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The transient process which starts at the instability threshold of a rotor rotating in a fluid
environment, and ends up in the limit cycle of self-excited vibrations known as fluid whirl or
fluid whip, is discussed in this paper. A one-lateral-mode, isotropic, nonlinear model of the
rotor with fluid interaction allows for exact particular solutions and an estimation of the
transient process. The fluid interacting with the rotor is contained in a small radial clearance
area, such as in bearings, seals, or rotor-to-stator clearances, and its effects are represented
by fluid film radial stiffness, damping, and fluid inertia rotating at a different angular
velocities.
The effects of fluid damping and fluid inertia circumferential velocity ratios on the rotor

startup and shutdown instability threshold differences are also discussed.

Keywords." Rotor/bearing/seal system, Fluid interaction, Fluid force model,
Instability threshold, Self-excited vibrations, Transient process

1. INTRODUCTION

The phenomena of fluid-induced instability of
rotors called fluid whirl and fluid whip have been
known since 1924, as reported by Newkirk. During
the last decades, many physical descriptions and
models of these phenomena have been investigated.
Linear models of fluid forces acting at the rotor
("bearing and seal coefficients") are the most

popular due to their ease of implementation into
linear rotor model computerized analyses. It is
known, however, that there exist substantial dis-

crepancies between theoretical and experimental
fluid force coefficients (e.g., Myllerup et al., 1992).
This poses a question of validity of the linearized
modeling practices (Adams and Padovan, 1987).
Linearized fluid force coefficients, most often
offered in numerical/tabular formats, can provide
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a base for rotor instability prediction, but do not
give any realistic description of the post-instability
threshold behavior of the rotor. The coefficients
can hardly be associated with any practical descrip-
tion of the rotor/fluid interaction physical phe-
nomena. Consequently, nonlinear models of the
fluid force started gaining more attention. There is
no agreement among the researchers, however, on
what analytical expression for the fluid force should
be adequate in specific cases. In the meantime,
practical observations of the fluid-induced vibra-
tions of machinery rotors in the field have provided
rich documentation. However, in spite of the fre-
quent occurrences ofthese fluid-induced vibrations,
there still exists a cloud of misunderstanding of the
basic physical phenomena of solid/fluid interaction
in rotors (Crandall, 1983; Muszynska and Bently,
1996). This fact has considerably slowed down
implementation of efficient fluid whirl/whip control
mechanisms (Muszynska et al., 1988; Bently and
Muszynska, 1989).

This paper is a continuation of the author’s pub-
lications on the fluid-induced instabilities of rotors
(Muszynska, 1986; 1988a,b; 1995; Muszynska et al.,
1988; Muszynska and Bently, 1996; Bently and
Muszynska, 1985; 1989; Grantetal., 1993). Through
the last 15 years, extended modal testing of rotors
rotating in a fluid environment (Muszynska, 1986;
1995) has provided a rich database for general-
izations. It has resulted in the fluid force model
which emphasizes the strength of the circumferen-
tial flow in rotor-to-stationary element radial clea-
rances (such as in bearings, seals, blade tip/stator,
impeller/diffuser) for lightly radially loaded rotors
(Muszynska, 1988b; Muszynska and Bently, 1996).
This model is used in this paper for the rotor within
its first lateral mode to analyze the transient process
from instability threshold to limit cycle of self-
excited vibrations. It is also used to investigate
changes in the instability thresholds for the rotor
transient process during startup and shutdown. The
transition to limit cycle and instability threshold
differences or "hysteresis" (the name introduced by
Adams and Guo, 1996) represent new contributions
to the knowledge on rotor/bearing dynamics.

2. ROTOR/FLUID ENVIRONMENT MODEL

The mathematical model of a one-mode, isotropic
rotor rotating and laterally vibrating within the
fluid environment, contained in a relatively small
clearance, is as follows (Muszynska, 1986):

