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The transition to collisionless ion-temperature-gradient-driven plasma turbulence:
A dynamical systems approach

R. A. Kolesnikov and J. A. Krommes∗
Plasma Physics Laboratory, Princeton University,
P.O. Box 451, Princeton, New Jersey 08543–0451

(Dated: October 11, 2004)

The transition to collisionless ion-temperature-gradient-driven plasma turbulence is considered
by applying dynamical systems theory to a model with ten degrees of freedom. Study of a four-
dimensional center manifold predicts a “Dimits shift” of the threshold for turbulence due to the
excitation of zonal flows and establishes the exact value of that shift in terms of physical parameters.
For insight into fundamental physical mechanisms, the method provides a viable alternative to large
simulations.

Understanding the regulatory mechanisms of turbulent
transport is an important problem in the magnetic con-
finement of plasmas. It has been recognized that non-
linearly generated E × B poloidal (zonal) flows (ZF’s)
play a central role in that process [1]. It is frequently
said that ZF’s shear apart eddies associated with the un-
derlying turbulence, thus reducing the radial transport.
They are also important in geophysical contexts [2].

An extreme example demonstrating the importance of
ZF’s is the so-called Dimits shift, which is a nonlinear up-
shift of the critical temperature gradient for the onset of
ion-temperature-gradient-driven (ITG) turbulence. Let
that gradient be measured by a dimensionless parame-
ter ε, and let the threshold for linear instability be εc. Ac-
cording to large collisonless gyrokinetic [3] and gyrofluid
[4] simulations of ITG systems near marginal stability,
there is a regime εc < ε < ε∗ for some ε∗ in which only
ZF but no drift wave (DW) activity (and hence no ra-
dial transport) is observed. The Dimits shift is defined
to be ∆ε

.= ε∗ − εc ( .= is used for definitions); ε∗ is iden-
tified with the onset of (weak) DW turbulence. Rogers
et al. [5] identified ε∗ with the onset of tertiary modes
that grow to nonlinear amplitudes and damp the ZF’s.
They discussed three stages as ε is increased: (i) pri-
mary instability of the DW’s D; (ii) secondary instabil-
ity of zonal modes Z (driven by D), which then (totally)
suppress D; (iii) tertiary instability: Z is destabilized.
Such nomenclature might suggest that one search for a
sequence of three bifurcations occurring at ε1 ≡ εc, ε2,
and ε3 ≡ ε∗. However, there is a fundamental difficulty
with any steady-state scenario that relies on the nonlin-
ear interaction D + D → Z: It is impossible to close a
steady-state loop D → Z → D with D = 0 but Z 6= 0.
(Such a loop with nonzero values of both D and Z is con-
sidered in the statistical theory of fully developed DW–
ZF turbulence [6].) Dastgeer et al. [4] seem to suggest
that certain resonances enhance the ZF response, but
even then Z cannot be driven if D ≡ 0. No distinct ε2
is observed in the simulations. Instead, as Rogers et al.
noted, ZF’s are excited by a burst of DW’s [through a
Kelvin–Helmholtz (KH) instability of radial streamers],
which then die away leaving only the ZF’s in steady state.

Although large simulations have proven to be invalu-
able for the detailed modeling of complex behavior in
modern tokamaks, they are cumbersome, expensive, and
frequently ill suited for the identification and detailed un-
derstanding of basic conceptual issues. Here we consider
the opposite extreme and perform a dynamical systems
analysis [7–9] of the “simplest” model of an electrostatic,
collisionless (undamped ZF’s), curvature-driven ITG sys-
tem near marginal stability. Although the physics does
involve ZF’s in a fundamental way, we will show that
there are just two bifurcation points of interest. Also,
for the first time in any model, we are able to predict the
Dimits shift exactly as a function of physical parameters.

