)¼0.45h.

Mode (2,0) (0,1) (3,0) (1,1) (4,0) (5,0) (2,1) (0,2) (6,0) (3,1)

ok 5.26 10.52 12.24 21.13 21.53 33.06 35.51 39.00 46.81 53.05

Fig. 12. Bifurcation diagram of Poincaré section for the imperfect plate with

a(0,1)¼0.45h, excited at O¼ 5:1, with an increasing F from 0 to 2.5. From top to

bottom: modes (2,0,C), (2,0,S), (0,1), (3,0,C) and (1,1,C).
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a period-doubling, according to the internal resonance relation-

ship, so that in the Poincaré section two points are visible for each

value of the forcing amplitude. For F¼2.25, the 2:1 resonance

between (0,1) and (1,1) is suddenly activated, and the amplitude

q(1,1,C) jumps from zero to a positive value. This bifurcation also

destabilizes the coupling between (0,1) and (2,0,S), and the

transfer of energy is then directed to (2,0,C), whereas q(2,0,S)
returns to zero. Finally, the chaotic regime sets down for F¼6.3.

The complete bifurcation diagram F vs O is shown in Fig. 14,

for OA ½1:5, 14�. The 1/3 subharmonics are indicated with a dotted

line, whereas the 1/2 subharmonics with dash-dotted lines. The

first three eigenfrequencies appearing in the tested frequency

range, are indicated. The gray region (green with online colors)

represents the chaotic state, while the two light-gray tongues

(yellow with online colors) appearing around 5.26 and 10.52 are

all the points where the coupling due to the 1:1:2 internal

resonance has been numerically observed. In particular, the shape

of the coupling 1:1:2 region around mode (0,1) at 10.52 is

completely consistent with the theoretical ones that can be found

in [41]. For comparison, the limiting value Fcr for the perfect plate

is reported in Fig. 14 with a dash-dotted line. One can see that

adding an imperfection has significantly lowered the forcing

levels needed to attain the chaotic regime, so that the amplitudes

are now much more consistent with experimental ones. One can

conclude that the presence of imperfections, adding quadratic

non-linearity and producing second-order internal resonance, is a

key factor that makes the chaotic regions more accessible.

4.2. Second imperfection: a(0,1)¼1.86h

To complete the picture provided by this study, the amplitude

of the imperfection is raised to a(0,1)¼1.86h. The first 10 eigen-

frequencies are given in Table 4. This amplitude has been selected as

numerous second-order internal resonance relationships appear:

2oð3,0ÞCoð0,1Þ, ð20aÞ

2oð0,1ÞCoð0,2Þ, ð20bÞ

oð3,0Þþoð5,0ÞCoð6,0Þ: ð20cÞ

Fig. 13. Bifurcation diagram of Poincaré section for the imperfect plate with

a(0,1)¼0.45h, excited at O¼ 10:6, with an increasing F from 0 to 8. From top to

bottom: modes (2,0,C), (2,0,S), (0,1) and (1,1,C).
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Fig. 14. Complete bifurcation diagram F vs O for the imperfect plate with a(0,1)¼0.45h. The gray region (green with online colors) represents the parameter space where

chaotic regime is at hand. The two light-gray regions (yellow with online colors) represent the locus where the 1:1:2 resonance is activated. The dash-dotted line recalls the

limiting value Fcr vs O distinguishing periodic response from chaotic regime for the perfect plate (shown in Fig. 4). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Moreover, third-order internal resonances are also present in the

spectrum, the most striking one being the 1:1 resonance between

modes (0,2) and (6,0).

A truncation with 20 modes has been selected, including

modes from (2,0) to (3,1) indicated in Table 4, plus axisymmetric

modes (0,3) and (0,4). As in the previous case, the 1:2 resonance

has been clearly observed by exciting at O¼ 23:25 and 46.5. The

case shown in Fig. 15 corresponds to O¼ 46:8, i.e. (6,0,C) is

the directly excited mode. A first bifurcation occurs at F¼1.8

where the 1:1 internal resonance becomes activated, so that mode

(0,2) gets a non-negligible amplitude. Then for F¼3.5, a

quasiperiodic state with modulation is observed, the two excited

modes being (3,0) and (5,0) (the companion configurations (3,0,S)

and (5,0,S), not shown in the figure, display the same behaviour).

Hence the coupling via the internal resonance shown in Eq. (20c)

is activated and energy is transferred to this two modes. Finally

the chaotic regime is at hand for F¼8. This example shows that

resonances of the type 1+1:2 can also easily be activated, and

thus it confirms the scenario exhibited from the experiments,

where this kind of couplings was predominantly observed.

5. Conclusion

The transition from periodic to chaotic oscillations has been

numerically studied for perfect and imperfect circular plates with

a free-edge. The von Kármán PDEs of motion have been

discretized with a modal expansion and Galerkin truncations

including with up to 35 modes. Consequently, the bifurcation

scenario can be studied in the low-frequency part of the structure

only, hence limiting the possibilities of internal resonances

between the retained modes. Despite this limitation, interesting

and convincing results are obtained for the convergence and the

dynamical behaviour of forced plates. The three main conclusion

of the present study may be summarized as follows:

� The numerical experiment reproduced here, with a slow

increase of the forcing amplitude for a constant frequency,

may be interpreted from a phase-space point of view, as the

search for the stability limit of the forced periodic orbits in the

vicinity of the first NNMs. Numerical results clearly pointed

out that a small number of modes is enough to determine the

critical value Fcr. Hence the stability limit is completely

governed by the slow-flow part of the dynamics.

� The convergence of the solution has been found more difficult

to obtain in the chaotic state, highlighting that the framework

of wave turbulence is more adapted to describe this regime.

The numerical power spectra of the transverse velocity are

found to be in agreement with the theoretical prediction of

[31], with a cascade regime of increasing bandwidth with

increasing N. This result raises the following comments:

3 For the comparison between theory and experiments, it

reveals why the convergence results shown on experimen-

tal signal in [20,9,7], in terms of dimension estimates, were

so difficult to obtain. These studies searched for a low-

dimensional process with non-linear signal processing tools

[56], whereas a high-dimensional chaos was at hand.

3 On the other hand, convincing experimental results for a

low-dimensional attractor are given in [22]. From the

theoretical viewpoint, the investigations by Chueshov and

Lasiecka also point out that finite-dimensional attractors

and inertial manifolds exist for the von Kármán equations,

provided a large amount of damping is considered [26–28].

These two results ask for further numerical investigations

for elucidating the transition from low-dimensional chaos

to wave turbulence with respect to finite-size effects and

the amount of damping.

� Experimental results were summarized in the introduction,

underlining the generic route to chaos observed on real plates

and shells, with the appearance of a quasiperiodic state

characterized by excitation of internally resonant modes. This

scenario has been confirmed numerically by finely tuning an

imperfection. The energy is then effectively exchanged

between the modes before the chaotic regime. Moreover, a

global decay of the amplitude of the force needed to attain the

WT regime has been clearly evidenced.
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