M + Ds 4- (K+ KB)Z + Mf(2- 2j,f- 2,f2z)
+ (D / Dn(lz[))(- jAfz) +f(Izl)z o,

d/at, z(t) x(t) + jy(t),

v/Z_l, [z 4x2 + y2, (1)

where x, y are two rotor orthogonal lateral displace-
ments, M,K,Ds are rotor first lateral mode modal
mass, stiffness, and damping respectively, KB, D,
and Mf are fluid radial linear stiffness, damping,
and fluid inertia effect, A and Af are fluid circum-
ferential average velocity ratios ofrotating damping
and fluid inertia forces respectively, and f is the
rotor rotative speed. The functionsf(lz]) and Dn(IZ])
represent the nonlinear stiffness and nonlinear
damping of the fluid film, as functions of the rotor
radial displacement ]z I. These functions can have
any form, provided they are continuous within the
range ]z < c, where c is the radial clearance. They
cover an important class of nonlinearities; they are

not, however, general.
The fluid model in Eq. (1) was identified through

extensive modal perturbation testing (Muszynska,
1995; Grant et al., 1993). This model is based on the
strength of the circumferential flow generated by
rotor rotation. The products Af and Af represent
angular velocities at which fluid damping and fluid
inertia forces respectively rotate (for classical bear-
ing or seal stiffness coefficients Af=(kxy-kyx)/
(Dxx + Dyy). Following research results by Bently
and Muszynska (1985), Grant et al. (1993), and
E1-Shafei (1993), the fluid force model included
the linear fluid inertia effect, which often presents a

non-negligible contribution in the fluid dynamic
force. Rotation of the fluid inertia force with a
different rate than that of the fluid damping force
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was indicated by Ohashi (1984), Grant et al. (1993),
and Muszynska (1995). Within the range ofrotative
speeds limited to the first lateral mode, the isotropic
rotor model (1) is adequate for the case of the rotor/
bearing system (with fluid whirl and whip tenden-
cies), rotor/seal systems (with seal fluid whip
tendency), fluid handling machines with blade-tip
or rotor/stator periphery interactions (with fluid
whip tendencies), and rotors with press fit rotating
elements, exhibiting high internal/structural fric-
tion (with internal friction whip tendencies; A 1,
Mr= 0).
A justification of the use of the simple rotor

model is based on the fact that the fluid-induced
vibrations most often are associated with the rotor’s
lowest modes, either the rigid body mode (fluid
whirl) or the first bending mode (fluid whip)
(Muszynska and Bently, 1996). The advantage of
a simple model is obvious: analytically explicit
solutions allow for extended analysis and clear
physical interpretations.

As was shown in E1-Shafei (1993), the rotor
instability threshold, fst, can easily be analytically
calculated from the linearized Eq. (1) (f= 0, Dn 0).
The rotor stability criterion is as follows:

< st + M -+- mf ’72’
where 7 At(1 + Ds/D)/A. (2)

At the instability threshold, the real part of one
of the rotor system eigenvalues becomes zero,
and the natural frequency COnst (the corresponding
imaginary part of the eigenvalue) is equal to:

For the rotative speed f exceeding the instab-
ility threshold (2), the real part (Re) of the cor-

responding eigenvalue s becomes positive (the

remaining three eigenvalues can also be analytically
calculated):

D+DsRe(s) 2(M + Mr) V/ H2

(4)

MMfAf2

(M + Mr) 2
(. D ._ Ds )2 K--}- KB+ k,2(M + Mr) -M-+- Mr’

MfAf(D + Ds) DA
H-- f/

(M+ Mf) 2 -M+--f

The positive value of the eigenvalue real part
means that the rotor lateral vibrations are un-

winding; the rotor orbit represents a spiral with

increasing amplitude. The particular solution of the
linearized Eq. (1) has the form:

>.’, (5)

where

Mf/f
COn =M+Mf + -E + v/E2 --I- H2

is the imaginary part of the eigenvalue, and C is a

constant of integration. In the case when the rotor
vibration amplitude CeRe(*)’ increases, the linear-
ized model (1) ceases to be adequate, since the non-
linear factors start playing a dominant role in the
rotor response as the rotor displacement amplitude
grows. This causes the rate of increase of the
vibration amplitude during the transient motion
to decrease, until a limit cycle of the self-excited
vibrations is reached.