A bifurcation is a change “in the qualitative structure
of the solutions” [7] of a system of nonlinear equations as
a parameter such as ε passes through certain values. For
many physicists, intuition about bifurcation phenomenol-
ogy has been strongly influenced by the simplest normal
forms exhibiting bifurcations [7]. For systems with lin-
ear waves, the two-dimensional (2D) Hopf bifurcation is
especially relevant. If that pertained to the collision-
less ITG problem and if it were supercritical [10], then
slightly above linear threshold the DW’s would saturate
at a small amplitude ∝ (ε − εc)1/2; for an example, see
the calculations of collisionally damped ZF’s in Refs. 11
and 12. However, such behavior is not observed. If the
bifurcation were subcritical [10], then the DW’s would
jump to a finite level as ε is increased beyond εc; that
behavior is not observed either.

In fact, the standard Hopf bifurcation does not ap-
ply to the strictly collisionless problem. A systematic
way of proceeding is to exploit the Center Manifold The-
orem [7, 8], which states that at linear threshold the
system dynamics are (in the absence of positive linear
eigenvalues) attracted to a smooth n0-dimensional in-
variant subspace [the center manifold (CM)] as t → ∞.
At the point of bifurcation, the CM is tangent to the
linear eigenspace corresponding to the n0 modes whose
eigenvalues λ (∂t → eλt) have zero real part. The the-
orem is easily extended (by suspension) to systems pa-
rameterized by a bifurcation parameter ε. Since an ITG
model [13] must involve at least two coupled fields (usu-
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ally potential vorticity ω and pressure P ) in order that
the system self-consistently produces a linear growth rate
(the Hasegawa–Wakatani paradigm [10] is similar in this
regard), the dimensionality of the CM is the sum of
at least 2 (for the complex DW amplitude) plus 2 (for
the two real undamped zonal fields); thus the CM is at
least 4D. This feature has not been recognized previously;
it is responsible for the unusual behavior that underlies
the Dimits shift. We will demonstrate that explicitly for
a simple model with ten real degrees of freedom, both
by perturbative construction of the CM and qualitative
analysis of the dynamics on the CM, and by exact calcu-
lation of the relevant fixed point of the full nonlinearity.

We consider a simplified gyrofluid ITG system [14] for
u = (ω, P )T, driven by magnetic curvature [the unit
vectors ẑ, x̂, and ŷ are associated with the magnetic field,
radial, and (essentially) poloidal directions, respectively].
In vector form, the system (considered as 2D in the plane
perpendicular to ẑ) is ∂tu(x, t) = M̂ ·u + N̂(u, u), with
the hat denoting a differential operator and the nonlinear
term (bilinear in the field vector) describing simple E×B

advection: N̂(u, u) = −ẑ × ∇ϕ ·∇u. The electrostatic
potential ϕ follows from ϕ = D̂−1ω, where D̂ .= α̂ + ∇̂2,
α̂ being zero for convective cells (k‖ = 0) and the identity
operator otherwise [6]. The linear matrix is assumed to
have the form

M̂ =

(
−i(Ω̂− iη̂) −îb

iĉ −d̂

)
. (1)

Here Ω̂ .= 2(D̂−1 + τ )∂̂y, with τ being the ratio of ion
and electron temperatures, is associated with the lin-
ear frequency of DW’s; η̂

.= µ∇̂2 describes weak colli-
sional damping on the DW’s (only); b̂

.= 2∂̂y provides
the linear coupling between ω and P ; ĉ

.= τ D̂−1(ε− ε̂c)∂̂y

scales with the distance from marginality of the consid-
ered Fourier mode, where ε

.= Ln/LT is the ratio of back-
ground density and temperature gradients and ε̂c is that
ratio calculated at marginality of the considered mode;
and d̂

.= ̂̄ν + η̂, where ̂̄ν = −iν∂̂y represents the Landau
damping effect in the gyrofluid closure [14].

We consider energetically self-consistent Galerkin trun-
cations [9] in which the fields are represented as∑

k uk(t) sin(kxx)eikyy. In choosing a standing wave
in x, we subscribe to an argument from Ref. 11, which
asserts this as a crude representation of the localizing
effect of magnetic shear. The lowest truncation retains
u1, u2, and u3, where 1 ≡ (kx, ky), 2 ≡ (2kx, 0), and
3 ≡ (3kx, ky). u1 represents both the first (as a function
of increasing ε) bifurcating linearly unstable D as well
as a damped eigenmode; u3 is a DW sideband S; and
u2 represents zonal variation Z, present in the system as
a result of the nonlinear interaction between D and S.
This model does not retain streamers (kx = 0), so does
not capture the KH mechanism of Ref. 5; however, it
does permit ZF’s to be generated from a DW transient.