Long after early theoretical predictions of self-
excited vibration limit cycles by Poincar6 and
Lyapunov (Minorsky, 1947) post-instability-
threshold limit cycles of fluid-induced, self-excited
lateral vibrations of rotors have been discussed by
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Muszynska (1986, 1988a), Muszynska and Bently
(1996), Malik and Hori (1986), Cheng and Mu
(1996), Brown (1986), Genta and Repaci (1987),
and Krynicki and Parszewski (1994).
The limit cycle of the rotor self-excited vibrations

can be obtained as a particular solution of Eq. (1):

z(t) Bejt, (6)

where B, co are amplitude and frequency ofthe rotor
self-excited vibration respectively. While Eq. (5) of
the transient process represents an unwinding spiral
orbit, Eq. (6) describes a circular orbit of the rotor.
The amplitude B and frequency can be calculated
if Eq. (6) is substituted into Eq. (1):

(M + Mr)co2 + [D + Ds + Dn(B)]jco
2 2+ 2MfAffstco- MffstA + K + KB +f(B)

-jAfst[D + Dn(B)] 0. (7)

By splitting this equation into real and imaginary
parts, two algebraic equations are generated which
can be used to calculate the amplitude B and fre-
quency co (Eqs. (2) and (3) were used):

mco2 q- mf(co- Arrest) 2 K- KB f(B) O,

Afst[D + Dn(B)]
D+Ds+Dn(B)

+ Ds/D
+ (Ds/(D qt_ Dn(B)) const const _qt_ 5, (8)

where the parameter 6 was introduced as:

(5 COnst{(D/Ds) + D/[D + Dn(B)]}-’. (9)

For any given functions Dn(lz[) andY(ll), which
now are functions of the self-excited vibration
amplitude B, this amplitude can be calculated from
Eq. (8). The limit cycle ofthe self-excited vibrations,
known as fluid whirl or fluid whip, is, therefore,
explicitly obtained. Note that the self-excited vib-
ration frequency, co, in (8) differs only slightly from
the rotor natural frequency at the instability thres-
hold, const, in Eq. (4).

Using Eqs. (2), (3), (8), and (9) allows for the
following simplification of the first Eq. (8)"

(52(M + Mr) 4- 26const(M 4- Mr’y) -f(B)

as the identity Mco2nst -+- Mf(const- ,f(1 + Ds/
D) const//\) 2 K nt- KB can be eliminated. The func-
tion (6) is a parabola, while the function
(Eq. (9)) is a hyperbola. Figure presents the
graphical solution for 5 as a function of B when
the nonlinear damping Dn(lZl)= Dn(B) is a given
function.

Figure 2 presents the subsequent graphical
solution obtained from the functions (B) and

(a). It provides the amplitude of the self-excited
vibration limit cycle when the nonlinear stiffness

functionf(lzl) =f(B) is given. This amplitude B can
be found at the intersection of the functions fiB)
and [(B)]. Since the function exists within the
range [(const/(1 +D/Ds)) and (constD/D)], and
the function f(B) exceeds these limits, the solution
for B must exist, as two of these function plots
cross (Fig. 2).

FIGURE Graphical construction of function 5 =5(B) using
Eq. (9) and a given nonlinear damping function
D( z )---- D,,(B).
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B B f(B) (any, 9iven)

\ B-" -i- LirnicycIe amplitude

/,, ",.

I+D/D",
FIGURE 2 Graphical solution for the limit cycle, self-excited
amplitude B, based on Eq. (10), function 6(B) and a given non-
linear stiffness functionf( z =_f(B).

3. TRANSIENT PROCESS STARTING AT
THE INSTABILITY THRESHOLD

The rate at which the unstable linear vibrations
start unwinding, when the rotative speed reaches
the instability threshold (2), can be calculated as a
derivative of Eq. (4), ORe(s)/Of at ft---st, multi-
plied by f8t:

an increase of M, Mr, and A. It increases with

K+ KB and Af. The role of the damping in s* is
better seen ifthe fluid inertia in Eq. (11) is neglected:

S

Mr-0

D + D
(D + Ds) 2 2(M -F Mf")/)2"+(K+ KB) M + Mf’T2

This function has a maximum when D + Ds
2v/M(K+ KB) which resembles the critical damp-
ing. For subcritical damping, s* increases with a

damping increase; for supercritical damping, it
decreases. The above statements are also true for
Eq. (11) in a qualitative sense, as some quantitative
changes take place when the fluid inertia is
incorporated: the maximum occurs at a smaller
damping value.

4. TRANSIENT PROCESS AROUND
THE LIMIT CYCLE

In order to evaluate the transient process around
the stable limit cycle of self-excited vibrations (6)
(its stability was proven by Muszynska (1988a), the
variational equations will be analyzed. Eq. (1) is
transformed using the following relationship:

z(t) [B + u(t)]ej[t+z(t)], (13)

ORe(s)
fst

D+D8
(D + Ds) 2 ]4(K + KB)(M + Mr’y) + (M + Mf’y2)

(11)

At the instability threshold, the rotor unwinding
spiral motion can, therefore, be presented (with
approximation) as:

z(t) Ce*’e jn’tt. (12)

As can be seen from Eq. (11), the real component of
the exponent s* in the solution (12) decreases with

where a; is given by the second Eq. (8) and u(t), fl(t)
are real variational variables, considered small.
Substituting Eq. (13) into Eq. (1), the variational
equations are obtained:

(M + Mr) [/ + 2j(a,, + ) + (B + u)j
(B + b/) (co + )2] + [D + Ds + Dn(B + u)
2jMfAfst][ + (B + u)j( +/)]

+ {K + KB [D Jr- On(B Jr- u)]jAst MfstAf22
+f(B + u)}(B + u) O. (14)

The linearized equation is obtained when the
functions Dn(B + u) andf(B + u) are represented by
the first two terms of their Taylor series, and when
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nonlinear terms in Eq. (14) are neglected:

(M + Mr) (/i + 2jwh + jB/ 2wB)
+ (D + Ds 2jMrAff/st)(h + jB)
+ Dn(B) (h + jB3) + jBuD’n(B)( st)
+ 7’() 0,

where Eq. (7) was used, and

V’n() dVn(e + .)/d( +
d’() dd(e + .)/d(e + .)lu=0.

Splitting Eq. (15) into real and imaginary parts
provides:

+ 2Mf&fstB) + uBf(B) O,

( +)(2 + e3) + [ + Vs +
2Mf&fth + uB(- &st)Dn(B) 0.

(6)
The characteristic equation for Eqs. (16), from

which the variational eigenvalues Sv can be calcu-
lated, is as follows:

( D+ Ds+Dn(B))&(M + Mc) Sv + M +M

+ 7’()+ +[ +(- aas)] v

+ [D + Ds + Dn(B)]f’(B)
M+Mf

2

M+Mf
x (- afet)BD’(B) 0. (17)

One of the roots "Sv" is zero, and it has been ex-

tracted from Eq. (21). The analysis of the poly-
nomial (17) shows that there exists only one real,
negative root -s** which is approximately equal to"

Sv S**

-B{[V +D + Dn(B)1f’(B
2(aest- ){M + Mf(- afast)]D/n(S)}

/{ [D + D + Dn(S)] 2 + s(m + af)ft(B)

+ 4[M + Mr( Afst)] 2. (1 8)
)

Using Eqs. (2), (3), and (8) some terms in Eq. (18)
can be transformed:

Dswnst(D/Ds)
[D 4- Ds / DB(B)]D’

Moo + Mr(co- ,rt)

f M(1 +Ds/D) (19)
+ Ds/(D + Dn)

+ Mf /+ D(D + Ds + Dn) Cdnst.

As can be seen from the first Eq. (19), the second
term in the numerator of Eq. (18) is smaller than the
first one, as it directly depends on damping D, and
can practically be neglected.
The behavior of s** as a function of the system

parameters is very similar to that of s*: s** decreases
with increasing M, Mr, and A, and it increases with
and Ac and f(B). The effect of K+ Ku is opposite
than for s*, since nowf(B) is dominating the system
stiffness.
The particular solution of Eqs. (16) is as follows:

u( t) Cue-’** ’, /(t)- C/e-’***’, (20)

where Cu, C; are constants of integration. The
solution describing the rotor motion around the
limit cycle of the self-excited vibrations (6) will,
therefore, be as follows:

z(t) (B + Cue-**’)ej(’+c;-’**’). (21)

By comparing it with the solution (12), it can be seen

that at the instability threshold the rotor amplitude
exponent, which starts from the positive value + s*,
ends up, during the transition time, as the negative
value -s**, when it reaches the limit cycle. This
transition to the limit cycle of the self-excited
vibration is qualitatively illustrated in Fig. 3.