In the Fourier representation, the M̂ operator involves
various k-dependent coefficients Ωi, ηi, bi, ci, and di with
i = 1, 2, 3. Signs and phases have been chosen so that all
coefficients are real and positive, except that c1 < 0 below
marginality and c3 < 0 when just mode u1 or no mode
is unstable. By definition of the collisionless problem (no
linear zonal damping), η2 is taken to vanish. η1 and η3

are unfolding parameters in the sense of Ref. 7. When
η1 = 0, the DW threshold is εc = 0; at that threshold,
the DW eigenvalues are λ+ = −iΩ1 and λ− = −ν̄ , with
eigenvectors e+ = (1, 0)T and e− = (0, 1)T.

The equations are

ω̇1 = −i(Ω1 − iη1)ω1 − ib1P1

+
1
2i

[(
1
D1

− 1
D2

)
ω1ω2 −

(
1
D3

− 1
D2

)
ω3ω2

]
, (2a)

Ṗ1 = ic1ω1 − d1P1

+
1
2i

[( (1)︷ ︸︸ ︷
ω1

D1
P2−

(0)︷ ︸︸ ︷
ω2

D2
P1

)
−
( (2)︷ ︸︸ ︷

ω3

D3
P2−

(3)︷ ︸︸ ︷
ω2

D2
P3

)]
, (2b)

ω̇3 = −i(Ω3 − iη3)ω3 − ib3P3

− 1
2i

(
1
D1

− 1
D2

)
ω1ω2, (2c)

Ṗ3 = ic3ω3 − d3P3 − 1
2i

( (4)︷ ︸︸ ︷
ω1

D1
P2−

(3)︷ ︸︸ ︷
ω2

D2
P1

)
, (2d)

ω̇2 =
(

1
D1

− 1
D3

)
Im(ω1ω

∗
3 ), (2e)

Ṗ2 = Im
( (4)︷ ︸︸ ︷

ω1

D1
P ∗3 +

(2)︷ ︸︸ ︷
ω3

D3
P ∗1
)
− Im

( (1)︷ ︸︸ ︷
ω1

D1
P ∗1
)
. (2f)

Here ω2 ≡ zω and P2 ≡ zP are real. A consistency
check can be obtained by noting that the quantitiesW .=
|ω1|2+|ω3|2+ω2

2 and P .= |P1|2+|P3|2+P 2
2 are conserved

by the nonlinearities. The cancellations of terms under Ṗ
are shown by the numbering; term 0 vanishes separately.

Numerically, it is observed that for εc < ε < ε∗ and al-
most all initial conditions (IC’s), a burst of fluctuations
occurs that eventually dies away leaving only ZF’s. For
many IC’s, the final state is unique; that is, many tra-
jectories are attracted to a stable, nontrivial fixed point
(at z = z0, with all other fields vanishing). However,
other IC’s lead to final states dependent on the IC’s. For
ε > ε∗, the model does not saturate in general. That is
of little concern for a qualitative discussion of the Dim-
its shift; higher-order truncations [15] do saturate. (The
value of ε∗ depends on the order of truncation.)

All of this behavior can be explained, and ε∗ can be
predicted, by a bifurcation analysis that involves the con-
struction of the CM. As we noted, it is critical to realize
that when the zonal components are undamped [η2 = 0;
see Eqs. (2e) and (2f)], the CM is 4D. To construct
the CM, we write u1 = Dq + y1, z2 = z, and u3 = y3,
where {D, z} provides four real coordinates on the center
eigenspace and the y’s describe the nonlinear curvature
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of the CM with respect to that space. Symmetry con-
siderations [9] dictate that yi = Wi · zD + · · · , where D
and z are treated as small and the Wi are constant ma-
trices to be determined. That may be accomplished [7, 8]
by equating the time derivative of the power-series expan-
sion of yi with the evolution equation that follows from
the restriction of Eqs. (2) to the CM. In detail, we fol-
low the projection method advocated by Kuznetsov [8],
which does not require a preliminary linear diagonaliza-
tion. To lowest order, we are led to the 4D system