5. EXPERIMENTAL RESULTS

Figures 4 and 5 present the full spectrum cascade
plots of lateral response of a rotor (centered at rest
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Time, t

Time nstant Time instant when
limit cycle of self-of instability excited vibration

threshold is practically
Rotor amplitude reached

at instability... / threshold
/d. ___/_

Time, t

FIGURE 3 Timebase diagram of the rotor vibration transi-
ent processes between the instability threshold and the limit
cycle of the self-excited vibrations.
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FIGURE 5 Full spectrum cascade plot of rotor response at
shutdown with acceleration -3.5rad/s2. Instability threshold
occurs at 6240 rpm.
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FIGURE 4 Full spectrum cascade plot of rotor response dur-
ing startup with angular acceleration 3.5 rad/s (full spectrum
uses data from two orthogonal transducers; elliptical orbits at
each frequency component are split into circular forward and
reverse components). Instability threshold occurs at 6279 rpm.

in an oil-lubricated bearing; the second bearing is
relatively rigid bronze bushing) during its startup
and shutdown. Details of the experimental rig can
be found in references by Muszynska (1995),
Muszynska and Bently (1996), and Grant et al.
(1993). Due to the action of the fluid force in the
bearing, the instability thresholds occur at 6279 and
6240 rpm respectively.

FIGURE 6 Rotor orbit between the instability threshold
and limit cycle. Each bright dot represents one rotation. Pic-
ture from oscilloscope screen.

The rotor orbit in Fig. 6 illustrates the transition
to the limit cycle whirl vibrations with frequency
0.48f. Figures 4 and 5 illustrate the well-known
phenomenon of "hysteresis": differences in the
instability thresholds for increasing and decreasing
speed. This effect was discussed and the name,
"hysteresis," was introduced in by Adams and Guo
(1996), but it seems that the sophisticated analysis
used there is not necessary. The threshold differ-
ences increase with an increasing angular accelera-
tion of the rotor, and can be explained using the
fluid force model applied in this paper: the fluid
circumferential average velocity ratio (especially
that of the fluid damping force), which is driven by
the rotor rotation, at startup is lagging (is smaller)
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than that during shutdown, when it is leading, in
comparison to the quasi-stationary case. Another
lagging/leading effect can be contributed by the
fluid inertia. It was, however, less obvious in the
experiments.

In order to confirm the physical observations on
the "hysteresis," a specific new perturbation test
was performed. An external forward rotating
unbalance force at a constant frequency CUp WaS

applied through an auxiliary system to the rotor
during its fast startup and shutdown at 26 rad/s2

angular acceleration. The response of the well-
balanced rotor was filtered to the constant pertur-
bation frequency CUp, and presented by the Bode/
polar plots (Fig. 7). The data was then transformed
into the dynamic stiffness format (Muszynska,
1995) (Fig. 8). The differences in the dynamic
stiffness components for the rotor fast startup and
shutdown are visible. Using the linear model (1)
(f=Dn=0), these direct (DDS) and quadrature
(QDS) components can be expressed as follows:

(DDS) -(M + Mf)cu2p + 2Mfcup/\ff

Mf,,2 -+- K q-- KB,
(QDS) (D + Ds)cup D,.

(22)

lOO

-5o

-100
1000 2000 300o 4ooo

rpm

10

1000 2000 3000 4000
rpm

-270

Ful Scale

FIGURE 7 Well-balanced rotor startup (a) and shutdown
(b) vertical responses filtered to perturbation frequency
COp=2250cpm in Bode and polar format versus rotative
speed. Rotor angular acceleration was 26rad/s2. The fluid
whirl resonances f=w(1 +Ds/D)/A (Muszynska, 1995) occur-
ring at fl=4877rpm (startup) and 4653rpm (shutdown) are
well pronounced.

Note in Fig. 8 that the direct stiffness does not have
a constant value for CUp--const. This indicates that
DDS depends on the fluid inertia which involves the
rotative speed f. The differences, A, in the dynamic
stiffness components for the startup minus shut-
down are:

A(DDS) -Mfu(CU- fufl)2 q- Mfd(CUp ,fdfi) 2,
(23)

A(QDS) Df(Au -/d), (24)

where indexes u and d denote startup and
shutdown respectively. From Fig. 8 and Eq. (24),
the fluid damping force average circumferential
velocity ratios can be identified: Au-0.484,
/d=0-471. The ratio Au for startup is, therefore,
about 2.6% lower than that for shutdown for this
example of the rotor high angular acceleration.
Note that the difference between Au and d can

by itself explain the instability threshold (2)
differences, as the instability threshold fst is a

10 Vertical D’:namic StiffnessX
4 /I

2

t5

2000 2500 3000 2500 4000 4500 5000
RPM

xl0

5
0

2000 2500 3000 4500 50002500 4000
RPM

FIGURE 8 Rotor startup and shutdown direct (DDS) and
quadrature (QDS) dynamic stiffness components versus rota-
tire speed. Humps in DDS at fluid whirl resonance speed are
due to stiffness nonlinearity (Muszynska, 1995).
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decreasing function of A. The relationship between
Qst and the fluid inertia ratio Ar has a peak value
when At= A/(1 + Ds/D). Since a direct identifica-
tion ofA is not possible, qualitative analysis of the
effect ofA on the startup/shutdown characteristics
is made taking into account the instability thresh-
old and direct dynamic stiffness information. In
order to concentrate attention on the fluid inertia
effect, an assumption is made below that in the
instability thresholds for the startup and shutdown
(Eq. (2)) Au--Ad A and Ds =0. Using notation

(3), it results, therefore, in

a4 d/a f. > af.)/(a- afd)] (2S)

On the other hand, Eq. (23) and perturbation
results (Fig. 8) provide another inequality:

(26)

The right-side expressions of (25) and (26) are
concave, crossing parabolas versus Afu, which
define the lower border of the area of possible
Mfd/Mfu ratios (Fig. 9). If Aru=Afa, then

Mfd > Mfu which seems unlikely. If Mfu= Mfd,
then Afu is limited: [max(2A- Afd 2COp/CO--Afd <
Afu<Afd] (provided that Afd is high enough,
Afd > max(A, cdp/f)). Note that for the fluid reso-
nance conditions (ap Aft) both inequalities (25)
and (26) are the same. So far the evidence is still

FIGURE 9 Area of possible ratios of the shutdown and
startup fluid inertia ratio, Mrd/Mru, versus fluid inertia circum-
ferential average velocity ratio at startup, Aru.

insufficient to conclude about the variability of the
fluid inertia during the startup and shutdown of the
rotor. The research on this subject continues.

6. SUMMARY AND CONCLUSIONS

As the first subject, the post-instability threshold
behavior of rotors rotating in fluid environment
enclosed in small radial clearances was discussed in
this paper. The nonlinear fluid force model identi-
fied by Muszynska (1988b, 1995), Muszynska and
Bently (1996), and Grant et al. (1993), using the
modal perturbation testing during the past 15 years,
was implemented into the first lateral mode of an

isotropic rotor. The equations provide analytical
values for the instability threshold, and the limit
cycle self-excited vibration amplitude and fre-
quency. The transient process starting at the instabil-
ity threshold, and ending at the limit cycle, was
evaluated analytically and illustrated experimen-
tally. As the second subject, the differences in the
instability thresholds for rotor startups and shut-
downs, known as a "hysteresis" (Adams and Guo,
1996), were presented and discussed (the "hyster-
esis" here does not have any correlation to energy
loss). The sole differences in the rates of the fluid
damping rotation rate (A) explain the basic portion
of this hysteresis. These differences are very well
intuitively understood, and can easily be quantified
by the novel perturbation testing: the external
perturbation rotating force with a constant ampli-
tude and frequency is applied to the rotor during its

startup and shutdown transition. The rotor
response filtered to the perturbation frequency is
then presented in the dynamic stiffness format,
which makes parameter identification easy. The
effect of the fluid inertia on the instability "hyster-
esis" was also evaluated, but quantitatively it
remains inconclusive. The discussed two subjects
represent new contributions. The applied fluid force
model, based on the strength of circumferential
flow, once again proved to be useful and adequate
in describing the physical phenomena occurring in
rotors in a fluid environment.
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NOMENCLATURE

c

Dn([[), Dn

DDS, QDS

V/Z1
e()
S, S

S*, S**

u(0, 3(0
z(t) x(t) + jy(t)

(5 (5(Dn)
7= At(1 / Ds/D)/A

COn, Cdnst

COp

st
Indexes:

Limit cycle self-excited
amplitude and frequency
Bearing radial clearance
Fluid radial damping,
stiffness, and fluid inertia
respectively
Fluid nonlinear damping
function and its derivative
Rotor first lateral mode
modal damping, stiffness,
and mass

Direct and Quadrature
dynamic stiffness of the
system
Fluid nonlinear stiffness
function and its derivative

Real part
Eigenvalues
Tangent estimates of the
transient process to the
limit cycle
Time
Variational variables
Rotor lateral
displacements
Eq. (9)
Eq. (2)

Fluid circumferential
average velocity ratios for
fluid damping and fluid
inertia forces
Eq. (10)
Natural frequency and
natural frequency at in-
stability threshold
Perturbation frequency
Rotative speed
Instability threshold
u: startup, d: shutdown
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