Ḋ = Γ(z)D, ż = (−aε + A · z)I, (3a,b)

where I
.= |D|2. This can immediately be reduced to a

3D system for I and z by writing D = ρeiθ and noting
that the θ dependence entirely decouples; Eq. (3a) is then
replaced by İ = 2Γ(z)I. The two-vector a and the 2× 2
matrix A are known, and Γ(z) is known through O(z2)
[Γ(0) > 0 is the linear DW growth rate]. All elements
of A are positive; both of its eigenvalues are negative.
The supporting algebra and explicit formulas for these
quantities and others in the subsequent analysis will be
displayed in a longer paper to be published elsewhere.

For this reduced dynamics, not only is the origin I = 0,
z = 0 a fixed point (linearly unstable for ε > εc), the
entire I = 0 plane is invariant. This unusual behavior
is the first indication that for the collisionless problem
the origin does not have the same preferred status as in
other, more conventional problems [11, 12]. Indeed, the
system also admits a nontrivial fixed point F at I0 = 0
and z0 = εA−1 · a. We will show that the stability of F
determines the Dimits shift.

One may perform a phase-plane analysis of Eqs. (3b)
by noting that I cancels out under żP /żω = dzP /dzω ≡
v(z)/u(z). A sketch of the phase trajectories is shown in
Fig. 1. All qualitative properties of this figure can be de-
termined analytically. F is attracting in the z plane (for
all ε); it passes through the origin as ε passes through 0.
In the submarginal region ε < εc, Γ(z) < 0 for all z’s.
Then all trajectories starting in the vicinity of the I = 0
plane are attracted to that plane and end up close to the
initial starting point (the final z may be either F or may
depend on IC’s).

In the supermarginal region εc < ε < ε∗, Γ(z) > 0
in the vicinity of z = 0 but is negative in the vicin-
ity of F . Then most trajectories starting close to the
origin initially move away from it; they end up either
at F [for sufficiently large I(t = 0)] or sometimes on the
I = 0 plane at positions depending on initial conditions.
Such dynamics are consistent with the observed behav-
ior above marginality: an initial burst of DW’s gener-
ates ZF’s, which then annihilate the DW’s leaving only
a steady ZF component as t →∞. This generation (sec-
ondary instability)/annihilation process is transient, so
does not involve a distinct bifurcation point ε2.

As ε is increased further through some ε∗, Γ(z0) be-
comes positive, many IC’s are repelled from the I = 0

ZP

Zw

F

FIG. 1: Representative phase trajectories in the z plane,
showing the nontrivial fixed point F (stable in the z plane)
the overall stability of which determines the Dimits shift. Up-
per dashed line: v(z) = 0 (slope dzP /dzω = 0); lower dashed
line: u(z) = 0 (slope = ∞); dash-dotted lines: eigenvector
directions (one such line is obscured by the trajectory at ap-
proximately 45◦).

plane, and the system cannot saturate. (Simulations ver-
ify that higher truncations do saturate with nonzero lev-
els of DW activity and characteristic chaotic behavior.)

Perturbative CM calculations provide only approxima-
tions to F and ε∗, and they cannot address the global
structure of the phase space. Fortunately, the present
model is simple enough that certain quantities can be cal-
culated exactly. Rigorous equations for z0 are motivated
by the observation that dynamics ought to relax rapidly
to the CM. Since ω1 has a component in the CM, we
define the normalized variables P ′

1
.= P1/ω1, ω′

3, and P ′
3;

z is not normalized. Although for ε < ε∗ all original
variables (except for z) are dynamically driven to zero,
the normalized variables remain nonzero as t →∞. This
expedites tracking the fixed point z0(ε). Upon deriv-
ing evolution equations for the normalized variables from
Eqs. (2), passing to an amplitude–phase representation,
and requiring that the primed amplitudes and phases
be steady, we are led after tedious algebra to tractable
equations for the position of F . Further nontrivial alge-
bra shows that to lowest order in ε the prediction agrees
with that found from the perturbative CM construction.
For any ε, numerical solution of the fixed-point equa-
tions demonstrates agreement with the numerically ob-
served z0 through six decimal places.

Although this nonperturbative calculation captures all
(possibly global) fixed points of the original system (the
perturbative CM calculation is local), we have found only
the z0 described previously. We have no categorical proof
that no other fixed points exist, although no other stable
ones emerge from an admittedly very incomplete numer-
ical search of the phase space. We believe that if they
do exist they are all saddles, which would not modify the
qualitative asymptotics we have described.

With nonperturbative results in hand, we can formu-
late an exact equation for the Dimits shift. We write
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ω1 = ρ1e
iθ1 , divide Eq. (2a) by ω1, and take the real

part, obtaining (at z0) ρ̇1/ρ1 = −η1 + b1Y
′
1 , where

Y ′
1

.= ImP ′
1. [Nonlinear terms do not contribute due

to the steady-state condition Imω′
3 = 0, which follows

from Eq. (2e).] F is therefore destabilized in the I direc-
tion when Y ′

1(ε∗) = η1/b1. An exact formula for Y ′
1(ε)

is available, and numerical work demonstrates agreement
with our simulation value of ε∗. The destabilization pro-
cess is not a KH instability but rather an ITG instability
modified by stabilizing ZF shear.

An important observation emerges by considering the
limit of small DW collisional dissipation η1,3 → 0, for
which it can be shown that ε∗ ∝ η1/(η3− η1). This ratio
remains nonzero in the limit. Thus a nonzero Dimits
shift arises even in the absence of collisional dissipation,
which substantially enhances the relevance of our model
to the large-scale collisionless simulations.

Now consider the addition of very weak zonal damp-
ing: ż = −βz + · · · . (β can also be considered to be an
unfolding parameter.) This introduces a new, very long
time scale and slightly perturbs the position of F . For
ε < ε∗, arbitrary initial conditions typically move rapidly
to the vicinity of the original fixed point, then slowly
relax to the final steady state. (That state involves a
small, nonturbulent component of D.) This disparity of
time scales underlies the bursting behavior observed in
Ref. 16 for weakly collisional runs. That does not occur
in the lowest-order truncation studied here, but does oc-
cur in higher-order ones [15], whose additional degrees
of freedom allow F to be destabilized in other directions
and, thus, the trajectories to be ejected from its vicinity
after the slow relaxation. Preliminary long-time (many-
burst) integrations of such truncations show relaxation
to a quasiregular state; limited computational resources
precluded the authors of Ref. 16 from integrating more
than a few bursts. Further analysis of the regime imme-
diately above ε∗ is very desirable and is in progress.

For sufficiently large β, the zonal modes are strongly
stable and should no longer be used as coordinates on
the CM, which is now 2D. For this case, a standard Hopf
bifurcation occurs; the (straightforward) details will be
presented elsewhere, as will a discussion of the modula-
tional instability described by the associated Ginzburg–
Landau equation. The radical differences in behavior be-
tween the undamped and strongly damped limits arises
because of the interchange of the limits t →∞ and β → 0
[17]. The signature of that interchange is the differing di-
mensionality of the CM’s for the two cases. The Dimits
shift occurs when the limit β → 0 is taken first.

In summary, we have considered a very simple yet
instructive model for the transition to collisionless ion-
temperature-gradient-driven plasma turbulence. The ex-
citation of zonal flows, important in a variety of physics
contexts, plays a crucial role in the dynamics of that
transition. That has been known previously, but only
in rather qualitative terms. Here, by using tools from

dynamical systems theory, we have shown how the non-
linear upshift of the critical temperature gradient for the
onset of turbulence (known as the Dimits shift) is related
to a certain fixed point of the nonlinear system (which
arises as a particular expression of the balance between
forcing and dissipation) and how that shift can be calcu-
lated in terms of the physical parameters of the model.
Further work remains: higher-order truncations exhibit
characteristic signatures of chaos, and it would be in-
teresting to elucidate the details. All in all, dynamical
systems analysis of model nonlinear systems possessing
relatively small numbers of degrees of freedom is a viable
and very instructive alternative to large-scale, brute-force
simulations. Both have their places in the quest to un-
derstand the “anomalous” transport properties of mag-
netically confined plasmas and related nonlinear systems.

This work was supported by U. S. Dept. of Energy
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